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WEYL TRANSFORMS ASSOCIATED WITH A SINGULAR
SECOND-ORDER DIFFERENTIAL OPERATOR

CYRINE BACCAR AND LAKHDAR TANNECH RACHDI

For a class of singular second-order differential operatorsA, we define and
study the Weyl transforms W,, associated withA, wheregs is a symbol inS™,
for m e R. We give criteria in terms of ¢ for boundedness and compactness
of the transform W, .

Introduction

Herman Weyl 193] studied extensively the properties of pseudodifferential oper-
ators arising in guantum mechanics, regarding them as bounded linear operators ¢
L?(R"), the space of square-integrable functionsfrwith respect to Lebesgue
measure). M. W. Wong calls these operators, which are the subject of his bool
[Wong 1998, Weyl transforms.

Here we consider the second-order differential operator definé@, aroo[ by

A/
Au=U"+ Ku/ + p?u,

whereA is a nonnegative function satisfying certain conditions arngla nonneg-
ative real number.

This operator plays an important role in analysis. For example, many specia
functions (orthogonal polynomials) are eigenfunctions of an operatar tyfpe.
The radial part of the Beltrami—Laplacian in a symmetric space is al2otgpe.
Many aspects of such operators have been studied; we mention, in chronologi
cal order, Chebli 1979 Trimeche 1981Zeuner 1989Xu 1994 Triméche 1997
Nessibi et al. 1998 In particular, the first two of these references investigate stan-
dard constructions of harmonic analysis, such as translation operators, convolutio
product, and Fourier transform, in connection wikh

Building on these results, we define and study the Weyl transforms associate
with A, giving criteria for boundedness and compactness of these transforms. Tt
obtain these results we first define the Fourier-Wigner transform associated witl
A, and establish an inversion formula.

MSC2000:42A38, 65R10.
Keywords: Weyl transform, compact operator, Fourier—Wigner transform.
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More precisely, irSection lwe recall some properties of harmonic analysis for
the operatorA. In Section 2we define the Fourier—Wigner transform associated
with A, study some of its properties, and prove an inversion formula.

In Section 3we introduce the Weyl transform, associated with\, with o
a symbol in classS™, for m € R, and we give its connection with the Fourier—
Wigner transform. We prove that, far sufficiently smoothW, is a compact
operator fromL2(dv) (the space of square-integrable functions with respect to the
measuralv(x) = A(x) dx) into itself.

In Section 4ve definew,, for o in a certain spackP(dv®dy), with pe[1, 2],
and we establish thad/, is again a compact operator.

In Section 5we defineW, for o in another function space, and use this to prove
in Section &hat for p > 2 there exists a functios in the LP space corresponding
to that of Section 4 with the property that the Weyl transforwii, is not bounded
on L2(dv).

1. The operator A

We consider the second-order differential operatatefined on|0, +oo[ by

A/
Au=U"+ —U + pu,
A
wherep is a nonnegative real number and

(1-1) AX) =x*TB(x),  a>-1,

for B a positive, even, infinitely differentiable function éhsuch thatB(0) = 1.
Moreover we assume th@t and B satisfy the following conditions:

() Aisincreasing ang Jlrim A(X) = 4o00.
——+00
A : . A(X)
i) — is decreasing and lim =
(i) A 9 x=+oo A(X)
(iii) There exists a constafit= 0 such that

2p.

B'(x) e

Box) D(x) exp(—8x) if p =0,
AX) .

A 2p + D(X) exp(—éx) if p >0,

whereD is an infinitely differentiable function o}0, +oo[, bounded and with
bounded derivatives on all intervdlgg, +ool[, for xg > 0.

This operator was studied i€pebli 1979 Nessibi et al. 1998Triméche 198],
and the following results have been established:
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() For all » € C, the equation

(1-2)

Au = —)2u
uO =1, VO =0

admits a unique solution, denoted py, with the following properties:

e ¢, satisfies theroduct formula

o0

(1-3) 01X (Y) = /0 (D w(X,y,z)A(z)dz for x,y>0;

wherew(X, Y, -) is a measurable positive function B +oo[, with support
in [[x—yl[, Xx+Y], satisfying

o0
/ w(X,Y,2)A(2)dz=1,
0

w(X,y,2)=w(y, X,z forz>0,

wX,Y,2)=w(x,zy) forz>0
e for x > 0, the function. — ¢, (x) is analytic onC;
e for A € C, the functionx — ¢, (X) is even and infinitely differentiable dR;
o [p(X)|<1forallxeRandx eR;

e for x > 0, and)x > 0 we have

(1-4) jo (%) + ATY2(x)0;.(%),

1
@.(X) = —W

where j, is defined byj,(0) =1 and j,(s) = 2*T (¢ + 1)s™ J,(S) if s#£ 0
(with J, the Bessel function of first kind), and the functiénsatisfies

16,00 < —= </|Q<s>|ds) exp(9/|Q<s)|ds)
A2tz \Jo A Jo

with ¢, ¢, positive constants an@ the function defined of0, +oo[ by

2

1
_a— LA\, LAY 2
(1-5) Q(x) = X2 +Z1<A(x)) +2(A(X)) P

(I) For nonzerox e C, the equatiomu = —A2u has a solutionb; satisfying
@, (x) = A"Y2(x) exp(i AX)V (X, M),

with limy_, . o V(X, A) = 1. Consequently there exists a function (spectral func-
tion)
A= c(A),
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such that
¢ =C(A) Py +c(—A)d_; for nonzeror € C.

Moreover there exist positive constakis k», k3 such that
(1-6) Ke|A[*F2 < e 7t < ko [a[*FH2
for all » such that Imk < 0 and|)\| > Ka.

Notation. We denote by

e dv(x) the measure defined ¢8, +oo[ by
dv(x) = A(x)dx;

e LP(dv), for 1 < p < +o0, the space of measurable functions [Gn-+oo[
satisfying

+o00 1/p
||f||p,ui=(/ If(X)Ipdv(X)) <400 forl<p<-+oo,
0

| f lloc,» := €ss sup f (x)| < +o0;
X€[0,+o0[

e dy (1) the measure defined ¢, +oo[ by

dx

WO = e

e LP(dy), for 1 < p < +o0, the space of measurable functions [6n-+oo[
satisfying|| f || p,, < +o0;

¢ D.(R)the space of even, infinitely differentiable functiongywith compact
support;
e H,(C) the space of even analytic functions ©nrapidly decreasing of expo-
nential type.
Definition 1.1. The translation operatorassociated with\ is defined onL(dv)
by

+o0
ﬁxf(y):f f(@Qwx,y,2dv(z) forx,y=>0,
0

wherew is defined in(1-3) Theconvolution producassociated with is defined
by

+0o0

(f*g)(X)Z/O I f(y)g(y)dv(y) for f,ge L (dv).
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Properties of translation and convolution.

e The translation operator satisfies

Tx@r(Y) = @i.(X) @.(Y).
e Let f e L1(dv). Then

—+o0 —+o0
f Iy f(y) dv(y) :/ f(y)dv(y) forxe][0, +oo[
0 0

and
1T fllee <1 fllzv.

o Let f € LP(dv) with 1 < p < +oc0. For allx € [0, +oo[, the functionTy f
belongs toL P(dv) and

1Fx Fllp,w < 11 fllp,v-

e For f,g € L(dv) the functionf % g also lies inL(dv). The convolution
product is commutative and associative.

e For f € L1(dv) andg € LP(dv), with 1 < p < +o0, the functionf * g lies
in LP(dv) and we have

1f 5 llpy < I Fll 1911 p.y-
e For f, g even and continuous dR, with supports
suppf c[—a,a] and supm C [—b, b],
the functionf x g is continuous orik and
1-7) suppf xg) C [—a—b, a+Db].
Definition 1.2. The Fourier transformassociated with the operatar is defined
on L1(dv) by
+o00
Ff (1) :/ f(X) @, (xX)dv(x) foraieR.
0

Properties of the Fourier transform.

e For f € L1(dv) such thatFf € L1(dy), we have the inversion formula
+o00
(1-8) f(x) =/ FTW)er(x)dy(r) fora.e.x € [0, +o0[.
0

e For f e L1(dv),

F(Tx YA = (X)Ff (1) forall x € [0, +oo[ andi € R.
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e For f,ge Li(dv),
F(fxg)(A) =FF (W) Fg(r). forall x € [0, +o0l.

e % can be extended to an isometric isomorphism friofddv) onto L?(dy).
This means that

(1-9) 1% 12, = I fll2y for f e L?(dv),
(1-10) 1F )20 = fllz, for feL2dy).

Proposition 1.3.Let f be in LP(dv), with pe[1, 2]. ThenZf belongs to I’ (dy),
withl/p+1/p’'=1,and

(1-11) 1FE M,y < 1 Elpo

Proof. Since ¢, (X)] < 1 for A € R andx € R, we get||Ff|lo, < [Tl
This, together with(1-9) and the Riesz—Thorin TheorerStein 1956 Stein and
Weiss 197}, shows that for under the conditions of the propositiohbelongs to
L (dy) and satisfie1—-11) O

From [Chebli 1979, the Fourier transforré is a topological isomorphism from

D.(R) ontoH,(C) (see page04for notation). The inverse mapping is given by

+00
(1-12) O}‘1f(x):/ fV)e,x)dy () forx eR.
0

2. Fourier-Wigner transform associated withA

Definition 2.1. The Fourier—Wigner transform associated with the operatis
the mappingv defined onD, (R) x D.(R) by

+o00o

V(9o = [ T0Tanem ) for xR xR,
Remark. The transfornV can also be written in the forms
(2-1) V()X 1) =F(FIxP Q) = @i f xg(Xx).
Notation. We denote by

¢ D.(R?) the space of infinitely differentiable functions BR, even with respect
to each variable, with compact support;

o S.(R?) the space of infinitely differentiable functions B3, even with respect
to each variable, rapidly decreasing together with all their derivatives;
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e LP(dv®dv), for 1 < p < 400, the space of measurable functions on the
product[0, +oo[ x [0, +oo[ satisfying
+o0 1/p
I fllpaen = ([ / f0x, y>|pdv<x)dv(y>) <400 forlsp<-os,

| flloo,vew := €SS sup|f(x,y)| <4o0;
X,ye[0,4o00[

e LP(dv®dy), for 1< p < +o0, the space similarly defined (withy(x) dy (y)
in the integrand).

Proposition 2.2. (i) The Fourier—Wigner transform V is a bilinear mapping from
D.(R) x D.(R) into S.(R?).

(ii) For pell, 2] and g suchthatl/p+1/p’ =1, we have

IVE DIl vey < 1Tl 191p,0-

The transform V can be extended to a continuous bilinear operdaroted
also by V, from LP(dv) x LP (dv) into LP' (dv @ dy).

Proof. (i) Let F be the function defined dR? by F(x, y) = f (y) Jxg(y). It's clear
thatF € D, (R?), and we have

V(9 A) =1 F(F)(X 1),

wherel is the identity operator. This and the fact ti¥ais a topological isomor-
phism fromD, (R) ontoH, (C) imply (i).

(i) This follows from the first equality in(2—1) together withProposition 1.3
Minkowski’s inequality for integralsHolland 1984 p.186], and the fact that

19x9llpv < l9llp,y  forxeR. O
Theorem 2.3.For f, g € D.(R), we have

FRF L(V(F,9) (1, 1) =9, W) F)Fg(n) for u, 1 eR.

Proof. Using Definition 2.1and Fubini’s Theorem we have, for all » € R,
400
FRF T(V(F,9)(n. 1) = / / V(f, 9) (X, ¥) g (X) oy (1) dv(X) dy ()
+00
/ / FHETXDY) 9 (X) @y (1) dv(X) dy (y)

=/0 %(X)</o J"U%Q)(Y)(ﬁy(ﬂ@()/))dV(X)-
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From (1-8)we deduce

+00
FRF L(V(f,9) (1, 4) = /o P () F () Txg(r) dv(x)

= fOFTD W) = T )@ (V) Fg(). O
Corollary 2.4. For all f, g e D.(R), we have

+00
/ FoF V() (w2 dvi) = FF (W TFg(u) for ue R,
0

+00
/ FoF V(L) o dyw=fgR)  foriel.
0
Proof. Theorem 2.3jives
+o0 +oo
/0 FoF L (V(f.g) (1 1) dv(h) = /0 0.0 £ 0)FG(0) dv(h)
=Ff (W Fg(u) forueR,
+o00 —+00
/0 F@F LV, ) (. 1) dy () = fo 0.0 F ) TG0 dy ()
+o0
— 10 /0 0. (VF(w) dy ()
=f)gh) forreR. O

Theorem 2.5.Let f, g € L*(dv) N L2(dv) be such that e= [,"°g(x) dv(x) # 0.

Then
+o0

1
Ff) = E/ V(f,g)(x,2)dv(x) forieR.
0
Proof. From Definition 2.1, we have
+oo + +00

/0 V(f, 9)(x, 4) dv(x) =fo 0(/0 f(Y) Txa(y) @a(y) dV(Y)> dv(x)

for all A € R. The result follows from Fubini’'s Theorem and the equality
+00 +oo
| e = [ goodveo = o

Corollary 2.6. With the hypothesis dfheorem 2.5if #f e L(dy), we have the
following inversion formula for the Fourier—Wigner transform V

1 —+00 —+00
f<x>=5/0 %AX)(/O V(T 9, u)dV(Y))dy(M) forae x < R.
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3. The Weyl transform associated withA

We now introduce the Weyl transform and relate it to the Fourier—Wigner trans-
form. To do this, we must define the class of pseudodifferential operatsd
199§.

Definition 3.1. Letm e R. We defineS™ to be the set of all infinitely differentiable
functionso on R x R, even with respect to each variable, and such that for all
P, g € N, there exists a positive constap q m satisfying

(ot 9] Cunms s

Definition 3.2. Form € R ando € S™, we define the operatdt, on D, (R) x
D. (R) by

400 ~+00
(3-1) H,(f,9)0) = /O ( /0 o (% Yoy OV (1. (X, Y) dv(x)> dy ),
for all A € R, and we put

(3_2) Ha(fa g) = H, ( f, g)(O)

Proposition 3.3. Defineo € S" by o(x, y) = —y? for x, y € R. Then for all
f, g € D.(R), we have

H,(f,g)(A) =cAf(L) forieR,
where c= ;" g(x) dv(x).
Proof. From (3—1), we have

400/ 400
Ho (F, (1) = fo ( fo V2o,V (. g, y>dv<x>> dy (y)for & € R.

Using Definition 2.1we obtain

~+00 +00 ~+00
Ha(f,g)(k)=fo (/0 —y2<py()\)</o f(Z)gxg(z)(;oy(z)dv(z)>dv(x)>dV(Y)

for » € R. From Fubini’'s Theorem, we get
Ho (f, 9 ()
+00 +00 +00
:/0 —Y2py(R) (/0 f (D ey (2) (/O T 29(X) dV(X)) dV(Z))dV(Y)

+o00 +oo
=c/0 —y2€0y(?»)(/0 f(Z)‘Py(Z)dV(Z))dV(y)

+00
=C/O —y2oy (W) F T (y) dy (y).



210 C. BACCAR AND L. T. RACHDI

But, for ally € R, —y?Ff(y) = F(Af)(y). We complete the proof using the
inversion formula(1-8). O

Definition 3.4. Leto € S"; m < —a — 1. TheWeyl transformassociated with
is the mapping\, defined onD..(R) by

~+00 ~+00
Wa(f)(k)=/o (/0 py(R)o (X, y)%f(X)dv(X)> dy(y) foraeR.

Notation. We denote by

e S.(R) the space of even, infinitely differentiable functions@®nrapidly de-
creasing together with all their derivatives.

o S(R) = ¢oS.(R), wheregy is the solution of1-2)with 1 = 0.

For p = 0 these two spaces coincidériméche 199} The Fourier transforn¥
is a topological isomorphism fror82(R) onto S,(R), whose inverse is given by
(1-12)

Lemma 3.5.For o € D,(R?), the function k defined by
+00
. 9) = [ 00T )Wy Gy Torx,y e R

belongs to IP(dv ® dv), for all p € [2, +o0].

Proof. The defining equation ok can be rewritterk(x, y) = Jx(G(-, X))(Y),
where
Gx,y)=1®F Lo)(x.y) forx,yeR,

for | the identity operator. It follows that, for ap) € [2, +o0[,

+00 p+00 +00 +00
/O/O|k<x,y)|pdv<x>dv<y>=/o (fo |%<G<-,x>(y)>|"dv(y>)dv(x)

+00 +o0

= /0 (/0 IG(y. X)|pdV(Y)) dv(x)
400 400

5/ (/ 1 ®@F o)y, X)\pdv(y)) dv(x).
0 0

We distinguish two caseg = 2 andp € ]2, +ool, the casg = +oo being trivial.
Forp=2,

+00 00 , ooy oo 5
/0 /o K. )| dv(x)dv(y)s/o </O (0 (x. ) ()| dv(x))dv(w.

From (1-10)we deduce that

+00 p+00 +o00 +o00
[O /0 KX, )2 dv oo du(y) < /O (/O |a(y,x>|2dy(y>)dv<y><+oo,
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because belongs toD,.(R?). The casep € ]2, +oo[ is more complex. From the
hypotheses o, we deduce that, as— +oo,

2a+1 if o=0
(3-3) AC) ~ o=
exp2ox) if p > 0.

e For p = 0, recall that¥ is an isomorphism frong,(R) onto itself. Thus
| ® % 1(0) belongs toS,(R?), and the asymptotid8—3) implies

400 400
(3-4) fo /0 Kex, y)[Pdv(x) du(y)
+00 ~+00
<f (/ |I ®%*l(o)(y, x)|pdv(x)> dv(y) < +o0.
0 0

e Forp > 0, we have fromTriméche 1997p. 99]
loa (X)) < @o(X) =m(L+x)exp(—px) forall A e Randx >0,

wherem is a positive constant. Then
+00
195 @)y, 0] =M+ exp-px) [ loty. 21 dv.
0
Sinceo belongs toD,.(R?), there exists a positive constavit such that
+o00
| ew.aia@<m for y=o
0

which implies that
1 ®F 1(0)(y, )| < MM(L+ X) exp(—pX).

This, together with the asymptoti¢8—3), implies the validity of the same
bound(3—4)as in the previous case. O
Theorem 3.6.Leto € D, (R?) and f € D,(R).
+00
i) Wo(HH(x) = k(x, y) f(y)dv(y) forall x € R.
0
(i) W (F)llpv < lIKllprvevll Tl p,v for pe[l, 2] and g suchthatl/p+1/p'=1.

(i) W, can be extended to a bounded operator frof(dv) into L (dv). In
particular, W, : L2(dv) — L?(dv) is a Hilbert-Schmidt operatgrhence
compact
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Proof. (i) From Definition 3.4 we have, for alk € R;
+00 +00
W, (F)(X) = /0 Py (X) (fo o(z,y)7xf(2) dv{Z)) dy(y)

+00 +00 .
_ /o <py<x>( fo t @yl (. y>](z)dv<z>) dy(y)

From Fubini’s Theorem, we get, for atle R,
+00 +00
W (F)(x) =/0 f(Z)</o ey (X)Ixlo (., Y)](Z)d)/(y)) dv(2)

+o00
= /0 f(2k(x, 2) dv(2).
(i) Follows from (i), Holder’s inequality, andlemma 3.5
(iii) Since k € L?(dv ® dv), the mapping
W, : L?(dv) — L2(dv)
is a Hilbert—Schmidt operator, and so compact. O

Theorem 3.7.Letm< —a —1lando € S". For all f, g € D.(R),

+oo
(3-5) Hy (f, ) = /O £ OOW, g(x) dv ().

Proof. Using (3—2) and Definition 2.1we obtain
“+00 +00
Ho (f, ) :fo (/0 o (X, YV (f, 9)x, y)dv(X)) dy(y)

+00 +o0 +o0o
=/0 (/0 G(X,Y)</O f(k)gxg(k)wy(k)dV(k))dV(X))dV(Y)-

From Fubini's theorem, we get

+00 +oo +oo
Hy (f, g) = /O fm(fo wm(/o a(x,y)ﬂxgmdv(x)) dy(y)) dv()

“+oo
— [ tows @ v, o
4. The Weyl transform with symbolin LP(dv®dy),forl < p=<2

In this section we show usin@-5)that, if 1 < p < 2, the Weyl transform with
symbol inLP(dv ® dy) is a compact operator.
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Notation. We denote byB(L?(dv)) the C*-algebra of bounded operatoksfrom
L2(dv) into itself, equipped with the norm

Wi, = sup W(Hllz,-
”f”2,17:1

Theorem 4.1.Let(- /- ) denote the inner product inAdv). There exists a unique
operator Q: L?(dv ® dy) — B(L2(dv)), whose action we denote by— Q,,
such that

_ +00 +00
<QU(@D/1‘>=/O (/0 cr(x,y)V(f,g)(x,y)dv(X))dy(y) for f, ge L%(dv).

Furthermore || Q|1+« < llo ll2,vey -

Proof. Let o € D,(R?). Forg € D4 (R), put Q. (g) = W, (g). From Theorem8.6
and3.7, we obtain

(Qs(9)/ ) = (W,(9)/f) =H,(f, )
400 +o0
:/o (fo o (X, YV (f, g9)(x, y)dv(X)) dy (y).

On the other hand, frorRroposition 2.8i), we have
Qo (@)/ F)| < llolzvey I Fllzy 19112,y -
ThusQ, € B(L?(dv)) and

(4-1) 1Qs Il < lloll2vey -

Now considers € L?(dv ® dy). Let (ox)ken be a sequence iB, (R?) such that
lox — o ll2,vey @approaches 0 ds— +oo. From(4-1)we have, for alk,| € N,

||Ql7k - Qa| I« < llok — o ||2,v®y < llok — U”Z,v@y + oy — U||2,v®y-

Thus(Q,, )ken is @ Cauchy sequenced(L?(dv)). Let it converge t@Q, . Clearly
Q. is independent from the choice Gfy)ken, and we have

Qs I« = kﬂToo I on”* =< kﬂToo ||Uk||2,v®y = ”0”2,v®y-
We consider firstf, g € D.(R). Then
(Qo(@)/ f) = lim (Qq @)/ )
— 400

kK—+400

+o0 ~+00
= Iim/O (/0 crk(x,y)V(f,g)(X,y)dv(X))dV(Y)

+o00

+00
=f0 (/O o(x,y)V(f,g)(x,y)dv(X)>dy(y).
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Now let f, g be in L?(dv). Pick sequenceéfy)ken, and (giken in D, (R) con-
verging to f andg, respectively, in the] - ||2,-norm. Then

(Qu(9)/ ) = lim_(Qu (g f
+00

+00
= Iim/o </0 a(x,y)V(fk,gk)(x,y)dv(X))dy(v)

k—+o00
+00

+00
:/0 (/O o(x,y)V(f,g)(x,y)dv(X))dy(y). O

We now give an extension atheorem 4.1that will allow us to prove that for
1 < p < 2 the Weyl transform with symbol ib P(dv ®dy), is a compact operator.

Theorem 4.2.Let pe [1, 2]. There exists a unique bounded operator
Q: LPdv®dy) — B(L?(dv)),

whose action is denoted lby— Q,, such that

_ +o00 +o0
<Qa<q>/f>=/0 (/O o(x,y>V<f,g><x,y>dv(x)) dy(y) for f.ge D.(R).

Moreover || Qq ll« < llo |l p,vey -

Proof. The casep = 2 is given byTheorem 4.1 We turn to the cas@ = 1. For
o € D,.(R?), we defineQ, by

Q(r (g) = W(r (g) for ge D*(R)

From Theorem$8.6 and3.7, we have, forf € D.(R),

_ +o00 +o0
(@ @)/ f) =H, (Lo = [ (/O o (% YV (T, X, y)dv(x)) dy (y).
From Holder’s inequality we then obtain

Qo @)/ F)| < o ll1sy IV (F, Do vey < loll1iey I iz, IGl2,-

This shows thaQ, € B(L?(dv)) and||Qq ||, < lollLvey -

We extend the definition 0Q, and the two facts just proved to the case of
o € L(dv ® dy), working as in the proof oTheorem 4.1

Finally, the Riesz—Thorin Theoren${ein 1956 Stein and Weiss 197 lallows
us to generalize the same results from the cpsed andp=2toallpe[1,2]. O

Theorem 4.3.Let pe [1, 2]. For o € LP(dv ®dy), the operator Q from L2(dv)
into itself is compact
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Proof. Giveno € LP(dv ® dy), choose a sequencey)ken in D, (R?) approxi-
matingo in the|| - || p g, -nOrm. The last assertion @heorem 4.%ays that
[ Qak — Qs lls < llox — || p,vRY >

S0 Q,, approache®, in B(L3(dv)). From Theorem 3.68we know thatW,, =
Qo is compact for alk € N. The theorem then follows from the fact that the
subspacét(L?(dv)) of B(L2(dv)) consisting of compact operators is a closed
ideal of B(L?(dv)). O

5. The Weyl transform with symbol in S;,O([RRZ)

Notation. We denote by

e S, o(R?) the subspace @, (R?) consisting of functions with compact support
with respect to the first variable;

e S (R the topological dual 08, o(R?);

e D, (R) the space of even distribution & It is the topological dual oD, (R).
Definition 5.1. Foro € S;’O(RZ) andg € D, (R), we define the operatdW, (g) on
D.(R) by
(5-1) (W, (@)(f) =0 (V(f, @) forfeD,R),
whereV is the mapping fronDefinition 2.1 ClearlyW, (g) belongs toD,, (R).

Proposition 5.2. Consider the distributiorr of S*’O([Riz) given by the constant
functionl. For all g € D,.(R), we have

WG (g) = Caa

+00
where c= g(x) dv(x) and$ is the Dirac distribution a0.
0

Proof. For f, g € D, (R), we get
+00 +00
(Wo (@) (f) =a(V(f,9) =/0 (/O V(f, 9,y dV(X)) dy (y).
But from the proof ofTheorem 2.5we have

+o00
[ V(f, )X, y)dv(x) =cFf(y) foryeR.
0

Integrating both sides ovdb, +oo[ with respect to the measuds, and using
(1-8), we obtain
+00

o(V(f,g)):(WU(g))(f):c/O Ftyydy(y)=cf(@=(s, f). O
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Note that byProposition 5.2there exister € kayo([RRZ), given by a function in
L>(dv®dy), such that for alf € D..(R) satisfyingc = [, g(x) dv(x) # 0, the
distribution W, (g) is not given by a function inL?(dv).

6. The Weyl transform with symbolin LP(dv® dy),for2 < p< oo

Theorem 6.1. Let p e 12, oo[. There exists a functioa € LP(dv ® dy) such
that the Weyl transform Wdefined by(5-1)is not a bounded linear operator on
L2(dv).

We break down the proof into two lemmas, of which the theorem is an immediate
consequence.

Lemma 6.2. Let p € ]2, oo[. Suppose that for alb € LP(dv ® dy), the Weyl
transform W, given by(5—1)is a bounded linear operator on?(dv). Then there
exists a positive constant M such that

(6-1) IWsls <M llollp.g, foralleeLlLPdvedy).

Proof. Under the assumption of the lemma, there exists for each.P(dv @ dy)
a positive constant, such that

IW, (@20 < Coligllzy  for g e L%(dv).

Let f, g € D«(R) be such thaf| f ||, , = llgll,, = 1 and define a linear operator
Qfg:LP(dv®dy) — Chy

Q1.g(0) = (W, (g)/f).
Then

sup  [Qg(0) =Cs.
|fl20=Igl2.,=1

By the Banach—Steinhaus theorem, the oper@tpg is bounded o P(dv ®dy),
so there exist$1 > 0 such that

Qfgll= sup [Qfg(o)l <M.

llollp,vey=1

From this we deduce that for afl g € D..(R) ando € LP(dv ® dy),
|<Wa(g)/f_>| < Mllollpveyll fllzv gl
which implies(6-1). OJ

Lemma 6.3.For 2 < p < oo, there is no positive constant M satisfyi(&-1).
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Proof. Suppose there exists such h Let p’ be such that Ap+1/p’=1. Then
p’ €11, 2[. We consider, forf, g € D, (R), the functionV ( f, g) of Definition 2.1
We have

+00
IV(f. Dllpvey =  sup / / o (X, MV (E, 9)(x. y)dv(x)dy(y)

llollp,vey=1
= sup |Wo(@/f)[< sup [W,(@llzull fllzv.
||J|‘p,v®y:l |‘G‘|p,u®y:

and consequently

(6-2) IV Dllpvey =Mz 1912,

Now considerf, g in L?(dv). Choose sequencési)ken and (gk)ken i Dy (R)
approximatingf andg in the || - ||2,,-norm. By Proposition 2.2 the sequence
(V (fx, gk))ken cOnverges to/ (f, g) in LP (dv ®dy), and thus we have extended
(6-2)to all f,g e L2(dv). We will exhibit an example where this leads to a
contradiction.

Let f be an even, measurable function@nsupported if—1, 1]. We have

IV(E, DGy < 1 f1F10,

wherex is the convolution productdefinition 1.1). From(1-7), we deduce that
for all y € R, the functionx — V (f, f)(x, y) is supported if—2, 2]. Hoélder's

inequality gives
p 1/p
dy(y)>

“+00
(/
2 1/p +00 2 ) 1/p
5(/dv(X)) (/ (/ V(E B, y>|pdv<x>)dy<y>)
0 0 0
2 1/p 2 1/p
=(f0 dv(x)) IV, f)||pf,v®ysM(/o dv(x)) 112,

the last inequality following fron{6—2). This proves that the function

2
V(f, f)x,y)dv(x)
0

y|—>/ V(f, f)x,y)dv(x) =cFf (y)

belongs toL p’(dy); herec = |, +oo f (x)dv(x). and we have used the proof of
Theorem 2.5or the equality on the right-hand side. Putting this together with the
preceding inequality we see thatgif 0, the functionZf belongs ta P (dy) and

M 2 1/p )
(6-3) 15l < o |</ dv(x)) 1112,
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Now consider the particular functioh given by

x|
f(X) = —— 1;_1 11(X
(X) 800 —1,11(X)

whereB is the function defined byl-1)and1;_1 1; is the characteristic function
of the interval[—1, 1]. If r > —(a + 1), this function belongs ta.*(dv) N L(dv).
From (1-4)we get

1 1
Ff (1) = / X'+l (ax)dx + / x'+e+1/2g, (x)dx
0 0

1

A 1
= r+2a+1; r+a+1/2
- )Lr+20z+2/0 X JO,(X)dX—i—/O X' TETHEG, (X) dX.

Using the asymptotic expansion of the functipn[Lebedev 1972Watson 1944
given by

_ 2220 (@ 4+ 1) T 7 1

we deduce that for(a +1) <r < —(a + %), the integral
+00
a:= f x" 2041 (x) dx
0
exists and is finite, so

1 ~ a
+20+1; ~
Az [)X jo (X) dX TrT2ai? asiA — +4oo.

On the other hand, foxr > 1,

1 1
r+a+1/2 G r+a+1/2
/o X 0. (x)dx S—A“+3/2/() X W (x)dx,

\I/(X):(/ |Q(s)|ds)exp(c2/ |Q(s)|ds) forall x>0
0 0

andQ is given by(1-5) Since—(e¢+1) <r < —(a + %), we deduce that

where

Ff(A) ~ asi — +o00.

Al +2a+2
Using this and1-6), it follows that there exisK, R > 0 such that

K
21 |C(A) |2 z AP +20+2)—20—1

\Ff ()| forr> R
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so forr such thatp'(r + 2« + 2) < 20 + 2, we get

o +00 o dx +00 K
(o e —
171y, z/R |Zf ()] 27 GO z/R ,\p/(r+2a+z)fza71dk = +00.

This shows that the relatiof®—3) is false if we choose so as to satisfy simulta-
neously the conditions > —(¢ +1),r < —(a + %) and

200+ 2
f<—Qut2)+ 22
This contradiction proves the lemma ahideorem 6.1 O
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DISTANCE AND BRIDGE POSITION

DAvID BACHMAN AND SAUL SCHLEIMER

J. Hempel’'s definition of the distanceof a Heegaard surface generalizes to
a notion of complexity for any knot that is in bridge position with respect
to a Heegaard surface. Our main result is that the distance of a knot in
bridge position is bounded above by twice the genus, plus the number of
boundary components, of an essential surface in the knot complement. As
a consequence knots constructed via sufficiently high powers of pseudo-
Anosov maps have minimal bridge presentations which are thin.

1. Introduction

Hempel's definition 2007 of the distanceof a Heegaard splitting is a natural
measure of complexity, generalizing the standard notioniedhicibility (distance
zero),weak reducibility(distance at most one), asttong irreducibility (distance
at least two). Hempel proves that there exist Heegaard splittings of arbitrarily high
distance.

In his Ph.D. thesis, K. Hartshorn related the distance of a Heegaard splitting tc
the genus of any essential surface, thus refining work of T. Kobayh388}

Theorem[Hartshorn 199P Let M be a closegorientable irreducible 3-manifold
with Heegaard splitting F Suppose M contains an orientabli@compressible
surface SThen the distance of F is bounded above by twice the genus of S

We introduce our results by recalling a generalization of the curve complex for
surfaces with nonempty boundary. This allows us to translate Hempel's definition
of distance for Heegaard splittings to a definition of distance for knots that are in
bridge position with respect to a Heegaard surfaderjmoto and Sakuma 1991
Our main result is a translation of Hartshorn’s Theorem into this new context:

Theorem 5.1. Let K be a knot in a closedrientable3-manifold M which is in
bridge position with respect to a Heegaard surfacellet S be a properly embed-
ded orientable essential surface in . Then the distance of K with respect to F
is bounded above by twice the genus of S [HS}.

MSC2000:57M25, 57M27.
Keywords: Heegaard splitting, curve complex.
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In the special case of a meridional disk we find that a stronger result holds; the
distance ofK with respect toF is zero. This follows from a variant of the Haken
Lemma (sed.emma 4.).

Although our proof contains Hartshorn’s result as a special dase §), there
is an interesting qualitative difference. Unlike Hartshorn, we make no minimality
assumption on the way in whicBintersects~. That is,any generic positionf S
with respect ta- forces the bound on distance as stated in the theorem.

The main idea behind our proof is to simply count saddles dickt, F) denote
the distance oK with respect toF. It is a standard technique in 3-manifold
topology to use a Heegaard splittikg for a 3-manifoldM to define a height
functionh on M. This, in turn, induces a height function on a surf&e M.
With respect to this height functio8 will have maxima, minima, and saddles.
The moral of the story is that each critical point®gither

(1) contributes at most 1 td(K, F) and exactly—1 to the Euler characteristic of
S, or

(2) contributes nothing td (K, F) and nothing to the Euler characteristic &f

Hence, the distance & with respect toF would then be bounded by the neg-
ative of the Euler characteristic & Unfortunately, for Heegaard splittings the
above classification isn’t exactly correct. We find that there may be at most two
special critical points that each contribute one to the distanég, &fut nothing to
the Euler characteristic &. This gives the bound

d(K,F) < —x(9+2=29(5+199|.

We note that several authors have explicitly computed the distances of vari-
ous classes of knots (using varying definitionsdiftancg. See, for example,
[Akiyoshi et al. 2000 Morimoto 1989 Saito 2004

In the final section we present corollariesTtoeorem 5.1 Among these are:

Corollary 6.1. Suppose K is a knot in®Svhose distance is@, F) with respect
to a bridge sphere FThen the genus of K is at leasfd(K, F) — 1).

Corollary 6.2. If K is a knot whose distance is at leéwith respect to some
Heegaard surfacghe complement of K is hyperbalic

Finally, we define théridge link associated to an element of the braid group
B, to be the link obtained by gluing two trivial-strand tangles by this element.
By a construction essentially due to Kobayast8§9g, powers of certain pseudo-
Anosov maps give associated bridge links with arbitrarily high distance. Suppose
¢ is such a map. Then it follows froi@orollary 6.5that for all sufficiently high
powers of¢ if the associated link is a knot, its minimal bridge presentation is thin.
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A priori, bridge knots associated to high powers of pseudo-Anosov maps might
have low bridge numbers. We conjecture that this is not in fact possible:

Conjecture. Suppose is a knot whose distance is at least 2 with respect to some
Heegaard surfacé. Then the distance df with respect to any other Heegaard
surface is bounded above ly(F — K) + 2.

Compare this to the statement Dfieorem 5.1 In the theorem we assert that
the distance of a knot with respect to a Heegaard surface is bounded by two plu
the Euler characteristic of an essential surface. In the conjecture we propose th:
distance is similarly bounded by a strongly irreducible surface.

2. Basic definitions

In this section we give the definitions that will be used throughout the paper. Let
K be a knot in a closed, orientable 3-manifoM, Let Mx = M — N(K) where
N(K) denotes a regular neighborhood Kf For the remainder of this paper all
surfacesSin Mk will be embedded, compact, and orientable WBthoMy C 9S.

Definition 2.1. A cut surface(seeFigure J) is either
(1) adiskE c Mg such thatE NnaMg = &,
(2) a bigonE c Mk such thate N9 Mg is an arc, or

(3) an annulusE ¢ Mg with exactly one meridional boundary component on
dMg . In other wordsE N dMg is a loop bounding a disk iN(K).

If E is a cut surface angd = 9E — 9 Mk we say thaty bounds a cut surface

14 14

- :

Figure 1. Disk, bigon, and meridional cut surfaces.

A properly embedded simple curve 8is inessentialf it bounds a subsurface
of Sthat is a cut surface, arebsentiabtherwise.

Suppose’ bounds a cut surfadg, thatSis properly embedded iNlk , and that
SN E =y. We may thersurger SalongE by replacing a neighborhood ¢fin S
with two parallel copies oE. If y is essential irS we sayE is acompressiorior
S. In this case we also saybounds a compressidor S.
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A properly embedded surfac® C M is essentialif first there are no curves
on S which bound compressions My and second S (if nonempty) is not null-
homotopic ondaMy. We also consider a 2-sphere to be essential if it does not
bound a ball inMk . This notion of essentialnessnstidentical to that of “super-
incompressible” found inNlorgan and Bass 1984

A handlebodyis a 3-manifold homeomorphic to the closure of a regular neigh-
borhood of a compact, connected grapliti If such a graph has no valence-one
vertices and the corresponding handlebody has nonzero genus, the graph’s ima
under such a homeomorphism isgineof the handlebody. We will insist that the
spine of a 3-ball be a single edge.

A closed surfacd= in M is aHeegaard surfacef M if F separate$/ into two
handlebodies. An arc properly embeddedHins trivial if it bounds a bigon irH.
Suppos« is a knot in a 3-manifold with Heegaard surfacé. The knotK isin
bridge position with respect to FMorimoto and Sakuma 1991 K meets each
of the handlebodies bounded Byin a collection of trivial arcs. Such a position
is sometimes referred to as(g, b)-presentatiorof K, whereg = genugF) and
2b=|KNF]|.

3. The arc complex

Following Hempel's definition200] of the distance of a Heegaard splitting, we
now define thalistanceof a knot K that is in bridge position with respect to a
Heegaard surfaceé c M. Set

Mk =M —N(K) and Fx =FnN M.

Construct a 1-complek (Fk) as follows: for each proper isotopy class of es-
sential curves ik there is a vertex df'(Fk ). There is an edge af(Fx ) between
two distinct vertices if and only if there are representatives of the corresponding
isotopy classes which are disjoinl.(Fk) is called thearc complexof Fx (see
[Masur and Minsky 1999for example).

Now, Fx divides M into two submanifoldsH andH’. LetV andV’ denote
the sets of vertices df (Fk) corresponding to curves that bound compressions in
H and H’, respectively. Them (K, F), thedistance of K with respect to,As
defined to be the number of edges in the shortest path ¥¥dmV’ in I'(Fk). As
long asy (Fk) is at most-2 this is well defined, since the arc complex is connected
in those cases.

4. Lemmas

The following is a slight variant of the Haken Lemni0pg. We assume famil-
iarity with the proof of this result found inJaco 1980Theorem I1.7].
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Lemma 4.1(Haken).Let K be a knotin &-manifold M which is in bridge position
with respect to a Heegaard surface Ff Mg contains an essentid@-sphere or
meridional disk then ¢K, F) = 0.

Proof. Among all essential 2-spheres and meridional disklljn choose ones,
meetingFx minimally. Let H and H’ denote the submanifolds ®&flx bounded
by Fk, with 89S (if nonempty) contained id. If SN Fx = @ thenSlies entirely
in H or H’, a contradiction. It follows thaBn Fx is a nonempty set of loops that
are essential ok . Hence, ifS meetsFg in a single loop, the result follows.

Suppose then thaBn Fx | > 1. Let H* denote one oH or H’, where there is
a componenT of SN H* with [0T — 35| > 2. Choose &asisA for H*, that is, a
system of disks and bigons cuttitdy* into a 3-ball. If SN A contains any loops,
surgerS along these loops, innermost (&) first. At least one component of the
resulting surface is again an essential sphere or meridional disk. We continue t
denote this surface bS$.

Now reduce/SN A| as follows. If any component afSN H*) — A is a bigon,
surgerA along this surface. Some subcollection of the resulting set is again a basis
which we continue to denote . If not, choose a bigon oA — S, and use this
to guide an isotopy 08 (see the “isotopy of type A’ inJaco 1980p. 24]). Repeat
this procedure until all component®s of SN H* satisfy |0T —dS| = 1. LetS
denote the resulting surface.

It follows from the argument ofJaco 1980Lemma I1.9] that ifH* = H' then
IS N Fk| < |SN Fk|, and we have reached a contradiction. Hf = H then
IS N Fk| <|SN Fk|. If equality holds we repeat the preceding steps vBth
replacingSand lettingH* = H’. This gives a surfacg” with |S'"NFx | <|SNFk],

a contradiction. O

Lemma 4.2. Let K be a knot in &8-manifold M which is in bridge position with
respect to a Heegaard surface. FSupposes bounds two cut surfaces A and B
with AN B =y. Then A and B are both bigonisoth annulj or both disksunless
d(K, F)=0.

Proof. If AandB are of different types, their union is a meridional disk. The result
now follows fromLemma 4.1 O

Lemma 4.3. Let K be a knot in &8-manifold M which is in bridge position with
respect to a Heegaard surface F and let Q be any properly embedded surface i
M. If there is a curvey that is essential on Q and bounds a cut surface E in M
then either there is a curvg’ ¢ E N Q that bounds a compression for, @nless
d(K,F)=0.

Proof. Let A ¢ EN Q be the collection of curves that are essentiakanLet E’
denote the closure of a componenttof- A that is a cut surface. Set = E'NA.
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Consider the se® of cut surfaces bounded by such that the only curve of
intersection withQ, essential orQ, is y’. Note thatE’ is such a surface, 90 is
nonempty. LetE* be an element o® with |[E* N Q| minimal.

We now claimE* N Q = y’. Suppose not. LeE” be a cut surface component
of E* — Q. The curvey” = E” N Q is inessential orQ and hence bounds two cut
surfacesA C Q andE”. Note thatANE” = y”. By Lemma 4.2we may obtain
a new cut surface fronkE* by replacinge” with a push-off of A. This violates
the minimality of|E* N Q|. We conclude thaE* is a compression fo®, which
finishes the proof. g

Lemma 4.4. Let K be a knot in a3-manifold M which is in bridge position
with respect to a Heegaard surface F and let S be an essential surface in M
If we surger S along a disk or bigon cut surface then at least one of the remaining
components is essentiainless dK, F) = 0.

Proof. By assumption there is a curgeC Sthat bounds a cut surfad®’, home-
omorphic to a disk and such thet N S= y. SinceSis essentialy bounds a cut
surfaceE ¢ S. SurgeringS along E’ produces two surfaces, isotopic EoU E’
andS = (S— E) U E’. SupposeS is not essential. Ley’ bound a compression
C for S. As E’ is homeomorphic to a disk we may properly isotggeoff of E’'.
The curvey’ is now onS, and bounds the cut surfae By Lemma 4.3there is a
compressiorC’ for S, a contradiction. O

Lemma 4.5. Let K be a knot in @-manifold M which is in bridge position with
respect to a Heegaard surface F and let S be an essential surface inliMve
surger S along a cut surface then at least one of the remaining components i
essentiglunless dK, F) = 0.

Proof. By assumption there is a curgeC S which bounds a cut surfade’ such
thatE’' N S= y. SinceSis essentialy bounds a cut surfacE in S. SurgeringS
alongE’ then produces two surfaces, isotopicBa E' andS = (S— E)U E'.

By Lemma 4.4ve may assumg’ is an annulus. B{zemma 4.2ve may assume
E is also an annulus. [E U E’ is essential, we are done. Otherwise there must be
a compressing bigoB for E U E’ (since the core loop dE U E’ is not essential).
SurgeringE U E’ along B gives a diskD with 9D ¢ d Mk bounding a diskD’ C
dMg. If the sphereD U D’ is essential, the proof is complete bgmma 4.1
Otherwise we conclude th& U E’, together with an annulus &M, bounds a
solid torus. If the interior of the solid torus is disjoint froBithen S’ is properly
isotopic toS and we are done. I8 meets the interior of the solid torus we may
push it entirely into the solid torus. Now considBm S. Some component of
B — Sis then a cut surface fdd. This cut surface is either a disk or a bigon. By
Lemma 4.4we may surgelS along this cut surface and obtain another essential
surface that meetB fewer times. Continuing in this way we obtain an essential



DISTANCE AND BRIDGE POSITION 227

surface inside the solid torus that misd&sand is hence contained in a ball. This
is impossible. O

5. Proof of the Main Theorem

We recall the statement.

Theorem 5.1. Let K be a knot in a closedrientable3-manifold M which is in
bridge position with respect to a Heegaard surfacellet S be a properly embed-
ded orientable essential surface in M. Then the distance of K with respect to F
is bounded above by twice the genus of S HS}.

We now begin the proof. Throughout we assume tht, F) > 0 to avoid the
special cases of the lemmas fr@ection 4 Let g and X1 denote spines of the
handlebodies bounded By. Leth: M — | denote a height function oM such
thath—1(0) = o andh—1(1) = =1. We require that for everye (0, 1) the surface
h=L(t) is parallel toF = h—l(%). Becausk is in bridge position with respect t©
we may isotopeK so that each arc d — F has one critical point with respect to
h. Now pull each minimum down t& and each maximum up tBy. If M = S°
andF is a sphere we may assume tiKahas at least two maxima and at least two
minima. In this cas& and X; are edges, and we assume that the vertices
coincide with two minima oK and the verticed§ ; coincide with two maxima.

SetF(t) = h~(t) N M. Let H(t) be the closure of the component i —
F(t) that containsZg. Let H(t) be the closure oMk — H (t). Let ¢g be chosen
just larger than the radius & (K), but small enough so th& meetsH (¢p) and
H’(1— ¢p) in compressions foF (¢p) and F(1— ¢g). Then the surfacé-(t) is
homeomorphic tdcx = F N Mg for every value oft € [¢g, 1— ¢p]. Hence, the
submanifoIdUtl;jg F(t) is homeomorphic td-x x [eg, 1— €o]. Let w denote the
composition of such a homeomorphism with projection onto the first factor. Hence,
if ¥ is a curve onF(t) for somet € [¢g, 1— ¢g], thenz (y) is a curve onFg.

We make two types of assumptions on the position of the essential siBface
Any surface whose position satisfies these assumptions we will saptarndard
position The first concerns hov meetso Mk and the second is a genericity
assumption on the interior &. Near the boundary d6 we assume the following:

e Meridional boundary components are “level”; that is,Sfthas meridional
boundary, there exists for each boundary compofieot Sat € (eg, 1— €p)
such thatC c dF(t). We considet a critical value forS if some boundary
component ofSis contained i F(t).

¢ If Sdoes not have meridional boundary then for geneaicd each component
y of 3S—F () the endpoints of lie on distinct boundary componentsieft).
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F(t+e) \

F(t—e¢) /

Figure 2. A piece of S between levelsF(t — ¢) and F(t + ¢),
before and after a meridional boundary componént,

These stipulations are possible siric®is not null-homotopic ord Mk . In the
interior of Mk we assume the position &is generic in the following sense:

o All critical points ofh|s are maxima, minima, or saddles. We will refer to any
such critical point whose height is betwegrand 1- ¢y and to any meridional
boundary component ascaitical submanifold(of S).

e The heights of any two critical submanifolds $fare distinct.

e Suppose a meridional boundary comporemf Shappens at height Let P
denote the closure of the componentf F (t +¢) that hasC as a boundary
component. Ther® is a once-punctured annulus with one boundary compo-
nent on each oF (t — ¢) andF (t + ¢) (seeFigure 3. (This uses the fact that
dMg is connected.)

Claim 5.2. For each te [¢g, 1— €g] the submanifolds Kt) and H'(t) of Mk do
not contain any essential surfaces

Proof. Choose a basia of compressing disks and bigonsli(t) that cut it into

a ball. Suppos® € A. Let D’ be a cut surface component bf— Q, whereQ is

some essential surfacelih(t). By Lemma 4.4 compressing) alongD’ yields an

essential surface that meddsfewer times. Continuing in this way we produce an

essential surface iAl (t) disjoint from A, and hence in a ball. This is impossible.
O

Definition 5.3. Let tg be the supremum dfe [¢g, 1— €g] such that some curve in
SN F(t) bounds a compression fét(t) in H(t). (The compression foF (t) need
not be a subsurface @) Definet; likewise with infimum instead of supremum
andH’(t) instead ofH (t).
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Claim 5.4. The valuesgand t are well definedand ¢ > «g.

Proof. To establish the claim it is enough to show that for some sealkg there
are curves inSN F(e) and SN F(1— ¢) that bound compressions fér(¢) and
F(1—¢)in H(e) andH’(1— ¢), respectively.

There are essentially two cases. Suppose first the essential stirfaddesed, or
has meridional boundary. BN o = @ then S can be properly isotoped entirely
into H'(¢), violating Claim 5.2 We conclude thaBN g # @. F(¢) N Sthen
contains a loop that bounds a compressiorH @) in H(¢). On the other hand, if
Shas nonempty, nonmeridional boundary tikgfa) N S contains an arc that bounds
a bigon compression iAl (¢). This proves thaty is well defined andg > € > «o.

A symmetric argument shows is well defined. a

Claim 5.5. The value ofgis less tharl — «o.

Proof. Supposdg = 1— ¢p. Lete > ¢g be small enough that2 ¢ is greater than
the height of the highest critical submanifold. Bs= 1— ¢g there is a curver of
F(1—¢) N Sthat is essential i (1 — ¢) but bounds a compression k(1 — ).
Recall that the boundary &has been isotoped into standard position. It follows
that the components &N H'(1 — ¢) are all disks and bigons. Hence bounds
compressions foF (1 — ¢) on both sides and(K, F) =0. O

Claim5.6.lIftgp=t; <1—¢pgthendK, F) = 1.

Proof. If tg = t1 < 1— ¢ then for all sufficiently smalk there is a curve of
SNF (to+¢) bounding a compression K’ (t) and a curve o8N F (tp—¢) bounding
a compression it (t). But for e sufficiently small the curves of (SN F (tg+¢))
can be made disjoint from the curvesm(Sm F(tg — e)), becausd- and S are
orientable. This is basically identical t&fbai 1987Lemma 4.4]. O

Henceforth we assume thaf < tg < t; < 1— €.

Claim 5.7. If t, € (tp, t1) is a critical value then for sufficiently smailithe curves of
7 (F(t,—e)NS) are at a distance of at most one from the curves @ (t,+¢)NYS).

Proof. As in the proof ofClaim 5.6 the curves oft (SNF (t.+¢)), for € sufficiently
small, can be made disjoint from the curvesr@SN F (t, —¢)). The result follows
unless either of these are collections of inessential curves, and hence are not rept
sented i (Fg ). However, if this is the case then all curvesSifi F (t, + ¢) (say)

are inessential o8. By Lemma 4.5a sequence of surgeries produces an essential
surface disjoint fronF (t, + ¢), contradictingClaim 5.2 O

Claim 5.8. A component of R) N S that is inessential on () is inessential on S

Proof. This follows directly fromLemma 4.3 g
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Now lett € [eg, 1 — €0] be a regular value ofi|s. Pick a componeny of
F() N S. The curvey is mutually essentiaif it is essential on both-(t) and S,
mutually inessentidf it is inessential on both anchutualif it is mutually essential
or mutually inessential. Finally; is specialif it is inessential ors but essential on
F(t). There are three kinds of special curves: loops that bound disig; loops
that cobound (wittd S) annuli in S, and arcs isotopic (via bigons) inté®s.

Claim 5.9. Suppose t is a regular value ofdin [tg, t1]. Every curve of Ft)N'S
is mutual

Proof. Pick a regular valuee [¢g, 1— €p]. By Claim 5.8we may assume that there
is a special curve in F (t)NS. By definition,y is essential ori- (t) but inessential
on S. It follows that a componeri of S—y is a cut surface. Bizemma 4.3here

is a curve ofENF (t) that bounds a compression fB(t). This compression either
liesin H(t) orin H'(t). SinceEN F(t) Cc SN F(t) we conclude ¢ [to, t1]. O

Claim 5.10. If « is an arc component of ) NS and Ha) =t € (tp, t1) thena is
mutually essential

Proof. By Claim 5.9the only other possibility is that is mutually inessential. In
this cased« is the boundary of some agcof 3S— F(t). Also, 3y = da lies on
the same component 6f(t). This violates our assumption th&tis in standard
position. O

In h=1([tg, t1]) we see the usual four types of critical submanifolds$omax-
ima, minima, saddles, and meridional boundary components. Suppose a critice
submanifold happening at heighis a saddle or meridional boundary component.
Let P be the closure of the component®f F (t £¢) that contains the critical sub-
manifold. We callP ahorizontal neighborhoodin S) of the critical submanifold.
LetaLP = PN F(t £¢). We say the critical submanifold atis specialif there
is some component df. P that is special. If the critical submanifold &is not
special, we say it ilmessentialf some component of the closure $f P is a disk
andessentialbtherwise. If the critical submanifold atis inessentialClaim 5.10
implies that there is a mutually inessential loop componert.d&¥ that bounds a
diskin S.

Claim 5.11. Suppose,te [to, t1]. If there is a special critical submanifold af t
thent =tgort.

Proof. By definition, if a special critical submanifold happens.ahere is a special
curvea in SNF(t, —¢) or SN F(t, +¢). Assuming the formeiClaim 5.9implies
t, — e ¢ [to, t1]. Hencet, = to. If, on the other handy C F(t, + ¢), we deduce
t, =t1. O



DISTANCE AND BRIDGE POSITION 231

10
10

:
\
U

f

Figure 3. ConstructingS from S. On the left two new critical
values are created. On the right four are created.

Lemma 5.12. Let t and t. be regular values irjtg, t;] such that every saddle
and every meridional boundary component of STA_, t,) is inessential Then
r(F@to)NnS andx(F(ty)N'S) share a vertex il (Fg).

Proof. Let {tj} be the critical values ofi|s lying in [t_, t,]. Chooser; slightly
greater than thg and letR={r;} U {t_ + ¢}.

For everyr € R surgerSin the following way. IfSN F(r) contains mutually
inessential curves, some such curve bounds a cut surfde@ n SurgerS along
this cut surface. After a sequence of such surgeries we obtainS@surface that
meetsF (r) only in mutually essential curves, for alle R.

SetM’ = h~([t_, t,.]). Let S be the intersection of the surgered surface with
M’. Note thath|g, the height function restricted t8, has either two or four new
critical values for every surgery performed. Jagure 3

We say a surfac¥ is verticalin M’ if V =7 ~1(«) " M’, wherex is a properly
embedded one-manifold Rk . A vertical surfaceV is either a disk or an annulus.
We need the following claim to prove the lemma:

Claim 5.13. Each component"Sf S is either

e a sphere or a meridional annulusr
e properly isotopic into Ft_) or F(t,), or
e properly isotopic to a vertical surface V with(V) essential in k.

Proof. If h|g has no critical valuesS’ is isotopic to a vertical annulus or disk.
In this caseS’ N 9M’ must be essential by the construction®f Note that this
kind of situation is the desired conclusion of the lemma at hand|df has only
critical values of even index (and no meridional boundary components)3hin
a boundary parallel disk or a sphere.
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We now assume the®’ contains a critical submanifold which is not a max or
min. The componen$’ either contains a saddle or meridional boundary compo-
nent ofS, or it does not. Suppose the latter. It follows ti84ts either a meridional
annulus or a boundary parallel annulus (with one boundary componériviQn.

Now suppose tha8’ contains a saddle or meridional boundary compone#& of
at heightt,.. Let P be the closure of the component$f— F (t, £ ¢) that contains
this critical submanifold. (Note tha® is also a subsurface @ sincee is very
small.) Recall thaf is the horizontal neighborhood of the critical submanifold.
LetdL P =PNF(t,+e). Since every critical submanifold & M’ is inessential,
at least one loop component®f P bounds a disk its (see the comment preceding
Claim 5.19).

Now suppose tha” contains a meridional boundary componensait height
t.. Let P be the corresponding horizontal neighborhood. &eP = C; U Cy,
whereC, bounds a diskD in S. Hence,D U P ¢ Sis a cut annulus and we see
thatC, is also inessential its. By Claim 5.9theC; are inessential i (t, £¢). It
now follows fromLemma 4.2hatC; bounds a disk ir (t, = ¢) while C, bounds
a cut annulus irF (t, F €). ThusS” is a meridional annulus.

We now assume th&’ contains no meridional boundary componentSoénd
hence contains a saddle. Suppose some such saddle has a horizontal neighborh
P such that two components 8f P are inessential. It follows that all three com-
ponents are inessential. If two bound disks, all three do. Therefolegrioyna 4.2
S’ is a sphere. If one bounds a disk and the other two bound cut annul&thisn
a meridional annulus.

Finally, we assume tha®’ contains no meridional boundary components and
that every saddl& has a horizontal neighborhod?} with exactly one component
yx Of 9. Py inessential, bounding a disk i (seeFigure 4. By Claim 5.9and
Lemma 4.2it follows that yx bounds a disk ir§’. HenceS’ is either a union of
disks or a union of annuli. In the first ca&¥ is isotopic to a vertical disk. In

Figure 4. Surgery near a saddle whose horizontal neighborhood
has exactly one inessential boundary component.
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the latter case&s’ is either isotopic to a vertical annulus or is a boundary parallel
annulus. 0

To complete the proof of theemma 5.12 suppose no component 8f meets
both boundary components bf’. By Claim 5.13 every component o8 meeting
F(t_) isboundary parallel ié’. IsotopeF (t_) across these boundary parallelisms
to obtain a surfacd=’ that intersects the surfac® only in mutually inessential
curves. Some component & — Sis then a cut surface, which we may use to
surgerS. By Lemma 4.5we obtain an essential surface that meetsn fewer
curves. Continuing in this fashion we obtain an essential surface disjointffom
violating Claim 5.2

We conclude that there is a compon&itc S meeting bothF(t_) andF(t,).

By Claim 5.13 this S” must be isotopic to a vertical annulus or vertical disk with
essential boundary. The lemma is thus proved. O

We now complete the proof cfheorem 5.1 Note that whert € [tg, t1] is a
regular valueyr (F(t) N S) is a properly embedded 1-manifold Fx (recall that
Fk = FNMg). The distance between the loops and arcs@f (tp—¢)N'S) and of
m(F(t14+¢€)NS) in T'(Fk) is an upper bound for the distandeK, F). By Lemma
5.12 and Claim 5.7 this number is bounded by the number of essential critical
submanifoldsg, plus the number of special critical submanifolds. Gjaim 5.11
this latter number is at most two. We therefore concldd€, F) <e+ 2.

We now bound the Euler characteristic&f Suppose an essential critical sub-
manifold happens &t and letP be its horizontal neighborhood i Note that
in all casesy (P) = —1. (WhenP has vertical boundary compute its Euler char-
acteristic by doubling across the vertical boundary and taking half of the Euler
characteristic of the resulting surface. See, for example, the surface on the left i
Figure 4) By the definition of an essential critical submaniféld — 9 Sis essential
in S. We conclude thag (S) < —e.

Putting these facts together we conclude that

dK,F) <e+2<—x(9+2=—-2-29(5—10S))+2 = 29(S +(3S].

6. Applications

We now present a few quick corollariesTheorem 5.1

Corollary 6.1. Suppose K is a knot in3Svhose distance is@, F) with respect
to a bridge sphere FThen the genus of K is at leas(d (K, F) — 1).

Proof. The genus oK is defined to be the smallest genus of all orientable spanning
surfaces folK. Such a spanning surface is essential and has exactly one boundar
component. Hence, an immediate applicatiod béorem 5.impliesd(K, F) <
29(K)+1. O
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Corollary 6.2. If K is a knot whose distance is at le@with respect to some
Heegaard surfacghe complement of K is hyperbolic of finite volume

Proof. If the distance is greater than twilk is irreducible, atoroidal, anannular,
and has incompressible boundary. It follows from Thurston’s geometrization the-
orem for Haken manifolds thailk is hyperbolic of finite volume. O

Definition 6.3. SupposeM is obtained by removing a neighborhood of a kKot
in S% and gluing in a new solid torus to the resulting boundary component. Then
we say thatM was obtained bypehn surgeryon K.

Corollary 6.4. Suppose K is a knot in3Svhose distance is@, F) with respect
to a bridge sphere FIf a manifold M obtained by Dehn surgery on K contains an
incompressible torus Tthen|d(T N Mk )| is at least dK, F) — 2.

Proof. ChooseT so as to minimizéT NK|in M. Let Tx =T N M. follows from
the minimality assumption thdik is essentialTheorem 5.1says that(K, F) is
bounded above by twice the genuslaf plus|d Tk |. But T is a torus, so the genus
of Tk is one. O

Corollary 6.5. Suppose K is a knot in®Svhose distance with respect to some
bridge sphere is greater than its bridge numb&hen a minimal bridge presenta-
tion for K is thin

Proof. Let F be a bridge sphere for whial(K, F) > |[K N F|[. If thin position
for K does not equal bridge position then Byhpmpson 199Jrthere is a planar,
meridional, essential surfa&in the complement oK with fewer boundary com-
ponents thanK N F|. Hence, byTheorem 5.1the distancal(K, F) is at most
0S| < |[KNF. O
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ON THE BEHAVIOUR OF o00-HARMONIC FUNCTIONS ON
SOME SPECIAL UNBOUNDED DOMAINS

TILAK BHATTACHARYA

We study nonnegativeoc-harmonic functions defined on unbounded do-
mains, in particular the half-space and the exterior of the unit closed ball.
We prove that if such a function u vanishes continuously on the boundary
then in the first caseu is affine, and in the second case is radial and linear.
We also discuss growth rates in an infinite strip.

1. Introduction and statements of results

We study nonnegativeo-harmonic functions on unbounded domains with special
geometry, in particular the half-space and the exterior of the unit closed ball. We
consider functions that vanish on the boundaries while their behaviour at infinity is
left unspecified. One may view this work as a step towards understanding the kinc
of growth rates possible for infinity-harmonic functions on unbounded domains.
An analogous result appears i@rgndall et al. 200]L where it is shown that an
oo-harmonic function bounded below by a plane is affine. This is related to the
conjecture that globally Lipschitzxo-harmonic functions oRR" are affine; however
we do not attempt to prove this. The restriction on the sign plays a strong role in
this work and has been critical in obtaining estimates for growth rates. It is uncleat
what happens if this restriction is removed.

Let u = u(x) be anco-harmonic function defined on a (possibly unbounded)
domainQ2 c R", for n > 2. That is,u solves

" du du  92u

i 0Xi 0Xj 0Xj0X;]

AsU(X) = =0 forxeQ

in the viscosity sense. We refer tBHattacharya 2002004 Crandall and Evans
2003, Crandall et al. 19922001 for definitions. For the most part we assume that
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u(x) > 0 for x € , that the boundary <2 is smooth, and that is continuous up
to Q2. Let O denote the origin ifR", and forx = (X1, X2, ..., X,) € R", set

X =y Xl %

Theorem 1.1(The infinite half-space)Let 2 = {x € R" : x, > 0} be the infinite
half-space Suppose (x) > 0 is co-harmonic inQ2 and vanishes continuously on
the hyperplangx, = 0}. Then either x) = O for all x € 2, or there exists a
positive constant K> 0 such that yx) = Kx, for all x € Q.

In this case, the sign restriction leads to linear growth rate.iithis also holds
when is the exterior of a ball. In both cases, linear growth rate implies global
Lipschitz continuity. The truth of the conjecture mentioned earlier would then
imply Theorem 1.1 Solutions with unrestricted sign may have faster growth rates
as demonstrated by the well known example

4/3 4/3

ux,y) = x|~ =1yl

onR?, in the half planes bounded tyy| = |y|. It is not clear whether a growth rate
faster thang is possible in general, or whether the imposition of a growth rate of
2 would imply thatu is of this type.

Let B(1, O) be the unit open ball iR", centered a©, and let2 =R"\ B(1, O),
whereB(1, O) denotes the closure @& (1, O).

Theorem 1.2(The exterior of a ball).Let u> 0 be co-harmonic inQ2. Suppose
that u vanishes continuously @B(1, O). Then either gx) = O for all x € 2, or
there exists a positive constant K such thatu= K (|x| — 1) for all x € .

While solutions are globally Lipschitz continuoudieorem 1.2vould not fol-
low from the conjecture mentioned earlier. It is unclear if a faster growth rate is
possible when the sign restriction is removed. It would also be interesting to know
if Theoremsl.1and1.2would follow for solutions with unrestricted sign but with
linear growth rate.

We also discuss the case of the infinite sfpip: 0 < X, < 1} and show that
any nontrivial solutionu(r) grows faster than any integral power af wherer
is the distance from th&,-axis. Howeuver, it is not clear if nontrivial solutions
exist (seeSection 9. In this work, we make considerable use of the properties
proven in Bhattacharya 2002004 Crandall et al. 2001 The devices mostly used
are monotonicity, the Harnack inequality, comparison, cone comparison and the
boundary Harnack inequality for flat boundaries. For discussionBlestfacharya
2002 Crandall et al. 2001 Also see Aronsson et al. 20Q4Bhattacharya et al.
1989 for more information of the origins of such questions and issues related to
oo-harmonic functions.
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We have divided our work as follows. I8ection 2 we introduce notations
needed in our work, and recall some preliminary results abedtarmonic func-
tions. We provelrheorem 1.1in Section 3 and the proof offheorem 1.2appears
in Section 4 Finally, in Section 5 we present a short discussion in the case of the
infinite strip.

2. Notations and Preliminaries

Let O be the origin inR", let U denote the closure of a setin R", and let&,
be the unit vector parallel to the positivg-axis. LetB(r, P) denote the open
ball in R" with centerP and radiusr > 0, let Q(r, P) denote the intersection
QN B(r, P), leta(r, P) bedQ N B(r, P) and letE(r, P) be dB(r, P) N Q. For
A= (A1, Az, Az, ..., Ap) eR", letxn(A) = An, let A= (Aq, Ao, Az, ..., An_1),

let
IP—Qln-1=1+/ Y1 (P—Qi)?

and, fort e R, let A+t&, = (A, A, +1). For P € R", let C(r, P) denote the
cylinder{x e R": P, < Xn < Py+2r, [X—P|n_1 <r}. ThusC(r, P) has length
and radiug, and its axis is parallel to the,-axis. LetF (r, P) denote the flat face
{XxeR": Xy = Py, [X—P|n_1<r} of C(r, P) which lies in the hyperplang, = P,.
We study the problem

AxcU(X) =0 forxeQ,
ux)=0 forxeoQ.

We assume thati(x) > 0 for x € Q unless otherwise stated, and tlsa will
be smooth andi continuous up td<. It is well known thatu is locally Lips-
chitz continuous inf2 (see Bhattacharya 20QZrandall et al. 2001Jensen 1993
Lindgvist and Manfredi 1999 and has the cone comparison property, and we
make considerable use of these facts throughout this work. We now list a set o
facts aboubo-harmonic functions.

We use the following version of the Harnack inequaliBhattacharya 2002
2004 Lindqgvist and Manfredi 1995 let u > 0 beco-harmonic in2, and lets > 0
be such that the s&2; = {x € Q : dist(x, 02) > §} is not empty. IfP and Q
are points inf2s and the segmer® Q c ;, thenu(P) > e 'P~Q13y(Q). If P is
joined to Q by a smooth path iR, with arc length (P, Q) then

(1) u(P) > e (P-QAy(Q).

Monotonicity plays a crucial role herdhattacharya 20Q2L.emma 3.6;2004
Lemma 3]. Letu > 0 be co-harmonic in2, andB(r, z) C . Forx € B(r, 2),
defined(x) =r — |x — z| =dist(x, dB(r, 2)); if nisaunitvectorand&s<t <r,
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then

@ u@ u@ - uz+sn) _ u(z+sn) - u@z+tn)  u(z+tn)
r d@ ~diz+sp) r—s ~— r—t  d@Ez+ty)’
We will need a different version dR). We takeu = 0 on9<2, and forz € R" we

defineM (r, 2) = supy .z U(X) = SUR g .z U(X).

Lemma 2.1. Let u> 0 be co-harmonic in®2 and u ;o = 0; suppose z R", and

r > 0is such thak2(r, z) is not emptyLet x, y € Q(r, z) be on the same radial line
through z with [x—z| < |y—z| <r, and suppose that®™) <l+(M(r, 2—I)|x—z|/r
for somele R, and all xe Q(r, z). Then

M(r,z)—I - M(r, z) — u(x) - M(r, z) — u(y)
r T or—I|x—zf T r—|ly—-z

If z € Q this holds with z) in place of |

Proof. Fix x € @, setB(r, X, 2) = B(r — |[x—2z|, X) andO(x, z,r) = B(r, X, 2N Q.
Forw € O(x, z,r) define

(M(r, 2) —u(x))|w — X|

w(w) = u(x) + P

Thenu < w on dB(r, X, 2) N Q anddQ N B(r, X, ), andu(x) = w(X). By com-
parisonu < w in O(X, z,r) [Barles and Busca 200Bhattacharya 20Q0Zrandall
et al. 2001 Jensen 1993 Note thatO(x, z,r) C Q(r, z). The first inequality
follows trivially, and the second follows by taking = y. Letz € Q and define
(M(r, 20 —u(2)Ix — z|
r
in Q(r, z). By comparisonu(x) < v(x) in (r, z) and the claim follows. O

v(X) =U(2) +

We recall the boundary Harnack inequali§hattacharya 2002 Let P € R"
ands > 0. Suppose thatl;, u, > 0 areoco-harmonic inC(8s, P), and vanish
continuously onF (8s, P). Then there exist constarii$; and M», independent of
s andu;, such that for alk € C(s, P),

3) 1U1(Z)§U1(X)§M2U1(Z)’
uz(2) = u2(x) uz(2)

wherez = (P’, P,+2s). We now assume th&t is unbounded and show that non-
constanbo-harmonic functions, with unrestricted sign, have at least linear growth.
If u> 0 and has linear growth i thenLemma 2.3implies global Lipschitz
continuity.

Lemma 2.2.Let u beco-harmonic inQ2 such that Yy = 0. Fix ze R"and t> 0,
and define = dist(z, 2). Then
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(i) M(r, 2 isconvexinrgforallr >§, and
(i) M@, 2) > M@, 2)+ (M(t, 2) — M, z))(%) forr >t > é.

Proof. Setp(x) = |x — z| and choose&, b andc such thaty <a < c < b. As the
intersectior B(a, z) N a2 is not empty, by the maximum principle,

0<M(a, z) <M(c,2) <M(b, 2.

Definev(x) = M(a, 2) + (M(b, 2) — M(a, z))(,o(x) —a)/(b—a) > 0 for all x
in Q(b, 2) \ Q(a, z). Clearly,u < v ondB(a, z) N and ondB(b, z) N 2, and
u=0<vonda2N(B(b, 2)\ B(a, 2)). By the cone comparisom(x) < v(x) for
all x e Q(b, 2\ Q(a, z). Hence

sup u(x) =M(c, 2) <M(a, 2+ (M(b, 20— M@, 2))(c—a)/(b—a),

|X—2z|=C

and convexity follows. Sinc(aM (r,2)—M(a, z))/(r —a) increases asincreases,
selectinga = § andr >t > §, a simple rearrangement yields part (ii). Note that
M($,2)=0if ze R"\ Q, andM (8,2 =M (0,2 =u(2) if ze Q. O

Lemma 2.3. Let u> 0 be oco-harmonic inQ and ujo = 0. If, for some ze Q,
some C> 0and some & 0, M(r, z) <Cr forallr > a, then u is globally Lipschitz
continuous irc2, with Lipschitz constant C

Proof. Fix x, y € Q. Forp > 0, letv(w) =u(x)+(M(p, x)—u(x)) (Jw —X|/p) In
Q(p, X). Thenu<v=M(p, X),0ndB(p, X)NQ. Also,u=0<v0ondQNB(p, X)
andu(x) = v(x). By comparisonu < v in Q(p, X). By the maximum principle,
M(p,X) <M(p+1|x—12,2) <C(p+|x—2|). Setw =y andp > |[x — Y|, then

uly) —ux) _ Mdp,x) —u(x)

X—=yl = p
- M(p + X =2, 2) — u(x) -c <1+ Ix—2z U(X))‘
P P P
The claim follows by lettingp — o¢. 0

3. The infinite half-space

Here 2 c R" is the half-spacH = {x € R" : x, > 0} and Ho is the hyperplane
Xn = 0. Alsou > 0 is oco-harmonic inH and vanishes continuously dty. By the
Harnack inequalityu > 0 in H. We will prove thatu(x) = Cx, in H for some
C > 0. This will be the consequence of several lemmas.FFaiR", it follows that
ar, P)=9QNB(r, P)=HoNB(r, P)andE(r, P)=9B(r, P)NQ =9 B(r, P)NH.
ThusaQ(r, P)=0a(r, PYUEC(r, P). If Q(r, P) is not empty, then by the maximum
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principle

4) M(r, P) = sup u(xX) = sup u(x) = sup u(x) > 0.

Q(r,P) IQ(r,P) E(,P)
If P e H, thenM(0, P) = u(P). We introduce some additional notation. For
Se Hy, let

TS ={X:X=(S, S, ..., S-1.) =(S,t) fort>0)

be the straight ray i, starting atS and parallel to thex,-axis. Setu(S+t) =
u(S+tg&,) fort > 0, and letB(9, S+ ) be the ball of radiu® > 0 centered at
S+68,.

Lemma 3.1. Let u > 0 be co-harmonic in H such that y, = 0, and let % > 0.
Then for every & Hp

(i) U(S+xn)/Xnis decreasing in xandlimy 1.0 U(S+Xn)/Xn = L(S, 00) < oo,
(i) 0<limy, 0U(S+Xn)/Xn = L(S, 0) < o0, and
(ili) 0<L(S,00)<L(S0).
Moreover there is a positive number L such that$, co) = L for all S € Ho.

Proof. Let Se Hp and, forx, > 0, consider the baB = B(x,, S+Xn). If0 <y, <X
thenS+y, andS+x, liein T(S). Also y, =dist(S+Yy, 9 B) andx, =dist(x,, 3 B).
Monotonicity (2) implies thatu(S+Xxn) /Xn < U(S+Yn)/Yn. Thus the first assertion
follows and implies the second. Except for the finitenesd ¢%, 0), the third
assertion follows from the first two. To show thatS, 0) is finite, consider the
functionv(x) = M(1, S)|x — S in (1, S). Clearlyv(x) > u(x) ond2(1, S). By
comparisonu(x) <v(x) in (1, S) andu(S+xn) < M(1, Sx,for0<x, <1. Thus
0<L(S0) <M(1 S < oo. We now show that thé& (S, co) are all equal. Take
Xn > | S|, thenS+x, € B(Xn, O+Xn) and distS+x,, 0 B(Xn, O+Xn)) =Xn—|S|. By
(2), U(O + Xn) /%n < U(SH+ Xn)/(Xn — |S]). ThenL (O, co) < L(S, o0) by letting
Xn — oo. Switch S with O to get equality. We employ the boundary Harnack
inequality(3) to show that. > 0. We selecti;(x) = u(x) andux(x) = x,. For all

s > 0, the cylinderC(8s, O) is contained inH; (3) then implies that

O + 2s§ O + 2s§
Mlu( + 2s€y) < u(x) < Mzu( + 2sen)
2s Xn 2s
Takes > 0 large and fixt € (0, s). The preceding inequalities yield, faRe= O+t&,,
O + 2s8 O +18 O + 2s§
u(O + 2s&,) itﬂ +1téy) < lim MZU( + 2s€n)
2s t §—00 2

Lettingt — O, it follows M1L < L (O, 0) < M»L. Itis clear that this estimate holds
for everySe H. O

for all x e C(s, O).

= MsL.

MiL = lim M1
S—00
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Remark 3.2. Lemma 3.limplies thatM; L < b = sups_y, L(S,0) < MaL < oo.
By the first part oLemma 3.1 we have O< Lxn < u(x) < bx, for x € H.

This remark and.emma 2.3mply thatu is globally Lipschitz continuous ikl .
Thus there exist& > 0, independent of, y € H, such that

5) lu(x) —u(y)| < Kix—y|forx,yeH.

We now studyu on infinite strips inH. Fora > 0, defineH, = {x : x, = a},
H(@) ={x:0< x, <a}, anddH (a) = HyU H,. Define

(6) p(@) =supy ux) >0 and F(a)=supyg ux) >0.
By Remark 3.2and(5), u(a) is bounded, andF (a) is bounded and increasing.

Lemma 3.3.Let u> 0 be asinLemma 3.1If u(a) and F(a) are as defined ili6),
n@ =F@ and u@) =Aa,
whereA = (1) and a> O is arbitrary.

Proof. By the Harnack inequalityl), F(a) cannot be attained in the interior of
H(a). If F(a) > u(a), then there is a sequenfy}_; such that O< x,(Pm) < a
for all m, |Py| — oo andu(Py) — F(a) > u(a). We argue by contradiction.
For eachm, let Qm = (P, @) € Ha, thenu(Qm) < u(a). By (5), we see that
u(Pm) — (@) < U(Pm) —U(Qm) < K (a— xn(Pm)) for all m. Thus, for largem,

U(Pw —U(Qm _ 3 F@ - p(@ _

(7) a—Xn(Pm) > K Z 2 7 A> 0.

For0<6 <1, letRn(@) = (P, a—60A) € Ha_ga C H(a). From(5), we see that
u(Pm) < Kxn(Py) and so, for alim,

(8) ? < Iikminf Xn(Py) < limsupxn(P) <a— A < Xp(Rm(0)) =a—0A.

k— 00

Fix 0; then(7) and(8) imply that, for largem,

0 <xn(Pm) =a— A< X (Rn(@)) =a-0A,

lim sup| P — R(6)| = lim sup(xn(Rk(9)) —xn(P)) = (@ —0A) — F(@)/K,

k— 00

and

min(dist(Pm, 9H (), dist(Rn(F), 9H (a))) > min(@ A, F(a)/K) =B > 0.
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By applying the Harnack inequality to the functioix) = F(a) — u(x), we now
see that

0= lim (F(@) —u(Pm)
. exp(_((a_ eA)B— F(a)/K)

Thusu(Rn(0)) — F(a) asm — oo. We show that this, together wifp), leads to
a contradiction. LeX»(0) = (Rn(9)’, a); then(7) holds. That is, for largen,

U(Rm(0)) —u(Xm(®)) _ 3F@-—un@ _
K —4 K N

) lim (F(@) —u(Rm(9))) = 0.

0A=a—Xn(Rn(9)) > A>0.

ThusF (@) = u(a).

We now prove thatt(a) = Aa. Letb > a; we show thajt(a)/a > u(b)/b. By
the first part ofLemma 3.1u(S+ aé,)/a > u(S+ bé&,)/b for all Se Hg. Now
take the supremum of both sides. We claim théh) is convex ina. Let Se Hp
and, for 0O<s <t, setr = (s+1t)/2. Consider

vs,t (X) = p(S) + (1 (t) — u(s)) %‘ >0,

forall x e Q(t, S\ Q(s, S). Using the equalityF (a) = n(a) and the cone compar-
ison we see that < vs; in Q(t, S)\ (s, S). Now we takex = S+ &, to see that
p(r) = SsUpscpy, u(S+re, < %(M(s) + M(t)). Convexity follows. Sincet(0) =0,
we see thati(a)/a is both increasing and decreasing as a functiom-efin other
words, it is constant. O

Proof of Theorem 1.1t is clear thatTheorem 1..would follow if we could show
thatA = L. For Q € Hp andr > 0, setPqo(r) = (Q',r). For0< e < A, let

Q = Q(e) € Hp be such thati(Pg)(1)) > A —e = (1) —e. We fixe andQ, and
suppress the argumentBy Lemma 3.1i) we haveu(Pg(1)) < u(Q + Xn)/Xn for

O0<Xn<1. Thus

9 U(Po(Xn) =u(Q+Xn) = (A —e)xn for0<xp <1

SinceM (0, Q) = 0, Lemma 2.%i) and equation(4) imply that M(r, Q)/r is in-
creasing. Fron{9)

(10) M@, Q) >u(Po(l))>A—¢ and M(r,Q)>(A—eg)r forr>1

Forr >0, definet =t(e,r) by u(t) =At=(A—¢)r. LetT =T(r, e) € dB(r, Q) be
such thau(T) = M(r, Q). By Lemma 3.3and(10), u(x) < u(t) for all x € H(t);
moreover

(11) T edB(r, Q) N{x:x, >t} and xn(T)zt=(1—%>r,
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Let Y = Y(e, Q) be the interior of the cone with verteg, axis parallel tag, and
half-angled = 0(e, Q) = cos (1 —&/A). Clearly(11) implies thatT lies in the
intersectionY N3 B(r, Q). Since the point®q(r) andT lie ondaB(r, Q), the arc
length of Po(r)T, along a great circle, is at mogt. The distance tdp is at
leastt. Applying the Harnack inequalityl) to u(Pqo(r)) andu(T) = M(r, Q),
and using10), we see that for > 1,

cos1(1—¢g/A)

u(PQ(r))>exp( 1= )M(r Q) > exp( )(A—e)r,

1—¢/A
and so
- 1 _
L = lim M = lim m > exp(_w> (A —¢).
r oo r r oo r 1—¢/A

Since this holds for alt > 0, it follows thatL > A andu(x) = AXx, for x, > 0. [

4. The exterior of a ball

Let @ = R"\ B(1, O), and assume that > 0 andu|;qo = 0. We prove that
u= K(|x] —1) for someK > 0. Forr > 1 set

u(r) = supu(x) = sup  u(x),
|X|=r B(r,0)\B(1,0)

m(r) = \i\n—fr u(x) > 0.

(On the first line we have used the maximum principle.) Clear{yt) = m(1) =
Let S™-1 be the unit sphere iR", and fort > 1 andw € S"! setA(t, w) =
utw)/(t —1).

Lemma 4.1.Let u> 0 beoco-harmonic inR" \ B(1, O) and uyg.0) = 0. Let ,
m andA be as defined abové&hen

() u(tw)/(t—1) decreases ast increasemdlim;_, o, U(tw)/(t—1) = L(w) >0
forall w e "1,
(i) w2 =u)/t—1forallt >1,and L(w) < u(2) forall w € S™1;
(i) m(t)/(t — 1) decreases as t increasend L(w) > limi_, oo mt)/(t — 1) >
e"u(2) >0, forall we S 1
(iv) there exists K> 0 such thatif min(ty,tp) > 4, maxty,tz) < 10 min(ty,tz), and
o = c0S Hw1, wy) for w1, wr € 1, then

|Aty, w1) — Atz w2)| < K ('ttl;tlzl —|—oc).
-

Proof. Parts (i), (i) and (iii) follow from(2) and are interrelated. Fix € S"~2; for
t> 1, consider the baB(t—1, tw). If 1 <s<t then dis{sw, dB(t—1, tw)) =s—
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and(2) impliesu(sw)/(s—1) > u(tw)/(t —1). ThusL (w) > 0 exists (for positivity
see part (iii)). Taking the supremum ovemon both sides, we see thaft)/(t — 1)
decreases asincreases. Similarlym(t)/(t — 1) decreases asincreases. By
Lemma 2.2 u(t) is convex int > 1 and sincew(l) = 0, u(t)/(t — 1) increases
ast increases. Thug(t) is linear int — 1 and part (ii) follows. LetP(t), Q(t)
9B(t, O) be such that(P(t)) = u(t) andu(Q(t)) = m(t). The arc length of
P(t)Q(t) along a great circle does not exceetd and dis{P(t) Q(t), dB(1, 0)) =

t — 1. Applying the Harnack inequalitfd),

Utw) MmO QM) _ uP®) [ty ot
-1 - 1-1 1-1 - 141 eXp(t—l)_“(z)eXp<ﬁ)‘

Part (iii) follows by lettingt — co. To see (iv), fixw:s andw, in "1 and let
0 <o =cos Hw1, wp) < . Take minty, to) > 4 andt; <t, < 10t;. The distance
from tyw; to thw; is estimated by going fromw; to tyw, along a great circle, and
then fromtiw; to tows. Settingd = |t1 — to] + ti andd = t; — 1 (the distance
to the boundary), the Harnack inequality impli@é@;w1) < €/9u(towy). Setd =
max(u(tiw1), U(tawy)); then, for someK; = K1(1(2)) > 0 andK = K (u(2)) > 0,

U(tiw1) (I —t1)  U(tiw1) — u(tow?)
(t1—Dt2—-1 to—-1
[to —ta] e/d—1

< (2
< u(2 - +J —

|t2—t1| 8 |t2_t1|
<K -] =<K )
B 1(t2—1 +d o th—1 T

which proves part (iv). g

Aty, w1) — A(t2, w2) =

Remark 4.2. FromLemma 4.1if L =inf .g-1L(w), thenL <u(x)/(]x] = 1) <
w(2) forall x € Q. Also |L(w1) — L(w2)| < u(2)(e* — 1) < Clw1 — ws|.

Remark 4.3. As in Section 3 there is a ray througl® on whichw(t) is attained
for everyt > 1. To see this, leP(t) € dB(t, O) be such thau(P(t)) = n(t),

and letw(t) = P(t)/|P(t)|. SinceS™~!is compact, there is a sequent@}m_;

so thatty 1 00, @ (tm) — wo, andém = cos H{w (tm), we) — 0 asm 4 co. Setting
Qm = tmwo, the Harnack inequalityl) andLemma 4.1imply that

. U(P(tm)) _ u(Qm) _ u(P(tm)) —Omtm . —Omtm
WO = 21 = ool ex'°<tm—1)_“(2) eXp(tm—l)

for all m. Clearly L (wg) = 1 (2) and the claim follows.

We now prove thati(tw) = L(w)(t — 1) for all w € S and allt > 1 (see
Lemma 4.5. This depends on a comparison resumma 4.4 involving u and
a scaled version ofi, and uses the fact that th&(t, w), for different values of
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w, are comparable at large valuestofNow some notation fotemma 4.4 fix
P € dB(1, 0). Forw € S"1, let R, = Ry(w) be the ray{O + sw, s > 0}, and
R; = Ry(w) be the ray{ P + sw, s > 0}; also setQ = Q(w) = O+ w € dB(1, O).
ForxeQ,letwo=w(X) = (x—P)/|x—P|, thenx = P+ |x— P|lw(X) € Ro(w(X)).
We definey = y(x, P) = Q(w (X)) + (X — P), so|]y— Q| = |[x — P|. We scalex as
follows: foré > 1, setxg =xg(P) = P+6(x—P) andy, = Yo (X, P) = Q+6(x—P).
Theny, ¥y € Ri(w (X)) andx, Xy € Ro(w (X)), andy — X =Yy — X9 = Q — P; thus
ly — X| = |yg — Xg| <2. Now setuy(x) = Ug(X, P) = u(Xg) = u(P +6(x — P)).
Clearly for fixedP andé > 0, ug(x) is co-harmonic.

Lemma4.4.Letu>0beasinLemmad4.land Pc9B(1, O). For9 > 1and xe 2,
letw(X), Ry, Ry, Q, Xg, and y be as defined abov&et i (X) = Uy (X, P) =u(Xg);
if 1 <s<@,theny(x) > sux) for all x € Q. Then y(x) > du(x) for all x € Q.

Proof. This is done in four steps. FiR andé > 1. We show that there exists> 1
such thatuy (x) > su(x) for all x € aB(r, O) andr > p. Comparison will then
imply the lemma.

Step 1: Properties ofu Clearly the set
Zy={x:ug(x) =0} ={Ix— (1—-1/6)P| = 1/6}
lies in B(1, O). Thusug(x) >0 ondB(1, O). Since|Q| = |P| = 1, we have
(@) 0lx —P|—1<|x| <0|x—P|+1,
(b) |ysl =0|x—P|+1, and
(© IXx—=P|-1=<[x|=|x—=P[+1.

Thus distyy, dB(1, 0)) = |ys| — 1 = dist(xy, IB(1, O)) = |X9| — 1 when|x] is
large. From (a), (b) and the Harnack inequality,

[Yo — Xol
0|x — P]

) < Up(X) = U(X9) < U(Yp) exp(ﬁ;m)

s o ol

Fix w and seleck, xg € Ryx(w), andy, Yy € Ri(w). Divide by |ys| — 1 and note
that (a), (b), (c) and.emma 4.limply that

. Up(X) Lux)
12 [ =6L I
(12) x—lmo [X] —1 OL(w) and x—|>rcr>]o IX] —1

= L(w),

sincelyy — X9| = |P — QJ|. The second conclusion follows by working similarly
with u, x andy.

Step 2.Fix 1 <s < 6 and lete; > 0 andez > 0 be such that; +e2 < L(0 —9),
whereL =inf, L(w). ThendL (o) —e1 > SL(w) + &5 for all w € S, From(12)
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there is a0 = p(e1, €2, S, w) > 0, such that for alk € Ry(w) with |X| > p,

Ug (X) Su(x)
OL(w) — sL .
VP—1> (w) —e1 > m0+€2>|m_1

(13)

In Step 3, we show that there i9auch that{13) holds independently of the choice
of we 1.

Step 3.We first show that there is@> 0 such that the first inequality {{13) holds
for all w. Recall thatv = w(v) = (v— P)/|v— P| for v € dB(r, O). We prove that
the quantity

Ug (v)

Deﬂr’ b 9 =
0,1,v,w, &1) o1

— (L (w) —€1)

is continuous inw and positive for large, for all v € dB(r, O). Letw; € S™1
and letx lie in Ra(w1) N dB(r, O), with r > 20; takew, close tow; and let
zlie in Ry(w2) N9B(r, O). By Remark 4.26|L(w2) — L(w1)| is small. Clearly,
max(|z— P, |x— P|) <r +1. Noting thatzy = P+6(z— P) andx, = P+6(x— P),
we see thatzy — xg| = 0|X — z| < 6(r +5)«, wherea = cos (w1, wp). From (a)
and (c) in Step 1, we see that, for lange

6 —1 ~max|x| —1, 12| — 1) = min(|xe| — 1, [2p] = 1) = O(r —1).

By the Harnack inequalityy (z) = u(zy) > Up(x) exp(—a(r +5)/(r —1)). Thus
Up (X) < Ug(2)€>/19, By Remark 4.2uy (v) = Uu(vg) < u(2)(Jug| — 1). Thus(12)
yields

Up(X) —Up(2)] _ SUUy(X), Up(2)) (/19 _

1) <Ou(2)(e*>@/19 1),
LS ) <0 )

(14)

This andRemark 4.2yield, for someC > 0 independent of,
(15) |D@@,1, X, w1, 1) — DO, 1, Z, w2, £1)| < Char

for x, ze 9B(r, O) andr > 20. Fixw;, and letp be such thaD (@, r, X, w1, £1) >
%sl forallr > p andx € Ry(w1) N aB(r, O). By (15), in a fixed smallw-
neighborhood, positivity oD persists. The conclusion follows by the compactness
of "1,

We now discuss the second inequality(i?). Let x € Ra(w1) NaB(r, O) and
Z € Ry(wp) NAB(r, O) with « small. Clearly

lu(X) —u(2)| < max(u(x), u(z))e" *«/Ir=.
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Applying Remark 4.2Lemma 4.1and selecting > p to be large, we see that
sSu(x su(z
SL(wy) + 62— (X) —(SL(w2)+82— ( )>
IxX]—1 1z -1
jux) —u(?|
- IX| —1

+s|L(w1) — L(w2)| < su(2)(6* — 1) + Ksa.

We again use the compactness3f.

Step 4.From Step 1y > 0=suonadB(1, O). From Step 3, witle; ande, as in
Step 2, and for alt > p(e1, £2), we see thatly > suin 9B(r, O). By comparison,
Ug > suin B(p, O)\ B(1, O). This holds in all ofQ, and for all 1< s < . Thus
Uy (X) > Ou(x) for all x € Q. O

Next we show thatemma 4.4implies thatu is linear along rays throug®.

Lemma4.5.For everyw e S"1 let T(w) be the ray{O +sw:s> 0}, and let P=
O+w. Letd > 1,andletu and y be asinLemma 4.4Then ux) = L(w)(|X| —1)
forallx e T(w) N Q.

Proof. Fix X, y € T(w)NQ with [x— P| < |y— P/, and defin® = |y— P|/|x— P|.
Theny = P +6(X — P) = Xg, and sauy(X) = U(Xg) = u(y). By Lemma 4.4

Iy—Plu(X)’ hence ucy) - u(x)

U(y) = Ux) 2 0UC) = - — 5 T T

Since|x— P|=|x]—1andly— P|=]|y|—1,Lemma 4.1i) implies equality in these
equations. Sincg andy are arbitraryu(z) = L(w)(|z| — 1) forall ze T(w). O

We setQ, = {x € Q : u(x) < a} for a > 0 and show, usingiemma 4.5 that
B(1, O) U4 is convex. Fow € S"1(0) andt > 1, setQ = Q(t, w) = O +tw.
Define the hyperplanél; = Hi(w) = {X : (X — Q, w) = 0}, and the half-planes
H = Hf(0) = {x: (x— Q,w) > 0} andH;{ = H (w) = {x: (X — Q, ®) < O}.
ThenB(1, O) C H{ (w). Fora > 0, lett(a) = t(a, w) = 1+ a/L(w), and let
Qa = Qa(w) = O +t(d)w.

Lemma 4.6.Fora> 0, let @) = Q5 U B(1, O). Then
(i) ux) > L(@)({X,w) —1) > L(w)(t —1) forall x € H{ (0),

(i) S(@) = e Hy @) (@) and Ha)(w) is a supporting hyperplane to(8&) at
Qa, and O Q, L Hyayw), forall w e S'1. Clearly, S(a) is convex

Proof. By Lemma 4.5u(Q) = L(w)(|Q| — 1) for all w € S™1. Also, Q, lies in
Hia (@), andu(Qa) = a. To prove part (i), seR(w) = {O + sw, s > 0} and let
r >t. Fix X € Hr (w) C H{ (w), and chooseé® € R(w), with |P| large, such that
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|[P|—1> |P—xX|. Thenx lies in B(|P|—1, P), and by applying monotonicit{?)
along the rayP x, we see that

L(@) =u(P)/(IPI-1) < HjlliTOOU(X)/(IPI —1-Ix=P)=ux)/r -1

for P € R(w). Sincer = (X, w) > t, part (i) follows. We now prove part (ii). Fix
w. Then, byLemma 4.5u(tw) <u(Qa) =awhenever <t <t(a)=1+a/L(w).
If A@@) =, g 1{to:1<t <t(@)}, thenu(x) < aforall x € A(a). We show
that 2, = A(@). Clearly, A(a) C Q4a, SO suppos& ¢ A(a), and setw = x/|X|.
Thenx = sw for somes > t(a, w), andx € Hi@a)(w) U HtJ(’a)(w). By part (i),
u(x) > a and henceA(a) = Q2. Also A(a) N (Hta)(w) U HtJ(ra) (w)) = & for all w,
implying thatA(a) C Hia (@). Asx ¢ A(@) implies thatx ¢ H () (@) for somew,
A@ =, (Hia \ B(1, 0)). By part (i), d A(@) N Hy(a) (@) = Qa(w). ThusS(a)
is convex andS(a) = J,,{Qa(w)} = U, {(1+a/L(w))w}. Clearly H ) is the
supporting hyperplane at eve@Y, € 9S(a). By the definition ofH; ) it follows
that O Qa(w) L Hi(ay(w) for all w € ™1, O

We now show thatemma 4.6mplies thatQ2, is a ball.

Proof of Theorem 1.2Let F : Rt x ™1 — R" by F(a, w) = O+ (1+a/L (0))w.
Then by Lemmasg.1and4.6, for a > 0 fixed, F is a bijective Lipschitz map, and
F(S"1) = 9Qa. ThusaQ, is connected ané (w) L Hy(a)(®). Letwr, wp € ™1,
thenQ1 = Qa(w1) and Q2 = Qa(wy) lie on 0Q,. Let IT be the two-dimensional
plane containing), w; andw,, andC be dB(1, O) N I1. Note thatQ; and Q2
lie in I1. Let7(s) € 9B(1, O) N II be a smooth parametrization 6f such that
7(0) = w1 andt(1) = wy. The curves(s) = F(z(8)) = (1+ a/L(t(S)))T(S)
in IT N a2, is Lipschitz continuous irs, ando (0) = Q1 ando (1) = Q». Let
S € [0, 1] be a point of differentiability ofo (s). Call £(s) = Hi@a)(7(s)); by
Lemma 4.6 X () is the supporting hyperplane aisy). Furthermore X (s) is
perpendicular t@ (), ando (s) € Hy (a (T (S0)) NI for all s. Sinceg is a point of
differentiability, a simple argument shows thetsy) lies in X (s9) N I1, and hence
o0(sp) L o'(s). Thus|o(s)|" = 0. Since this holds for almost evesye [0, 1],
Lipschitz continuity implies thatQ,| = |0 (1)| = |o ()| = |0 (0)| = |Q1|. Thus2,
is a ball andL (w) = C for all w € S™1. The remainder of the proof follows from
Lemma 4.5 Il

5. The infinite strip {0 < x, < 1}

Let @ be the infinite strip{x : 0 < x, < 1}, let H(0) = {X : X, = 0}, and let
H(1) = {x : X, = 1}. We assume that is co-harmonic, thatu > 0 in &, and
that u vanishes continuously ol (0) and H(1). Forr > 0, defineD(r) to be
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{X:|X|nc1 < T, 0< Xy < 1}, wherex’ = (Xg, X2, ..., Xp—1) and
n-1
|X,|n_1= i=1 X2

SetM(r) = supy, U(x), with the understanding tha#l (0) = sup,_gng U(X)-
We setL(r) = {x € D(r) : |X'| =1,0 < x5 < 1}, the lateral boundary of the
cylinder D(r). By the maximum principleM (r) is attained only orL(r). Let
J(r)eL(r)besuchthaMm(r)=u(J(r)). LetC(r, P) denote the truncated cylinder
{X:|X' = P'|n_1 <1, Pn < Xh < Ph+2r}. The functionue is the extension ofi to
all of R" defined as follows. Set

u(x’, Xn) for 0<xy<1,

Ue(X', Xp) =
el ) [—u(x/, —Xn) for—1<x,<0,

and extend periodically with period 2. Theg is co-harmonic inR"; see Bhat-
tacharya 200R

Step 1.We first observe that there exists a universal con#anst 0 such that
(16) min(X,(J(r)), 1—X(J(r))) > K forallr > 0.

Let T =T() € L(r) N H(O) and consider the cylinde@(%,T) C Q. Since

%n(T) =0 andu > 0in C(3, T), the boundary Harnack inequalig) with s = -,

Up=U, Uz =X, andz=T + $& = (T', 3) yields
U@ _u) _ . U@

17 M —— Mo—— forall x e C(&, T).
(17) 1778 = %, =M1 orall x e C(45 T)

Let P = (T, %). Since |z — P|/z, = 3, the Harnack inequality implies that
u(z)e—3 < u(P) < u(2)e. Thus(17)with new constant$/;, and M5 yields

u(x)

(18) Miu(P) < < Mpu(P) forall x € C(55, T).

n

Let E(T) = {X : [X — Tln-1 < 15, 0 < Xn < 3}; if x € E(T)\ C(55, T) then
X — P|/xn < 16 and
u(P)e % < ux) < u(P)e's.

Then(18), with new M3 and M,, implies that
(X)

n

Miu(P) < u < Mou(P) forall x e E(T),

sinceC (s, T) € E(T). From this we get

M1u(P)Xa(J(r)) = M(r) < M2u(P)xa (J (1)),
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sinceJ(r) e L(r)NnE(J'(r), 0). Dividing by u(P) we see thak,(J(r)) > 1/Ma.
We argue similarly for digtJ(r), H(1)), and(16) follows. Note that by the Har-
nack inequalityM (r) = u(J(r)) < e *9/KyJ(0)) = e +*D/K M (0). HenceM (r)
cannot grow faster than the exponential rate.

Step 2.We now show thaM (r) is at least of the ordar'°9", for larger and for
somec > 0. We work withue(x); forr > 0, let T (r) denote the line through(r)
parallel to thex,-axis. Clearly,

Sup  Ue(X) =M(r) and inf  Ueg(X) = —M(r).

{X:IX'|n-1<r} X:|X/[n—1<r

Let F(r) = (J'(r), 2— xa(J(r))). Thenu(F(r)) = —M(r), sinceue arises from
the odd reflection ofi aboutx, = 1. Note that|J(r) — F(r)| < 2(1— K) = .
SinceM(2r) —ue(X) > 0in {x: |X'|n_1 < 2r}, applying the Harnack inequality to
Ue(J(r)) andue(F(r)), we see thaM(2r) — M(r) > e™%/"(M(2r) + M(r)), and
hence that

M1
M) forr > 0.

+
(19) M(Zr)zefS/f—l

We employ iteration noticing thae’" + 1)/(¢®/" — 1) 1 oo asr increases. Let
£ > 0, selectR = R(&) > 0 such thate’’" +1)/(e”/" —1) > & forallr > R. Then
(19) implies thatM (2™R) > £™M(R) andM(r) > (r/R)'°9¢/1092M(R) /£. Also
M (2M+18) > M (2Ms)(eV/2" +1)/(e/2" —1). TakeN large, so thae/? —1 < 2/2k
for k > N. Starting an iteration fronN, we get

m+1 i 2 N T k N
M (2 3)2(&(1+e1/2k—_1))|v|(2 5)2(&(1+2)>M(2 5)

= ( [ Zk)( l_[(1+2‘k)>M(2N8) = C(N)2"2M2V5).
k=N

k=N

SinceM(r) is increasing, the right side is of the ordé!°9", for some universal
c>0.
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TRANSVERSAL HOLOMORPHIC SECTIONS AND
LOCALIZATION OF ANALYTIC TORSIONS

HUITAO FENG AND XIAONAN MA

We prove a Bott-type residue formula twisted by/\ (V*) with a holomorphic
vector bundle V, and relate certain analytic torsions on the total manifold
to the analytic torsions on the zero set of a holomorphic section of'.

Introduction

Beasley and Witten2003, studying half-linear models, have described a com-
pactification on any Calabi—Yau threefo¥ithat is a complete intersection in a
compact toric varietyX. In particular, a remarkable cancellation involving the
instanton effectBeasley and Witten 20031.3)], involving certain determinants

of the 9-operator, was derived directly from a residue theorem. One would like to
understand its implications in mathematics, for example in Gromov—Witten theory.
Bershadsky, Cecotti, Ooguri and Vatadrshadsky et al. 1993994 predicted that

the analytic torsion of Ray—Singer will play a role regarding the genus-1 Gromov—
Witten invariant. Thus we naturally try to understand the results about analytic
torsion first.

As an application of Bismut and Lebeau 1995nd the localization formula
(1-3) in this paper, we were able to relate certain analytic torsions on the total
manifold with the zero set of a holomorphic transversal sectiov,@feneralizing
[Bismut 2004 Theorem 6.6] anddhang n.d. with V=T X therein. We expect our
formula will be useful for understandin@éasley and Witten 20081.3)] from a
mathematical point of view.

This paper is organized as follows. $iection Iwe prove a Bott-type residue for-
mula. InSection 2we get a localization formula for Quillen metrics. 8ection 3
we get a localization formula for analytic torsions under extra conditions. In
Section 4 for the reader’s convenience, we write down six intermediate results,
corresponding toBismut and Lebeau 199Theorems 6.4-6.9].

MSC2000:58J352, 32L10, 58J20, 32C35, 57R20.
Keywords: analytic torsion, characteristic classes, characteristic numbers, residue formula.
Feng was partially supported by the NNSF of China (10271059).
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1. A Bott-type residue formula

In this section, along the lines oB[smut 1986 81], we give a Bott-type residue
formula(1-3)by assuming that the holomorphic section is transversal; compare to
[Beasley and Witten 20082.32), (2.34)].

Let X be a compact complex manifold with dikn=n and letV be a holomor-
phic vector bundle orX with dimV =1. We assume that the line bundles @et
and dety are holomorphically isomorphic. We fix a holomorphic isomorphism
¢ :detV* ~detT* X, which is clearly unique up to a constant. Thudefines amap
from theZ,-graded tensor produgt(T*X) ® A(V*) to A(T*X) & AMXT*X)
ATz X) ®r C. We can define the integral of an elementf Q (X, A(V*)), the
set of smooth sections @f(T*X) ® A(V*) on X, by

/a=/¢(a).
X X

Letv be a holomorphic section &f on X. Assume that vanishes on a complex
manifoldY c X. ThenVuly : T X]y — V|y mappingU to Vyv does not depend
on the choice of a connectidvion V, andVyv|ly =0forU € TY. Let N be the
normal bundle tdr in X. Assume also thé¥v|y : N — V|y is injective, and there
is a holomorphic vector subbundi¢, onY such that

(1—1) Viy =V1idImVul|y.

Let PY1 and P'™ V" be the natural projections frof onto V1 and ImVu|y.
Leti(v) be the standard contraction operator acting\giv*). A natural ques-
tion, posed in Beasley and Witten 20032], is how to expresg, « using the
local data near the zero Sétof v for a (9% +i (v))-closed formu, that is, a form
satisfying(3* +i (v))a = 0.
First we recall an idea due to BismBigmut 1986; see alsoZhang 1990

Proposition 1.1.Leta € (X, A(V*)) be a(d* +i(v))-closed form Then
/ o= / e~ @ HW/ty  for anyw e Q(X, A(V¥) and t> 0.
X X
Proof. For anyw € Q (X, A(V*))
(1-2) / 3w = / # (% w) = / 3% (w) = / de (w) = 0.
X X X X
From (3% +i(v))?2 =0 and(3* +i (v))a = 0, we have
i/ e—s(5X+i oy, — _/ (5x +i (U))(w e—s(5X+i (v))wa) —0,
s Jx X

and the desired equality follows. O
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Recall thatVv|y : N — Im Vu|y is an isomorphism that induces isomorphisms
of holomorphic line bundlegy = (detVuly)* : detlm Vv|y)* — detN* and
oy = ¢ly/((detVuly)*) : detV; — detT*Y. These two isomorphisms make the
integral f, along the normal bundIdl and /|, well defined.

Let hY be a Hermitian metric of/ such thatV; and ImVu|y are orthogonal
onY. Let g’l\l be a Hermitian metric oM such thatV.vly : N — Im Vuly is an
isometry. LetRY be the curvature of the holomorphic Hermitian connectioh
on (V,hY). Letj: Y — X be the natural embedding, afy;}; the connected
components of. OnY, define

RY = —(V.o) 1PMYRY(., j,)PY1. € T*Y ® Vi ® EndN.
RY is well defined since®'M V' RY(j,-, j«-)PY1 = 0. Thus, forU e TY, W € V4,
Uq, Uo € N,

(RY(U, Wyug, ug) n = — (RY(uz, D)W, Vy,v) = (W, RY(T1, U)Vy,v).

91

Certainly det (1L + RY)/2ri) is 8" -closed.

The following result verifies a formula of Beasley and Whitn29(Q3 (2.32),
(2.34)] and generalizes corresponding resultszihang 199Q [Liu 1995 and
[Bott 1967.

Theorem 1.2.For any (3% +i (v))-closed formx € (X, A(V*)),
( 1)(I n)(n— dleJ)a

(1-3) fa_z v, dety((1+RY)/(—271))’

Proof. Set

S= (-, v) € C®(X, V¥).
By Proposition 1.1for anyt € ]0, +o0],

X X X

Thus, ag — 0, the integralf, « is asymptotically equal tg;, ez @St for
any neighborhooél of Y.

Takey € Y. SinceY is a complex submanifold, we can find holomorphic
coordinates(z }{'_; of a neighborhoodJ of y such thaty corresponds to 0 and
{(8/9z7) (O} _m41 IS an orthonormal basis @N, g1 ), and, moreover,

UnY={peU,zn1(p)=---=2z(p) =0}
Let{uk}'k/:1 and{ﬂk}lk:wrl be holomorphic frames fdy, and ImvVu|y onUNY,
with
ViszoV = k(@) forl’+1<k<l,
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and forz = (z1,...,zm), 2" = (Zms1, ..., 2Zn), Z = (Z,2"), define ux(z) by
parallel transport ofu(Z, 0) with respect tov" along the curves — (Z, uz’).
Identify V, with V(» o) by identifying u.k(2) with pk(Z', 0). Denote byWy (e) the
e-neighborhood ofy in the normal spacél. Then

as) [ [ edarsi,
YNU JWy(e)
1 _
:/ / e—z(lv(ﬁ2)\2+(8xS)(\/fZ))tn—ma(y’ ﬁz).
YNU JzeWy (e//1)

Definez=}_; z;(3/0zj) andz=}_; z;(3/9z;) . The tautological vector field
is Z=2z+12z. Then, forze Ny,

1 1 1
§|v<ﬁz>|2 = §|v;Vv|2+ oW1 = 5|z|2+ oY)
and

[
3%S= Z (Mk, V.\/v>uk.
k=1
From now on, set=(0,2’) andZ=z+2. Sincevyuk(O) =0, we know that

1ox
(1-6) Ea S(vtz)

|
= — (u,k, V_\/U> («/EZ)Mk(O)

= ((Mk, VY0) (0) + vt {1k, V3 VY0) (0)
t
+ 5 (VE V1 Vo) + (1, VEVE VY 0]) 0+ O %) ) i 0).

Because of the factdaf'~™ in (1-5), it should be clear that in the limit, only those
monomials in the vertical form

dZmir A ADZn @ LA A

whose weight is exactlt/" " should be kept. Now,

ad
VoV v VgV oV
VzViaz v =R (Z’ E)U + Vo VzU = Limn (1) V)70

_
VYVY g v(0) = RV (z, g)v + VYay, VY0 =0,
J
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where 1 n is the characteristic function of the intervah, n]. Note thatvV =
vVig VIMVY onY and that
(1 Vi V50 0) @ =0 fori<j<m1<k<l.

It follows that in the expression

5 J —= {1k, V3V )0 (0)

a nonzero contribution can only appear in the term

(1-7) (Z Z Z Z) ks V7 Vijaz, ) (0) 42 © 1k (0).

j=1k=I"+1 j=m+1lk=1
Similarly, in the last term of1-6), the only term with a nonzero contribution is
I/

1 .
220 2 (VY Ehk 9332, v) O + sk VEVE V35, 0) (0)) 02 © 1 (0).

Butfor 1< j <m, bothVa/az v(0) andVa/BZVE/V\/v(O) = 8/32 (RY(z, 2)v)(0)
vanish, sinces =0 onY. Thus forl<j <m,

2
VYVYVY,, v(0) = 2RV (z, E)Vyv(O) + V85,V VY0 (0).
J

By the preceding discussion, &s> 0, in (1-5), we should replacg 3% S(y, v/12)
by the 2-form

= Z 1k VY0) (0)14(0) + /T x expressior(1-7)
23

1 m r ) y
E g <Mk, (Z, E)VE/U + VE\)//BZJ- V;VVQVU> (0) dz') ® Mk(O)
1K1 j

SetBy =dz;---dzm A u(0) - - 1" (0), BN = dZmi1 - - - dzn A ! FHO) - - 11 (0),
¢(uX©0)---u'(0) = fdz---dz,. Then
oy (1) - " (PN (L) - 1 (0) = fdz - - - dz.

Thus /
d(By ABN) = (1) fdz; ... dzy Adz - --dz,

= (=1)"=MO-M g By )N (Bn).-

Now, observing thatf. Ze~?*dzdz = 0 fori > 0 and thatv¥v : (N, g}) —
(Im Vv, h™V) is an isometry antl— 1"’ = n —m, we find that the limit of(1-4)
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ast — 0 is the sum ovej of

I
1
- —)I=mm—m) ; _z v k
-8 | D e fN exp 2k§:l<ﬂk, VY0)(0) 1(0)

—3(-. PURY@ ) V}0) 0 — 31V P).
The second integrand in this expression can be rewritten as

n—m

1 _ e .
exp(—i > dzimyi AT (0) + 3 (RY(Z, Ju) PV, V3 0) (0) — %|z|2)
i=1
=exp(3 (V"0 IRV @ ) PY 2 = 312P) (3) ' Az QZmsa - Az .
Thus the expression if1—8)is equal to
(_l)(l—n)(n—m)a

Y, dety ((1+ R;V)/(—Zni))’
which leads tq1-3). a

2. Localization of Quillen metrics via a transversal section

Let X be a compact complex manifold of dimensiarLet V andé be holomorphic
vector bundles orKX with dimV = m, and letv be a holomorphic section &f.
Assume thab vanishes on a complex manifold c X and satisfieg1-1). Then
we have a complex of holomorphic vector bundlesXgn

(2-1) 0— AMVH) 1AMty L0 IO a1y IO N0y )

Let (Q(X, A(V*) ® ), %) be the Dolbeault complex associated to the holo-
morphic vector bundlé\(V*) @ &. Let %, (X, A(V*) ® &) be the hypercohomolo-
gies of the bicomplexQ (X, A(V¥)®§&), 8%, i(v)). Letj: Y — X be the obvious
embedding. Now the pullback mgp induces naturally a map of complexes

2-2) T (RXANVH®E), I +iw) > (Y. AVD ®E), 3Y).

Theorem 2.1.The map f is a quasi-isomorphism of complexés particular, j*
induces an isomorphism

(2-3) Ho (XK, ANV ®E) = H(Y, A(V]) ®§).

Proof. In [Feng 200Bthere is an analytic proof of this theorem whign= T X.
There we used the twisted vector bundl€T * X) and here/\ (V*) takes its place;

the proof works just the same. For an algebraic proof, we can modify the proof of
[Bismut 2004 Theorem 5.1]. g
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Let NX, N,§ be the number operators oR(T*X), A(V*) corresponding to
multiplication by p on AP(T*X), AP(V*); do the same replacing by Y and V*
by Vi. ThenN* — NX andNY — N defineZ-gradings onQ (X, A(V*) ® &)
andQ2(Y, A(V}) ®&), which in turn induceZ-gradings ort, (X, A(V*) ® §) and
H(Y, A(V]) ® &), respectively. The isomorphisipt preserves thesé-gradings.

From [Bismut and Lebeau 19911.24)], we define the complex linas (V*)
andi (Vi) by

n

(V) = Q) (detiePx, AVH @) "

p=—m

)\(\/T_) = ® ® (detH IO(Y, X (\/i) ® S))(_l)p+q+1.

p=0 q=0
By (2-3), we have a canonical isomorphism of complex lines
Ao (VF) > A (V)).

Let p be the nonzero section mt\/’{)—l ® A, (V*) associated with this canonical
isomorphism.

Let g"X be a Kéhler metric off X. We identify N with the bundle orthogonal
to TY in TX|y. Letg"™Y andgN be the metrics o Y andN induced byg™*. Let
hé be a Hermitian metric o&. LethY be a metric or\V such thafv, and ImVu|y
are orthogonal ofY andVuly : N — Im Vu|y is an isometry.

Let dvy be the Riemannian volume form @X, g'%). Let (-, - ), be the met-
ric on A(T*X) ® A(V*) ® £ induced byg™, hY, hé. The Hermitian product on
QX, A(V*) ® &) is defined by

1

(2-4) (a,a) = / (o, a')odvyx  fora, o’ € Q(X, A(VH) ®E).
2m)" Jx

Let 8** andv*A =i (v)* be the adjoint ob* andi (v) with respect tq( -, - ). Set
V=i +iw?* DX=8%4+3"

By Hodge theory,

(2-5) ¥, (X, AN(V) @ &) ~ Ker(D* + V).

Denote byP be the operator of orthogonal projection fraag X, A(V*) ® €) onto

ker(DX 4+ V) and setP+ = 1— P. Let h® be theL2-metric on¥, (X, A(V*) ®

£) induced by thel2-product (2—4) via the isomorphisnm(2-5). Define in the

same way a Hermitian product a2(Y, A(V}) ® &) associated t@'", h':, hf.
Let 3" be the adjoint oY, andh":AVD®E) the correspondinds ?-metric on
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H(Y, A(V]) ®§). Set
DY=3"+09"".
Let Q be the orthogonal projection operator fréntY, A(Vi)®&) on KerDY, and
Qt =1-Q. Let|-|;,cv and|- |, be theL2-metrics onx,(V*) andA(V*)
induced byh” andhH™AMVD®E) - Following [Bismut and Lebeau 199{1.49)],
let
0 (s) = —Trs((N* = NJH((D* +V)?)~SP+).
ThengX(s) extends to a meromorphic function ®& C, which is holomorphic at
s=0.
The Quillen metrid| - ||, (v+) on the linex, (V*) is defined by

In the same way, the function

0Y(s) = —Trs((NY = N)(DYH) Q™)

- ha, vy =1 D ove exp(

extends to a meromorphic function & C, holomorphic ats = 0. The Quillen
metric|| - [[xcvz) on the linex(Vy) is defined by

-1 o oo~ 22 0)
AVH =1 lavp EXP > 9s .

Let || - v -t@m, (ve) be the Quillen metric ork(V})~ 1'® A,(V*) induced by
I+ lx,cvy @nd|| - [[xcvg) @s in Bismut and Lebeau 199§1e]

The purpose of this section is to give a formula figr|?
introduce some notations.

For a holomorphic Hermitian vector bundlE, hE) on X, we denote by T¢E),
ch(E), cmax(E) the Todd class, Chern character, and top Chern class, eind
by Td(E, hE), ch(E, hF), cmax(E, hF) the Chern—Weil representatives of (F,
ch(E), cmax(E) with respect to the holomorphic Hermitian connectigf on
(E, hE).

Let §y be the current of integration ovi. By [Bismut 1992 Theorem 3.6],
a currenttmax(V, hY) on X is well defined by the holomorphic sectian(which
induces an embedding: X — V), and this current satisfies

990
(2-6) gcmax(\/ hY ) = Cmax(V1, hvl)(SY — Cmax(V, hY ).

AMVHI@A, (V) Now we

Let TA(TY, TX, g™*I¥) be the Bott—Chern current of associated to the exact
sequence

(2-7) O TY—>TXly—>N—->0
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constructed inBismut et al. 1988a81f], which satisfies

90 ~
5>t 1d(TY, TX, g™ ") = Td(T Xy, g™*) = Td(TY, g™") Td(N, gM).
JT

Finally, let R(x) be the power series introduced @iflet and Soulé 1991 which
is such that iz (s) is the Riemann zeta function, then

R(x)=Z(Z [+ 25 (- n))

n>1 “j=1
nodd

We identify R with the corresponding additive genus. We also set

ch(A*(V])) = Z( D' ch(A' (Vp),

and denote by a\*(V7), h/"(V1)) its Chern—Weil representative.

Theorem 2.2.The Quillen metrid|p||? is given by the exponential of

AV I@A, (VF)
(2-8) — / Td(TX, g™ Td"1(V, hY)Emax(V, h¥) ch(&, h®)
/ TdL(N, gM) TA(TY, T Xly, g ch(A* (V§), W\ V1)) ch(g, h)

- [ TATY RN e (Ve
Proof. Set
(2-9) TAVS, YD) =Td 1V, hY)Enax(V, hY).
By the same argument as iBismut et al. 1990Theorem 3.17], the current
T(A(VH), hA YD)

is exactly the current oiX associated t(2—1) (evaluated modulo irrelevaator 8
coboundaries).

Now, from the choice of our metribY, the analogue offismut and Lebeau
1997, Definition 1.21, assumption (A)] is satisfied for the comp(&x1). Then
we verify that as far as local index theoretic computations are concerned, the
situation is exactly the same as iBi$mut and Lebeau 1991 Because of the
guasi-isomorphism oTheorem 2.1there are no “small” eigenvalues of the op-
eratorD +- TV whenT — 4o00. In Section 3 we write down the intermediate
results corresponding t@[smut and Lebeau 19986¢]. Comparing toBismut
and Lebeau 199886c—6€], the proof ofheorem 2.2s complete. O
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Remark 2.3. Assume thatY consists only discrete points; thén> n and the
last two terms of2-8) are zero. In this case, if =1, then(2-1)is a resolution
of j+(Oy) andTheorem 2.4s a direct consequence digmut and Lebeau 1991
Theorem 0.1]. By Bismut 1992 Theorem 3.2, Definition 3.5¢max(V, hY) is zero
if | >n+1.

3. L2 metrics on H, (X, A(V*)) and localization

We keep the assumptions and notationSeétion 2

Let g"™* be a Kahler metric o X, and letg™", gN be the metrics oY, N
induced byg™*. LethY be a metric orVV such thatV; and ImVu|y are orthogonal
onY andVuly : (N, g\) — Im Vu|y is an isometry.

Let s : detV; — detT*Y be a nonzero holomorphic section. gtbe a metric
onV such that ory, V1 and ImVu|y are orthogonal and

| |detvedetT+x,1 = |@P1ldetviodetT+y,1 = 1,

where| - |detvedetT+x.1 aNd| - |detv; @detT+y,1 are the norms on the holomorphic line
bundles deV ® detT*X and detv; ® detT*Y induced byh} andg™™.
We will add a subscript 1 to denote the objects induceﬁ‘lbyFor

B e AP(T*X) ® NA(V*),
we definesy, 18 € A" P(T*X) & A'~9(V*) by
(o, B)1 ¢ (dux) = @ A %y 1B

It's useful to write down a local expression fey ;. if {w‘}i”:1 and{/ﬂ}::l, are
orthonormal bases af* X and (V*, h\l/), then

dvx = (—D"MVR/=D"T A AT R WA Aw"
andgLwiA - Aw") = fula--Ap with [f]=1. If

then

sy, 18 = (_l)(n—p)q+n(n+l)/2( /—1)" f TPHIA AT ® Mq+l A A MI-

Thusxy, 1%y 18 = (=1)PTOOHFD g foranyg e AP(T*X)@A4(V*). Combining
this with (1-2), we find that

B =(—DPTIE 9%y 1 B, (W) B = (—DPTITATL i (v) %y 1 B.

Thus the antilinear mapy 1 is an isometry fron(?}ﬁv(x, A(V*)), hzfv) to itself.
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The bilinear form
1
(3-1) a, B e (X, A(VH)) > 7= )n/ AB

is nondegenerate; indeed,e ¥, (X, A(V*)) implies xy 1 € 3, (X, A(V*)), so

a # 0 implies
/ a Ay qa > 0.
X

Thus the metrig - |, (v+,1 on A, (V*) only depends on the nondegenerate bilinear
form (3—-1)on %, (X, A(V*)), which is metric-independent.
Recall the definition of de¥fv|y from Section 1 Now,

oly/((detVuly)*)
o1

is a holomorphic function olY. SinceY is compact, this function is locally con-
stant. Then we have the following extension Bigmut 2004 Theorem 5.7].

Theorem 3.1.

detVuly)*
(3-2) 1og(| 1551, ve).1) = / TA(TY) ch(A(V)) log| 2/ (VT |

01
Proof. We useg; to define the mtegrafY y fory e H(Y, A(V3)). Since

|p1ldetviodetT+y,1 = 1,

following the same considerations as above, we find that the antilinear operato
*y,,1 mapsH (Y, A(V))) into itself isometrically. Therefore, to evaluate the left-
hand side of3-2), we only need to compare the bilinear for(3s-1) with

1
a,be H(Y, /\(\/T))I—) W/Ya/\b

Let A, € End®®"H (Y, A(V})) be given by

3-3) a-— (=pi-m-ma Blv/((detVuly)*)
(2m)"Mdety (1+ RY)/(—271)) o1 -
Set st
et evel *
deta, = S AlHeev Ay
detAy [ odsy, acvy)
then

(|p|/\(\/’{)—1®k (V#), 1) = |detA,].

Now, A, is a degree-increasing operatorhi(Y, A(V;)). Therefore it acts like a
triangular matrix whose diagonal part is just multiplication by the locally constant
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dly/((detVu|y)*)
1

detA, = (

function . Using(3-3), we get
¢|Y/((detvvly)*))X(Y,/\(\/{))
o1 '

But x (Y, A(V})) = fY Td(TY) ch(A(V})); thus we ge(3-2). O

Let g be the metric orN such thatvuly : (N, g) — (Im(Vv), hi"¥”) is

an isometry. LeTd=%(N, gV, gl) be the Bott-Chern class constructedBisinut
et al. 1988a81f] such that

30 _~

57 T4 TN, g%, g1) =Td™%(N, g)) — Td"*(N, g").

T
Finally, we can compute the analytic torsion on the total manifold via the zero set
of a transversal section

Theorem 3.2.If hyl =hVY20nY,then

96, 36" TXy T—1 VA Y

+/(Td1(N,gN)'I'Nd(TY,TX|y,gTX'Y)
Y

+TATX, g™ TE 1N, gV, g)) ch(A* (Vi) ")

).

Proof. SincehY1 =h"1, we have - v =1+ laevp.aand]l - v =1 - laevp.a- Let
ch(A(V¥), h ™M) hA(YD) be the Bott-Chern class constructed Bisinut et al.

19883 §11f], so that
39 ~ . . ) )
o ch(A(V*), hp M hAYD) = ch(A V), hAYD) — ch(A(V*), hp M),
T

Then by the anomaly formuld@jsmut et al. 1988pTheorem 1.23],

_/ Td(TY) ch(/\*(\/’{))(R(N)+Iog‘¢|Y/((dZtvle)*)
Y

1

og(—” ”me )= / Td(TX, ™) Ch(AV*), h{ Y hAMD)
Il - ”M(\/*),l X

By [Bismut et al. 1990Theorem 2.5],
(3-5) T(AW, hY)=T (AW, hp ™)
= ch(A*(VD), WV )TN, g, gMsy — ch(AV), )™ h D),

By (2-9), Theorem®.2and3.1, and the preceding equations, the proof béorem
3.2is complete. O
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Remark 3.3. If Y consists only of discrete points and= |, then¢1 = Id. In this
case leg®™N andg¢®™N be the metrics on dél = detT X induced bygN andg}.
By Remark 2.3andTheorem 3.2

30
- avs’—l 0) = — fx Td(TX, g™) Td (V. h}) Gnax(V. hy)

+ " (1og(g®™N/ggeN) — log |¢/(detVuly)*|).
peY

Remark 3.4. If V = T X andv is a holomorphic Killing vector field(3—4)is a
special case offfismut 1992 Theorems 6.2 and 7.7]. In this casg, = g"%,

and onY, we have a holomorphic and orthogonal splittifigly = TY & N.

Thus TA(TY, TX|y, g™¥¥) = 0. To computeTd %(N, gV, g), note thatg) =

gN((Vv)-, (Vv)-), asA= (Vv)*(Vv) is positive and self-adjoint; thug))® is well

defined fors€ [0, 1]. Takingg) =gN ((A)S-, -), we obtain by Bismut et al. 1988a
Theorem 1.30]

1
Td (N, g%, o) = /0 ((Td"Y(N, gl), log A)ds.

But Vv is holomorphic, so the curvatuml associated to the holomorphic con-
nection on(N, g!) is RN = RN for s € [0, 1]. Thus

(3-6) Td (N, g, o)) = ((Td™H'(N, g"), log A).
Now
(3-7) TATX, g™ T(AT*X), M NTX) = Enad(TX, g7

is an(n—1, n—1)-form on X.
In this case, we get easily the special caseBi$hut 2004 Theorem 4.15]
directly from [Ray and Singer 197®y using Poincaré duality:

90"

From (3—4), (3—6), (3—7), and the vanishing of the constant termsR{fN) and
%(N’ gN) - %1 we get

00

9 -—

")fl(O)—/c (TY)(R(N)—<T—d(N gNy — 1 |ogA)>—o
S o Y max Td ’ ’ o
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4. Appendix: six intermediate results

In this section, to help readers understand how to obfaigorem 2.2we write
down the corresponding intermediate results fr@isut and Lebeau 199The-
orems 6.4-6.9].

Let VAY) pe the connection op\(V*) induced byVY". SetC, = VAV 4
JuV. Let®2, and Tg(NY, exp(—%2,)) be the operator and the generalized trace
associated to the compl€2—7)as in Bismut and Lebeau 199%5]. Let® be the
homomorphism from\*V*\(T X) into itself which toa € /\ZP(T[@‘X) associates
@ri) Pa.

Theorem 4.1.For any w > 0, there exists C> 0 such that for = ug, T > 1,

‘TrS(N,ﬁe‘“(DX”V)Z) —Trs((AdimN + NJe™ DY'Z) < %
[ Trs((NX = N2 O™+ TVP%) — Trg((NY = NYe P™)| < %

Theorem 4.2.Let Pr be the orthogonal projection operator frof( X, A (V*) Q&)
to Ker(DX 4T V). There exist c- 0 and C> O such thatforanyu>1and T>1,

’Trs((Nx — N UPH TV _ T ((NX — NX) ﬁT)‘ <ceCy,

Theorem 4.3. There exist C> 0 and y € ]0, 1] such that for any ue ]0, 1] and
0<T <1/u,

Trs(N,ﬁ‘e—<uDX+Tv)z)_/ Td(T X, gTX)<I>TrS(N,Z|<e_C$2) <Cu(l+T).
X

There exists a constant G O such that for ue ]0,1] and0< T <1,

‘TrS<N|z|(e—(u DX+TV)2> _ TFS(N&(G_(U DX)Z) <C'T.

Theorem 4.4.Forany T > 0,

lim Trs(N,fe‘(“DX*(T/“)V)Z) :/ d)TrS(NJe_%iZ) ch(A(V}), YD) chg, hf).
Y

u—0

Theorem 4.5. There exist C> 0 andé < ]0, 1] such thatfor any ue ]0, 1] and
T>1,

C
<

—_— Ta .
Let|-|% (1 be theL?-metric oni,(V*) induced byg"*, T*h" as in(2-5)

‘Trs(Nﬁe*“‘ DX+(T/“)V)Z) — Trg((3dimN + N,ﬁ)e*“DY’z)
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Theorem 4.6.As T — 400,

|1z

| (V)T
|- 1

Ay (V)

. 1
= — 109112 ey 15, r) + Trs((AMN +2NY) Q) log T + o<?).
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CONVEXITY OF THE FIGURE EIGHT SOLUTION TO THE
THREE-BODY PROBLEM

ToOSHIAKI FUJIWARA AND RICHARD MONTGOMERY

The Newtonian three-body problem with equal masses has a remarkable
solution where the bodies chase each other around a planar curve having
the qualitative shape and symmetries of a figure eight. Here we prove that
each lobe of this curve is convex.

1. Introduction

The figure eight is a recently discovered periodic solution to the Newtonian three-
body problem in which three equal masses traverse a single closed planar cur
in the form of an 8 Figure ). See Moore 1993 Chenciner and Montgomery
2000. The curve has one self-intersection, the origin, which divides it into two
symmetric lobes. InChenciner and Montgomery 200 was proved that each
lobe is star-shaped. Here we prove the lobes are convex. (A computer proof base
on interval arithmetic appears iKfipela and Zglicziyski 2003.)

Theorem 1. Each lobe of the eight solution is a convex curve

In the final section we describe how the theorem generalizes to prove the con
vexity of eights for many three-body potentials besides Newton'’s.

2. Preliminaries

We present a number of properties of the eight establishéghiarjciner and Mont-
gomery 200D and three assertions relating mechanics and plane geometry. The
convexity proof relies on these properties and assertions.

Center of Mass.Write qy(t), gz2(t), gz(t) for the location of the three masses in
the plane at timé. At each timet we haveq (t) + gz (t) + gs(t) = 0.

MSC2000: 70F07.
Keywords: figure-eight, convexity, Newtonian potential.
The authors thank AIM/ARCC for funding a workshop in celestial mechanics where the authors met.
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Symmetry. Write Ry (X, y) = (—X, y) for the reflection about thg axis. Then the
eight solution enjoys the following symmetries:

(qu(t), G2(1), ga(®) = (Ry(as(t — 7)), Ry(qu(t — 3T)). Ry(a(t — 3T))).
(qu(t), Go(t), Gs(t)) = (—au(—t), —gs(—t), —ga(—1)).

The right-hand side of these equations defines transformat@mmdo on the space
of all T-periodic loops. These transformations generate an action of the dihedra
group

De={s,0]s°=1, 0%2=1, so =057},

the symmetry group of a regular hexagon, which is consequently a symmetry grouj
of the eight.

Invariance undes? € Dg implies that(s*(qy, gz, 02)) (t) = (du(t), Ga(t), gs(t)).
Settingg = q; this last equation reads

1) Q) =qt), b)) =qt+3T), gt)=q(t+35T).

A choreographys a three-body solution satisfyirfd). The curveq(t) is the curve
of the eight whose lobes are the subjecTbtorem 1

The Dg-invariance of the figure eight implies that it is completely determined
by the three arcsy([— 2T, 01), g2([—+5T. 01), as([—5T. 0]) swept out by the
three masses over the time inter‘{/alllzT, 0]. To proveTheorem lit is enough
to prove that the curvatures of these three arcs are never(@égth the exception
of the pointq; (0), the self-intersection point of the eight, which is taken to be the
origin).

A configuration(qs, gz, gz) satisfyinga: + g2 + g3 = 0 is called arEuler con-
figurationif one of theq; vanishes. Then necessarily the other two maggegk
are of the fornt, —¢, so that the entire configuratidqy, gz, g3) is collinear with
mass at the origin located at the midpoint of the segment defined by the other two
masseg andk. Upon translating time if necessary, and relabeling the masses, we
can insist that at time O the configuration is an Euler configuration with mass 1 at
the origin and 3 in the first quadrant, as indicatedrigure 1 At the initial time
t = —%ZT the three masses form an isosceles triangle, with mass 2 at the verte:
and lying on the negative-axis.

The eight minimizes the usual action of mechanics (integral of the kinetic minus
potential energy) among all-periodic loops enjoyindg symmetry. Equivalently
[Chenciner and Montgomery 200he path(ql(t), O(t), Q3(t)) of the eight over
the fundamental time interve[l—lizT, 0] minimizes the action among all paths
starting at time—lizT in an isosceles configuration with 2 being the vertex and
ending at time O in an Euler configuration with 1 being the origin. An impor-
tant consequence of minimization, proved @henciner and Montgomery 2000
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3s

2e

23 >
-/

1

Figure 1. The eight. The labelsgland L represent the location
of mass 1 at = —%ZT andt = 0, and likewise for 2 and 3.

pp. 896—-897], is that there are no times in the fundamental domain besides th
endpoints at which the configuration is either collinear or isosceles. It follows that,
forallt e (—5T,0),

2 Mz <ri2 <rz3
and
(3) QAGR=0A0G=03A0 <0,

whererjj = |g — q;| is the distance between massemd | and we write
X, ¥Y)A(U,v)=Xv—Yyu
for planar vectorgx, y) and (u, v). We call equation2) the distance ordering

inequality

Initial and final velocities. At the Euler timet = 0O, the velocities of 2 and 3 are
antiparallel to the velocity of 1 and half its size. S&gure 1 This follows from

the action minimization of the eight. At the isosceles time—llzT, the velocity

of 2 is vertical, pointing down, and the velocities of 1 and 3 are such that their
tangent lines pass through 2. This follows from the three-tangents theorem and th
angular momentum property, both of which are described below.

Angular momentum and star-shapednes¥Vrite
£ =qjAq;

for the angular momentum of thieth particle. Action minimization of the eight
implies that its total angular momentum is zero:

l1+4€2+4¢3=0
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2e
2s

Bl

15

Figure 2. £(t) versust.

of the eight. Newton’s equations imply (seéhenciner and Montgomery 2000

p. 896])
. 1 1
b= (—3 - T)(Ql A 02)
rs >

for all time. Upon taking account the distance inequalityand(3) we find that
{3 < 0 on the arc 3. Similarly,

i1 >0, iy >0, i3 < 0.

We use the notationsIo indicate body 1 at the starting tinte= —%ZT, etc. By
the symmetryf,, = ¢3, = —2¢, < 0. (The inequalitieg;, < 0 and¢y, = 0 are
consistent witt/; > 0.) Also (5, > 0 andé, > 0 imply ¢, = —¢3, > 0. (SeeFigure
2.) Therefore over the interiqr—lizT, 0) of our fundamental domain we have

{1 <0, o >0, 3 < 0.

More generally, set
{=qA(g
asq varies over the eight. It follows that on the right lobex 0) we have

L <0 forx=>D0.

(SeeFigure 2)
A curve in the plane is calledtar-shapedwith respect to the origin if every
ray from the origin intersects the curve at most once. For a smooth curve, this is
equivalent to the assertion that, when written in polar coordinatés(gs 0 (t)),
the functiond (t) is strictly monotone and does not vary by more than Since
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¢ =r?0 the star-shapedness of a curve (such as one lobe of the eight) which lie:
in the half-planex > 0 is thus equivalent té # 0.

The three-tangents theorenilhe following theorem can be found ifrjjiwara
et al. 2003, where it was used to establish the existence of a choreographic three
body lemniscate for a non-Newtonian potential.

Theorem 2(Three tangentsl.et (qx (1), gz(t), gs(t)) be three planar curves whose
total linear and total angular momentum are zerbhen the three instantaneous
tangent lines to these three curves are coincident—they all three intersect in the
same(time-dependenfpoint or are parallel

Proof. Fix the timet. Becausej; + g2 + ¢z = 0, translating all thej; in the same
fixed direction does not change the condition of having zero angular momentum
So, without loss of generality, we can choose the origin to be the point of inter-
section of the tangent lines tp andq, at timet. Because the poirgy(t) lies
along the line through the origin in the directida we haveqi(t) A gi(t) = 0.
Similarly gz2(t) A G2(t) = 0. But the total angular momentum is zero so we must
havegs(t) A gs(t) = 0 which asserts that the line tangent to the curvesaftt also
passes through the origin. O

The proof also works for unequal massag m,, mz. Simply use the correct
mass-weighted formulae for linear and angular momentum.

The splitting lemma. We will use the following splitting lemma in several places
in the proof. A line in the plane divides the plane into three pieces: two open
half-planes and the line itself. We say that a point B&sctly on one sidef the

line if it lies in one of the open half-planes. We say that this Bpétsthe points

A and B of the plane if the two points lie in opposite open half-planes.

Lemma 1. Let (qu(t), ga2(t), g3(t)) be a planar solution to Newton's three-body
equation with attractived,/r potential Suppose that at time the arc q(t) of mass

i has an inflection point and nonzero speddhen the tangent liné to this arc at
time t. must eithei(A) split the other two masses @.) and c(t,) or (B) all three
masses must lie on this tangent line

Proof. Suppose, to the contrary, that either bafkt,) andagk(t,) lie strictly on one

side of¢, or that one lies ol while the other lies strictly on one side. According to
Newton’s equations the acceleratigt,) is a linear combination afj (t..) —qj (t.)
andagy (t.) —q; (t,) and the coefficients of this linear combination are positive. Thus,
translating¢ and the configuration of masses back to the origin by subtracting
gi (t.), we see that this acceleration lies strictly on one side of the line through
0 spanned by the velocity (t,). Consequently, the acceleration and velocity of
qgi (t) arelinearly independenatt,. But the condition of being an inflection point

is precisely that the acceleration and velocity be linearly dependent. O
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The same proof works if the Newtonian potentia[i<j mym; /rj; is replaced
by any potentiaV =} ; _; f(rij), wheredf/dr > 0.

A Convexity Proposition.A parametrizatiort of a curveC is nondengeneraté
the derivativedC(t)/dt is never zero. A smooth, possibly self-intersecting curve
is calledlocally convexf its curvature never vanishes.

Proposition. Let C be a smooth locally convex planar curve parametrized by a
nondegenerate parameteritet £(t) be the tangentto C at @). Let m be a line
not intersecting C Let P(t) be the point of intersection @{t) and m Then Rt)
moves on the line m always in the same direcgtionall t such that Rt) is finite

Proof. We can takem to be they-axis. If C is parametrized byx(t), y(t)), the
line £(t) is given by {(x(t), y(t)) + A(X(), ¥(t)) : € R}, and it intersectsn at
P(t) = (0, p(t)), where

__X®y®) - ymx)
B X(t) '
Differentiation and the definition of the curvatureyield

d_p_ v3X

dt = 2"
wherev = /X2 + y2 is the curve’s speed. The factarsx, « are never zero by
assumption (in the case afbecauseC avoidsm); therefore they have constant
sign. Thusdp/dt has constant sign wherever defined. O

3. To each mass its own quadrant

A crucial ingredient in the proof ofheorem lis that each mass “stays in its own
guadrant” during the time interv&l—lizT, 0). Initially 3 is in the first quadrant,
1is in the fourth, and 2 is on the-axis between the second and third quadrants,
moving into the third. Hence, for a short time interval £ T, —5T +¢), mass 3
lies in the first quadrant, 1 in the fourth, and 2 in the third.

Lemma 2. Over the time interva{—lizT, 0) body1 lies in the fourth quadrant
body?2 lies in the third and body3 lies in the first

Proof. Suppose one of the masses leaves its initial quadrant before time 0. It mus
exit along the boundary of this quadrant. It cannot exit through the origin, as this
would imply an Euler configuration and the only Euler configuration occurs at the
endpoint of the interval.

We argue individually that each mass cannot be the first to exit. Suppose tha
2 exits first (perhaps simultaneously with another). It cannot leave crossing the
x-axis, as this would contradict star-shapedness of the lobe it lies on. Neither cau
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it exit through they-axis, for then itsx-coordinate would be zero, and, because
collinearity of the three masses is excluded, at least one of 1 and 3 would not b
exiting at the same time and so would have a positieordinate. Thus the sum

of the x-coordinates of the masses would be positive, contradicting that the cente
of mass is at the origin.

Mass 1 cannot leave first. For it cannot leave througtxtais, as this would
again contradict star-shapedness. It cannot leave througjrdiis as this would
violate the distance orderimgs <12 <3 guaranteed bg?2). To see this violation,
write the exit point for mass 1 &9, y1), with y; < 0. Then the other masses must
be at(—x, y») and(x, y3) with x > 0 (since the configuration cannot be collinear)
andy, <0, y3 > 0. We haveZ, = x2+ (ys — y1)? andrZ, = x2 + (y, — y1)2. But
y3 >0, 0> yq, Vo, andy; + ¥o+ y3 =0, so

Y3 — Y1 =—2y1— Y2 =2|y1|l + |¥2l,

while |y2 — y1| < |y2| +|yal, SO that(ys — y1)? > (y2 — y2)? andryz > 12, contra-
dicting the distance ordering.

Mass 3 cannot leave first. It cannot exit acrossxfaxis, for if it did the center
of mass of the system would have a negativeoordinate. It cannot leave across
the y-axis, for this would contradict star-shapedness. O

4. Proof of Theorem 1

We refer to the arc swept out by massluring the the time interva[l—lizT, O] as
arc j, and writex; for its curvature. We must show that < 0 with x; < O for
t #£ 0, thatk, > 0 and thatcz < 0.

Convexity of arc 1. We begin by showing thak > 0 along arc 1. Since each mass
stays in its own quadrant, we haye— y; > 0; moreoverri3 < ri» by (2). Thus

V1= (Y3 —Y0)/T+ (Y2 — y0) /1,
> (V3= YD)/TH+ (Y2 — Y1) /T3

Next we show that; > 0 along the arc. From the fact thi > 0, it suffices
to show thaty; > O at the initial point of arc 1, the isosceles point. By the three-
tangents theorem and the fact tliat< O it follows that at the isosceles poigt
points fromq; to the vertexy,, so thaty; > O.

We have seen thdf < 0 while ¢, > 0 along the arc. Combining these inequali-
ties, we see that y1 — 11 > 0 holds along the arc. On the other hand, expanding
the angular momentum, we gétys — €191 = (X121 — ya%a) Y1 — (Xay1 — yaiX) ¥1 =
y1(X1¥1 — Y1¥1) = yrvik. Thusyivdis > 0. Sincey; < 0, v1 > 0 we havec; < 0.
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Figure 3. Region for bodies 1 and 3.

Convexity of arc 2. Assume, by way of contradiction, that there exists an inflection
pointk,; = 0 on arc 2. Let be the last inflection point on arc 2—the one whose
timet is closest to 0. From the initial conditionstat —1i2T, 0 described above
we also know thak, > 0 at the points 2and 2. By continuity,x> > 0 near both
of these points. Thekr, > 0 on the arc frona to 2.

We already know that arc 1 is convex; (< 0) and we also know that body
3 moves in the first quadrant. It follows that bodies 1 and 3 must lie within the
shaded region in thEigure 3

Consider the Gauss map (hodograph) of arc 2. This is the map that assigns to
point of arc 2 the unit tangent to arc@/|q2|, at that point.

By Newton’s equation and the fact that— X, andxs — X, are positive we have
X> > 0 on the entire arc 2. Since = 0 at 2, this implies thatt, > 0 on the
open arc of 2, from 2to 2, and so in particulak, > 0 ata. Sincek, > 0 on the
arca — 2, the vectong,/|g>| must approachfrom the pointa monotonically
counterclockwise. Therefore the pomties on the arc between the pointsahd
2¢ on the right half of the circle as shown in the Gauss ntégure 4.

2e
2, @&

Figure 4. Gauss map of the unit tangent vectpy|dy|.
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But then the tangent line to arc 2 atcannot split the points 1 and 3, which,
according to the splitting lemma¢mma 3, contradicts the assumption threats
an inflection point.

Thus we have proved that arc 2 has no inflection points, tha is, 0.

Convexity of arc 3.Assume, by way of contradiction, that there are inflection
points on arc 3. Leb be the first such point, the one for which the titris closest

to —%ZT. Then, by the splitting lemma_émma 3, the tangent line to arc 3 &t
must split bodies 1 and 2. In order to do that, the line must have passed earlie
through either body 1 or body 2. We argue that both passings are impossible.

The tangent line to arc 3 cannot pass through body 1. For, by the three-tanger
theorem, at the instant this happened, the tangent line from the body 2 would als
pass through the body 1. We have already proveddhatO on the arc 2. Thus the
tangent line from the body 2 never pass through the body 1 in this interval. (See
Figures3 and4.) This is a contradiction.

The tangent line to arc 3 cannot pass through body 2. For if it did, by the
three-tangents theorenfiitf{eorem 2, the tangent line to 1's curve would also pass
through body 2 at the same instant. To see that this latter passing is impossible
start by joining the endpoints 2nd 2 of arc 2 by a straight linen (seeFigure 5.

Arc 2 lies completely on one side of this line, by convexity.

3
S 3

25

Figure 5. Line m and tangent lines to arc 1 a& —lizT andt =0.
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We now apply thé>ropositioron page276to our situation. At the final points1
and 2, the tangents to 1 and 2 are parallel, so the intersectiomvaith 1's tangent
lies in the massless quadrant 0, y > 0. At the initial points the intersection
point of m and arc 1's tangent is;2We claim that for—lizT <t < 0 the moving
intersection point of 1's tangent wittm always lies in the empty quadrant. This
follows from the convexity of 1 and 2: the tangent at 1 rotates clockwise, while
m stays fixed. When 1 finally reaches the endpoinitd tangent is parallel to
2¢'s, which in turn lies ‘earlier’ on the clockface tham(by 2’s convexity). So 1's
tangent can never have been tangemhtand hence the intersection point remains
finite, in the empty quadrant.

Now recall that we are trying to show that the tangent to 1 cannot pass througt
point 2. To do so it would have to cross linebetween 2 and 2, which is in the
guadrant of arc 2, and hence it is impossible that this tangent passes through 2.

Therefore, we have proved that there is no inflection point on the arc 3. In other
word, k3 < 0 on the arc 3.

Putting together the convexity of all three arcs we obtain Theorem 1.

5. Convexity for other potentials

Theorem 1holds for the figure eight solution of other potentials. Indeed, our proof
only depended on the properties of the eight listed in Section 2 and a monotonicit
property of the Newtonian potential discussed below.

To be precise, we need to define what we mean by an eight. Let

V =V(ri, 23, ra1)

be a three-body potential depending only on the interparticle distancesd
invariant under interchange of the masses. Then the symmetry @ewb the
eight acts on solutions to the corresponding Newton equation, taking solutions tc
solutions, and so we can speak@§-invariant solutions

A planar solution to the Newton’s equation fdris called aneight solutionif

(i) itis invariant under thdg symmetries,

(i) on the interior of each fundamental domgmzT, (m+ 1)L T), for m =
0, +1, £2, ..., the configuration is never collinear and never isosceles, and

(i) the solution has no collisions.

Such a solution will necessarily be a planar choreography({9em page272),
and so the three masses travel a single planar curve. Con@jtiomplies that the
center of mass is 0 and that the angular momentum is zero. If, in addition, our
potentialV has the form
V=Y fip,

i<j
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where
(iv) df/dr > 0O (attractive two-body potential) and
(v) g(r) :=r~tdf/dr is a strictly monotone decreasing functionrof

then all properties and inequalities used in this paper hold.

Indeed, return to the starting point, the distance ordering inequ@jty At
t = —%ZT we haver,sz =rip, and att = 0 we haverjo; =r3; < roz3 = 2rio. By
property (ii), the possible distance orderings on the time inte(vafizT, O) are
r31 <rip <r30rris <rag <rp3 Consider the equation fdx,

€1=(9(r20) — 9(r3n) (G2 A Ga),

for a monotone decreasing functigiir). We havel; > 0 for the first ordering
and{; < 0 for the second ordering. But, sinée < 0 att = —-5T and¢, = 0 at

t =0, the value of; must be positive. So we must have the first ordering, namely,
equation(2). Then all equalities and inequalities in this paper hold. Thus:

Theorem 3.Let V be a three-body potential of the forma/ ; _; f (rij) where f
satisfieq(iv) and (v) above and admitting an eight solution as defined [@y-(iii)
above Then each lobe of this eight for V is convex

The theorem begs the question, do eight solutions exist for any potentials beside
Newton’s? Recall fromChenciner and Montgomery 2000p. 896-897] that if a
solution that satisfie§) and(ii) is known to minimize the action associateduo
among all paths satisfyin@), and if that solution is not identically collinear, then
automatically the solution satisfié§). The power law potentials

Va= @ tr8+r3+rd),

for a < —2 admit such collision-free action minimizing solutions, and consequently
they admit eight solutions. Moreover, the proof &fenciner and Montgomery
20040, specific toa = —1, is based on strict inequalities, and hence is valid for a
range of exponents1l—e1 < a < —14 ¢ for €1, €2 positive numbers. Numerical
evidence presented i€henciner et al. 20Q3uggests that eights exist for all power
lawsV,, wherea < 0. (These eights are dynamically stable only in a neighborhood
of the Newtonian potentiad = —1.)

Corollary. For the power law potentials Mwvith a < —2 or with a in some open
interval about—1, there exist eight solutions and each lobe of these eight solutions
is convex

6. Unicity

Showing the unicity of the Newtonian eight remains an open prob{@nefciner
2003. Our work here drastically reduces the candidate eights, and hence the scop
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of nonunicity, to those eights with convex lobes. It might allow a handhold towards
surmounting the unicity problem. If our reader will allow us to fantasize in this
direction, imagine two distinct Newtonian eights, both enjoyingdsymmetry,

(ii) the same period, and (iii) having the same minimum value for the action. Con-
nect these two eights by a family of eights having (i) and (ii), and having convex
lobes. Apply the min-max procedure to extract out of such a family a third eight
that is variationally unstable, meaning that the Hessian of the action there has
negative direction. Now establish a contradiction between the existence of the
negative mode and the convexity of the lobe of this third eight. Such a program,
or a similar one, could conceivably lead to a proof of unicity of the eight.

Acknowledgments
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Note added in proof

For the power law potentialg,, Barutello, Ferrario and TerracirBfrutello et al.
2004 have proved existence of eights for alk 0; see the proof following Propo-
sition (4.15) on p. 19. Montgomer004 has proved the uniqueness of the eight
fora=-2.
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BOSONIC REALIZATIONS OF HIGHER-LEVEL TOROIDAL
LIE ALGEBRAS

NAIHUAN JING, KAILASH MISRA AND SHAOBIN TAN

We construct realizations for the 2-toroidal Lie algebra associated with the
Lie algebra A; using vertex operators based on bosonic fields. In particu-
lar our construction realizes higher-level representations of the 2-toroidal
algebra for any given pair of levels(kp, k1) with kg # 0. We also construct a

smaller module of level(kg, 0) for the toroidal algebra from the Fock space

using certain screening vertex operator, and this later representation gener-
alizes the higher-level construction of the affine Lie algebrglz.

1. Introduction

Toroidal Lie algebras are a natural generalization of the affine Kac—Moody alge-
bras introduced by Moody, Rao and Yokonum\dopdy et al. 1990 Let A =
C[s, s7, t, t71] be the ring of Laurent polynomials in commuting variables. By
definition a 2-toroidal Lie algebra is a perfect central extension of the iterated loop
algebrag ® A, whereg is a finite-dimensional simple Lie algebra over

Let 2a/d A be the Kahler differentials oA modulo the exact forms. The uni-
versal central extension of the iterated loop algebra is given by

T =@A &Q2a/dA

Any 2-toroidal Lie algebra is a homomorphic image of this toroidal Lie algebra.
The center ofT (g) is 2a/d A, which is a infinite-dimensional vector space. The
Laurent polynomial ringA induces a naturat?-gradation o (g). For the center

we haveQa/d A=, 72 %(g)o, Withdim%, =1if o # (0, 0) and 2 ifo = (0, 0).

We denote by andc; the two standard degree-zero central elements in the toroidal
Lie algebral (g). Amodule ofT (g) is called a levelkp, k;) module if the standard
center(cp, €1) acts agko, k1) for some complex numbekg andk;. Here we study

the level{kg, k1) modules forky # 0.

MSC2000:17B65, 17B69,

Keywords: toroidal Lie algebra, vertex operator, bosonic realization.
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In various constructions of the affine Lie algeliﬁa the free field represen-
tation is of particular use in its applications. Wakimoi®8g and Feigen and
Frenkel [L989 first gave a general construction for the general case, and later
NemenschanskylP89 gave an invariant form in the special case. Though the two
forms can be interchanged by a nontrivial map, we realized that the later form is
better for our purpose in the toroidal cases. The operators in question have th
form eA(B+C), whereA, B, C are generating functions of the scaled Heisenberg
operators. One of the nice things is that all root generators in the toroidal alge-
bra associated with the Lie algebs& can be represented by this type of vertex
operators. In our construction we have fully used this simplicity and make all
calculations in a uniform manner.

As we mentioned earlier, toroidal algebras are generalizations of finite-dimen-
sional Lie algebras, like affine Lie algebras. This similarity is constantly kept in
mind as we study their structure and representation theory. Some other basic refe
ences related to our work includgg¢rman and Billig 1999Eswara Rao and Moody
1994 Fabbri and Moody 1994 arsson 1999Moody et al. 1990Tan 1999. Our
aim in this paper is to give a higher-level representation for the simplest nontrivial
example: the 2-toroidal Lie algebra. Our construction generalizes previous work
on higher-level representations of the affine Lie algeftsa

In Section 2we define the toroidal Lie algebra and state the MRY-presentation
[Moody et al. 199Dof the toroidal algebra in terms of generators and relations.
The algebra structure is expressed in terms of formal power series identities. W
also state some results in this section to be used lat&edttion 3we start with a
finite-rank lattice with a symmetric bilinear form and define a Fock space and some
vertex operators, which in turn give representations of the toroidal Lie algebra of
type A1, and also a levelky, 0) module withkg # O for the double affine algebra of
type Az. In Section 4we study the structure of the Fock space for the toroidal Lie
algebra by using certain screening vertex operators, thus generalizing the highe
level representation of the affine algelé\r@\to the toroidal Lie algebra.

2. Toroidal Lie algebras
Let sl, be the 3-dimensional simple Lie algebra over the complex numbers and
A=C[s,s 1 t,t71]

the ring of Laurent polynomials in commuting variables. We consider the iterated
loop algebra

g=sb®A.

A toroidal Lie algebra of type\; is a perfect central extension of the iterated loop
algebrag, which is often an infinite-dimensional central extension. @@tbe the
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A-module of differentials with differential mappirdy: A — Qa, such that
d( f1 f2) = (d f]_) fz + fl(d f2) for all f]_, f2 in A.

Let—: Qa— Qa/d Abe the canonical linear map for whidf =0 for all f € A.
Endow the vector space

T(AD) =6LOA®Q/AA
with the bracket operation defined by
X® f1,y® fal =[x, yI® f1f2+ (X, y) fad 1,

for X,y € slp, f1, f2 € A, where(-, -) is the trace form an@2a/d A is central.
From [Moody et al. 199pwe know thatT (Az) is a perfect Lie algebra and is
the universal central extension of the iterated loop algebr® A. Therefore any
toroidal Lie algebra of typé\; is a homomorphic image &f (A;). The gradation
of the polynomial ringA gives a natura¥?-gradation to the toroidal Lie algebra

T(A) = EP T (A,

oeZ?

whereT (A1), is spanned by @ s™t™, sMotMs-1ds andsMt™t—1dt for o =
(Mo, M) € Z? andx € slp. The conditiondf = 0 for all f € A implies that
MosMotMs—1ds4+mysmet™t—1dt = 0 for all mg, m; € Z. Therefore the dimension
of T(A1)s is 4 if o # (0,0) and 5 ifo = (0,0). In particular, T (A1)(0,0) iS
spanned bk ® 1 for x € sl,, and central elements1ds, t—1dt. We denote these
two degree-zero central elementsdgyandc;.

The most interesting quotient algebra of the toroidal Lie algdhtra;) is the
double affine algebra denoted Ty A1), that is, the toroidal Lie algebra of typg
with a two-dimensional center. The double affine algebra is the quotiehtAy)
modulo all the central elements with degree other than zero. InTach;) has
the realization

To(A1) = (slhb® A) @ Cco & Ccy
with the Lie product
(X® f1, y® f2l = [X, yI® f1 fo 4+ P (205 f1)co+ P(f20; f1)Cy
for all x, y e sl, and fy, fo € A, where® is the linear functional oA defined by

0, if (k, m) # (0, 0)

kimy _
CI>(St)‘{l, if (k. m) = (0,0)

forallk, me Z.
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Definition 2.1. If M is a module for a toroidal Lie algebra of ty@a, we callM a
level-(kg, k1) module for some complex numbeksg, k; if the degree-zero central
elementsy, ¢, act onM as constantkg, kj.

In this paper we give a concrete construction for a lékglk;) module with
ko # O for the toroidal Lie algebra (A1) and for the double affine algebTa(A;).

Let {x+, h} be the standard basis ef. Also let (aj)>.2 be the generalized
Cartan matrix of the affine algebr” and

Q:=Zog+ Zoq

its root lattice. The toroidal Lie algebr&(A;) has a presentatiorMoody et al.
199Q with generatorg, «; (k) andxx(+«;), forke Z andi =0, 1, and the following
relations, fork, me Z andi, j =0, 1:

(RO) [¢, i (k)] = 0= [¢, xu(Fai)];

(R1) [Oll (K), aj (m)] K& Sk+m,0¢;

(R2) [ (K), Xm(Fe})] = £&j Xicrm(Fej);

(R3) [Xk(@i), Xm(—aj)] = —8ij {ei (k+m) + Kdkim,ot};

(R4) [xx(eti), Xm(@i)] = 0= [Xu(—ai), Xm(—e)];

(adxo(ei))* Xm(erj) = 0if i # j; (adXo(—ei)) Xm(—aj) =0if i # j.
The Lie algebra isomorphisgh between the two presentationsiofA; ) is given by

¢ s~ids,
Xm(Eap) > £XL @™,
Xm(Fa0) > X5 @ sMtE,
a1(k) ~> h®s,
ao(K) — —h ® s+ skt-1dt.

Therefore, the degree-zero central elementscare ¢ andc; = §(0), where
8 = ap + a1 is the null root inQ. We will identify the two presentations of the
toroidal Lie algebral (A1) via this isomorphismy .

Following [Moody et al. 1990) we introduce & x Q-gradation onT (A;) by
assigning deg = (0, 0), dege; (k) = (k, 0), degxk(£aj) = (K, £«j), withi =0, 1
andk € Z. We denote byl the subspace of (A;) spanned by the elements
with degree(k, o) for k € Z, « € Q. Then, under the isomorphisih, we have
Yyt -1dt) = 8(k) € T2 andy ~1(skt"s~1ds) e T°.
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Let z, w, 73, Zp, ... be formal variables. We define formal power series with
coefficients from the toroidal Lie algebfia(A;):

@i ()= ai(mz ",

neZ

X(Fai,2) = ) xn(Fei)z ",

nez

fori =0, 1. Then the Lie algebra structure f A1) can be expressed in terms of
the following power series identities:

(RO) [¢. ai (D] =0=[¢. x(£i, 2)];
(RY) [« (D), aj(w)] = a&jZ 13,8 (2)¢;
(R2) [ (2), x(£aj, w)] = £ajX(Faj, w)z 18 (L);
(R3) [x(ai, 2), x(—aj, w)] = =& {oi (w)Z18(%2) + 210,86 (L)¢} ;
(R4) [x(ai, 2), X(eti, w)| = 0= [X(—ai, 2), X(—ati, w)];
(@dx(ai, z1)) (@dX(evi, 22)) (@dX(eti, Z3)) X(@j, 24) =0 if i # J;
(@dx(—ai, z1)) (@dX(—ai, 22)) (QdX(—ai, Z3))X(—aj, 24) =0 ifi # .

Finally, we recall a result fromMloody et al. 199Dthat will be used in the next
section.

Proposition 2.2. Supposé€? is a Lie algebra ovelC graded byZ @ Q, and¢ :
T(A1) — & is a surjective graded homomorphism of Lie algebras such that

(i) ¢ isinjective on F for all n € Z and real root,
(i) ¢(6(k)) #Ofor all k ande|cs0)+c¢ IS injective, and
(iif) for all nonzero integers km,
¢ ([Xm(orr + k&), Xo(—ar1)] — [Xo(e1 4 K8), Xm(—a1)]) # O,
o ([x1 (1 +K8), x_1(—a1)] — [X_1(a1 +k8), X1 (—a1)]) #O0.
Theng is an isomorphism, whergX+a1 + ké) := ¥~ 1(£x5 @ s™tX).

Proposition 2.3. Supposé€? is a Lie algebra overC graded byZ ® Q, and¢ :
T(A1) — & is a surjective graded homomorphism of Lie algebras such that

(i) ¢ isinjective on F for all n € Z and real root,
(i) ¢(8(k)) =0forallk #0andg¢|csoc¢ is injective, and
(iii) for all nonzero integers km,
¢ ([Xm(a1 +K8), Xo(—a1)] — [Xo(a1 4 K8), Xm(—a1)]) =0,
o ([x1(1 +K8), X_1(—a1)] — [X_1(1 +K8), X1 (—1)]) =0,
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Then¥ is isomorphic to the double affine algebra(A;).

Proof. We only need to show that the set of nonzero-degree central elements of thi
toroidal Lie algebrdl (A1) is in the kernel ofp. Indeed, under the isomorphisgn
of the toroidal Lie algebras, we see tligk) =  ~1(skt—1dt) and

[Xm(et1 + k&), Xo(—a1)] — [Xo(atz +K8), Xm(—a1)] = —myr~(sMtks—1ds),
[X1(c1 + k&), X_1(—a1)| — [X_1(e1 + K8), X (—a1)] = =2y L (tks~1ds),

but, from Moody et al. 1990) the elementsPtds—1ds, sPt—1dt ands—1ds for
(p, g) € Z x (Z\ {0}) form a basis of the center for the toroidal Lie algebrad;).
The assumption implies that the nonzero-degree central elemiehtsPtds—1ds)
andy ~1(sdt—-1dt) are in the kernel of the homomorphisprfor

(P, @) € Zx (Z\{0}). O

3. Representations of the toroidal algebra

In this section we give two bosonic realizations for the toroidal Lie alg@ljrs; ).
Let ko be a fixed complex number witky # 0, andI’ a finite rank lattice with a
symmetricC-valuedZ-bilinear form (-, -). We extend the form to &-bilinear
form on the vector spacd = C®; I'. Let T’y be a fixed integral sublattice &f.
We define

I'y={a € H; (o, o) CZ}.
ThenI'g C I'. Let

# = (h(n),¢lhe H,ne 2Z),

with H = C ®z T, be the affinization of the vector spatk defined with the Lie
product
[ (M), B(N)] = M(a, B)dmin,0¢
form,neZ, a, B €T, and¢ central. We define the Fock space
V :=C[I® S(#),
whereS(# ™) is the symmetric algebra ¢ffi~ := (h(n) | n < 0), and
CIrgl = € ce
aely

is the group algebra on the additive subgraifpof the vector spacél. ThenV
has a natural module structure for the Lie algeffrand the group algebr@[I'j]
with the actions defined by makingact askg, h(—n) act as multiplication, and
h(n) act as a patrtial differential operator, for- 0, h € H, so that

[ee(m), B(M)] = mko(er, B)Sm+n,0
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forall «, B € H andm, n € Z. Moreovera (0) acts as a partial differential operator
onCI[I'§] for which [« (0), €] = («, B)€’. Thereforex(0).8 = («, B) for o, B € H.
With a formal variablez, ande, 8 € H, we define fields

(@ =) amz ",

nez
@)y =) amz "
n<0
F@D=p+p0logz— 3 Lo
n#0
=N lB(n) —n
IB(Z)JF:IB_;)TZ .

It is easy to see thak,8(z) = B(2) andd,f(2), = B(2)+. For
A, Be{a(2,B(2)|a B eH),

we define(A, B) = [A, B]. Then it is easy to show (se€renkel et al. 1983

that («(2), B(w)) = (a, B) log(z— w) for «, B € H, which then implies

(@(2), Bw)) = (@, f)z—w) ™,

(@(2), Bw)) = —(a, B)(Z—w) ™,

(@(2), Bw)) = (@, Bz —w) 2,
where the formal power series mandw are understood to be expanded in the
second variablev.

Define the usual normal ordering : : as Frgénkel et al. 1988 Then we have
fora e H

(Bw): =a()B(w) — («(2), B(w)),

and, fora € I'g,

n<0 n>0

It is clear that the vertex operatore*®@:, for « € I'y, can be formally expanded
as a power series infor which the coefficients are well defined operators acting
on the Fock spac¥.

We will need the following result in the study of the bosonic realizations for the
toroidal Lie algebrdl (A;); see Jing and Lyerly 199p
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Lemma 3.1. Let R(2), Qi (w), for i = 1, 2, be fields such that the contractions
(P, Q) commute with all fieldslz), Q; (w). Then

eP1p,: :teQQ: — el PzteQz:e<P1’Q1> + et P28Q1:e<P1’Q1>(P1, Q2)
+:e7eR1Qq:el™ U (Py, Q) + :ee®: el (P, Q) + (Pr, Q2) (P2 Qu)).

Fora, B € I'1, we have, fromifFrenkel et al. 1988 the identity
@@, ef), — @), (z—w)@P.
Inductively one can show, fg8y, ..., Bk € I'o, the following Wick theorem

P, LB, — . ghi@) | o2 H(Zi _ Zj)(‘Bi”Bj).

i<j

Corollary 3.2. For«, B e Tgandy, t € H, supposéc, 8) = 0. Then
.22 . .aBw) J— -+ (@ ls( W ale+B)(2). -1 w
[:¢@y(2):,: D (w):]=e A@):z75(%)+B:e 77 10,6( %),
where A= (y, )t — (o, 1)y — BB e Hand B=(y, t) — («, T)(y, B) € C.
To give our first representation of the toroidal Lie algebrgd;) we consider
the lattice

1
.= E(Zao@Zal@Zb@Zr),

with a symmetric bilinear form determined by

the others being zero. Lét = %(Z(ao —b) + Z(a; + b)), which is clearly an
integral sublattice of*. On the corresponding Fock spa¢e= C[I'j] ® S(# ™),
we define vertex operators

Xo(tay, 2) = 1:6"% @ PP bz 1 (2)):
Xo(a0, 2) = 1:e6 @ PP () 11 (2):

whereag, a1 are the simple roots of the affine Lie algem%).

Theorem 3.3.Let ky be any nonzero complex number. Then on the Fock space V
we have a representation for the toroidal Lie algebréAL). The homomorphism
is given byt — ko, ¢ (2) — & (2), X(£ai, 2) — Xo(+aj, 2), fori =0, 1.

Proof. We first write the vertex operators in the form

Xo(£ei, 2) = 1:eF6@ PP pz) Lgr(2)):,
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where¢; = (—=1)' for i = 0,1. We will now show that the operatoes(z) and
Xo(£aj, 2) satisfy the relation$R0)—(R4) of the toroidal Lie algebrd (A7). In
fact, (RO) and(RY) are obvious. FofR2) we have

[ (2), Xo(Eaj, w)] = 3[:a(2):, :6 0@ PP (b(2) £ ¢ ;1 (2)):]

1= b
= % gt @ D@ A(2):z7 % (%) ,

whereA= (a, £& (@] —€jb))(b+¢jr) = +a; (b ¢jr). Therefore

L@ —€b®@

[a (2), Xo(aj, w)] = +1a; :6"% (b(2) :I:Ejr(z)):z_18<%)

= &aj Xo(da;, 27 15( %),
which is the required relation. To prove relati(iR3) we have

[Xo(ei, 2), Xo(aj, w)]
= %[:e%(aa — b)(Z)(b(z) +€r(2):, e o @€ b)(w)(b(w) — ejr(w)):]

ko
:%(eko(a‘ a; 6|b+€]b)(Z)A(Z):Z_18(%)+B:eko(al aj EIbJ’_GJb)(Z):Z_lawS(%)),

where, by applyingCorollary 3.2

B=(b+er,b—ejr)— (a‘_Tfib,b—eerb—i—eir, _aj—éjb)
= —2k0—2€i€jk0a
A= (b-’rEiI', _8 _éjb)(b—ﬂr)
_ (a; ;Oeib, b—Ejr)(b+€ir)_ (—Zko—z'fiéiko)(_aj_Tfjb)
=—2(1+¢€j¢€j)aj.

Therefore, we get
1@ _a —ecbie b (2
[Xo(ai . 2). Xo(—Olj ,w) = _%(1+ei6j)(:e%(a4 a; e.b+e;b)(2)aj (2)12715(%)
ke @A aPTED@ 1 5(&))
: . w zZ
= i (@ @2 8(2) +ho7 10,5(2)).

as required.
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(R4) contains two types of relations. We give only the proof for the “positive”
case. The “negative” case can be proved similarly.

[Xo(@i, 2), Xo(@;, w)]
= 1[:66@ PP (b2) -6 @):. 6@ TP (b(w) + i (w):]

1 1 ata —cb—e Db(27) 1 e o h s P
=3 (:eko(a+a, &b EJb)(Z)A(Z):Z_18(%)+ B ek @Tai—6b E‘b)(z):z—lawa(g)),

where, by applyingorollary 3.2

B=(b+er,b+ejr)— (aiioeib,b—i-ejr)(b-i-éir, a,-—qb) = 2ko(ei€j — 1),
A= (b—l—eir, 4 _Ejb)(b—l—ej-r)
_ (ai ;Oéib’ b+ejr)<b+6if) — 2o (ei €] _1)<aj ;;jb)
=2(1—¢€j€j)aq;.

Thereforel Xo(«j, 2), Xo(j, w)] =0 and, fori # j,
[Xo(ai, 2), Xo(aj, w)]
= :e%maj (Z):Z_18<%) — ko:e%mzz_lauﬁ(%)
Clearly, fori # j, the vertex operatoXg(«j, Z) commutes with
e @D

Therefore to complete the proof of relatiiR4’) we only need to show the identity
1) [Xo(ei, 1), [Xo(ai, 22), SG%M(ZS)aj (z3):1]=0
fori # j. Indeed,
[Xo(ai, 2), :e%m(w)aj (w):]

= %[:e%mw(b—i-eir)(z): , :E%M(w)aj (w):]

= 3(se PV D Ay 75 (%) + Brefe PN o0y 5(ny),
where, by applyingCorollary 3.2

B=((+¢r, aj)—(ai ;Oeib,aj)(b—l-eir, ai:oaj>=0

and

A= (b—i—ﬂl’, ai:oaj )aj — (ai ;Oeib,aj>(b+€il‘) =2(b+er);
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that is
[Xo(ai, 2), el A TaNWy, (w):] = :e%m(z)(b+eir):z‘18<%>.
Therefore(1) is reduced to the identity
[Xo(ei. 2), 6 P FH=EDW) (1 41y ()] =0
fori # j. The left side is equal to
%[:eémm(bikeir)(z): , el 28y _eib)(w)(b—i-eir)(w):]
= 3 (1S THEPD A ) 715 (2) 4 Brefe TP 21, 5(n))

where, by applyingCorollary 3.2

B:(b—}-eil‘,b—i—«EN’)—(ai _eib,b—i-éir)(b—{—eil‘, —23i+aj—€ib) =0

ko ko
and
A= <b+6ir, 2ai—i_a—j_éib)(bﬁ-éir) — (ai _Eib, b+6il’>(b+€il’) =0,
ko ko
giving the desired identity. O

From the construction of the representation for the toroidal Lie algebra given
in the previous theorem, it is easy to see that the operatdks + ap(k) act on
the Fock spac®/ trivially for all positive integersk, which in turn implies that
the central elementg (§(k)) act as the zero operator far> 0. Therefore the
representation is not faithful. Indeed, the quotient spa¢® of the Fock space

Cll'ol® S(¥™)

defines a representation for the double affine Lie alg@&bta;), which is isomor-
phic to the Lie algebrd (A;) modulo all central elements of degree other then
zero (seesection 2.

Corollary 3.4. The vector space W) is endowed with a representation of the
double affine Lie algebraglA1) with level(kg, 0), under the formula given before
Theorem 3.3

We will study this module structure again in the next section.

To give a faithful representation of the toroidal Lie algebra, we consider the
rank-six lattice

1
.= %(Zao@Zal@Zb@Zc@Zd)ea Zr,

1
ko + 2
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with the symmetric bilinear form determined by

all others being zero. Then

Fo = = 7(a0—b) + —Z(ag +b) + —7c
0= 17— - —Z (a1 —
ko ko ko
is clearly an integral sublattice 6f. LetI'; be the corresponding additive subgroup
of H=C®zI', andV the corresponding Fock space.
We also modify the vertex operators from the previous theorem to the form

X (£e1, 2) = 1:e6 @D (hz) 21 (2)):,

X(+ag,2) = :e @D () 41 (2)):

Theorem 3.5. The coefficient operators of the vertex operatqiga X (+«;, 2),
fori =0, 1, acting on the Fock space V, generate a Lie algeB(&\;) isomorphic
to the toroidal Lie algebra TA1), the isomorphism begin given by the linear map
¢ defined by
¢ — Ko,
«1(2) — a1(2),
«0(2) — a(2) +¢(2),
X(ai, 2) > X(xai, z) fori =0,1.

Therefore, on the Fock space V, we have a faithful representation of the toroidal
Lie algebra T(Ay).

Proof. We first need to show that the surjective mappindefines a Lie algebra
homomorphism fronT (A;) to £(A1). It suffices to show that the vertex operators
8 (2), X(+u;, 2) satisfy the corresponding power series identitie@)—R4). The
argument is just as in the proof @heorem 3.3and we omit it for brevity’s sake.
We next useProposition 2.20 show that the mapping is indeed an injective
homomorphism. Fow = 180 + p281 + pab + puac € T with i € 27, let

& ®A1(=ny) -+ Ak(=Nk) € V.
We define & x Q-gradation on the Fock spateby setting
dege” @ A1(—N1) -+ Ak(—NK)) = (N1 + - - - + Nk, Kopaao + Kopeoar).

With this gradation, the operatarnn), for a € H, is a homogeneous operator of
degree(—n, 0). Moreover, if the vertex operatof (+«;, 2) is formally expanded
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into power series as

X(Eei,2) =) Xm(Eai)z ™,
meZ

the coefficient operatoXm (+«;) is a homogeneous operator of degfeen, +«;).
Thus the mapp is a (Zx Q)-graded Lie algebra homomorphism. To finish the
proof of this theorem, we need only show tlfasatisfies the three conditions of
Proposition 2.2

Recall the notationm (a1 + k8) = ¥~ 1(£s™K @ x4), wheres = ag+ a1 is
the null root inQ. Let

X(@,2) = Xm(@)z ™" for o =tay +ks.

meZ

Then it is easy to show thah: x(«, 2) — X(«, 2), wherea = +a1 + ké, and

X (a1 + K8, 2) = e BDH@IaTOD () 2y ).
Applying Corollary 3.2again we have
[X(a1+Kks, 2), X(—a1— ks, w)]
= —koz 10,8( %) — (& +k(ao+an) + ko) @z 5( 2 ).
This gives
[Xm(a1 4 k8), X_m(—a1 —ké)] = —a1(0) — k(@o + a1)(0) — ke(0) — mko,

which is clearly a nonzero operator for amyk € Z. Thusg is injective on the one-
dimensional subspacks = Cxm(«) for any real rootx = £ +ké andk, me Z.
Moreover,

¢ (8(k)) = ag(k) + az(k) + c(k)

is also a nonzero operator, apds clearly injective orCs(0) + C¢.
Finally, we need to show that, fon, k # O,

[ Xm(a1 4 k&), Xo(—a1)] — [Xo(er + k8), Xm(—a1)] # 0,
[X1(o1 +Kk8), X_1(—a1)] — [X_1(a1+k8), X1(—a1)] #0.
By Corollary 3.2

(@)

[X(a1+K8, 2), X(—a1, w)] + [ X(—a1, 2), X(a1+ ks, w)]
L (kag+kai+ko)(2) _—_1 w
2kg:e 4 awa< z)

[
+ kel *HkatkO@ o) Lo (2) +c(2): 2% (%)
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which gives
[X(a1+k8, 2), Xo(—a1) ] — [Xo(a1 +k8), X(—a1,2)]
— k:ekok@KatkI@ (a(7) 4 81(2) + c(2)): .

To see that the coefficient @™ in the expression on the right is nonzero for
m = 0, we notice that

[ . e%(kao+ka1+kC)(2) — g (Kaotkatke)(@) d(2) ]

(a0(2) +a1(2) +¢(2)):, :e
—kazla s( X
= koz aws( Z).
The coefficient oz~™~1 on the right-hand side of the previous identitkignw™ 1,
which is nonzero wheneven # 0. This proves the first line ii2), while the

second can be proved by a similar argument which is omitted here. Thegefore
an isomorphism of Lie algebras. O

Corollary 3.6. For any fixed k € Z, define
V (kp) = €1d+To @ 59 ).
Then the vector space(¥;) is endowed with a representation of the toroidal Lie
algebra T(A1) with level{(kg, k1).
4. Module structure

We now define a smaller module from our Fock space representation via the so
called screening operator. We will only consider the case veherd.
For givenjo, j1, 11,12 € C with jo+ j1 € Z%, set

ind A b r
. jor2 Jips J1x —lort—
Vo, il =€ e e e “kotZ,

We define the Fock spadg, 1,1, to be the spac&(#~)vj, j,1,.1,- Then the
vertex operatorX (i, z) are well defined orFjg j, 1,.1,, provided that 2j; — 1)
and 2 jo+11) are integers. It is clear that the vertex operators satisfy

X(£ao, 2) Fio,lelJz ? F]oil,jl,lﬂlJz’
X(£a1, 2) : Fjg,juinl, = Fjo jit1l1£1,15-

Introduce a screening operaty: Fj; j;.1,.1, = Fjo,jl,l1+%.lz+¥ by setting
_ as0@—T(@). _ -n-1
S(z) = :e2' p=Y Sz "t
n

This is well defined provided thét — 1, € Z.
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Proposition 4.1.

0 (@1+b) () +1 (b— D), 1
X(o1, 2), S = — eko — ),
{X(a1,2), S(w)} ™ ( =

{X(=1,2), S(w)} =0

0 L (ag+b) (w)+ 3 (b— D), 1
X(ag, 2), S =— | :eh )
{X(ao, 2), S(w)} ™ ( =

Proof. Let

= igP@

(b(2) —r(2):,

¢ (a1,2) = p(—ag, 2) 1= %
1 b(Z)

¢ (a0, 2) = (-0, 2) 1= (b(2) +1(2)):
be the parafermions. It follows fronnemma 3.1that

¢ (a1, 2)S(w)
1 T 1 2
1..5b@ l(b—r)(w) % Lb@)+3b-1)(w)
~ 5:eko b—r)(z)ez + :eko e
2 ( )@ zZ— (z—w)?

i( Eb)+3b-nw), 1 ) 0
ow ‘z—w

~

Let d be the zero mode 08(z): d = [ S(z)dz It is easy to check that the
anticommutatof S(z), S(z)} = 0, thusd gives rise to a complex of vector spaces:

ko

jo,juli—=F 12— k°+2 I:JO il =™

Fjo,j1,|l+70,|2+k07ff2 > Fio.julitkolatkot2 = =

We can define the restrictéld( A)-submodule usindgProposition 4.1 Givenl we
define aT (A)-submodule

R = @ ker(d : Fiojvjul = FJo LY |+k0+2)
j1€l+2Z, joe—1+2

Theorem 4.2. The operator d commutes or anticommutes with elements of the
toroidal algebra T(A;) and & = 0. Moreover we have the long exact sequence

0— A — D Fioiuit — D Fjp ju o102

Jo.j1 o1
- @ Fio.is j1tkol+kot2 —> =+ »
Jo.j1
where the maps frord®;, ;, Fjo,j,,j,,) onward arepd and the summations run
through pe —l +Zand j €| +Z.
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Proof. We introduce the operat@*(z) = e~ 2(@—1@) — Y, Sz " and sed* =
S Itis easy to see thd6(z), S*(w)} = 1. Hencedd* 4 d*d = 1, and we already
knew thatd? = 0. Thus the following long sequence of vector spaces is exact:

0~ keerO'jl‘jl" d = Fjo.jujut = Fjo,11111+k70s|+k07;2 = Fjo, i, jrtko +ko+2 =+ -

Taking the direct sum we obtaifheorem 4.2 d

Sinceag(n) 4+ a1(n) acts trivially we can modulo the relation and define
R = Fi/(a0(n) +ay(n); —n € N);

then it is also aI (A1)-module and the results iRroposition 4.1obviously hold
for the moduleF,. If we further moduloa; (0) + ag(0) we will obtain the Verma
module for the affine Lie algebra generically.

Using the exact sequence we can compute the character for the nigdage
follows.

Theorem 4.3.The character of the (I'Al)—modulelf| is given by

| _ygkot2. ko
00 Zaeé |k0+2+5( > r+2b)e)t

h(F) =) (-1)°
ch(F) g( ) [Te ) [T(e %) [J(e )

where 1
]_[(x) = ]_[(1— x™ and Q= E(Zaﬁ—lb). O

m>0
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THE KERNEL OF Burau (4) ® Zp IS ALL PSEUDO-ANOSQOV

SANG JIN LEE AND WON TAEK SONG

The kernel of Burau(4) ® Z,, the reduced Burau representation with coeffi-
cients inZ of the 4-braid group By, consists only of pseudo-Anosov braids.

1. Introduction

Given two pseudo-Anosov homeomorphisms with distinct invariant measured fo-
liations, some powers of their isotopy classes generate a rank two free subgrou
of the mapping class group of the surfaterig 1986. This construction gives an
example of all pseudo-Anosov subgroup of the mapping class group. A positive
answer is given in\|Vhittlesey 200Dto the natural question of the existence of all
pseudo-Anosowiormal subgroups by showing that the Brunnian mapping classes
on a sphere with at least five punctures are neither periodic nor reducible. Not ever
Brunniann-braid maps to a Brunnian mapping class oriran1)-punctured sphere.
One can however show that a nontrivial Brunniabraid should be pseudo-Anosov
for n > 3, by adapting the arguments iWhittlesey 200

In this note we show that the kernel of Butdu® 7, the reduced Burau repre-
sentation with coefficients i, of the 4-braid groufBs, consists only of pseudo-
Anosov braids. Our result also implies that the kernel of Bitauf nontrivial, is
all pseudo-Anosov. ByGooper and Long 19971994, Burau4)®7Z, for p=2, 3
is not faithful. It is straightforward to check that there exist non-Brunnian braids in
the kernels, hence giving hew examples of all pseudo-Anosov normal subgroup
of B, that are not contained in the example of Whittlesey.

For the proof, assume that we are given a nontrivial 4-braid that is not pseudo:
Anosov. If it is periodic, it is conjugate to a rigid rotatioBriouwer 1919, whose
Burau action is clearly nontrivial. Ifitis reducible, then in many waysitis similar to
a 3-braid so that its Burau action is fairly predictable, for which case an automator
that records the polynomial degrees suffices to prove faithfulness. Our argument i
similar to that of the ping-pong lemma. We construct an automaton whose state
are disjoint subsets & p|t, t—11% and whose arrows are braid actions that map the
subsets into the subsets.

MSC2000: 20F36, 57M60.
Keywords: braid group, Burau representation, all pseudo-Anosov.
Lee’s research was supported by the faculty research fund of Konkuk University in 2003.
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For braids with more than four strands, this approach immediately faces obsta
cles. Since Bura4) ® 7, is not faithful, the kernel of Bura®) ® Z, contains
reducible braids. Taking other representations or taking intersection with other
subgroups to get rid of such reducible braids then makes the proof more difficult.

We remark that the present result is a byproduct of working on the faithfulness
guestion of Bura@) [Moody 1991 1993 Long and Paton 1998igelow 1999.

2. No periodic or reducible braids

The n-braid groupB, consists of the mapping classes on thpunctured disk.
The center ofB, is the infinite cyclic group generated by the Dehn twist along
the boundary. A braid is callggeriodicif some of its powers are contained in the
center. A braid is callededucibleif it is represented by a disk homeomorphism
that fixes a collection of disjoint essential curves. If a braid is neither periodic
nor reducible, the Nielsen—Thurston classification of surface homeomorphism:
[Thurston 1988Fathi et al. 197Bimplies that it is represented by a pseudo-Anosov
homeomorphism. Such a braid is calfekudo-Anoso\A subgroup ofB, is called
all pseudo-Anosoif its nontrivial elements are all pseudo-Anosov.

Then-braid groupB, has the presentation

oijoi =0ojoi, |i—]j|>2
Bn:<al,...,on_1 oj=ojoi, [i—jlz2 >
oiojoj =ojojoj, |[I—]j|=1
The reduced Burau representation
on = Buraun) : B, — GL_1(Z[t, t™1])

is defined by the action on the first homology of the cyclic cover of the punctured
disk. For the purpose of this note, it suffices to defidy the three matrices

-t 00 1 t O 1 0 O
paocr)=| 1 1 0|, palo2)=|0 -t O, ps(03)=|0 1 t
0 0 1 0O 1 1 0 0 —t

We use the convention th&s acts onZ[t, t 1% from the right. We denote by
v *, B, or more simply by % 8, the matrix multiplicatiorwp (8) for a row vector
v, a representatiop and a braigs. For example(f, g, h)x,,01 = (—-tf 4+g, g, h)
for f,g,hez[t, t71].

Theorem 1. The kernel ofps ® Zp) : B4 — GL3(Zpl[t, t~1]) for p > 2 does not
contain a nontrivial periodic or reducible braid. In particular s ® Z is not
faithful, its kernel is an all pseudo-Anosov normal subgroup of B

The proof will involve several lemmas.

Lemma 2. pn ® Z,, is faithful for periodic braids.
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Proof. If 8 € B, is a periodicn-braid, then it is represented by a rigid rotation on
the punctured diskgrouwer 1919 so that it is conjugate t¢on_1 - - - 0201)¥ or to
(on—1- - - 020101) for somek € Z. Since def(pn ® Zp)(B)) = (—1)*P, where the
exponent sune(B) is k(n — 1) or kn, we see that i is in the kernel ofon ® Z,
thenk = 0 andg is trivial. O

Let A3z = 010201 € B3 and A4 = 010201030201 € B4 be the square roots of
the generator of the center 8 and By, respectively. For a Laurent polynomial
f(t) =) ,amt™, define def = max{m : an # 0}. By convention we define
degf = -0 if f =0.

Lemma 3. p3® Z, is faithful.

Proof. Let p = p3®Z, be the reduced Burau representatioBgivith coefficients
in Zp. Itis given by the matrices

p(o—l):(_tl 2) P(Oz)=<(1) _E)

Suppose thap(B) is trivial for some nontrivial 3-braigb. By Lemma 2 it is
either reducible or pseudo-Anosov. gfis reducible, it is conjugate ta%ma{‘
for some integer& andm, which is an arbitrary 3-braid with an invariant curve
standardly embedded in the disk enclosing the first two punctureskagune 1,
right. Sincep(B) is trivial,

m m -tk 0
paglon) =t ((*) 1)

must be the identity matrix. Sn=0 andk =0 hences is trivial, which contradicts
the assumption.

If 8 is pseudo-Anosoy, it is conjugate R](al‘l, JZ)A%k whereP is a positive
word on two letters flurasugi 1974 Song et al. 200R By taking inverse or
conjugation byAsz if necessary, we can assume thiio, 1 ov) starts withoo.
In other words 8 or 1 is conjugate tar = on(ol‘l, oz)Agk for some positive
word Q. Thep-actions ofo{l, 02 andA% onZplt, t—1)2 are given as follows: for
v=(f,g) ezt t71]%

vio T =(—t7(f —@),09), vxor=(f,t(f-g) and vxAZ=(t3f,t3g).

Consider the subsdt = {(f, g) € Z,[t, t71]?|degf < degg}. Itis easy to check
that Vg is invariant under the action ef; %, o» and A%. Letvg = (1,0). Then
voxo2 = (L, 1) € Vo, S0 thatvg o = (1, 1) * Q(o; *, 02) A € V. Sincewp ¢ Vo,
we havevg * o # v, which contradicts the assumption thgais in the kernel ofp.
O
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o

Figure 1. Up to homeomorphisms on a 4-punctured disk, there
are only two essential curves.

Proof of Theorem 1Let p = ps ® Z be the reduced Burau representatiorBaf
with coefficients inZ,. Assumep(p) is trivial for some nontrivial 4-braig € By.
The braidg is either reducible or pseudo-Anosov bgmma 2 We need to show
that 8 is not reducible.

Suppose thas is reducible. By taking some power gfif necessary, we may
assume thag is represented by a homeomorphism that fixes an essential simple
closed curveC. By applying a conjugation by a braid that ser@iso one of the
curves inFigure 1 we assume tha is one of the two standardly embedded curves
and the homeomorphism representhfjxesC.

Let C be the curve enclosing the first three punctureBigare 1 left. Theng
can be written ag = AﬁmW(ol, o») for an integem and a wordW on two letters.
Observing that the-action by a 3-braid leaves the third coordinate invariant, i.e.,
(f, g, h) * W(o1, 02) = (f1, g1, h), we have(0, 0, 1) « 8 = (f, g, t*™) for some
f,g e Zplt, t~1]. Sincep(B) is trivial, we obtainm = 0, which in turn implies
that 8 is in (o1, 02) = B3 C Bs. The faithfulness ops ® Z, by Lemma 3leads to
a contradiction.

Now assume that contains the first two punctures Bgyure 1 right. The 4-
braids represented by homeomorphisms thatfimrm a subgroup oB4 generated
by o1, X = 6201202 andy = o3. Sinceo; commutes with botkx andy, we write

B =afW(X,y)

for an integeik and a wordW on two letters.

By using the relationgyxy= yxyx (xyxyo?= A2 and thatxyxycommutes
with X, y ando1, we rewrites into another form by which we will tractO, 0, 1)x.

By replacingx~! with (yxy)(xyxy~t andy~—t with (xyx)(xyxy~* and then
collecting (xyxy** to the left, we haveW(x, y) = (xyxy)"P(x, y) for some
integerm and a positive wordP on two letters. We can assume that we have moved
(xyxy) to the left as many as possible so that neitkggxy nor yxyxoccurs inP
as a subword. We have

B = of (XyxY"P(X, y) = A2o 2P (x, ).

We claim thatP contains bottx andy as a subword. I does not contaity,
i.e., P =x! for somel > 0, theng = AZMof2Mx! = AZMgK=2M (50 207)! fixes
the curve inFigure 1 left. By the previous argumertt is trivial. If P does not
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containx, i.e., P =y for somel > 0, theng = A2"o~2My!. From the equalities

(0,0,1) = (0,0, (=)™, (1,0,0) %8 = ((—t)*™&=2m 0 0),

we deducé = —4m andk = —2m. The exponent sum(8) = 12m+ (k—2m)+I =
4m should equal zero singg8) is trivial. Therefore we haven=I| =k =0, which
implies thatg is trivial.

Next, sincex andy both commute witle; andA2, by applying a conjugation we
may assume tha starts withy and ends wittx. In Figure 2 left, we construct an
automaton that accepts a positive wordjry without any occurrence ofyxyand
yxyx Arbitrary paths following the arrows give words accepted by the automaton.
Now we have

B = A"oT2MQ(X, Y, XY, YX, YXY, XYX)
for some positive word) accepted by the automaton kiigure 2 left. Note that
Q starts with one ofy, yxy, yx and ends with one of, xyx, yx. In other words,
Q is represented by a path starting at the statnd ending at the stab¢.

We replacexyx by y~1(xyxy), yxyby x~1(xyxy) and then collect alxyxy)'s
to the left to obtain

B=AT"alQ(x, y, xy, yx, x Ly
for somek; andm;.
Consider the subsets @f[t, t 1% given by

Vx = {(f, g, h) € Z,[t,t 1] | degg > degf, degg > degh},
VW = {(f, g, h) € Zp[t, t 7113 | degh > degf, degh > degg}.

X XyX X y1

y yXxy y x~1

Figure 2. Left: an automaton that accepts exactly those words not
containingxyxyor yxyx Right: see next page.
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The p-action of each arrow of the automaton fingure 2 right, is given as
follows. Letv = (f, g, h) € Z,[t, t~1]3 be an arbitrary vector.

vix = (tf + 2 =g+ @ -vh, t3g+ @ —-tHh, h),
vxy=(f, g, tg—th),
v (Xy) = (tf + (t? = t)g+ (1—t)h, t3g+ (1 -tHh, t*g—t>h),
v (yx) = (tf + @2 = vh, tg+ 3 - t)h, tg—th),
vaxt= (T + -t A)g+ t2—t3h, t3g+ "2 -t~3h, h),

vy = (f, g, g —t_lh).
Then it is routine to check from these formulae that

Vx X CVx, Vxxy 1cVx, Vxx(Xy)cCW,

Vy Yy C Vy, Vy>l<X_1CVY, Vy * (YX) C Vx.
These relations are compatible with the automatofigure 2 right. If a path
starts aty and ends aX then thep-action of its braid word map¥y into Vx. So

we haveVy x Q C Vyx for Q = Q(x, y, Xy, yx, x "1, y1).
Since(0, 0, t*™) € iy, we have

(0,0,1) B =(0,0,1) x AZ™5{1Q
=(0,0,t*™) % 01 Q
=(0,0,t"™) % Q,

which lies inVx. Since(0, 0, 1) € Vy andVxNVy = &, the condition(0, 0, 1)x 8 €
Vyx implies thatp (8) is nontrivial. O

We remark that the group generated>bwandy is the Artin group of Coxeter
type B, and thatxyxy= yxyxis the defining relation of the subgroup generated
by x andy. So the subgroup generated kyy andos is the direct product of the
infinite cyclic subgroup generated by and the subgroup generated:owandy.

N~/

Figure 3. The braido; *o$01030, 205 t, whose fourth power is
in the kernel of Bura@) ® Z».
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PN N GUN SN O SN GO
DR LREKEGRANE

Figure 4. A braid in the kernel of Burai@4) ® Zs.

3. Non-Brunnian elements

Cooper and Long1997 obtained a presentation of the imagemf® 7Z,. As a
corollary, p4® 7, is not faithful. The same authors computed@opper and Long
1999 a presentation of a group containing the imagep® 73 as a finite index
subgroup and gave a nontrivial braid in the kernel explicitly. In this section we
show that the examples of Cooper and Long are not Brunnian.

Let ak = (o1 tofo1030, Koz 1)* for k # 0. (SeeFigure 3for the expression in
parentheses, witk = 3.) The braidwx comes from the fourth relation o€jpoper
and Long 1997Theorem 1.4] and is in the kernel 8§ ® Z». ax is not Brunnian
because we obtain by forgetting the second and the fourth strands.

Now leta be the braid

1 2 -2 _-—-1_-2

0220102_ 203_ 20201_ 302_ 10302_ 010505 "0 "0y

1010, 2010302_ 1030230102_ 10302_ 10102_ 2010320203_ 1,
as inFigure 4 It is conjugate to the braid given bZpoper and Long 199&s a

nontrivial element of ker Burad) ® Z3. It is easy to see that is not Brunnian. If
we forget the fourth strand from asFigure 5 we get a nontrivial 3-braid

12 -2 -2_.3 -1 1.2

o = 0220102_ 101_ 302_ 010, "0 “05,01 "0201 ~0;

—1_ _—1_2\3,-2
= (020, 0204 "05) Az".

|

%y\mﬁ/ ‘7\/%/\—

Figure 5. Forgetting the fourth strand.
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ON A SPECIAL CLASS OF FIBRATIONS AND KAHLER
RIGIDITY

NICKOLAS J. MICHELACAKIS

Let #%" be the class of torsion-free, discrete groups that contain a normal,
at most n-step, nilpotent subgroup of finite index. We give sufficient condi-
tions for the fundamental group of a fibration F - T — B, with base B an
infra-nilmanifold, to belong to 4%". Manifolds of this kind may, for exam-
ple, appear as thin ends of nonpositively curved manifolds. We prove that if,
in addition, we require that T be K&hler, then T possesses a flat Riemannian
metric and the fundamental group 1 (T) is necessarily a Bieberbach group.
Further, we prove that a torsion-free, virtually polycyclic group that can be
realised as the fundamental group of a compact, Kahler kK, 1)-manifold
is necessarily Bieberbach.

1. Introduction

Torsion-free, discrete, cocompact subgroups of the group of affine motid&% of
were first studied by Bieberbach in 1912, and more recently by Charlap; they are
calledBieberbach groupsThey correspond precisely to the fundamental groups
of compact manifolds endowed with a flat Riemannian me@icdrlap 1965 and
such manifolds are finitely covered by flat toBigberbach 191]1

L. Auslander 1960 and Lee and Raymondl8] turned their attention to
almost-Bieberbach groupghat is, torsion-free, discrete, cocompact subgroups
of GxC, with C a maximal, compact subgroup of A@tfor G a simply con-
nected, nilpotent Lie group. They succeeded in generalising much of Bieberbach’
work. Malcev’'s equivalencelP49 shows that torsion-free, finitely generated,
nilpotent groups correspond precisely to the fundamental group#no@nifolds
that is, compact manifolds of the forfl = G/N, whereG is a simply con-
nected, nilpotent Lie group, and a discrete subgrouplheorem 3.Zhows that
almost-Bieberbach groups correspondirifra-nilmanifolds compact manifolds
of the formG/T" with G as above and’ a discrete subgroup d&xC, where

MSC2000: primary 22E40; secondary 32Q15, 14R20.

Keywords: affinely flat manifold, (almost)-crystallographic, (almost)-Bieberbach group,
(almost)-torsion-free, (virtually) polycyclic group, nilpotent Lie group, discrete cocompact
subgroups, lattice, Malcev completion, cohomology of groups, complex (Kéhler) structure,
group action, group representation, flat Riemannian manifold, (infra)-nilmanifold.
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C is a maximal compact subgroup of ABt We denote by{d%" the class of
almost-Bieberbach groups whose maximal, normal, nilpotent subgroup is at mos
n-step nilpotent. We shall say that a groD@dmits am-step almost-Bieberbach
structure if and only ifl’ € J4%" and its maximal normal nilpotent subgroup is
n-step nilpotent.

(We know from [Gromov 198] and [Wolf 1968 that, among finitely generated
groups, virtually nilpotent groups are precisely those groups that have polynomia
growth. For details and precise definitions, see those workSitsr 1981.)

We employ algebraic methods to study closed manifolds that fibre over infra-
nilmanifolds. If F — T — B is such a fibration, wherg, T andB are all acyclic,
the long homotopy exact sequence reduces to a group extension of the form

l1— m(F) — 7(T) — m(B) — 1

Manifolds of this type appear as thin ends of geometrically finite hyperbolic man-
ifolds, which are an interesting subclass of nonpositively curved manifolds. More
specifically, Apanasov and Xid997 proved that ifl" C #,xU (n—1) is a torsion-
free discrete group acting on the Heisenberg gfifip= C"1 x R, the orbit space
76,/ T is a Heisenberg manifold of zero Euler characteristic and a vector bundle
over a compact manifold. Further, this compact manifold is finitely covered by
a nilmanifold which is either a torus or a torus bundle over a torus. This gener-
alises earlier results on almost flat manifolds concerning latticé&, isaU (n — 1)
[Gromov 1978 Buser and Karcher 1981

As mentioned above, groups ##" correspond to infra-nilmanifolds. I18ec-
tion 2 we study extensions of the form

1—G—T —K—1,

with K € %", to provide sufficient conditions under whi¢hbelongs tas{%".

In particular, Proposition 2.2guarantees the existence of an almost-Bieberbach
structure orl” providedG is a normal subgroup df in a precise wayProposition
2.4does the same providéallies in %" and the action oK on G respects some
suitable minimal conditions.

In Section 3we use the Johnson—Rees characterisation of fundamental group.
of flat, K&hler Dohnson and Rees 199&nd projective Johnson 1990mani-
folds, and apply the Benson—Gordon theordi®dq for the existence of a Kéhler
structure on a compact nilmanifold to show,Tiheorem 3.3that the existence of
a Kahler structure on a special fibration as above implies the existence of a fla
Riemann metric of¥. In particular, ind4%", the classes of fundamental groups
of Kéhler and projective manifolds coincide, as showrCirollary 3.4 Further,
as a consequence of the Lefschetz hyperplane theorem and Bertini's theorem, th
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is a subclass of the class of fundamental groups of compact, closed, nonsingulz
projective surfaces.

Finally, in Section 4 we use a structure theorem concerning virtually polycyclic
groups, proved inlpekimpe and Igodt 1994together with the results irArapura
and Nori 1999, to prove, inTheorem 4.2that a torsion-free, virtually polycyclic
group can be realised as the fundamental group of(a, K)-compact, Kahler
manifold if and only if it is Bieberbach of a special kind, namely, its operator
homomorphism is essentially complex.

2. Group extensions

A group N is said to benilpotentif its upper central series
I1=Ng< N =Z(N) < Np < ---,

defined byN;1/N; = Z(N/N;), is finite. If n is the smallest integer such that
Nn =N, thenN is said to ban-step nilpotentWe shall say that a finitely generated,
torsion-free grouf” admits an i-step)almost-Bieberbachroup structure if it can

be written as an extension of a finitely generatedstep) nilpotent groufN by a
finite group®. Notice that, given such a torsion-free, finitely generated, nilpotent
group, its quotientdN; 1 1/N; are of a special form, namel; ;1/N; = 7ii.

Lemma 2.1.LetI fit in an extension
0—7"—r-L6—51,

where the torsion-free group G has an n-step nilpatermal subgroup N of
finite index andZ™ a trivial N-module Thenl” € 4&"*.

Proof. Let G be defined by the extension
1—N—G— & —1,

with N n-step nilpotent® finite and¢ : ® — OutN the operator homomorphism.
ConsiderT := p~1(N). Then the extension

(2-1) 0— 7" T -5 N—1

is central, which implies thaFl is at most(n+1)-step nilpotent. The proof is
completed by the observation tHat= p~*(N) <" andI'/T = (I'/Z™M) /(T /Z™) =
G/N = @. Notice thatl is torsion-free since so a@" andG. O

We now turn our attention to the fibre of the fibratiBn— T — B to prove the
following:
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Proposition 2.2.LetT" be a torsion-free extension
(2-2) 1—>K—>F—p>G—>1

of a finitely generated group K by a group G admitting an n-step nilpotémost-
Bieberbach structure such thén c is finite where ¢c: I' — Aut K denotes the
conjugation mapThenI” € B+,

Proof. SinceG admits am-step almost-Bieberbach structure there is a short exact
sequence

1—N—G—d—1

whereN is n-step nilpotent® is finite, andg : ® — OutN is the operator homo-
morphism. Letl" := p~1(N). ThenT fits in a short exact sequence

1— K —1 - N—1,

where we denote by the restriction of the conjugation map I' — AutK to I".
Let I := Ker¢, which is nonempty sincE is infinite. Then the extension

1—-TINK—T— p)—1

is central, withp(I") < N, and therefore itself nilpotent. This means titan K
is a finitely generated, torsion-free, abelian group &nié at most(n+1)-step
nilpotent. The proof is completed by observing that the normal subgroopl®
has finite index iri", since Im¢ is finite. O

The group AuK, for K a Bieberbach group, is not necessarily finite. For an
example, seeGharlap 1986p. 219]. It does, then, make sense to check what
happens if the fibre admits anstep almost-Bieberbach structure. But first:

Proposition 2.3.LetI" be a torsion-free extension
1—sK-—>I 572" 50

of a Bieberbach group K by a free abelian group of ranlsach thaz™ C Z(I"),
whereZ™ is the translation subgroup of K and(E) the center off’. ThenI €
AR2.

Proof. First observe tha¥™ <1 T, sinceZ™ < Z(I'). We therefore have a short
exact sequence

(2-3) 1—s K/Z™ — /7" 2 7" 0

whereK /Z™ is isomorphic toF, the finite holonomy group oK. We distinguish
two cases:
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(i) Assume tha{2—3)is a central extension. Then chod®e= (Z"~* x kZ) < Z"
of indexk = |F|, with |F| the exponent of. LetI'" := p~%(Q). ThenI" fitsin a
short exact sequence

1—>F—>F’—p>Q—>O

that splits as a direct product. By constructibh= (F x Q) <«I"'/Z™ is of finite
index. Letq : ' — I'/Z™ be the identification map. The free abelian graQp
imbeds as a normal subgroupBf< I'/Z™ and so also, because ABtx Q) =
Aut F x Aut Q, as a normal subgroup 8/Z™. LetI" :=q~1(Q) andl" :=q~(I");
thenQ =TI'/Z™ andF x Q =[/Z™. SinceQ < Z", it acts onZ™ in the same way
asZ", namely trivially. Sdl" is 2-step nilpotent normal ifi. One can further check
that its index|{["/I"| in T is finite, becaus¢l’/T"| = |[/T'| - |T'/T| = |Z"/ Q| - |F]|.
This completes the proof in this case.

(i) Assume that the sequen¢®-3)is not central, and lat: I"'/Z™ — Aut F be the
conjugation map. SincE is finite andl’/Z™ infinite, the kernel ot is nontrivial.
Letl :=Kerc<T'/Z™ letF := FNT, and letQ := p(I"). Then the extension

1—F—IT—Q—0
with Q < Z" (so thatQ = 7* for somep < n) belongs to the previous case. The

result now follows, sinc& has finite index irnr". O

Proposition 2.4.LetT" be a torsion-free extension
(2-4) 1— K —T -5 G6—1,

where K and G admit m-step and n-step almost-Bieberbach structessec-
tively. If Z(L/L;) € Z(T'/L;), where{L;}; is the upper central series of an m-step
nilpotent normal subgroup L of finite index in KhenI™ € A%,

Proof. We first check inductively that; < T". This is clear foii = 1. Assume it is
true fori and letqg; : L — L/L; be the identification map, where

Lir1=q""(Z(L/L)).

sothatlLi1/L; = Z(L/L;j). ThenLj1/Li < Z(T/L;) andLj 1 <T. The rest of
the proof also follows by induction, first am and then om. The groupG is of
the form

1—N—G—&—1,

whereN is n-step nilpotent and finite. By lettingl™ := p~1(N) we get a sequence

1—K-——N—1
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The casen = n = 1 follows from Proposition 2.3 Assuming the theorem is true
for somem andn = 1, we shall show it is true fom+ 1 andn = 1. If K is of the
form

l1—L—K-—F—1,

whereL is m-step nilpotent andF finite, considerL; = Z(L). The conditions of
the theorem ensure thay = Z(L) = Z” < T for some positive integep. This
gives a short exact sequence

1— K/2° — 1')7° — 7" —> 0,

with v > 0. Then{L;/L1}; is the upper central series bf L1 andI’/Z* admits an
(n+1)-step almost-Bieberbach structure by the induction hypothEsits into a
central short exact sequence

0— 272 —T —T/7°r — 1.

Lemma 2.1now applies to prove that, and thereford, admit an(n+2)-step
almost-Bieberbach structure. Now assume the theorem is true fan atidn
up to a certain value. We complete the proof by showing it holds fomadind
n+ 1. If {N;}; is the upper central series of sorfre+1)-step nilpotentN, define
I := p~1(Np). ThenT fits in

1—K—IT—N,—1

and admits ar{n+m)-step almost-Bieberbach structure. Also there is a positive
integeru such that the sequence

1——>TF—>I-—>T/[27¢0—0

is exact. The induction argument on the fibre implies that 4%"t™*, and so
I e AR too. O

3. Almost-Bieberbach groups and Kahler structures

Let AutG denote the group of automorphisms of a simply connected Lie group
G. We shall be concerned with discrete subgrolipsf Aut G that act properly
discontinuously orG.

A groupT is said to becrystallographidf it is a cocompact, discrete subgroup of
R"x O(n) C Aff (R™), whereO(n) is the maximal compact subgroup of Gi,. R)
and Aff(R") is the group of Euclidean motions &". It is a Bieberbachcrys-
tallographic group if it is torsion-free as well. Bieberbach groups are precisely
the fundamental groups of compact, complete Riemannian manifolds that are fla
(locally isometric to Euclidean space), as first provedBieperbach 1911 An
alternative characterisation of flat Riemannian manifolds is that in such manifolds,
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transition maps can be extended to elemen®f O(n). Charlap 1965 classi-
fied these manifolds, up to connection-preserving diffeomorphisms, by associating
to a manifoldM a short exact sequence

1—A—G—d—1

in which the holonomy grou@ of M is finite andA = 7" is the translation sub-
group ofI' = r1(M), a torsion-free, discrete, cocompact subgrougdt O(n) C
Aff (R").

More generally, ifG is a simply connected, nilpotent Lie group, we consider
a maximal compact subgroup C AutG. A cocompact, discrete subgrotipof
G x C is called analmost-crystallographigroup, and if torsion-free it is called
almost-BieberbachThe quotienG/ I is called arinfra-nilmanifold, and if" € G
it is a nilmanifold

Most of Bieberbach'’s work has been generalised to the nilpotent cageisa |
lander 196Dand [Lee and Raymond 1985

Theorem 3.1 (Auslander). LetI" € G x AutG be an almost-crystallographic
group, where G is a connectedsimply connectednilpotent Lie group Then
('NG) «T is a cocompact lattice in GandI"/(I"' N G) is finite

Parts of the statement of the following theorem can already be fourldem [
and Raymond 1985We simplify the proof.

Theorem 3.2.T is almost-crystallographic if and only if it is of the form
1—N—-T —&—1,

with N finitely generatedorsion-free maximal nilpotentand @ finite.

Proof. If ' € Gx AutG is an almost-Bieberbach groupheorem 3.1says that

N =TI"NG is a maximal nilpotent, normal subgrouplobf finite index, and finitely
generated because it is a discrete subgroup of the nilpotent @otip prove the
converse, given an extension like the one in the statement of the theorem, witt
abstract kernep : ® — OutN, consider the extension of the Malcev completion
N of N,

1—N—ST)— & —1,

with abstract kernely : ® % OutN — Outy. The claim is that there is exactly
one extension of" by ®, namelyN — N> @, whereys : ® — Aut N is a lifting
morphism ofyr.

Since Z(N) is a vector space and is finite, H3(®, Z(N\)) vanishes and by
[Mac Lane 1963 Theorem 8.7] the abstract kerri@, N, ¢/] has an extension.
Furthermore, flac Lane 1963 Theorem 8.8] says that this extension is unique
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because the séi?(®, Z(N\')) parametrizing all congruence classes of such exten-
sions is null, for the same reason. So we know that there is precisely one extensio
N> I = @. If we can further show that has a lifting morphismy : & — Aut .\,
thenl' = N>t . To this end, we apply induction on the nilpotency classotf

N'is 1-step nilpotent thel = Z(N) and the result is obvious. K is c-step nilpo-
tent, consider the inverse image under the natural projecticAut ' — OQutN

of the finite groupy,(®). This gives birth to a short exact sequence fhr->

q (Y (@) = Y (P) with InnN = N/Z(N) fulfilling the induction hypothesis.
We can thus find a splitting morphissn ¥ (¥) — g~ (v (®)) < Aut.N. But now,

so ¢ is the lifting we were looking for, completing the proof. We thus have the
commutative diagram

1— N — I' — & — 1

I

1— N — NAxDdP — & — 1

The mapy, with j(n, g) = (1(n), g), embedd" as a discrete, cocompact subgroup
of the disconnected Lie grouf(I'), proving the theorem. a

Given a short exact sequengé” — I' — & with operator homomorphism
¢ : ® — AutZ?", we say¢ is essentially compleif there is acomplex structure
for the ®-moduleZ?" ® R, that is, a map € Endgj¢)(Z>" ® R) such that? = —1.
In other wordsg : ® — Aut Z?" is essentially complex if Inp € GL¢ (Z"QR)"),
with

GLc((Z* ®R)') := {m e GLr(Z*" ® R) such thatmt = tm)}.

Theorem 3.3.LetI" be the torsion-free extension
1—N—T —&—1,

where N is a torsion-fredinitely generated maximal nilpotent group addis a
finite group Then there is a compact Kahler(K, 1)-manifold M if and only if
N = 72" and the operator homomorphisgn: ® — Aut N is essentially complex

Proof. By Theorem 3.2here is a connected, simply connected Lie gr@ipuch
thatT' is a torsion-free, discrete, cocompact subgrougoef Aut G. SinceM is

a K(T", 1)-manifold, its universal covering is homeomorphically equivalenGto
andM = G/T'. The hypotheses oN say thatG containsN < I'" as a discrete
cocompact subgroup. TheM = G/N is a compact KN, 1)-niimanifold that
coversM in a finite, unramified way. Because the Kahler condition is local, the
fact thatM admits a Kahler structure implies thtalso admits a Kahler structure.
The Benson-Gordon theorem says that this can happen oNIy&ifz?", forcing
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the finite coverM of M to be holomorphically equivalent to the complex torus
C"/7?". The converse is settled bydhnson and Rees 199lheorem 3.1]. O

Let By be the class of groups that can be realised as fundamental groups o
compact, Kéhler manifolds whose underlying Riemannian structure is flat, and
By C By the subclass consisting of groups that can be realised as fundamente
groups of complex projective varieties. Léthy denote the class of groups that
can be realised as fundamental groups of compact nilmanifolds; that is, compac
manifolds of the formG/T", whereG is a simply connected, nilpotent Lie group
andT" a discrete subgroup admitting a Kéhler structure, andii@t C A%y be
the subclass consisting of groups that can be realised as fundamental groups
complex projective nilvarieties.

Corollary 3.4. (1) ARy = By = By = ARBg.

(2) Every group ind%y is the fundamental group of a smoptempactcomplex
algebraic surface

Proof. (1) The first equality follows directly fronTheorem 3.3and PJohnson and
Rees 1991Theorem 3.1]. The second iddhnson 1990Corollary 4.3], while the
third stems from the first two together with the inclusid®s C 4By;.

(2) If M is a smooth projective manifold, then by Bertini’s theorem there is a
smooth hyperplane sectiov,_1). By the Lefschetz hyperplane theoremilnor
1963, m (M, M—1y) =0forl <n, soM andM,_1), have isomorphic fundamental
groups ifn > 3. a

We now combindProposition 2.2Proposition 2.4andTheorem 3.3

Theorem 3.5.1f the Kahler manifold T is the total space of a fibratior-FT — B
over an infra-nilmanifold B with aspherical fibre F and if the short exact sequence

1— m(F) — m(T) — m1(B) — 1

of their respective fundamental groups satisfies the conditions of &theosition
2.2or Proposition 2.4then T admits a flat Riemannian metric

4. Virtually polycyclic groups and Kéahler rigidity

An affinely flatmanifold is ann-manifold endowed with an atlas whose transition
maps can be extended to elements of(Rff) = R"xGL(n, R). A torsion-free
group I' is virtually polycyclicif it has a subgroud’y of finite index which is
polycyclic, that is, one that admits a finite composition sefig2o I'1 2 ', 2

- D Ty =1 such thatl; /41 = Z for all i. The numbem is an invariant,
called therank of I". Groups ind%" are obviously virtually polycyclic. Auslander
[1964 has conjectured that the fundamental group of a compact, complete, affinely
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flat manifold has to be virtually polycyclic. MilnolP77 has shown that torsion-
free, virtually polycyclic groups can be realised as fundamental groups of complete
affinely flat manifolds. On the other hand, Johnsb®7q has proved that torsion-
free, virtually polycyclic groups can be realised as fundamental groups of compac
K(m, 1)-manifolds. However, contrary to the Bieberbach case, Bent®&] has
given an example of a 10-step nilpotent group of rank 11, proving that it is not
always possible to do both!

If T is a virtually polycyclic group, théitting group of I, denoted Fittl"), is
the unique maximal normal subgrouplIof TheclosureFitt(T") of the Fitting group
of a groupr" is the maximal normal subgroup Bfcontaining Fit{l") as a normal
subgroup of finite index. The basic propertyFift(I") is that it leaves the quotient
I /Fitt(T") with no finite, normal subgroup in it—in other wordamost-torsion-
free. In [Dekimpe and Igodt 1994t is proved that ifI" is a finitely generated
virtually nilpotent group therd” is almost-torsion-free if and only iFitt(I") is
almost-crystallographic.

If N is a torsion-free, finitely generated;step nilpotent group, then to any
extension
NesT 5 Q

with abstract kernely : Q — OutN we can inductively associatemorphisms
¥ 0 Q — Aut(Niy1/Np), whereNi1/N; = Z(N/N;). Now if g € T is such
that p(q) has finite order inQ, and(g, N) is nilpotent, thenp(q) € ; Ker ;.
Conversely, ifg € T is such thatp(q) € (] Ker i, then(q, N) is nilpotent inT".

We shall use the following lemma, which is half @¢kimpe and Igodt 1994
Theorem 2.2]. For completeness, we write a proof here.

Lemma 4.1. LetT" be a virtually polycyclic group If T is almost-torsion-freg
Fitt(I") is torsion-free maximal nilpotent if.

Proof. Sincerl is polycyclic-by-finite, FittT") is finitely generated nilpotent. There-
fore its torsion set is a finite characteristic subgroup of Fittand thus normal in
", and hence trivial sincE is almost torsion-free. Sa; fits in an extension

(4-1) 1— FittM) — [ -5 Q — 1

with Fitt(T") torsion-free and) abelian-by-finite, saypA— Q L F. Now letgel
be such thalN := (q, Fitt(I")) is nilpotent, and look ap(N). If p(N)NA#£{1} then
p~1(p(N) N A) is normal inT" since(p(N) N A) < A is nilpotent as a subgroup
of N. Thus, p~1(p(N) N A) C Fitt(l") and p(N) N A = {1}, a contradiction.
We deduce thap(N) = j(p(N)) € F, and hence thap(q) is of finite order in
Q. The discussion preceding the theorem shows thg) € (NJ(¥i) N p(N),
whereys; are the morphisms associated with-1), which is a finite group since
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F is finite; thereforeq € Fitt(I"). But sincel” is almost torsion-freeFitt(I") is
almost crystallographic and FiEitt(I")) = Fitt(I") is maximal nilpotent irFitt(T"),
implying q € Fitt(T"), a contradiction. O

Theorem 4.2. LetT" be a torsion-fregvirtually polycyclic group ThenI” can be
realised as the fundamental group of &# 1) compact Kahler manifold if and
only if " is Bieberbach with essentially complex operator homomorphism

Proof. The converse is the second halfieorem 3.3 For the direct statement,
observe that sincE is torsion-free, it is almost-torsion-free. Thus,lbymma 4.1
Fitt(I") is torsion-free maximal nilpotent ifi, andT" fits in a short exact sequence
of the form

1— FittM) — T -5 Q — 1,

whereQ is abelian-by-finite. SincE is Kahler, by Arapura and Nori 1999there
exists a nilpotent subgroup C T of finite index. BUtA is necessarily contained in
Fitt(T"), so Q is finite, andTheorem 3.3ompletes the proof wittN = Fitt(I"). O

Provided that the Auslander conjecture is trleeorem 4.2vould immediately
imply:
Conjecture 4.3.1f a Kéhler manifold T is the total space of a fibration&+T — B

where both the base B and the fibre F are infra-nilmanifolthen T admits a
Riemann flat structure
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UPPER BOUNDS FOR THE SPECTRAL RADIUS
OF THE n x n HILBERT MATRIX

PETEROTTE

We derive upper bounds for the spectral radius of then x n Hilbert matrix.
The key idea is to write the Hilbert matrix as integral operator with positive
kernel function and then to use a Wielandt-type min-max principle for the
spectral radius. Choosing special trial functions yields a new bound that
improves the best bound known heretofore.

1. Introduction

The spectral asymptotics of the Hilbert matrix has attracted a lot of interest concern
ing both the lowest and the largest eigenvalue. Here we shall focus on the spectr:
radius p, of then x n Hilbert matrix for which we shall prove, particularly, the
bound

(1) Pn < 2w arcsini with  wp:=2 ((n_!)z>1/2n neN

n=o W e (2n)! ’ '
This improves, at least for large valuesmgfCassels’ bound, given ifb) below,
which is the best hitherto known. Numerical computations sugges{ihét ac-
tually better for alln exceptn =1, 2.

We base the proof dfl) upon relating the Hilbert matrix to an integral operator

Hn whose spectral radius can be expressed by a min-max principle for operator
having positive kernel functions:

(2) on= Iinf sup M

peM 0<x<1 <P(X)
whereM is some set of appropriate trial functions. For the sake of completeness
we shall proveg2) without recourse to the general theory. In the matrix case the
above min-max principle is due to Wielandt9b(Q and related to the enclosure
result of Collatz 1943. It has been generalized in many directions; $&efdland
199Q Marek 1966 Schaefer 1984 for example.

MSC2000:15A42, 15A60, 47G10.
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To derive estimates we pick(x) := (1—x)” in (2), with -1 < y < 0. We
restrict ourselves to the cage= —%, for which the calculations are manageable,
and obtain(1).

Hilbert was the first one to investigate spectral properties of the matrix named
after him. In his lectures he showed his double series theorem stating, thiatys
finite asn — oo; this was first published by WeylP0§ (see also\iener 191().

The concrete inequality

3 pn =T

is due to Schur1911]. This is the optimal constant that does not depend on the
dimensionn. However, if we do want the bound to dependroit is possible to
strengthern(3). Frazer 1944 obtained

4) pngnsin% forn> 2,

by refining a method of Fejér and RiesiAR1], which they used to prove what is
now called the Fejér—Riesz inequality for analytic functions. Equdddwas later
rediscovered by Hsiand 57 and Yahya 1965, and was eventually improved by
Cassels1949 to

(5) on < 2arctarv2n.

Finally, it might be instructive to look at the asymptotic expansioppfThe first
asymptotic result was obtained by Taussk§49 by computing the quadratic form
with special trial vectors having componegis= 1/vk; it was

1
The exact asymptotic behaviour
5
b4 Inlnn
i o)
Pn=T 2In2n+ In®n

was determined by de Bruijn and Wilt§63, who compared the matrix operator
with an integral operator whose spectral asymptotics can be derived from genere
results of Widom 1959 (see also\Widom 196]).

2. Estimates for the spectral radius

We start by relating the Hilbert matrix

©) A= (151 o
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to the integral operata, : C[0, 1] — CJO0, 1] having the kernel function

—(xy)”
] —
(7) Kn(xy) := E(xy) Toxy

Forn = oo this operator was used by Magnd$®5p( to study the spectrum of the in-
finite Hilbert matrix. We letH, act onC[0, 1] because we want to have sufficiently
many trial functions at hand. As we hopéd,;, has (almost) the same spectrum as
An. In particular, they have the same spectral radius, henceforth denojgd by

Lemma 1. Let C[O, 1] be equipped with the usual maximum norithen H, :
C[0, 1] — CJ0, 1] is a bounded linear operator The respective spectra of the
Hilbert matrix A, and the integral operator Kare the same apart frofd. Their
common spectral radius, can be expressed by

(8) pn= inf sup m, where M:= {gp € L[0,1]| ¢ > 0, % e C[0, 11}.

peM O<x<1 §0(X
Proof. It is clear from the definition andl7) that H, is linear and bounded. Also
(7) shows thaH,, hasn-dimensional range spanned by the monomi&|sor k =
0,...,n—1, which implies that the spectrum &f,, consists only of eigenvalues.
To eachc € C" we associate. € C[0, 1] in the natural way:

n—-1

(9) c=(C...,Ch1) €C" «— (pc(x)=chxJ.
j=0

The statement on the spectra then follows from

1n-1

(Hago) (00 = / Z(xy)J chy dy
— Z CkXJf yH—kdy Z Zj+k+1

j,k=0 j=0

Note thatH, must have a kernel anél, does not.

To prove Formuld8) we recall from the Perron—Frobenius Theorem that, since
An has positive entriesp, is an eigenvalue oA, and hence oH,. Let v be
the corresponding eigenfunction. Writing down the eigenvalue equatiandod
dividing by ¢ € M yields

v(X) /1 Kn(xy ey V)
0

ey Y o0 o) @
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This shows that /¢ € C[0, 1] is an eigenfunction of the operatbik, , with kernel

(y)
Knp(XY) = Kn(X y)‘”(—y)
whencepn < p(Hn ), the spectral radius dfl, ,. Sincep(Hn ) < ||Hn¢llc We

conclude that
1

pn < Hngllooc = sup Kn,p(Xy) dy
O<x<1J0

where we have used(x) > 0, Kn(xy) > 0, and thusKp ,(xy) > 0. To show
equality in(8) we once again invoke the Perron—Frobenius Theorem, according
to which the eigenvector of, belonging top, can be chosen to have positive
components, whence we can, {8, likewise choose the eigenfunctian> 0. In
particular,v € M. O

We usd_emma 1to estimate the spectral radius from above by cleverly choosing
trial functions in(8):

_(Hp)x) 1 P1—(xy)"
(10) rx) = 200 _w(X)/o 1-xy p(y)dy forneN.

To get an idea of what the/s should look like we cast, into a form more amenable
to further investigation. The crucial point is to evaluate the integral

1 yn
300 i= [T semay.

We start by differentiating with respect to
1 n+1 1 n
o= Y _1 y _1
1) Jx= A (1_Xy)2¢)(y)dy— X /0 i Xy)zw(y) dy = Jn().

The explicitly written integral on the right can also be produced by integration
by parts, which we perform in such a way thatl) is omitted because our trial
functions will have a singularity at = 1.:

n

1
1 nyp(y)]

1
f(y 1)( Z'ynxy (lffy)z)w(ywrl

Ih(X) = |:(y -1

¥ (y))dy
1 n

_ B B y

= 5@ +nhea00—n k00 + 0= [ = Luay

+ Jn(X) + Jn(x),
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with 8, := 8n 0 the Kronecker delta and

1 n
= L y _ /
oo = [ -y may.

Hence we can eliminate the integral in question frdrh):

on 1
(12) Jn(X) = m(

To eliminate the annoying,_; we observe that

- 1
8n9(0) +NJh_1(X) —NJ(X) + Jn(X)) — ().

1 yn 1 1 1 n1
Jn(X):/O 1_Xy¢(y)dy=;Jn1(X)—;/0 Y e(y) dy,

and therewith(12) becomes

, _ 8n I’l+1 Kn ~
13 J00 = 7T 500 = T h00+ S T h )
where we have put
1
(14) Ko :=0, Kn i= n/ y"lo(y)dy forneN.
0
We are going to express
n
1 O] =
(15) n(X) 2 Jn(X)
by dint of (13) through a differential equation:
. (p/(x) N an—l Xn )
(X)) =— X In(X) + ——In(X) + —— I (X
n(X) 220%) n(X) 200 h(X) 200 h(X)
(‘”/(X) " 1) n0 + 0t (5p(©) )
= - - —_—— —_—— Kn).
o0 T x) T @000 T @mxp00 M T
At this point we fix our trial functiorp in such a way that
(16) (1—X)¢'(X) = —yp(x),

that is,(x) = (1—x)? with somey € R to be specified later, wherekls becomes
a multiple of J,, and we arrive at a differential equation fdg:

) 1 xn-1
(17) P, (X) = —(J/+1);q>n(x)+m (6n+«n) .
This is equivalent to
X"ty
XM Pp(x)) = —————(8n +n),

(1— X)L
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which we can solve immediately fab,:

Sn+kn [* §n+y

(18) On(X) = X, =gty

d¢ forneNg.

In particular, we can now see thatmust satisfy—1 < y < 0 in order to yield well
defined integrals and to hayes M in (8). We summarize our calculations.

Theorem 2. The spectral radiugy, of the nx n Hilbert matrix A, as in(6) can be
estimated by

. 1 X 1—kpg"
I SN = e
where
n!
(20) Kn:(n—a)(n—l—oz)---(l—a) forneN.
Proof. Puta := —y and use in turn the min-max princip{8) and the definitions

of r, and®, as in(10) and(15), with ¢ being chosen according {@6) to obtain

pn < inf sup ra(x) = inf  sup (Po(x) — Pn(x)).
O<a<1 O<x<1 O<a<1 O0<x<1
Then(19) follows directly from the representatiq8) of @,.
For ¢ as in(16) the integral in(14) is Euler’s beta function. Hence,

annB(n,l—a)z%

wherefrom we deducg0). O

The optimal way to derive bounds @R would be to determine the maximum
of the functionr,, exactly. Unfortunately, this turns out to be rather complicated,
and we content ourselves with narrowing the region where the maximum must lie

Corollary 3. The spectral radiug,, of the nxn Hilbert matrix A, can be estimated
by
1/n

1/kn
(21) on < _inf g fl=e)/n /
0

O<a<1

1

g

which in the case = 1 specializes to

1 » (nn2\ 7"
(22) on < 2wp arcsmw—n with wy, := Kn/ =2 (w) .
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Proof. When 1— «né" < 0 the functionr, is decreasing, whence the maximum
must lie in the interval0, xo] for Xo the unique zero of the integrand (h9):

1—knx) =0, ie, xo=1/k}".
We conclude

Sup rn(X) = sup r(x) < sup Po(X) = Po(Xo)
O<x<1 0<X<Xg 0<X=<Xo

because th@,(x) are nonnegative andlg increases.
Fora = % thew, are easily obtained frorf22) and(20) and the integral irf21)
can be evaluated by the change of varialjless. a

Finally, we shall check that our estimgt2?) is indeed better tha(b). Using
some familiar formulae for arctan and arcsin we obtain

o1 o1 o1
arctanv/2n — wy, arcsin— = arctanv/2n — arcsin— — (wp — 1) arcsin—

Wn Wn Wn
1
> arctanv/2n — arctan——— — = (wn — 1)
JwZ—-1 2

VOWED-1 7
—Z(wn—=1).
JwZ—1++2n 2

Now the asymptotics of the middle binomial coefficient yields

\/ﬁ l/2n
wn~2( ) ~nY*"  asn — oo,

= arctan

4n
which implies immediately lim., -, wy = 1, and further
n(wn — 1) ~n(n¥* — 1) =n@Ee™"/*" —1) ~ 1Inn asn — oo.

Therefore, for large,
V2n(w2-1)—1 . 1./2n(w2 —1) . 1\/71
= —vwn—1
JwZ—1+v2n 4 Jan —4Y "

Noting arctarx > cx for smallx with some constant > 0 and using the mono-
tonicity of arctan we conclude

1 c
arctanv/2n — wy, arcsin— > Z‘/w” —1- %(wn ~1)>0

Wn

for large values oh. With some care it should be possible to show the statement
for smaller values o, too.
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3. Remarks

We suggest some topics that might be worth further investigation.

(1) In order to derive fronTheorem 2a bound that can be computed more or less
explicitly we did not determine irf19) the maximum of the function, exactly.
Thus, the first possibility to strength€p?) is to study the maximum af,.

(2) Also for computational reasons we fixed the expomeﬂt% in (21). However,
numerical computations suggest that % is generally not the optimal choice and
that other values af give much more accurate estimates. According to a theorem
of Ceby3ev the integral if21) can be evaluated for any-fe < 1 in closed form by
means of elementary functions. It is not clear whether these elementary function:
allow for an efficient minimizing procedure.

(3) A vaguer idea is to pick other trial functions théih— x)~. Our method will
work as long as we arrive at a differential equationdgras in(17).

(4) Since Wielandt's min-max principle is accompanied by a max-min principle,
one can also think of deriving lower bounds for the spectral radius in which case;
however, completely different trial functions are needed.
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UNRAMIFIED HILBERT MODULAR FORMS,
WITH EXAMPLES RELATING TO ELLIPTIC CURVES

JUDE SOCRATES ANDDAVID WHITEHOUSE

We give a method to explicitly determine the space of unramified Hilbert
cusp forms of weight two, together with the action of Hecke, over a totally
real number field of even degree and narrow class number one. In par-
ticular, one can determine the eigenforms in this space and compute their
Hecke eigenvalues to any reasonable degree. As an application we compute
this space of cusp forms forQ(+/509), and determine each eigenform in
this space which has rational Hecke eigenvalues. We find that not all of
these forms arise via base change from classical forms. To each such eigen-
form f we attach an elliptic curve with good reduction everywhere whose
L-function agrees with that of f at every place.

1. Introduction

In general, finding unramified cuspidal representations for a given group is a dif-
ficult problem. If one tries to tackle this problem using the trace formula, for
example, one usually needs to shrink the discrete group and hence allow som
ramification. In this paper we are concerned with computing the space of unrami-
fied Hilbert cusp forms for a totally real field of even degree.

Let F be a totally real number field of narrow class number one and of even
degree ovef). In Section 2we explain how, by results of Jacquet, Langlands and
Shimizu, the construction of the space of Hilbert cusp forms of weight 2 (i.e., of
weight (2, ..., 2)) and full level for F can be done on the quaternion algeBra
over F that is ramified precisely at the infinite placeskf In fact the space of
such cusp forms can be identified with a certain space of functions on the set o
equivalence classes of ideals for a maximal orddB in

In Sections3 and4 we extend the definition gd-series and Brandt matrices, as
found in [Pizer 19808 to this case. We show that each simultaneous eigenvector
for the family of modified Brandt matrices corresponds to a Hilbert cusp form that is
an eigenvector for all the Hecke operators. In order to compute the Brandt matrices
and hence the space of cusp forms, we need to be able to find representatives f

MSC2000:11F41, 11GO05.
Keywords: Hilbert modular forms, elliptic curves, everywhere good reduction.
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all the ideal classes for a maximal order; we outline our strategy to find these
representatives iBection 5

Next we specialize to the case of a real quadratic field of narrow class numbel
one. InSection 6 using a result of Pizer, we give an explicit formula for the type
number ofB and the class number of a maximal ordeBnIn Section 7we give
defining relations for the quaternion algelBaover a real quadratic fiel@(,/m),
and whermm = 5 mod 8 we give a maximal order in this algebra.

We now turn to our application to elliptic curves. To any Hilbert modular new-
form f over a totally real fieldr, having weight 2, leveh and rational Hecke
eigenvalues, one expects to be able to attach an elliptic dafvehat is defined
overF, has conductor and whosé_-function agrees with that of at all places of
F. This is known ifF has odd degree ovél or if the automorphic representation
associated tof belongs to the discrete series at some finite place Bksilis
2004 1.7.1)).

Conjecture 1.1. Let F be a totally real number field of even degree okerTo
each unramified Hilbert modular eigenforiover F having weigh? and rational
Hecke eigenvalues one can attach an elliptic curvedg&fined over F with good
reduction everywheresuch that the L-functions of f£gand f agree at each place
of F.

When f is the base change of a classical modular form one can sometimes
attach an elliptic curve td as inConjecture 1.1see Bhimura 19717.7]. Also, by
[Blasius 2004 this conjecture is true under the hypothesis of the Hodge conjecture.
In this paper we establish this conjecture for= Q(+/509). The reason for this
choice of field is, as we shall see, that there exist eigenforms that do not arise
via base change from GIQ), nor are they CM forms sinde™ (F) = 1. To our
knowledge this provides the first verification of this conjecture in the case that not
all forms arise by base change; s&égjsius 2004 1.7.3].

We now outline the verification ofonjecture 1.%for F = Q(+/509). In Sec-
tion 8 we give representatives for the ideal classe8ifrom which we are able
to compute the Brandt matrices and therefore the eigenvalues of the unramifie
eigenforms of weight 2. We find that there are three eigenforms whose Hecke
eigenvalues all lie ird. In Section 9we give the equations for the three elliptic
curves overF that are attached to our three eigenforms. These elliptic curves
already exist in the literature&Cfemona 1992Pinch 1982

In Section 10wve proveConjecture 1.for Q(+/509). One of our forms is a base
change of a classical form given i€femona 199R In this case one knows, by
work of Shimura, that an elliptic curve is attached to this form. Now we thke
to be one of the forms that is not a base change ftband we takeE to be the
elliptic curve (or its Galois conjugate) defined oegiven in [Pinch 1982
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By work of Taylor, building on work of Carayol and Wiles, and independently
by Blasius and Rogawski, there exists for each rational pdraa ¢-adic repre-
sentation

Oty Gal(lf/F) — GL2(Qy)

which is unramified outsidé. If p is a prime ofF not dividing ¢ and Fy, is a
Frobenius element at, we have Teo ¢ ((Fr,) = as (p), the eigenvalue of with
respect to the-th Hecke operator, and det ,(Fr,) = Np. Similarly, for each
rational primef we have a representation

oe.: Gal(F/F) — GL2(Qy)

given by the action of Galois on theadic Tate module oE. SinceE has good re-
duction everywheregg , is unramified outsidé and for each prime not dividing
¢, we have Tog ((Fry) = ag(p) and debg ¢(Fry) = Np.

The verification ofConjecture 1.Xor f will therefore be complete if we can
show, for some primé, that these two representations are equivalent. For this we
take? =2 and use a result of Faltings and Serre provedivnfe 1987. We cannot
apply this result directly since it requires the traces of all Frobenius elements to be
even, which is not the case here. So we begin by showing that the extensiens of
cut out by the kernels of the mod 2 representations obtained from the eigenforn
and the elliptic curve are the same. Having identified these extensions, we ca
apply the theorem of Faltings and Serre to show that these two representations a
equivalent when restricted to this extensionFofUsing Frobenius reciprocity we
conclude that these representations of(6aF) are equivalent.

This work was begun by the first author in his PhD theSizdrates 1993which
gave a construction of the space of cusp forms for a real quadratic field of narrow
class number one. The cusp forfnabove and the elliptic curvE were shown
there to have the sanhefactors at all primes generated by a totally positive element
a-+bo with 1 < a < 64, whered = 1(1+ +/509.

This work was completed by the second author, who extended the methods ©
[Socrates 19930 any totally real field of narrow class number one with even de-
gree over, adapted the result of Faltings and Serre, and independently computec
the necessary eigenvalues given in Table

2. Construction of the space of cusp forms

Throughout this papdf will be a totally real number field of narrow class number
one and of even degree ov@r We denote byR the ring of integers irF, by F+
the set of totally positive elements iy and likewise forR™. We now explain how
one can construct the space of cusp formsHaf weight 2 and full level.
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Let B/F be the unique (up to isomorphism) quaternion algebra that is ramified
only at the infinite places df. We now give some definitions.

An R-lattice (or ideal) V in B is a finitely generatedR-submodule ofB such
thatV @gr F = B. An elementb € B is integral (or an integej if R[b] is an
R-lattice in B. An orderin B is a ring0 consisting of integers and containify
such thatF0 = B. A leftideal | for an order0 is an R-lattice for whichOl c I.
Two left 0-ideals |, and |, are said to beight equivalentif 1, = I,b for some
b e B*. Similarly, two orderg0; and0, areof the same typd# 01 = bo,b~1 for
someb e B*. The numbeH of right equivalence classes of |€ftideals is called
theclass number off and the numbeT of type classes of maximal orders Bfis
called thetype number oB. Both numbers are finite (for any ordey.

We now fix a maximal orde® in B. Let G = B> viewed as an algebraic group
over F. SinceB only ramifies at the infinite places &f for each finite primep
we have

B ®F Fp = Mz(Fp).

Moreover we can choose these isomorphisms so as to give an isomorphism ¢
0, = 0® R, with Ma(R;,). Clearly each of these isomorphisms gives rise to an
isomorphism ofG(F,) with GL2(F,) under Which@; corresponds to GK(Ry).

We construct the double coset space

X = Mg\G(A})/G(F),

where AF is the ring of finite adéles antlg = ]_[p<ooGL2(Rp) is a maximal
compact open subgroup G(AF) We note thatMg, as a subgroup OG(AF)
depends on the choice 6fand hence so doeX. The setX can be identified
with the rlght equivalence classes of |éftideals in the following way Given
(Xp) € G(AF) consider the open compact sub§gf O, in B ® AF Taking
the intersection Oﬂp OyX, With B, embedded diagonally iB ® AF ylelds a left
O-ideal. Conversely, given a left-ideal | one recovers an element @‘(A ) by
choosing, for each primg, a generator of the principal lefi,-ideal 0,1 .

We denote bySthe space

S={f : X - C}/{ constant functions oiX }.

There is a natural definition of Hecke operators on this space, as follows,Let
be a uniformizer folR, and letg, € G(A,';) be such that the-th component o6,

is
mp 0
01

and is the identity otherwise. Since &R;) is open and compact in GLF,), we
haveMgg,Mg = ]_[i”:l Mggi. A classical result states that we can choose the set
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(2 1)seerm] UL (o )}

Define, for f € Sandh e G(A;),

{gi} to be

n
(Tp(H)) (y=>" f(gh.
i=1
This gives a well-defined action d§ which is independent of the choices of the
g and also ofr,.

Let ¥ be theC-vector space of holomorphic Hilbert cusp forms owerof
weight 2 and full level. Theff is a multiplicity-free direct sum of simultaneous 1-
dimensional Hecke eigenspaces. A similar decomposition holds By [Gelbart
and Jacquet 19T%here is a Hecke-equivariant isomorphism betwgesnd S.

Our goal now is to give a method to compute the action of the Hecke operators or
the spaces. This will be done by constructing Brandt matridg@&) and modified
Brandt matriceB’(¢), which are families of rational matrices indexedéy R™.
These are objects that were first defined okeand later used to construct cusp
forms for congruence subgroups of SIZ2.

3. ©-series of an ideal

The notion and construction of @-series for an ideal in a quaternion algebra is
discussed in several papers, includifjzer 1976 1980a 1980h Gross 198F.
In this section we extend these definitions to ideals in a totally definite quaternion
algebraB defined overrF.

Let J be an ideal in the totally definite quaternion algel®a Let nr denote
the reduced norm fromB to F. The norm of any nonzero elementBis totally
positive. We denote by 0d). a totally positive generator of @), the fractional
ideal of F generated by the norms of the elementgirFor anyg € J we define

Na(B) =nr(B)/nr(J).
We define thed-series ofJ for ¢ € #HOMF.R py
O3(r) =) expTNs(B)) = ) Ce.yeXNté),
Beld £eRt

wherec; ; is the number of elemengsin J with N3(8) =&. This sum converges
since composing\; with the trace map fronF to Q gives a positive definite
guadratic form onJ as aZ-lattice.

Proposition 3.1.The definition of g ; is independent of the choice of(J) ..
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Proof. Any two choices for ngJ), will differ by a totally positive unitv. Since
F has narrow class number one= u? for some unitu. Thus multiplication by
u € R* gives a bijection between the set of elementd iof normé nr(J) and
those of norntv nr(J),.. O

We note that ifd’ = 31 Jy» with j; € B> the ®-series ofJ andJ’ are identical.
The proof in Pizer 1980aProposition 2.17] holds in this case.
Suppose that we are given an idéain terms of a basis oveR. We give an

effective algorithm to determine tlee ;. Let {1, ..., B4} be a basis fod overR
and let{w;, ..., wy} be a basis foR overZ. We can write8 € J uniquely as
4 n
B=Y D XjoiB
i=1j=1

with xj; € Z. ThenN;(pB) is a totally positive element dR, providedg # 0, and
composingN; with the trace map fronf to Q gives a positive definite quadratic
form in the{x;; }. Therefore, given a basis of an idehland M < R we can use
[Cohen 1993Algorithm 2.7.7] to compute; ; for all £ € R with Tré < M.

4. Brandt matrices and eigenforms

Brandt matrices were classically constructed from a complete set of representative
of left O-ideal classes of an Eichler ordepof B’, a definite quaternion algebra over
Q with Ram(B’) = {00, p}. For such aB’, [Pizer 1980219804 show that terms
appearing in a so-called Brandt matrix series are actually modular form@)ioir
a given weight and levep. In this section we extend these definitions to a totally
definite quaternion algebma defined ovel-. We then give an adelic construction
of the Brandt matrices and show that each eigenvector for the family of modified
Brandt matrices corresponds to a cusp form.

Let 0 be a maximal order irB and{l,, ..., I} a complete (ordered) set of
representatives of distinct leftideal classes. For eaéhet

Or(lx) ={beB:IlbcC I}

denote the right order df; this is another maximal order iB. The inverse ol
is defined by

It ={be B: Ikblk C Iy}

Then, for eactk, the elementd, 1y, ..., I, M1y represent the lefd; (1x)-ideal
classes.
In the notation ofSection 3 let

e =e(lj) =croq),
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which is simply the number of elements of norm 1 in the or@el ;). We define
bi,j(0) = 1/ej and for§ € Rt

1
blj é)= e_jcg’li_lli )

which is 1/e; times the number of elements in the I6ft(1;)-ideal Ij‘lli of norm
gnr(li)4+/nr(lj)+. Now define the-th Brandt matrix forO by

B, 0) = (bi,j ().

The construction oB(&, 0) is well defined up to conjugation by a permutation
matrix. Moreover, if0’ is another maximal order, the matrid@é&, 0) andB(&, 0')
are conjugate by a permutation matrix independergt. dh view of this, we shall
denote byB(&) = B(&, 0) the&-th Brandt matrix, for some fixed maximal order

The following properties of the Brandt matrices are statedPindr 1980pand
proved there for quaternion algebras of@erThe proofs carry over for the Brandt
matrices defined above.

Theorem 4.1. (1) ejbi j (&) = ebj; ().

(2) Z}Ll bi j (&) is independent of.iDenote this value by@). Then &) is the
number of integral lef€ ideals of norme.
(3) The Brandt matrices generate a commutative semisimple ring

Define theH x H matrix A by

1e/e e/es ... er/ey
1 -1 0 ... 0
A—l1 0 -1 ... o0

1 0 0 0 -1
Then foré € R™ or& =0 we have

b 0 ... 0

AB(E)A ™ =
B'(¢)
0

This is proved in Pizer 19808 with the proof carrying over here. The submatrix
B’ (&) will be called thes-th modified Brandt matrix

We now show that each simultaneous eigenvector for the family of modified
Brandt matrices corresponds to a cusp form. ShimiA6§ constructed a rep-
resentation of the Hecke algebra acting on the space of automorphic forms, an
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in [Hijikata et al. 1989 Chapter 5] it is shown that this can be used to provide
another construction of Brandt matrices. We follow the discussion in this latter
source, simplifying it for the case that we are interested in.
Fix a maximal ordef in B. Let G be the multiplicative grouB >, viewed as an
algebraic group ovelr. Every leftO-ideal is of the form0a for someé € G(Af).
Let
WU =UO) ={0=(uy) € G(AF) : Up € @; for all p < 00}.

SinceaUa ! is commensurable with for all @ € G(Ar), we can define the usual
Hecke ringR(U, G(Afg)); see Bhimura 197]L Put

U(AF) ={0=(up) € | r:up € RY forall p < oo},

wherel ¢ is the group of ideles oF. For& € R, denote byT (¢) the element of
R(U, G(Ar)) which is the sum of all double cosetsU such that, € O, for all
p < oo and nka) € EU(AER).

Denote byt = M, (0) the space of continuousvalued functionsf on G(Ag),
satisfying

f(udb)= f(@) foralluea,ae G(Ag), andbe G(F).
We define a representation B{aU, G(Ar)) on.l as follows. For
Uyu € R, G(AF)),

letuyu = [_J; WUy; be its decomposition into disjoint right cosets. Now write

p@LyW) f (@) =Y f(%d)

and extendo to R(U, G(AF)) by linearity. It is shown in Hijikata et al. 1989
p. 31] that this representation is independent of the choice of a maximal order, ir
the sense that, i’ is another maximal order, there is an isomorphism between
RO, G(Ag)) and R, G(Af)) preserving the Hecke operatdrg¢), and also
an isomorphismit,(0) and.M,(0"), such that the representation R, G(Af))
on J»(0) induced by these isomorphisms is equivalent to the original representa-
tion of R(U, G(Ag)) on.lx(0).

If H is the class number @f, we have

H
G(AfF) = Uouka(F).
r=1

Note that thd, = 0%, give a complete set of representatives of (eftleal classes.
Since the elements dfl are determined by their values at thig the map

(1) fl—>(f1,...,fH)
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gives an isomorphism aft with CH = C1 @ --- @ C, where eaclt; is a copy
of C. We can use the isomorphisfh) to give a matrix representation fer. For
£ € R, let

B(&) = (pi.j ()i j=1..H,
where multiplication byp; j(§) : C; — C; is the composition of the injection of
C; into CH, the inverse of maygl), p(uU&U), map (1), and the projection of"
into C;. The following is proved inlfijikata et al. 1989 Proposition 5.1], with the
proof carrying over here.

Proposition 4.2. The definition of B) yields the same matrix as the Brandt ma-
trices defined aboyessuming that we use the same maximal oftland set of
left 0-ideal representatives, |

We shall now make explicit the isomorphism as Hecke modules between the
spaces of Hilbert modular cusp forms atidralued functions on the finite sét
modulo constant functions, which was mentione&atcttion 2 We will follow the
construction of Hida198§, which is also discussed iT@ylor 1989. As before,
we shall be interested only in the weight 2, full level case.

Having fixed isomorphisms betwe&iF,) and GLy(F,) as inSection 2we set

U=Mg= ][] GLaARy.
p<oo

an open subgroup of the finite part of the adelizatiofoDenote byS(U) the
space ofC-valued functions orX, the set of right equivalence classes of Igft
ideals. Via the identification oK as a double coset spacgU) is just the space
M2(0) defined above. The Hecke action 8¢J) is that given inSection 2 Let
inv(U) be the subspace &U) consisting of functions of the fornfi o nr, where
nr is the reduced norm map

nr:G(AL) > 1]

and f is an appropriat€-valued function on ; the finite idéles of~. The map
nr, when restricted to the image 8, surjects into the totally positive elements
of F (this is the Theorem of Norms iv[gnéras 1980p. 80]). Hence we can view
inv(U) as consisting of functions of the form

GAL 5 1L — ar\If/FT =5 CIF(F) — C,

where CI"(F) is the ray class group d¥. Since we are assuming that (F) = 1,
inv(U) is the space of constant functions Bn

The Hecke operators certainly fix itw). Thus, in order to examine the Hecke
action on the space of cusp forms, we must decomf09g into a direct sum of
inv(U) and a spac&(U) preserved by the Hecke algebra.
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We describe the Hecke action on {l). Let T, be thep-th Hecke operator
and f the function which is 1 on all elements of. In Section 2we saw the
decomposition of

( I1 GLZ(Rp))gp( I1 GLZ(Rp)>

p<oo p<o0

into disjoint right cosets. Note, though, that in this decomposition we also obtain
exactly the elements iG(Ag) that yield, upon multiplying to the right af, the
set of integral left0-ideals of normp. ThusT,(f) is the function with constant
value equal to the number of such ideals.

We have seen that the matrixtransforms the Brandt matrices into two blocks
consisting of a Ix 1 cell containingb(¢) and the modified Brandt matrik’(¢).
And in Theorem 4.lwe noted thab(¢) is precisely the number of integral left
O-ideals of normg. Thus we have:

Proposition 4.3.Let{v;} be a basis folC"~ consisting of eigenvectors for all the
modified Brandt matricesThen eachv; corresponds to gnormalized holomor-
phic Hilbert modular eigenfornf; of weight2 and full level whose eigenvalue with
respect to the-th Hecke operator is precisely the eigenvalua;ofvith respect to
B’(7r), wherer is a totally positive generator qf.

To find a basis o1~ of simultaneous eigenvectors for all the modified Brandt
matrices one computes the matrid&s¢), ordered by the trace &f, and succes-
sively decomposes the spaté ! into simultaneous eigenspaces until one is left
with one-dimensional eigenspaces.

It is, of course, desirable to know which of these forms do not arise by base
change. Suppose thBy Q is a cyclic extension with Galois group. ThenG acts
on the set of eigenforms via permutation of the prime& ofAnd one knows that
a form does not arise by base change from an intermediate field if and only if its
Galois orbit has order equal to the degree of the exterfsjdh. Using this one can
then determine precisely which forms arise via base change once one has four
a basis ofC"~1 of simultaneous eigenvectors of tiBé(¢) using the procedure
described above. In the case tfgtQ is solvable there are added complications
to determining which forms don't arise by base change coming from the existence
of Galois fixed Hecke characters that do not descend;Rajp 200}

5. Finding type and ideal class representatives

In order to useProposition 4.30 compute the space of cusp forms we need to be
able to find representatives for the ideal classes of a maximal GrigeB. In this
section we give a strategy to find these representatives.
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We continue withB, the quaternion algebra overramified only at the infinite
places offF, and we take& to be a maximal order ifB. It is easy to manufacture
ideals of0 when they are of a particular form. Lete B\ F. ThenK = F(«) is a
guadratic extension df contained inB. Let | be an ideal in the ring of integers
Sof K. ThenJ =01 is a left ideal of0. Moreover we have 1id) = Nk /e (1),
since 1e 0. Clearly, if | andl’ are in the same ideal classkhthenJ andJ’ are
in the same leff-ideal class.

We will now see that to find representatives of Iéfideal classes it suffices to
consider ideals of the foril as in the construction above.

Proposition 5.1. Every left0-ideal class of a maximal orde¥ contains an ideal
of the formO1, where | is an ideal in a field extension & F (b) contained inB.

Proof. The leftO-ideal classes are in bijection with
X = Mg\G(Af)/G(F),

as stated irBection 2 Since this is a finite set, there is a finite set of prirBesich
that G(Af) = Mg B G(F), whereBs =[5 Bj. Now

is(B) ::{(b,...,b)e Bsibe B}

is dense irBs; hence s(B*) is dense irBg. SinceMg is open inG(A;) we have
by strong approximatioG(AL) = Mgis(B*)G(F). Thus eveng e G(A,';) is of
the formB = uis(b)by for someu € Mg andb, by € B*. Under the local-global
correspondence, then, the Iéftideal 03 is in the same class & s(b), where
is(b) can be viewed as a fractional ideal fi(b). O

We now outline the algorithm for finding representatives for@eftleal classes.

1. Determine the class numbegt. (This can be done; sePiger 1973 We will
make this explicit in the case of a quadratic fieldSiection 6below.)

2. Initialize the list of representatives of leftideal classes th = {0}.

3. Find an elemen& € B such that the ring of integers &f = F[«] is exactly
Rle«].

4. Determineh = h(K) and S = {l1... Iy}, ideal representatives for the class

roup ofK,
group OR

Generate a large liss = {l;} of prime ideals oK.
5. Now, for | € S, do:

(a) Find a basis foJ; = 01l;.
(b) Determine ifJ; is in the same class as any of the ideals inbtained so
far. If not, addJ to L, and keep a note af and|;.
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6. Stop if H representatives have been found; otherwise resume from Step 3.

We would like to know how to determine if two leftideals belong to different
ideal classes, which is stéffb) of the algorithm. InSection 3we saw that the
®-series gives a necessary test for two ideals to be in the same class. We now gi\
a necessary and sufficient condition for two ideals to be in the same class.

Proposition 5.2. Let | and J be left0-ideals for an Eichler orde©. Then |
and J belong to the same left ideal class if and only if there izanM = J|
(whereJ denotes the conjugate ideal of such thanr(a) = nr(1) nr(J), i.e., with
Nm () = 1.

This is proved in Pizer 19804 with the proof valid for any quaternion algebra
over a number field. To use this proposition we will need to construct a basis for
M, then compute the normalized nor¥iy as inSection 3

6. Computing T and H

We now specialize to the case of a real quadratic field Q(,/m) of narrow class
number one. As is well known, this condition implies that eithe= 2 or m is
prime and congruent to 1 mod 4. In this section we give an explicit formula for
the type number oB and the class number of a maximal or@ein B. The most
important tool will be the main theorem ifPjzer 1973, which we restate here:

Theorem 6.1(Pizer).Let F be a totally real number field of degree n o@rand

let R be its ring of integersLet B be a positive definite quaternion algebra over
F. Let g be the product of the finite primes in F that ramifyBrand o a finite
product of distinct finite primes of F such th@h, g2) = 1. Then the type number
Tquq, Of Eichler orders of level gy in B is

1 h(%a)
(2) quqz=m< +5 Z Eqq.(Fa) o )>

where
e e is the number of primes dividing@p;
e M is Eichler's massgiven by

2h(F)¢k (2) disa(F)*/?

M= (27.[)2n

[TN®-D [N+,

plo pld2

where¢g is the zeta function of F
e h(%,) is the ideal class number of locally princip#l-fractional ideals
e w(¥,) is the index of the group of units of R in the group of unitin
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* Eqe(@) =Tyjq, (1~ { }>HPIQ2(1+{?})

e C is the collection of all orders defined by the following procedure

1. Lete, ..., e be a compete set of representatives aidd U2, where U
are the units of R
2. letd, ..., dk be a complete set of integral ideal representatives of

E. Fr(F)2 mod (Pr(F)>?),

where E is the subgroup 6f(F) (the divisor group of Ff generated by all
thep which divide qqp, and Pr(F) is the subgroup of principal divisors
of Fr(F).

3. Letny, ..., n: be asetof all elements of R such that

(@) (nj) =dj for some jwith1 < j" <k, and
(b) (ni) # (nj) fori # j.

4. Consider the collection of all polynomials over R of the form
fo:(X)=x2—tx+ne, withl<p<sandl<pu<t,
where

(@) f, , - isirreducible over F

(b) Fx1/f.. (X) cannot be embedded inanyFi=1,...,n
(c) p* | forall p < oo, where § = [Fvp(n,)] (floor functior), and
(d) if vp(n,) is odd therp® 1| z.

5. Let a be a root of some, f, . and for each f , . choose only one root
Then C= {¥, : ¥4 is an order of Ha)} such that

(a) R[a] c %3, and
(b) if p < cothenar, * € Fap, where § = [Lv,(N(@)].

We now use this theorem of Pizer to derive a more explicit formula for the
algebraB over any real quadratic field of narrow class number one.

Theorem 6.2.Let m=1 mod 4be a positive squarefree number greater tthaset

F =Q(4/m) and let R be the ring of integers in.Assume that F has narrow class
number onelLet B be the totally definite quaternion algebra which is unramified
at all the finite primes of FThen the type number T &fis given by

T= 4;m ( )u + 2h(Q(/=m)) + £h(Q(v/—3m)).
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For completeness we note thahif=5 the type number oB is 1; see ocrates
1993 Theorem 5.2].

Proof of Theorem 6.2We proceed to determine the quantitie§ meorem 6.1We
haveh(F) = 1. SinceB is unramified at all finite primesj; = 1 and for maximal
ordersge = 1. Thuse = 0 and the two products in the definition of Eichler's mass
M are both empty. Sincen = 1 mod 4 we have disE = m and

B 2§F (2)m3/2 B m3/2
- @m*  8r4

We shall further simplifyM by explicitly calculatingZg(2). Our method will
be that of Leopoldt 1958 which uses generalized Bernoulli numbers; see also
[Neukirch 1999 Chapter VII]. Define then-th Bernoulli numberBy, by

tet tn
ed—1 2 Bt

n>0

CF(2).

For a charactegy mod f, defineB, , by

f
teut tn
D W =2 By
u=1

n>0

For F = Q(4/m), with m > 0, define
Bn,F == l—[ Bn,x,
X

where the product runs over the characters mhed|discF| = m that correspond
to characters of GaF/Q). Hence this product involves only the trivial character
and x the Legendre symbol maah. ThusBy r = ByBy ,. In [Leopoldt 1958 it

is shown that

(2m)2"/d By £

if nis a positive even integer. Thid = ;5B ,, sinceB, = ¢. Now

1. /u 2
2= 2 ()
-

¢e(n) =

and hence

M= g 2 (3)

u=1
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Now we proceed with the rest of the algorithm. The product defining

Eq1q2 (ya) = El(y)a)

is also empty regardless 8%, soE1(¥,) = 1. Equation(2) then becomes

1 h(%a)
T=M+2>" .
szaec w(¥a)

We now follow the algorithm to find the collectid®.

1. SinceU = (—1)(u), whereu is a fundamental unit of andU? = (u?), we get
s=4, and a set of representatives BhrmodU? is given by{+1, +u}.

2. Sinceqiqy = 1 and F(F) = Pr(F), we havek = 1, E = (1) and{(1)} is a
complete set of representatives #®1Fr(F)2 mod P(F)2.

3. From step 2, we can take=1 andn =n; = 1.

4. We shall call the polynomials obtained in this steptributing polynomialsand
denote this set by. Sinceu = 1=t andn=n; =1 we shall use the abbreviation

f,.00=x>—1tx+e,.

Sincev,(n) = 0 for anyv,,, we haves, = 0 for every finitep, so condition4(c) is
always satisfied by any. Condition4(d) is vacuous. Now we look at condition
4(b). SinceF is totally real this condition requires that the discriminant

A(f, ) =1%—14e,

of f, . be totally negative. But for any, A(f_1.) and A(f_,.) are always
positive, sinceu > 0. Hence we need only considér, and f, .. But Ng,g(u) =

—1 tells us thato (u) < 0, whereo is the nontrivial element of GAF/Q). So
o (1) — 4o (u) > 0 for anyz. Thus onlye, = 1 remains. We further abbreviate

f.(x)=x>—tx+1.

Our problem is therefore to find atl=a+bd € R, whered = %(1+ »/m), such
thatt2—4 < 0 ando (1)2—4 < 0, i.e., such that

—2<a+bd,at+b—-bo <2

Thus we see that we necessarily neetk (20 —1)b < 4, which is—4 < /mb< 4.
Hence ifm > 16 thenb = 0 is the only possible value. In this case=a=0, +1.
Note that these three values yield a contributing On the other hand, ih < 16
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the only possible value fan is 13 and in this case we must hdve- 0 or +1. But
for b =1 we must have

—5+13 3—-4/13
— < a<
2 2
and there are no such integexsOn the other hand th = —1 then we must have
-3+ V13 5-413
—<a<
2 2
and again there are no such integers. Clearly condit{al irreducibility, is sat-

isfied by all thef, above since the roots are imaginary. We summarize step 4 in
the following result:

Lemma 6.3. Assume the hypothesesTiheorem 6.2 The only contributing poly-
nomials in¥ are f, withz =0, +1.

The roots of these polynomials and the fields they generate@ugm) are shown
below.

T Rootsa,, a, of f, F(@,)

0 ta 3 Q(V/m, ¢a)

1 t6. 88 Q(/m, )
-1 8. 58 Q(v/M, ¢6)

5. We proceed to the last step of the algorithm: finding the ord#grCondition
5(a) says thatR[a,] must be contained iff,. However, we find thaR[a,] is the
maximal order ofF (a,).

Lemma 6.4.Let m be as imheorem 6.2R the ring of integers a®(,/m) and u a
fundamental unitin R

(1) The ring of integers of(/m, ¢4) is R[¢4] and R¢a]™ = (¢4){u).
(2) The ring of integers ofd(,/m, ¢6) is R(¢s] and R¢e]™ = (6)(U).

Proof. (a) Let S denote the ring of integers iIK = Q(\/m, ¢4). Then by Marcus
1977 Ex. 42, p. 51] we hav& = R[¢4]. Now leta = w1 + w24 € S. We compute

Nk a(@) = NE/g(@1)? + (@0 02)? + (0103)? + NE/g(w2)?

whereo is the nontrivial element of GéF/Q). We deduce that is a unit if and
only if eitherw; = 0 andNg/q(w2) = +1 or wp = 0 andNg/g(w1) = £1. The
result now follows.
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(b) Let S denote the ring of integers ik = Q(,/m, ). Then by Marcus 1977
Ex. 42, p. 51] we havé& = R[], since 3m asQ(,/m) has narrow class number
one. Lete =a+ b +cig+dog € S, whered = %(1+ »/m). We compute

16Nk /g(@) = N/g(w1)? + 3((0103)? + (0 w2)?) 4+ 9INF/q(w2)?,

wherew; = 2a+ c+ (2b+ d)0, wp, = ¢+ df ando is the nontrivial element
of Gal(F/Q). Assume thatr € S*. Then we haveNg,g(w2) = 0 or £1. If
NF/a(w2) = 0 thena € R*. Now assume thaNg,q(w2) = £1. In this case
we must haveNg,g(w1) = £1 sinceNg,g(w1) = Nr/o(w2) mod 2 rules out the
possibility thatNg,g(w1) = +£2. So we can writev; = +u" andw, = +u°. Now
a is a unit if and only if

16 =1+ 3((109)* + (@] w2)?) +9,
that is, if and only if 2= u?"~=S + u=20—=9_ This is true if and only if =s. We
deduce that iNg,g(w2) = £1, thena is a unit inSif and only if
w1 — W2
T2
with k € {1, 2, 4, 5}. The result follows. O

Lemma 6.5.The set of orders C consists of the rings of integed§ the extensions
F(a;) where a is a chosen root of a contributing polynomial ds determined by
Lemma 6.3

+ wole =U" §é<

Proof. Only condition5(b) needs to be verified. Our computations show that all of
the rootsa, of f; are roots of unity andNga,),F(a;) = 1. Thuss, = O for every
p anda, € ¥,,  is always satisfied. O

Hence, equatiof2) becomes

1 h
T=M+7 > %.
Pa €C w(¥a,)
We now study the contributions from the biquadratic fieldis/m, /—1) and
Q(/m, v/—3) to this sum. For this we need the following result of Hask&5[].

Proposition 6.6. Let m;, m, be negative squarefree integers and sgt=am;my.
For each i we set == Q(,/m;), w; the number of roots of unity in; Fh; the order
of the class group ofiFLet K = Q(,/my, ,/mMy), h the order of the class group of
K, w the number of roots of unity in K and u the fundamental unit irLKt uy be
the fundamental unit of /= Then

w logug

h= .
o1 2Iog|u|

wiw?
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From this proposition we get:

(1) ForQ(y/m, v/=1): Letmy = —1,mp = —m, mg = m, K = Q(v/—1, /—m).

Hencehp =1, by hypothesis. Itis well known that the class group ord€aj/—1)

is 1, and the only roots of unity are powers«ifTI, i.e.,h; =1, wys =4. Also, the
only roots of unity inQ(y/—m), with m # 1, 3, are£1, sow, = 2. Thenw = 4

andug = u. Thus we obtairh = h(,/=m).

(2) ForQ(y/m, +/=3): Letmy =—3, my=—3m, my=9m, K =Q(v/—3, v/—3m).
Similarly, it is know that the class group order@t/—3) is 1, and the only roots
of unity are powers otg, i.e.,h; = 1, w1 = 6. Then,w = 6 andug = u. Again
Wy =2 and we obtaimh = 2h(v/=3m).

Next, [¥* : U] = 2 and 3, respectively, foR(/m, v—1) andQ(/m, v/—3).
We can now f|n|sh provingheorem 6.2 The fieldQ(,/m, +/—3) contributes twice
in the sum (forr = 1, —1), so equatiorf2) becomes

oy J(HOWTYD) OO 9))
2 2 3

=M + h(Q(/—m)) + h(Q(/-3m))

and this completes the proof @heorem 6.2 O

We can also determinie. Following the proof ofTheorem 6.1given in [Pizer
1973, we see that

1 h(¥3)
3) Ty = m("'qqur Z Eqg,(Fa) (H,a))

< ECZ

whereC, =C —C; andCy = {5, € C | (N(a)) = (1)}. That is,a is a root of
fu,0,c(X) with (n,) = (1). From this we have:

Proposition 6.7.Let m be a positive squarefree integer= Q(,/m), with h(F) =

1, and B the unique quaternion algebra witRam(B) = {oc01, 002}. Then H=T.
Consequentlyif 14, ..., Iy is a complete set of representatives of distinct@eft
ideal classes for a fixed maximal ordér then the corresponding right orders
Or (11, ...,0,(In) form a complete set of distinct representatives of maximal or-
ders of different types

Proof. We haveh(F) =1,0;1 =g, =1, 2 =1 andn, = n; = 1 in the algorithm
to find C. ThusC, = @. Substitute these i(B) to get the result. O
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7. The algebraB and a maximal order O

In this section we obtain defining relations fBr, the positive definite quaternion
algebra ovelF = Q(,/m) that is ramified precisely at the infinite placesFafWe
also find a basis oveR for a maximal ordef in B whenm =5 mod 8.

Definition 7.1. Over a fieldK of characteristic not equal to two, Iéa, b) for
a, b e K* denote the quaternion algebra o¥ewmith basis{1, i, j, k} and relations
k=ij,i?=a, j2=bandij = —ji.

Proposition 7.2. Let m=£ 1 mod 8be a positive squarefree integefhenB =
(—1, —1) is the unique quaternion algebra defined o@f,/m) that is ramified
precisely at the infinite places @f(,/m).

Proof. It is clear thatB = (—1, —1) is positive definite. We shall show that at
every finite primep of F the algebraB, = B ®f F, is the matrix algebra. LeB’
be the quaternion algebra ov@rgiven by B’ = (-1, —1). ThenB = B’ ®q F.
As is well known, RamB’) = {2, co}. HenceB is split at every prime of F not
lying above 2. Sincen # 1 mod 8 there is only one prime s above 2. But now
Ram(B) has even cardinality and contains the two infinite placeB ahd hence
B must be unramified at the prime &fabove 2. g

In the case thaF = Q(,/m) has narrow class number 1 anmd= 1 mod 8 one
can takeB’ to be the quaternion algebra ov@rramified precisely afm, co}. By
[Pizer 1980aProposition 5.1], one haB’ = (—m, —q) whereq is a prime with
q=3 mod 4 and ¢) = —1. The same argument as above showsEhatB'®q F.
We now give a maximal ordet in B whenm =5 mod 8.

Proposition 7.3. Let m= 5 mod 8be a positive squarefree integetet F =
Q(/m) with ring of integers R=Z[0], whered = 3(1+ /m). Let B = (-1, —1).
ThenO = R[81, 82, j, k] is @ maximal order irB, wheres; = %(1+i +j+k)and
$2= 13 +0j + (1 +6)k).

Proof. It is clear that0 is a full lattice inB. It is simple, but tedious, to check that
0 is a ring and that every element Ofis integral. Finally one can check that
is maximal by computing its discriminant. For all the details stecfates 1993
Theorem 4.2]. O

8. Cusp form calculations

We now compute the space of cusp forms for the fiEle= Q(+/509. From
Theorem 6.2and Proposition 6.4ve compute that the class number ris 24.
We will give representatives for each of the 24 ideal classes, which will then enable
us to compute the necessary Brandt matrices using the algorithmSeation 3
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In the algorithm ofSection 5 we first find suitablex. Thew« that eventually led
us to distinct ideal classes war¢ogether with

o1 =245 +3(1+6)j+(1—20)k=081+98, —40] — (4+560)k
(nr(ey) =90, ki =-359 h(Q(v/-359) =19
and
op =35+ (4—30)i +2j + 3(T+0)k=81+ (7T—0)62+ (65— 30) j + (63— 20)k
(nr(e) =96, ko=-383 h(Q(v/-383)=17).

Let K = F(aj). Note thatR[/ki | has index 2 in the ring of integers &f. We
setaj = 2 — 1, which satisfiesx? — k; = 0. SinceF has class number one, we
will be interested only in prime ideals d¢F that split inK. If x> — k; splits into
two distinct factorsx — 81)(X — B2) modulo the prime idegh = (a+ b)) of F,
then as an ideal i

p=(a+bd, o —p1) (@+bo, o —B2)

and it suffices to consider only one of the idehlen the right, as they belong to
the sameK -ideal class. Moreover we have(fit ) = (a + bf).

Since the class number 6fis rather large, we first used th@-series of0Ol
for various prime ideal$ in the extension& = F(«j) above. We computed the
®-series of these ideals up to 3@6. Using this method we found 23 of the 24
ideal classes. These ideals, together with the initial coefficients of @hegries,
are listed in the tables below.

After a lengthy search that did not yield another ideal with a distiwderies,
we switched to using the necessary and sufficient conditio®&@bosition 5.2
Let | be anideal irS, the ring of integers in somE («;). Assume that the initial
coefficients of the®-series of0l are the same as those of one of the left ideals
above, sayls. Construct a basis fdr' = 1 ~1Js and construct

Niv () = W1(X) + W2(X) 0,

with ¥, in Hermite normal form.Proposition 5.2hen says thabl is actually in
adifferentclass asls if and only if a; 1, the leading term ofV, is greater than 1.
(Note that 1+ bé is totally positive if and only ib = 0). Using this condition, we
quickly determined that we could takla, = 0154 with

lo4 = (46—!—50, 334—-10i —(1+0) ] +(—2+0)k)

a prime ideal inF («1) dividing 829.
Now that we have concrete representatives of left ideal classes, we are able t
construct explicitly the first few Brandt matricdx¢) and the modified Brandt
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matricesB’(¢) using the algorithm@ohen 1993 Algorithm 2.7.7] mentioned at

the end ofSection 3 This involves computing the-series of the 300 ideal ™ J;,

r > s, due to the symmetry properties itheorem 4.1 We also computed the
characteristic polynomials of th’(¢) and factored them ovén. We found that

the characteristic polynomial &'(19+ 6) has three distinct rational roots and an
irreducible factor of degree 20. Hence, althougft has a basis of eigenvectors
for all the B'(§), only three eigenvectors have eigenvalues that are all rational. The
three rational eigenvectors are

V1 = (Oa Oa 07 Oa 19 0’ _27 _15 17 17 09 _25 07 O, _37 17 09 0’ Oa _17 27 07 2),
v2=(0,0,0,0,-1,0,2,1,-1,1,0,2,0,0,-2,-1,0,0,0,1, —2,0, 3),

v3 = (45,45, 25, 60, 23, 40, 34, 27, 18, 28, 30, 19, 35, 20, 31, 28, 20,
15, 25,37,51 40, 31).

We let f1, f, and f 3 denote the forms corresponding to the vectarsv,; andvs

by Proposition 4.3 The initial Fourier coefficients of these forms are tabulated in
Table 3 From this table we note thdt; = 9, whereo is the nontrivial element
of Gal(F/@), while f3= f§ and hencef ; is the base change of a classical form.
That none of these forms are CM forms follows from the following proposition.

Proposition 8.1.Let f be a Hilbert eigenform of full level for a totally real number
field F of narrow class number on&hen f is not a CM form

Proof. Recall thatf is a CM form if and only if there exists a quadratic character
¢ corresponding to an imaginary quadratic extendotF such thatf = f @ ¢.

So suppose we have = f ® ¢ for such a character. Let 7 denote the cuspidal
representation of Gi(Ar) corresponding tar. Then we haver = 7 ® (¢ o dep.

By a theorem of Labesse and Langlan@i819 we have an equality oE-series
L(m, s)=L(x, s) for some grossencharakteiof K, and it is known that cond =

Nk /e (condy) disqK/F). Sincer is assumed to be unramified it follows that
K/F is an unramified extension. But this is impossible sikckas narrow class
number one. O

9. The elliptic curves

In this section we give equations for the elliptic curves that we will show are at-
tached to the formg 4, f, and f 5 of the previous section.
Let E3 be the elliptic curve given by the Weierstrass equation

Y2+ (14 0)xy+ (L+0)y
= x3 + (—4051846+ 34398%))x + 43125341806- 366073300.
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This curve is found inCremona 199Pand is aQ-curve (that is, it is isogenous
to its Galois conjugate). LdE; denote the elliptic curve given by the Weierstrass
eqguation

y2 — Xy — 0y = X3+ (24 20)x% + (162+ 30)x + 71+ 349.

This elliptic curve is in a table found ifPjnch 1982, among other curves that have
good reduction everywhere over certain quadratic fields. We show belovigthat
is not F-isogenous to its Galois conjugate. This is also noted (without proof) in
[Cremona 199R We takeE> to be the curvee{, whereo is the nontrivial element

of Gal(F/Q).

Proposition 9.1.The elliptic curve E is not isogenous over F to its Galois conju-
gate

li K a +bio Yi lilpe”
I F 1

l,  Fay) 61 234460 — 10 — (1+6)j + (—2+0)k 61
ls  F(ay) 45446 81— 10 — (1+0)j +(—2+0)k 173
. Fla) 149 45-10 — (14+0)j +(—2+6)k 149
ls  F(ay) 53450 34-10 — (14+0)j +(—2+6)k 101
ls  Flay) 79 610 — (1+6)] + (—2+0)k 79
I, Flay) 53 224446 — 10 — (1+6)j + (=2 +6)k 53
ls  Flap) 23420 324 (=84 0)i —4j — (T+0)k 67
le Fly) 946 14—10 — (14 0)] + (—2+0)k 37
lo F(ay) 1046 7—10 — (14+6)j + (=24 6)k 17
ln Flay) 1844176 22-10 — (14+6)j +(—2+6)k 281
l, Flay) 1074100 33-10 — (14+6)j +(—2+6)k 181
ls  Fa) 47 — 184360 + (—8+6)i —4] — (T+6)k 47
lu  Flay) 31 —1420-10 — (140)j +(—2+0)k 31
ls Fay) 32430 3-10 — (1+6)j + (=24 6)k 23
le  Flan) 131 54-10 — (1+6)] +(—2+60)k 131
ly  Flay) 59 144280 —10 — (1+6)] + (—2+6)k 59
ls  Fla) 61 —26+520 + (—8+6)i —4] — (T+6)k 61
lig  F() 31+ 36 34+ 89
lo Flay) 75476 15— 10 — (14 0)] + (—2+0)k 73
ly  Flay) 13 3460 —10 — (140)] +(—2+0)k 13
oo F(op) 157 —6+4+120 —10 — (1+60)j + (—2+06)k 157

Table 1. Prime ideald; = (g + b;0, y;), where thell; have dis-
tinct ®-series.
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Proof. If E; andEJ are isogenous, the local factors of theseries ofE; and E7
will be the same for all primes df. Letp = (5, 1+ 260) denote one of the prime
ideals of F above 5. We have an isomorphism Rfp with Z/5 that map® to

1 2 3 4 5 6 7 8 9 10 11 #p12-0 12
N} 24 24 96 24 144 96 192 24 312 144 288 0 O D6
N7, 0 24 0 24 0 9% 0 24 0 144 0 O 0 96
J3 0O 0 24 0 0 24 0O 0 9% 0 O O 0 24
Ja, J5 O 0O 0 24 0 O 0 24 0 O O O O 9
J, 7, Jg 0O 0O O O 24 0 O O O 24 O 0 0 4@
Jo O 0 O O 0 24 0O O O 0 24 0 0 24
Jio 0O 0 O O 0 24 0 O O O O o0 o0 48
Ji1 O 0 O O O 0 24 0 O 24 0 0 0 24
Ji2 0O 0 0O O O 0 24 0 0 24 0 0 0
Jiz3Jw O O O O O O 24 0O O O 48 0 0 4@
Jis O 0 O O O O 0 24 24 O 0 O O 44
Jie 0O 0 O O O O 0 24 0 24 24 0 0 24
Ji7 0O 0 O O O O O 24 0 24 48 0 0 (
Jis 0O 0 O O O O O 24 0 48 0 0 0 g
Jig 0O 0 0O O O O O 48 O O O 0 o0 @
Joo 0O 0 O O O O O 0 24 48 48 0 0 (
Jo1 0O 0 O O O O O O 48 24 0 O 0 24
Jo2 0O 0 O O O O O O 48 0 48 o0 0
o3 0O 0 O O O O O O 0 48 48 24 24 48
1246 13- 13 136 14-6 14 14+6 15-6 15 1540
Ja, J5 0 0 0 0 0 0 0 0 0 0
J6 0 0 24 0 0 0 0 0 96 0
Ny 0 0 0 0 0 24 0 0 144 24
Js 0 0 0 0 0 48 0 0 96 0
Ji3 0 0 48 0 0 24 48 48 0 0
Jia 0 0 24 24 24 48 0 0 24 24
16—6 16 16+6 176 17 146 18-6 18 18+6
NI 0 24 0 0 48 0 0 24 24
Js 0 48 0 0 0 0 0 0 0

Table 2. Beginning coefficients; j; of the ®-series 0fJ; to Joa.
More are given for ideals whose early coefficients agree.
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3

& 3 7 146 12—6 1246 13—6 13 14+6 15-6 1546 16-6
Elp 3 7 5 5 29 13 83 83 113 113
vv -4 -6 3 -2 10 1 14 9 11 6
v, -4 -6 -2 3 0 1 9 14 6 11
v3 1 9 -2 =2 -5 26 14 14 11 11

Table 3. Eigenvalues for simultaneous rational eigenvectorsfe¥).

2 mod 5. Then the equation for the reduced cu%yeaverZ/S has affine equation
Ei:y?+4xy+3y =x3+x°+3x+4.

and we compute thaﬁl(R/p) has order 8. Similarly, the reduction of the curve

Ef has equation

EY -y +4xy+y=x3+4x +2.

and we compute théif(R/p) has order 3. Thereforg; is not isogenous t&; .
O

Finally we check that our curves;, E; andE3 do not possess potential complex
multiplication. We first remark that* (F) = 1. Our conclusion about these curves

now follows from:

Proposition 9.2.Let K be a totally real number field of narrow class number.one
Let E/K be an elliptic curve that has good reduction everywhéfaen E does
not possess potential complex multiplication

Proof. SupposeE (C) has CM defined over the field(,/n), wheren < 0. Consider
the fieldL = K (4/n). ThenE and its complex multiplications are defined over
Consider the-adic representation given by the action of Galois on¢tlaglic Tate

module ofE/L

o¢: Gal(@/L) — GL2(Qy).

We construct another representation

a[[p] . Gal(@/L) — GL2(Qy),
— ou(pTp™Y),

wherep € Gal(@/K) is nontrivial when restricted tb. Now, sinceE is actually

defined ovelK , thiso, extends to a representatiép of Gal(@/K). However,

Ge(ptp™Y) =G0 (p)Ge ()60 (0) 1 = Ge(p)oe(T)Ge(p) 2,

and hence”' = o;.
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SinceE has CM overl, the representatiosy is abelian, sa, = x, ® x, for
some characterg, x, of H. It can easily be seen from such a decomposition that,

in the obvious notation,

/
%[p] — Xﬁ[p] ® Xz[p]

as well. Now,x, corresponds to a weight 1 gréssencharaitef L, andy, = X}”]

if and only if 7 (2) = ¥(2) forall ze L%, = C*. Buty(2) =zt andy (2) = 271,
hencey (z) # ¥(2), sox¢ # x”. Thusx, = x”, and soo; = x, @ x/*', hence

oy = Indﬁ (x¢). Since the degree of; is 1, we get the formula
conds, = Nt /k (condy,) disa(L /K)

for the conductor of,; see Martinet 1977. Recall thatE has good reduction
everywhere, so every;, is unramified at all the primes &€ not dividing£. Since
oy is ramified at all the primes which divide co@d), we see that digt. /K) must
be the unitideal. Thuk is an unramified finite abelian extensionkf But since
h*(K) = 1 this implies thak = L which is impossible sinca < 0. a

10. Matching the elliptic curves to the cusp forms

Continuing with the notation of the previous section we heve Q(+/509), R the
ring of integers inF andé = 3(1+ +/509.

We begin by showing that the cun& is attached to the fornfiz. The curveEs
is equal to the curvéY’ that arises from Shimura’s constructiat®f1 7.7]. This
curve is constructed from a pair of eigenforfrfg, f2} in S (I"p(509), x) wherey
is the quadratic character ¢ /5097)*. These forms are constructed @rgmona
1997. Furthermore we know that

L(Eg, S) = L(fl, S)L(fz, S).

The base change df to GL»(F) will be a form with rational coefficients of full
level, trivial character and weight 2. Hence we see thais the base change of
the form f; and we have

L(E3, s)=L(f3,9).
Let E; be as inSection 9 SinceE; has good reduction everywhere, the 2-adic
representation on the Tate modules,
01: Gal(F/F) — GL2(@y),

is unramified outside the prime ideaRdf F. For each prime ideal of F outside
2R we have

Troy(Fry) = a(Eq)y,
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where Ff denotes a Frobenius elementpaanda(E;), denotes the-th Fourier
coefficient ofE;. Moreover dets1(Fry) = Np.

Let f1 denote the unramified cusp form givenS$ection 8above. By Taylor
1989 and [Blasius and Rogawski 199there exists a 2-dimensional representation

oo : Gal(F/F) — GL2(Qy)

unramified outside the prime ideaRDf F and such that for each prime idgabf
F outside R we have

Troa(Frp) =a(fy),

where again Ry denotes a Frobenius elementpatinda( f1), denotes the-th
Fourier coefficient off ;. Moreover we have deb(Fr,) = Np.

To prove thak is attached to the fornfi; we must show that the representations
o1 ando? are equivalent. For this we will use the following result of Faltings and
Serre as stated and proved krivjné 1987.

Theorem 10.1.Let K be a global fieldS a finite set of primes of kand E a finite
extension of),. Denote the maximal ideal in the ring of integers of Eptand the
compositum of all quadratic extensions of K unramified outside SdysKppose

p1. p2 : Gal(K/K) — GL2(E)
are continuous representatignsramified outside Sand furthermore satisfying

1. Tr p1 = Tr p = 0 modp anddetp; = detp, modp.

2. There exists a set T of primes of #isjoint from S for which

e the image of the séFr; :t € T} in theZ/27-vector spac&al(Ks/K) is
noncubic
e Trp1(Fry) = Tr po(Fry) anddetp1(Fr;) = detpo(Fry) forallt e T.

Thenp1 and p, have isomorphic semi-simplificatians

A subsetS of theZ /27-vector space G&Ks/K) is said to be noncubic if every
homogeneous polynomial of degree three that vanisheS aanishes on all of
Gal(Ks/K). In particular GalKs/K) is itself noncubic and we will apply this
theorem withT chosen such that the image ¢, : t € T} in Gal(Ks/K) is the
whole space.

As we can see frormiable 3 we cannot apply this result immediately since the
traces of Frobenius are not all even. Therefore for eéaeh leto; denote the mod
2 representations obtained framand letL; denote the extension &f cut out by
oi. We begin by showing that we can identify these two extensions.
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Matching L; and L,. We know thatL; = F(E1[2]). Hencel is the splitting
field of the polynomial

g(x) = 4x3 + (94 80)x? + (648+ 140)x + 411+ 1379

and is anSs-extension ofF unramified outside of R. Moreover the quadratic
extension ofF contained inL is F(4/u), whereu = 442+ 416 is a fundamental
unit of F.

We now considet». We know thatlL, is an extension of that is unramified
outside of R. Moreover since some of the f1),’s are odd we know thalt » is
either a normal cubic extension Bfor else is ar; extension. By the next lemma
we deduce thalt,/F must be ars extension.

Lemma 10.2. There are no normal cubic extensions of F unramified outside of
2R.

Proof. Suppose thak /F is such an extension. LétL /F) denote the conductor
of F. By [Cohen 2000Corollary 3.5.12] we deduce thiiL /F) divides ZR. But
now using Pari Cohen et al. 2004we compute that the ray class group for the
modulus Roo1002, Whereoo; denote the infinite places &, is trivial. Therefore
no such extensioh of F exists. O

Let F; be the unique quadratic extension Bfcontained inL,. We letu =
442 + 419 be the fundamental unit df. SinceF; is unramified outside 2 we
know thatF; must be one of the fields

F(vV=1), F(Vu), F(+2), F(V/=u), F(~¥=2), F(¥/2u) or F(v/=2u).

Let p be a prime ofF and let'3 be a prime ofF; abovep. We note that ifa( f1),

is odd thenf (3/p) = 1. We use this criterion to eliminate all the above quadratic
extension ofF except forF(,/u). Takingp = (11+ 0)R eliminates the fields
F(v2), F(v/=2), F(+~/2u) andF (v/—2u). While takingp = (15—6) R eliminates
the fieldsF (v/—1) and F (v/—u). Therefore we havé; = F (,/u).

Lemma 10.3.There is a unique normal cubic extension gfvhich is unramified
outside o2Ry, where R denotes the ring of integers im F

Proof. We note that R, = p?, wherep is the unique prime oF, above 2. Suppose
that L /F, is such an extension. Lé{L/F1) denote the conductor df/F;. By
[Cohen 2000Corollary 3.5.12] we deduce thgil /F;) dividesp. Using Pari we
compute that the order of the ray class group for the modubugoo,, whereoo;
denote the real places 6, is three, from which we deduce thiatis unique. O

Since bothL; andL; containF (,/u), we deduce thalt; = L.
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Application of Faltings and SerreLet K denote a fixed cubic extension &f
contained inL = L3 = L,. We now applyTheorem 10.10 the representations
o1lk andoz|k. We note that these representations satisfy the conditions of the
theorem.

Now K = F(a), wherea satisfies the equation

Ya(X) = 4x3 + (9+ 80)X? + (648+ 1460)x + 411+ 1376
over F. Using#? — 9 — 127= 0 we find thaix satisfies the equation
M(x) = 64x° 4+ 416x° — 10940* — 305523 + 5504762 4 560056 — 8633740
overQ. In fact we can writek = Q(8), wherep satisfies the equation
x® — 25x* — 46x3 + 29x% 4 66x + 20.

Using Pari we find thaK has class number one afi§ = {+1} x 7* with funda-
mental units given by

= Lp54 3t Bp3_2p2 298
Ui = 3,8°+ 8% — 2aB° - - SB - 15
7 g5_13g4_ 31g3 | 1942
Uz = 1028° — 518 __4ﬁ + 5P+ 102/3"'51’
4_T1g3_ 3lg2 199
U3:5_:3 :8 ,3 IB :B+ B1
— 1

/35 54 875,33 3745[32+ 4693}3 4 5047 5047

Now the ideal Rk factors asplpg. A generator folp, is given by
_ 5ilﬁ5+511’34_411_§,33 277/82 205,B+ 304
and a generator far; is given by

16,5 23 L7gs_ 20242 | 6675 | 349
ap=p— 5B - HB - B+ B+

Let Ks denote the compositum of all quadratic extensionK athich are unram-
ified outside ofS= {p1, p2}. ThenKs is the compositum of the fields

K (v/=1), K(J/Up), K (y/U2), K(+/U3), K (/Ua), K (v/a1) andK (/3z).
Using Pari we can find a s@t of primes inK such that
Gal(Ks/K) = {Fry € Gal(Ks/K) : P e T}

where Fiz denotes the Frobenius element in (ad/K) at‘p. Let To denote the
primes of F generated by the elements Bfin the left hand column of Tablé.
Then we can tak& to be the set of primes iK above those ify.
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§=a+bd p ap | §=a+bd p ap) |§=a+bd p ap)
3 inet -4 | 544506 11 3 | 9246 8429 100

7 inert _6 | 59-50 11 -2 | 93-6 8429 —110
1140 5 3 | 55+40 1213 —46 | 95+20 8707 -28
120 5 _o, | 59-46 1213 34 | 97-20 8707 182
1240 29 o | 56450 241 2 | 95+60 5023 76
13-4 59 10 | 61-50 241 -8 | 101-66 5023 86
57+59 359 -6 | 95480 1657 28

el 5 19| 6259 30 o | 103 80 1657 —22
59 inert —22 | 100+3¢ 9157 98

ﬁt z ﬁg 1% go+ 0 2522 84(? 103—36 9157 73
1-9 3533 — 101+40 8573 66
%0 W os| o 3me | 105u0 wrs T

- - +0

soro  es 1o | 62430 2887 —73 | 106-9 11003 36
51 0 203 oa | 65-3¢ 2887 62 | 108+50 9029 —54
2246 379 _20 65+20 3847 82 | 113-56 9029 96
53 9 379 o0 | 67-20 3847 32| 109+6 11863 —66
23426 67 _7 | 66+56 1511 -8 | 110-¢ 11863 24
e ey g | 71-50 1511 13 | 109+66 7963 -16
3 6 67+30 3547 —68 115-60 7963 59
ootb 223 301 70-30 3547 2 | 110430 11287 208
68+50 1789 —34 | 113—-30 11287 178

oot20 187 22| 73-59 1789 -14 | 111480 5081 —30
29419 743 a4 | 6920 4391 130 | 119-89 5081 90
ore I a5 | 71-20 4391 75| 112456 9929 146
. 71+36 4111 -35 117-50 9929 -96

31 inert —18 | 74_39p 4111 100 | 113450 10159 76
32+6 929 40 | 714859 2021 —18 | 118-50 10159 56
33-6 929 10 | <76_59 2221 -53 | 114+5¢ 10391 98
33+20 647 18 | 74,59 2671 —72 | 119-56 10391 —117
35-20 647 43 | 79_59p 2671 —12 | 12246 14879 0
34+0 1063 4 | 76139 4861 70 | 123—-6 14879 -75
35-6 1063 -1 79-36 4861 —30 | 122+309 14107 152
37+6 1279 -20 79 inert —32 | 125—3¢ 14107 32
38-0 1279 25| 49,55 3461 -2 |124+1160 1373 34
37+3¢ 337 -28 84—50 3461 -57 |135—119 1373 —6
40-30 337 2| 9,69 2143 24 |137+110 4909 20
39+260 1091 60 | 85-G9 2143 —56 | 148—119 4909 40
41-20 1091 0| 79479 571 —20 | 139+66 15583 —156
41 inert —18 86— 76 571 10 | 145-66 15583 4
41+39 661 -20 | 82439 5827 —28 | 143+76 15227 108
44-3¢9 661 -10 | 85-3¢ 5827 22 | 150—70 15227 —122
45+29 1607 42 | 84+¢ 7013 -6 | 164+76 21821 —210
47-20 1607 57 | 85-9 7013 —16 | 171—-76 21821 —150
5046 2423 —24 | 85439 6337 78 |169+110 15053 —6
51—9 2423 —69 | 88—3¢ 6337 48 | 180—110 15053 —106
51+40 773 —24 | 85460 3163 86 | 171+100 18251 —68
55—40 773 -4 | 91—-66 3163 -4 |181—100 18251 —198
54+6 2843 -6 | 91430 7411 —55 | 178+56 29399 56
55—-9 2843 —61 | 94—3¢ 7411 100 | 183—50 29399 96

Table 4. a(p)’s for the elliptic curveE; and cusp formf ;.

361
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For eachp € To we have computed(E;), anda( f1), and found that they are
the same. Hence we deduce that forale T we have

Tr O’l(FI'qp) =Tr Uz(Frgp).
Thus byTheorem 10.1b; ando», are isomorphic.

End of Proof. We have proved in the previous subsection thé is isomorphic
to oo|k and therefore thaty|, is isomorphic tar,| . We note that sinc&, does
not possess potential complex multiplication®pposition 9.X001|. and hence
o2|L are both irreducible. Then by Frobenius reciprocity we know that, is
isomorphic tao,|r, ® x for some charactey of Gal(F /Fy) trivial on GalF /L).
Letp = (114 6)R thena(Ey), is odd andp splits in Fy. LetP3 be a prime off;
abovep and let Fiz be a Frobenius element tin Gal(F/Fy). Then

Tr(o1|r, (Frp)) = a(Ey)p = Tr(oz|r, (Fry))

and hencey (Frp) = 1. But since’ is inert in L we deduce thay must be
trivial. Therefore we have|r, = o2|F,. Now using Frobenius reciprocity again
we deduce that; is isomorphic tar, ® § for some charactey of Gal(F /F) trivial
on GalF /Fy). If we takep = (12— 6)R thenp is inert in F,. Now

Tr(o1(Fry)) = a(Ea)p = Tr(oz(Fry))

and hencé (Fr,) = 1. We deduce that is trivial and hence that; = oo.

Thus we conclude théE; is attached to the fornf;. It immediately follows
that the curveE; is attached to the fornfi,. The verification ofConjecture 1.%or
F = Q(+/509 is now complete.

Remark. We found after this work was completed that one could &énner

and Wiles 1999 Theorem A] to prove that the curvé; is modular. Here one
uses that the Galois representation on the 5-adic Tate modute isf residually
reducible. However, our method can, in principle, be used in situations where thei
results do not apply. Moreover, our interest in this problem arises from attaching
elliptic curves to unramified Hilbert modular forms, for which one needs to be able
to determine the space of cusp forms. Furthermore, it appears that our metho
of computing the space of cusp forms can be extended to higher weight, whert
eigenforms with rational Hecke eigenvalues should correspond to certain othe
geometric objects.
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INDECOMPOSABILITY OF FREE GROUP FACTORS OVER
NONPRIME SUBFACTORS AND ABELIAN SUBALGEBRAS

MARIUS B. STEFAN

We use the free entropy defined by D. Voiculescu to prove that the free group
factors cannot be decomposed as closed linear spans of honcommutative
monomials in elements of nonprime subfactors or abeliag-subalgebras, if
the degrees of monomials have an upper bound depending on the number of
generators. The resulting estimates for the hyperfinite and abelian dimen-
sions of free group factors settle in the affirmative a conjecture of L. Ge and
S. Popa (for infinitely many generators).

1. Introduction

L. Ge and S. PopdlP9q defined for a given type {Hactor.il the two quantities

Lh(M) =min{f € N | 3 hyperfiniteRq, ..., Rt C M SLSP' R R - - - R ¢ = M},

La(M) =min{f e N |3 abeliansd, ..., At C M S.t.5p ArAp - - - At = M}

(the min beingo if At cannot be generated as stated) and conjectured that
h(£([Fn)) = La(£(Fn)) =00 forn>2,

where£(Fy) is the type Ii-factor associated to the free group witlgenerators.

We use the concept of free entropy introduced by D. Voiculescu in his break-
through paper]994 to prove that the conjecture mentioned above is true at least
partially (for n = co) that is, €n(L(Fn)), La(£(Fn)) = [252] +1 for 4 < n < oo.
Actually, our result is more general and it states that the free group factonwith
generators cannot be asymptotically generated (DefiniBdhand4.2) as

lim e " NegoNe e NOREONY

w—0 Jt+1

1<ji e, jtya<f
1<t<d
or
lim 1 N A0 ek AE A
w—0 _ _ I J2 I Je+1
1<ji,en jraa=<f
1<t<d

MSC2000: primary 46L54; secondary 46L35.
Keywords: free entropy, free group factors.
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ifthe N{, ..., N¢ (for all w) are nonprime subfactors, the), ..., «% are abelian
x-Subalgebras, th#® c £(IF,) are subsets containingself-adjoint elements, and

f,d > 1 are integers such that> p+ 2f + 1. Note that¥(F,) admits decom-
positions of this sort if we allowd = co, for example if2® =% = {1}, f =n,

N§ =Ny, ..., N = Ny aren distinct copies of the hyperfinite type; Hactor #
andsdf =4y, ...,dy =9y aren distinct copies ot *° ([0, 1]) (since£(Fy) is both

the free product oh copies of%k and the free product af copies ofL*°([0, 1]);

see Moiculescu et al. 1992 The indecomposability off(F,) asSp’ N%N im-

plies the primeness of its finite-index subfactors; more generally, all subfactors of
finite index in the interpolated free group factors of Dykerh@94 and Radulescu
[1994 are prime [Btefan 1998 Indeed, according to V. Jone$d83, if N is a
subfactor of finite index init then. it decomposes aseN, wheree is the Jones
projection. In particular, the indecomposability propertie§€dF,,) over nonprime
subfactors and abelian subalgebras are preserved to its subfactors of finite inde
Recall that the Haagerup approximation propeHgggerup 1978/79s another
property preserved to the free group subfactors. A first example of a prime Il
factor (with a nonseparable predual, though) was given by Pb8d and then

Ge [1999 proved (with a free entropy estimate) that the free group f&€tér,) is
prime for alln with 2 < n < oo, thus answering a question froRdpa 199%

Our results are based on estimates of free entropy, that is, estimates of volume
of various sets of matrix approximants (matricial microstates). Voiculesedq
pioneered this technique in his proof of the absence of Cartan subalgebras in th
free group factors. Subsequently, @897 and Dykema 1997 were able to prove
that the free group factors do not have abelian subalgebras of finite multiplicity.

The paper has four parts. Bection 2we prove the first estimate of free en-
tropy and recover a result of Voiculesclop4: if a free family of m self-adjoint
noncommutative random variables can be generated by noncommutative powe
series by another family af self-adjoint noncommutative random variables, then
n > m (Theorem 2.3 However, we show that the assumption of freeness from
[Voiculescu 199%is not essential and can be dropped. As a consequence, the
number of self-adjoint generators with finite entropy that generatalgebras
algebraically, is constant. IrSection 3we prove the indecomposability &f(Fp)

(and of its subfactors of finite index) over nonprime subfactdhebrem 3.5 and
in Section 4the indecomposability over abelian subalgebiidseprem 4.4

We give next a short account of Voiculescu’s free probability thedoydulescu
1990 Voiculescu et al. 199and of his original concept of free entropydiculescu
1994 1994. Atype ll;-factor.it endowed with its unique normalized, faithful, nor-
mal tracer is sometimes called\&/*-probability space. The traeedetermines the
2-norm ondt by the formulal|x||> = = (x*x)¥/?, for all x € M, and the completion
of L with respect td| - ||, is denoted_?(L, 7). An elemenix € .1l is a semicircular
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element if it is self-adjoint and if its distribution is given by the semicircle law:

2 1
T(x¥) = ;/1tk\/l—t2dt for all k € N.

A family (dj)ie) of unital x-subalgebras ofil is a free family if the conditions
neN,iq,....inel,i1#iz# -+ #ip, Xc € Aj, andt(xx) =0for 1<k <n
imply T(XgX2 - - - Xn) = 0. A set{Xi}ic) C M is free if the family(x-alg{1, X; })ic

is free. A free sefx;}ie; C .M consisting of semicircular elements is called a
semicircular system. If, is the free group witm generators (X n < oo) then
%(F,) denotes the von Neumann algebra generated by the left regular represer
tation A : F, — B(%(F,)); see Murray and von Neumann 1943 £(F,) is a
factor of type I} —the free group factor on generators. It has a canonical trace
7(-) = (-8, de), Where{dg}ger, is the standard orthonormal basis4dF,). Every
<(F,) is generated as a von Neumann algebra by a semicircular systenm with
elements Yoiculescu et al. 1992 We denote byl(i* = MXC) the set ofk x k
self-adjoint complex matrices and hy its uniqgue normalized tracery induces
the 2-norm|| - ||z : M$® — Ry and the euclidean norh- [le := VK| - [l2. If

B is a measurable subset of amdimensional (real) manifold, vgl(B) denotes
the Lebesgue measure Bf The free entropyy (X, ..., Xn) of a finite family

of self-adjoint elements was introduced ibjculescu 1994 but we will recall
the definition of the modified free entropydiculescu 199F which is better
suited for applications. For self-adjoint elememris. .., X,.om € JAl one defines
first the set of matricial microstates: Fixing, ¢ > 0 and p, k € N we define
FR(X1, ...\ Xn : Xnat, -+ - Xnams P, K, €) to be the set

{(A, ..., Ay) € (A" | there existAni1, ..., Anpm € MG
such that| Aj || < Rand |t (X, -~ Xi,) — (A, -+ Ap)| <€
forallg=1,...,pandallj,iy,....ige{l....,n+m}}.

Next we define

XR(X]_, ...,Xn :Xn+1, ,Xn+m, p, k, 6) =
log(Volye (TR(X1, - - - Xn © Xngd, - -+, Xnms P, K, €))),
XR(X]_, ...,Xn :Xn+1, ...,Xn+m; p, G) =

. 1 n
lim Sup(PXR(Xl’ <o Xn D Xn41s - -5 Xntms Ps ka 6) + E Iog k)»

k— o0
XR(X1, -0y Xn i Xng 1y« - o5 Xngm) =
inf { xr(X1, ..., Xn : Xn11, - -, Xnpms P, €) | PN, € > 0},

X XLy oy Xn 2 Xngds - - -y Xngm) i= SUP{XR(X, - .., Xn : X4, - - -, Xngm) | R> O}



368 MARIUS B. STEFAN

When taking the last sup it suffices to assume ® < max{|| x|, ..., [Xntml}
rather than O< R < oo [Voiculescu 19941994. The quantity

X(Xla ceoy Xt Xn+1, ---,Xn+m)
is the free entropy oKy, ..., X, in the presence ok .1, ..., Xpam. If m =0,
it is simply called the free entropy ofy, ..., X, and writtenx (X1, ..., Xp). If
{Xnt1, .. » Xnem} C {X1, ..., Xn}” we have
XXy ooy Xn S Xng Ly s Xngem) = X (X1, .., Xn);

see poiculescu 199p For a single self-adjoint elemert= x* € .1l one has:

x(0=3+4log2r+ [ [ togls~tidyu(s) dut

wherep is the distribution ofx; see Moiculescu 199} If Xy, ..., X, aren self-
adjoint free elements ofl theny (X, ..., Xn) = x(X1) +- - - + x (Xn) [Voiculescu
1994. The converse is also tru&giculescu 199Y, provided thaty (xj) > —oco

for 1 <i < n. In particular, the free entropy of a finite semicircular system is
finite; hence the free group factfé(F,) has a system of generators with finite free
entropy for 2< n < oo.

2. Noncommutative power series and free entropy

The main result of this section is that if a (not necessarily free) famiy sklf-
adjoint noncommutative random variables with finite free entropy can be generatec
as noncommutative power series by another family sélf-adjoint noncommuta-
tive random variables, them> m. In other words, a finite system with finite free
entropy has minimal cardinality among all finite systems of self-adjoint elements
that are equivalent under the noncommutative analytic functional calculus. Thus
we recover Voiculescu’s result 94, with the observation that our approach does
not require the assumption of freeness.

We review first a few facts concerning the theory of systems of algebraic equa-
tions [van der Waerden 194decessary in the proof dfemma 2.11f gy, ..., gn
are forms inn variables, there exists a polynomial (the resolvent) in their coef-
ficients, R(Q, ..., On), With the property thaR(g, ..., g,) = O if and only if
the systengi (&1, ..., &) =+ = gn(&1, ..., &) = 0 has a nontrivial solution. If
hi, ..., hh—1 aren—1 forms inn variables and

ha(W (&1, ..., &n) == U261+ -+ - + Unén,

thenRy(hy, ..., ha_1) := R(hy, ..., hp_1, ha(u)) (theu-resolvent) is either iden-
tically 0, or a form of degree ddg x --- x deghn,_1 in U = (U1,...,Uy). In
the first case, the systetm = --- = hy_; = 0 has infinitely many solutions
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[(£1, ..., &n)] € PC"1; in the second, all the solutiorgy, ..., &)] € PC"1

are glven by the factorization &, (h, ..., hn_1) (and thus, the system admits at
most dedh; x - - - x degh,_1 solutions, as predicted by Bézout's Theorem).
Let f1,..., f, € R[E4, ..., En] ben polynomials inn indeterminates, of de-
greesd,, ..., d,, respectively. Foa = (ay, ..., ay) € R" define
) él gn ! .
Fias. .. i) =85, (f. <s . "_sm) —a) fori=1,....n

Bézout's Theorem implies that the system of equations

fi1,....&n) =a1, ..., (€1, ..., 6n) =an

admits at mostl; . .. d, solutions(y, ..., &) € C" if Ry(Fia, ..., Fna,) #0.
Note also that the set

Su(fr ..., fo):={(@1....a) € R"| Ru(Fya,, ..., Fna,) #0}

is either open and dense Y, or empty.

We proceed now withemma 2.1 which gives an upper bound for the Lebesgue
measure of the intersection of an algebraically parameterized manifold embedde
in R™ with the unit ball ofR™. This lemma will be of further use in estimating the
volumes of various sets of matricial microstates that will appear as sets of points
within a given distance from such manifolds.

Lemma 2.1. For integers n< m and polynomialsif ..., f, € R[E1, ..., En]
define f=(fq,..., fm) : R" — R™. If the polynomials
of;
de 5 )
are not identically0 for all multiindices Je {(i1,...,in) |1<i1<---<ip<m}

andif S, = S,(f1, ..., fn) # @, then

651\ 4e < (M)
(1) /fl(B((ll))(JlX::ndelz( 9% )) dés(n)c voln(B(0, 1)),

where C= C(degf) = maxdegfi, x --- xdegfi |1<i1 <--- <iy <m}and
B(0, 1) = B,(0, 1) is the unit ball inR".

Proof. We consider first the caga=n. Let Sdenote the set of all irregular values
of f, thatis,
= f ({£ eR" | rankdf;) <n}).

It suffices to show thatl) holds with f ~1(B(0, 1) \ &) replacingf ~1(B(0, 1)),
whereS is an arbitrary open set that contaiis/ (R" \ S,). For any

=(a,...,an) e Rangef NB(0, D)\ S
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the setf ~%({a}) has at mos€ = degf; x - - - x degf, elements, say ~*({a}) =
{b1, ..., bpa@} for some 1< p(a) < C. There exist an open ball; > a and open
nelghborhoodS/a > by, ..., Vi > bp@ such thatB, andV;? are diffeomorphic
via f for1 <i < p(a) and f1(By) = Ui":(i) V2. Since it is compact, we can
cover Rangd NB(0, 1)\ § with afinite set of such open balB,, . .., By,. This
covering determines a finite partition of Ranfjer B(0, 1) \ S, sayWi, ..., W,.
For each 1< j <t choose a unique ¥ | =1(j) < k such thatw; C B, and
f=1(W}) = Tj1U- - -UTjpca), WhereT;; € V* andW; andTj; are diffeomorphic
via f forall1<i < p(a). We have

d d
/fl(Bw,l)\&) ‘ 5= Z/ l<W) ‘ :
t p@g))
-y Zf de s)‘ds
j=1 i=1 JTii
t P@g))
=Y > voln(Wj)
j=1 =1

t
<C > voly(Wj) =C-voly(B(0, 1)\ &).

=1

In the casan > n one has the estimates

son (S sef(5)) s [ 5
f-1(B(0,1)) |J|=n f*l(B(O,l))l‘]‘:
<
B Z /le(B(O,l))

[Jl=n

de %2")

de %?)

< (r:)c volh(B(0, 1)). 0

dg

dé

Lemma 2.1will be used in the proof oProposition 2.2 Thek x k matricial mi-
crostates oKXy, . .., Xy are points within euclidean distance-Zmkfrom the range
of a polynomial function in the matricial microstateswf ..., y, provided that
eachx; is within || - | >-distance» from noncommutative polynomials i, ..., Y.

Proposition 2.2. Let R, ..., Pn € C(Y1,...,Ys) be complex polynomials in n
noncommutative self-adjoint variableSssume thatit, ) is all ;-factor and that
{X1, ..., Xm} C M is a finite set of self-adjoint generators.4f Set

a=max{|xill2+1. ..., [Xml2+1}
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and d = max{degP, ..., degPn}. If {y1,..., ¥n} C M is another finite set of
self-adjoint generators oft with n < m and such that

X —R(y1,....,¥)l2<w foralli=1,..., mandsoma < (0, a],

then
X(X1, ..., Xm) <C(mM,n,a)+ (m—n)logw +nlogd,

where m, n, a) is a constant that depends only on ma.

Proof. Replacing eacli, by %(P. + P*) if necessary, we can assume tRat= P*
fori =1,...,m. GivenR > 0, ¢ > 0 and an integep > 1, consider

(Ag, ..., An) € TR(X1, ..., Xm Y1, -+ -5 Y P, K, €).

If pislarge enough and> 0 is sufficiently small, one can find matricBs, . . ., B,
in M3?such that| By, ..., |Ball < Rand

A — R (Bg,....,B)ll2<w fori=1...,m,
or, equivalently,
IA =R (Br,....Blle<wvk fori=1,...,m.

With the identificationgg = (gs, 2L Omie) : (MPAH" = [RULN (MPBA™ = RME,
(B1,...,Bp) = (&1, ..., &) € R™€, and

9(B1, ..., Bn) = (Pu(Ba,..., Bn), ..., Pn(B1, ..., By),
the previous inequalities imply
||(Ai)1§i§m —961, ..., fi:nk2)||e <wvmk

At the cost of introducing an additional varialig.,, € R, we can assume that
the components aj aremk? homogeneous polynomial functions in the variables
&1, ..., &ne41, all having degrees at modt

Now let fq, ..., e be arbitrary homogeneous polynomial function&in . .,
Enke41, Such that ded; = deggj for j = 1,..., mk2. For every multindex] =
(J1s - -+ Jrieg) With 1< j1 <+ -+ < jes < MK, saying thals,( fj,, . .
is empty is equivalent to saying that the coefficientsfpf ..., f
certain system of algebraic equations. Hence the set

© fjnk2+1)

i, Satisfy a

Qi={f=(fn..., fe) | degf; =degg; for j =1,..., mi,
S(fjpsoos fj o) #@foral I=(ju. ..., jnesn)}
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is open and dense in its natural ambient linear space. Similarly, the set

sz{f:(fl,..., fmie) | degfj = degg; for j =1,..., mi,

de{ 52) #0foralld = (. ... i)}

is also open and dense in the same linear space.

The matrixd f: has(nligf 1) minors of dimensiorink?+1) x (nk?+1) and all
these minors have a nontrivial common zero only if a certain system of algebraic
equations in the coefficients df, . . ., f,e has a solutionjan der Waerden 1949
Not all the polynomials appearing in this system are identically equal to 0. It
follows that the set

Q3={f=(fn..., fne) | degf; =degg; for j =1,..., mi,
rank(d f;) = nk? + 1 v& € R"+1\ (0})

contains a subset that is open and dense in the linear space previously considere
Therefore there exists an element 2; N Q2> N Q3 such that

| fG1 . Ees) =960 - - Enesn) | <0vmk if [§] < Rfor L<i <nk*+1;

hence|(A)1<i<m— f(&1. .. .. &nes1) |, < 20v/mk The functionf satisfies the
hypotheses okemma 2.1and its components are homogeneous polynomials. It
has the property that dig{( A )1<i <m, Rangef ) < 2w+/mkand it does not depend
on the systeniA;)1<i<m-

We have||(Aq, ..., Amlle < avmk(if € > 0 is small enough); hence the set of
matricial microstate$Ag, ..., Am) of (X1, ..., Xm) such that

diste((A1, ..., An), Rangef) < 2wv/mk
is contained in thémk?, nk? + 1)-tube of radius @+/mk around
Rangef N Bpe(0, (@+ 2w)vmk).

If Bis a small ball inR"K*+1\ {0} and if Vg (2w+/mK) denotes themk2, nk2 + 1)-
tube of radius @+/mkaroundf (B), the formula for volumes of tubeg\eyl 1939
implies

VOImkz (VB(ZO)\/ mk)) = VOImsznszl(Bmsznszl(o, 1))

(ZwM)e-ﬁ-mkz—nkz—lk&e
Z (Mk2—nk2+1)(Mk2—nk24-3) - - - (mMk2—nk2—1+e)"

eeven
O<e<nk®+1




INDECOMPOSABILITY OF FREE GROUP FACTORS 373

With the notations from\[veyl 1939 one haskg e = | tB) Heds and

nk?+1
Qo ()% (2) | Yo (3)%a(4)
He = Ze(e/2)' Z gna Z Hyrd *@ Hged %@ |

Lae=1

whereH'\“ denotes the Riemann tensorofB). Assuming without loss of gener-
ality that degfJ =dfor j =1,..., mk, one can verify that eacH ”‘( f))isa

sum of quotients of homogeneous polynomials where all numerators have degre
6(d—1)(nk?+1)—2d and all denominators have degre@ 6-1)(nk?+1). Hence

He is a rational function irt and in the coefficients of (¢). Due to its intrinsic
nature He is independent of the embedding of Rarfgan RME+L: i particular itis
invariant under orthogonal transformationgif+1. Since there exist sufficiently
many polynomialsf (§) such that Rangé is flat, this entailsHe = O for evene

such that 2< e < nk? + 1. Therefore the volume of thenk?, nk? +1)-tube of
radius 2o~/mk aroundf (B) is

VOl e Ve (20vmK) = (VOl e nkz— 1 Bmie_nie—1(0,1)) (2ov/mK k)mkz—nkz—l ds,
f(B)

and withLemma 2.1and the inequality

1 1 2mie/2
@ nk2+1y\ miké—nk?—1 = miZ
r(1+%55) r(+ ™) r(1 )

we obtain the estimate

VOl 'rR(X1, < oo, Xm : Y1, - -, Yns P, K, €)
mk? Sk
(nkZ N 1)-C(d) VOl 1B(0, (@+ 2w)v/mK)

VOl me_1B(0, 1) - (2wv/mKME—nke-1

(a+2w)nk2+l(m k)(nk2+1)/27.[(msznszl)/Z(za))msznszl(m k)(msznszl)/z

(3 MG (e )

mk2 nmk2/2(mk)mk2/22mk2/2(3a)nk2+1(2w)mk2—nk2—1
(1) C@O: —>
r(L+ )
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The last inequality implies further
XR(Xl""’Xm:yla" ynv p’k 6)

1 mk? 3m
Iog(nk2+1) @ logCd) + — Iogn+( > —n) log 2+ nlog(3a)

m mk2 m
+ > log(mK) + (m—n) logw — 2 IogF(1+ T) > logk +0(1).
Note that e
mk?
@ Iogr‘(1+ 5 ) Iog— +0(1),

k2
nk?+1 _ — .
C(d) <d andk |Og< k2 1) III|OgIII nlogn (III n) |Og(|l| n)+o(1),

therefore
XR(X].’--- Xm3Y1,--- Yn, p’k 6)
<mlogm—nlogn+nlogd — (m—n)logim—n) + — 2 Iogn

+ (3_m — n) log 2+ nlog(3a) + — Iogm+

5 Iogk+(m—n)|oga>

2
- —= Iog— —mlogk+ — Iogk+o(1)
=C(m,n, a) +(mM-n)logw+n Iogd +0(1).
By taking the appropriate limits aftdg p, €, we finally obtain
XR(X1, ..oy Xm Y1, ..., Yn) <C(m,n,a)+ (M—n)logw+nlogd,
and sinceR > 0 is arbitrary,

XX1, .., Xm Y1, ..., Yn) < C(m,n, @) + (M—n)logw +nlogd.

Now recall thatxs, ..., Xm} is a system of generators.tf, hencey (X1, ..., Xm) =
X(Xl"°'7xm:y17~--7yn)' D
LetYs, ..., Y, be noncommutative indeterminates and let
o0

PYVL....Y) =) > &Y, Y

k=0 1<iq,...,ix<n

be a noncommutative power seriesvin ..., Y,, with complex coefficients. Fol-
lowing [Voiculescu 1991 we say thatR > 0 is a radius of convergence 6fif

o0
YY) lailR <o

k=0 1<iy,...,ix<n
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It is well known from the theory of power series that ikORy < R, then

5T mameo(3))

k=g+1 1<iy,...,ik<n

The next result is basicallywpiculescu 1994 Corollary 6.12], with the obser-
vation that the freeness ¢%1, . .., Xm} assumed there has been dropped.

Theorem 2.3.Let xq, ..., Xm and \, ..., Y, be self-adjoint noncommutative ran-
dom variables in alli-factor (M, ) such that y, ..., yn € {X1,..., Xm}” and
X(X1, ..., Xm) > —o0. If X; = P (y1,...,yn) fori =1,..., m, where the Pare
noncommutative power series having a common radius of convergencé R
maxX{|yall, ..., Iynll}, then n>m.

Proof. Suppose thain > n. For 1<i <m, x; is a noncommutative power series
of yi,..., ¥n, i.€.,

xi=> > alivi Vi

k=0 1<iq,...,ik<n

For every integeq > 0, P q(Y1, ..., Yn) := ZE:O D 1sis,i<n ai(i-)uikyil e i s
a noncommutative polynomial of degree at mgpsand

Z Z ai(:li_.)uikyil”'yik ,

k=g+1 1<iy,...,ik<n

-y ¥ |an(l?..ik|bk=0((%)q“).

k=gq+1 1<iy,...,ik<n

X = Pqy1. ... yo) ||, =

The estimate of free entropy froRroposition 2.2mplies

b q+1
X(xl,...,xm)§C(m,n,a)+(m—n)log<§) +nlogg+ O(1)

and lettingq tend tooo, one obtaing (X, ..., Xm) = —oo, a contradiction. [

Let N be ax-algebra in aV*-probability spacé.t, ). Suppose that' is finitely
generated and ldixy, ..., Xn} be a system of self-adjoint generators. Let also
{y1, ..., Yn} be another set of self-adjoint elements that gene¥asdgebraically
as ax-algebra. In particular, there exist noncommutative polynoniiBl$;<j <m
such that, = P (y1,...,yn) fori =1,..., <m. In this contextCorollary 2.4is
an immediate consequenceTieorem 2.3

Corollary 2.4. If x (X1, ..., Xm) > —oco andx-alg{yi, ..., ¥n} ==-alg{Xs, ..., Xm}
then n> m, so any2 systems of self-adjoint elements with finite free entropy that
generateN algebraically as ax-algebra have the same cardinality
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Voiculescu 1999 proved that the modified free entropy dimensidbifulescu
1994 of a finite set of self-adjoint elements that generate algebraicaltglgebra
N is independent of the set of generators. It is still an open question whether the
free entropy dimension is a von Neumann algebra invariant. Voicule<gd[
also showed that sets of generators satisfying sequential commutation in certai
property T factors have modified free entropy dimensioh. L. Ge and J. Shen
([200Q) proved then that the estimatg< 1 is true for any set of generators, as long
as the factor has one set of generators satisfying sequential commutation. Rece
from [Voiculescu 199the definition of the modified free entropy dimension:

XX+ oSy, ..., X1+ ®Sm S, ..., Sm)

30(X1, ..., Xm) = M-+ Ilimsup
" 00 log o
where{s,, ..., Sn} is a semicircular system free frofry, . .., Xm}. In general one
hasdo(Xy, ..., Xm) <m, and also 0< do(Xq, ..., Xm) if {Xq, ..., Xm} C £(Fp) for
somep. Considering two set§xs, ..., Xm} and{ya, ..., yn} of self-adjoint ele-
ments that generate algebraically thalgebraN and noticing thafyi, ..., ya} C

{X1+wSs1, ..., X1 +®Sm, S1, ..., Sn}”, one has

: X1+ oSy, .. ., X SL, ety Sme Y-
50(X1,-..,Xm)=m+llmsupX( 11 @5 1T ®Sn S Sm, Y1 Yn)
w0 | logw]

. X1+ wSt, ..., X1+ Vi, ...,
§m+llmsupX( 1T O 1+ ®Sm:Y1 ... )
w—0 ||Oga)|

Also, [ +ws — P (Y1, ..., ¥n)| = llws || <wfori=1,..., m, and withPropo-
sition 2.2we obtain

. C(m,n,a m—n)lo nlogd
S0(X1, ..., Xm) < m+limsup ( )+ ( )ogo + 9
w—0 ||Oga)|
<m+n—-m=n,

wherea = max{|[xill2 + 1, ..., [Xmll2 + L Iyall2 + 1, ..., [IYall2 + 1} andd =
max{degP; | 1 <i < m}. In particular, if there exists a sé¥yi, ..., yn} with
do(Y1, . .., Yn) = n which generates algebraically, then

sup{So(X1, - .., Xm) | *#-alg{xa, ..., Xm} =N} =n.

3. Indecomposability over nonprime subfactors

In this section we prove that the free group fackf,) does not admit an asymp-
totic decomposition of the form

im 2 E W Opw O Gp@ | NP N\
C!)ILT]O _ _ leﬁf NJZ££ ‘Nltg ‘Nlt+1’
1<ji,....jtq1=f
1<t<d
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where (for eaclw) %« c £(F,) is a subset witlp self-adjoint elementsy?, ...,

N¢ are nonprime subfactors &f(Fn), the integed is at least 1, and > p+2f +1.

A nonprime Ih-factor is just a factor isomorphic to the tensor product of two factors
of type Il;. For free group subfactors one has the followingh # p+2f +2 and

P C L(Fp) is a subfactor of finite index, the® does not admit such an asymptotic
decomposition either. In particular, the hyperfinite dimensiof£@f,) is at least
[252] + 1 and that of? is at leas{ "53]+1. Forn = oo this settles a conjecture

of Ge and Popal[999: the hyperfinite dimension of free group factors is infinite.
The definitions of hyperfinite dimension and of asymptotic decomposition over
nonprime subfactors are given next.

Definition 3.1 [Ge and Popa 1998If Jl is a type l-factor, the hyperfinite di-
mension ofit, denoted’y, (M), is by definition the smallest positive integére N
with the property that there exist hyperfinite subalgelstas. .., ¢ C .l such
thatSp* R1R, - - - R = Jl. If there is no such positive integeh, (M) = +o0.

Definition 3.2. A type ll;-factor.it admits an asymptotic decomposition over non-

prime subfactors if, for anp > 1, anyxy, ..., X, € J, and anyw > 0, there exist
nonprime subfactors’y = N1(X1, ..., Xn; @), ..., N =Nt (X1, ..., Xn; @) of M
and also a se€f® =%(xq, ..., Xn; @) C M containingp self-adjoint elements, such
that

Jt+1

di3ﬂ|-||2<xj, Z NJEONGE? - NGEONS ) <w forj=1,...,n

1<ji, jtya1=f
1<t<d

In this situation we write

= lim 'z § W opw \W GPW | NOOPW N\
‘M_C!)Iino _ . Nllif legz thgg ‘NJt+1‘
1<ji,....jipa<f
1<t=<d

If £(F,) admitted an asymptotic decomposition over nonprime subfactors as in
this definition, the situation describedroposition 3.4with 4 = £([F,)) would
take place for arbitrarw > 0, since any H-factor is generated by its projections
of given trace § for example). The following is a result fronse 1998 p. 155]
(see alsoKadison and Ringrose 198&xercise 12.4.11]); we include a proof for
completeness.

Lemma 3.3.Any typdl ;-factor.it with separable predual is generated by a count-
able family of projections of given trace

Proof. Every ll;-factor with separable predual is generated by a countable family of
abelian subalgebras, so there exist abelian subalgehras,, . . . of .it generating

Jt as a von Neumann algebra. If necessary, one can replacedgda a maxi-

mal abelian subalgebra df containing it, henced, can assume to be a maximal
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abelian subalgebra ofl for 1 < n < co. Being a maximal abelian subalgebra of a
type ll;-factor, eachd,, has no atoms and thus it is generated by a countable subse
of projections of given trace. O

Proposition 3.4. Let z, .. ., z, be self-adjoint elements ofl& -factor .t and let
(N)1<v<¢ be afamily of subfactors ofl. Assume that', = %\ v &S ~ %" ®
R, where”, &Y are Il;-factors and assume thatyx. . . , x, are self-adjoint
generators ofil. Assume moreover that there exist projectioffd,p. ., p'” e "
and ¢”,...,ad" e ®{" of trace 1 and complex noncommutative polynomials
(@j)1<j<n of degree at most gwhere d> 1 is fixed in the variables(z,)1<u<p
such that

3)

<w forj=1,...,n,
2
wherew € (0, a] is a given positive numbgeand such that in all the monomials of
eachg; the projections §’, g and ", qi"’ are separated by somg if v # w.
Then

((IO. )1<|<rv ) (Q| )1§I§sv , (Zu)1<u< p)

1<v<f

(4) X(X1, ..., %) <C(n, p,a,d, f)+(n—p—2f)logo,

where a= max{||xjll2+1| 1< j <n}and C(n, p,a,d, f) is a constant that
depends only on,m, a, d, f.
Proof. All variables involved are self-adjoint, so we can assume ¢hat ¢ for
j=1,...,n. Fixanintegeko > 1 and letR > O Supposelly,(C) = M c R
anduty, (C) = 5" c ®3”, and let{e]’};,, {f{"};, be matrix units fom/t(lv) and
MY respectlvely If

<(Aj)1§j§n, (Giv )1§i5rv s ( )1<I<sv {EJ| }] v, { j(lv)}j,l,va (Zu)15u5p>

1<v<f 1<v<f

is an arbitrary microstate in the set of matricial microstates

FR((X1)1<J<na(p| )1<|<r],(,,(CI| )1<I<s,L {e” b, v,{f” }itvs (Zw)1<u<p;s MK, 6)
and if m is large andt is small enough, then
H AJ ¢J ((G )l<| <I’L (H| )1<| <s, s (Zu)1<u<p> “ <w for j = 1, ..., N

1<v<f 1<v<f
Let§ > 0 and writek = kgt +w for some integers, t withO < w < k(z)— 1.1fm, e
are suitably chosen, there exig” = ity c Mk (C), MY = iy C My(C) (not
necessarily unital inclusions) and matrix urfigs}’}; ., C Al{”, {F(”)},J,U c.ity
such that

|E £ L, <5 and [F—Fl, <0 foril =1k,
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andJl” c ({L5”) N Mk(C). The relative commutants dl{” and.ity” in Mk (C)
satisfy

(M) N (C) = (M () @ 1@ M (©)) ® My, (C),

(M5”)" N M(C) = (1@ Miy(€) ® i (T)) B My (C).
Let

n® (x. {€l'}}1) = o Z ell’xq” e C (X1, ., Xig 1)
j,I=1

be the polynomial irkg + 1 indeterminates that gives the conditional expectation

Eynq AL = (U7 N, that s,

(V)
E(Miu)),m%(x) =W (X, {e”” }J,|).
ThenG{" := 1 (G{” {E{["}}1) € (l}”) Nt (C), and since

P = By (P =0 (P (€ )10):
it follows that
[ (GY)) —2((pi™))| <81 forall I=1,...,m;

for any givend;, mp, provided thate, § are small andn is large enough. For
suitablemy, 8, there exists a prolectloﬁ(” e (MS”) N Mk (C) of rank [Ketre]

such that| P"" — G{"V|, < 8. Then|G{” — P, < |G} — G|, +
HG(l”’l) — Pl(”’l) |, < 252, since||G(1”) — G(lv’l) |, < 82 for convenientm, ¢, 5. With
this procedure we can find projections

PV, POY e () nitk(©) and QY. ..., QWY e () Ntk (C),

all of rank [%%2], such thaf] G’ — P""V|,< 25, and | H” — Q{"V|, < 25,

for all indicesi, j, v. Moreover,

[A1=05 ((P"™)1cicr, . Q" 1c1zs, . Zudrzusp) | <@ forall j=1,....n
l<v<f 1<v<f 2

if we choose a sufficiently smafp > 0. Let4{" (k) < (L") Nit(C) and¥y” (k)

(") Nt (C) be two fixed copies of the Grassmann manifé(étot-+w, [<52])

of projections intly,+., (C) of rank ["0‘;“’]. There exists a unitaryd @ e (k)

such that
U@ prly® L y®peby®* e g k),

U@QPlu®= . u®QPPu®* e 5’ k).
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The previous inequality becomes
1 1
“ Aj — ¢ ((U (v) Pi(v )U (v)*) 1<i<r, , (U (v) Ql(v )U (v)*) 1<i<s, » (Zu)1<u<p:
1<v<f 1<v<f

(ReU®,ImU®),_, )| <o

forall j =1,...,n. The euclidean norm ont;? induces &ll(kot + w)-invariant
metric on the manifoléﬂ(kot+w, [@]) and if{ Pa}acak) iS @ minimalb-netin
the manifold with respect to this metric, it follows frof8arek 198Rthat | A(k)| <
(Chi/6)%, whereC is a universal constangy = 2[5 . (kot +w—[ 52 ]) is the
dimension of¢(kot + w, [%4]) andhy < +/2k is the diameter of the Grassmann

manifold §(kot + w, [42]) in MR There exiser := @)", ..., &”)1<,<¢ and
Bi=0", ..., b )1<,<1 with entries fromA(k) such that

P —UWR™PUC | <6 and [P -

e u® Q|(U'1)U (v)* ”e <0

forl<i<r, 1<l<s, 1<v < f.Inparticular, the polynomial&p;)i<j<n
are Lipschitz functions; hence there exists a consiaat D ((¢j)1§j§n, R) >0
(note thatjo| =r1+---+r¢ and|B| = s1 + - - - + S¢) such that

|#; (Va, ..., Viaj4igr-pr2f) — @ (W, ..., Wla\+|/3|+p+2f)He
<D|(V1, ..., Vigripi+ps2f) — (W, ..., Vv|a\+|/3\+p+2f)He
foralll1<j <nandall
Vi, Vigigiapr2ts Wi, oo Wiggggps2t € {V € Ml VI < R}
We then have
“ Aj — ¢j (( Pa)acas (Po)beg, (Zu)1<u<p, (ReU(U), Im U(v))1<v<f> ”

<wvkLD “((U ) Pi(v,l)U(v)*)l |<r (U(U)Q(U 1)U(v)*)1 s,

1<v< 1<v<f

(Zwizuzp, (REUW,IMUW), )
~((Padaca: (Polocp (Zo)izuzp, (ReU®, ImMU™), )

< ovKk+ D0 |a| + |B]
=2a)\/E,

if we choose

e

o k
la| + 18]
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DefineFg g : (MUEHPH2T — (UEH" by

Fa,,s ((Wu)lsus p» (Wl(v)’ WZ(U))lgvg f )

= (91 ((P)aca: (Po)bes, (Wad1cusp, (WL, W )12 1))

15j5n’

and note that dis{(Aj)1<j<n, Rangé z) < 2w+/nk. Note also that all the com-
ponents ofF, g are polynomial functions of degrees at most-82. Now use
Lemma 2.1as in the proof oProposition 2.20 obtain the estimates

vol kZFR((XJ)1<j<n (p. )1<|<rL7(CI| )l<l<s,) {e“ }le»{f” }ids (Zu)1<u<ps

1<v<f
m, k, e)

(TP (o F200e) ©@

. VO|(p+2f)k2 B(O, (a+ 2w)~ nk) : VOlnkZ—(p+2f)k2 B(O, 2wV nk)
CDh (|G 2
_ k [lorl+18] A nk 2),C(d)
w k (p+2f)k
(nnk)(p+2f)k2/2(2w+a)(p+2f)k2 (nnk)(nkz—(p+2f)k2)/2(2a))nk2—(p+2f)k2

r(1+M2f)k2) ' r(1+ nk2—(p2+2f)k2)

This estimate, inequalit§2) on page373 and the inequalitielsy < +/2k, O<w<a,

o =245 s +u-[552)

Kot +w kot+w\ _ (kot+w)? _ (k+kow—w)?

together withC(d) < (3d + 2)(P+20K* imply

VOInk2FR((XJ)1<J<n (p. )1<|<rL ) (CI| )l<l<s,) {e“ i {fJI }idvs (Zu)1<u<ps

1<v<f 1<v<
m, K, e)
+kow—w)?
_ (COVEETFIADY g (e
o w
onk?2 K)NK72 (3q)(P+20)K? (9, (N—p—2)K? 2
L = <(pf|2(f>kz)(3d+2)<p+2”k2.

(s 7g)
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Therefore

1
WR((xmi j<n () a<izr, - (@) 1=1=s, (€5 o (117}

1<v<f 1<v<f

(Zu)1<u<p: M, K, 6) + g logk
lo| + | B] (1+ kow—w)zlog CDV2(|a| + IB])
2kc2) k w

1 nkZ 1 nk2
+(n—p-2f)logo— 5 10T (1+ 5 ) + Z100( (51 )

<C(n, p,a,d, f)+nlogk+

Use the asymptotics
1 nk?

ﬁ'°g<(p+2f)k2)

=nlogn— (p+2f)log(p+2f)—(n—p—2f)log(n— p—2f)+0o(1)

and Stirling’s formula

1

2 2
2 IogF<1+ %) _n log L +0(1)

2 2 7 2
to conclude that

(5) XR((Xj)lgjsn : (pi(v))%sisrv ) (Gh(v)) 1<l<s, » {eﬂ))}j,l,v’ {fj(|v)}j,l,u,

<v<f 1<v<f

(Zu)1<u<p: M, 6)
log(C Dy/2(la| +18)) +C(n, p,a,d, f)
lee| + | B

The last inequality shows that the free entropy{xf, ..., x,} does not exceed
C(n, p,a,d, f)+ (n—p—2f)logw, sincekg is an arbitrary integelR is an arbi-
trary positive number ang, ..., X, generateM. O

_lal+18

=%

3.1. Hyperfinite dimension of free group factors.

Theorem 3.5.1f n > p+ 2f + 1, the free group factof£([F,) cannot be asymptot-
ically decomposed as
im -l
lim e D 0 NREONGE NREONS
1<ji e jrya = f
1<t<d
where(for eachw) 2 C £(Fpn) contains p self-adjoint elementsy, ..., N¢ are
nonprime subfactors df(F,), and d> 1is an integer
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Proof. Suppose first thato > n > p+2f + 1 and consider a semicircular sys-
tem{xy, ..., Xy} that generate&([F,,) as a von Neumann algebra. If there were a
decomposition as in the theorem, one could find for ewery 0 noncommutative
polynomials and projections as RProposition 3.4satisfying the inequalitie§3).
But then the estimate of the free entrdgywould imply thaty (X1, ..., Xp) = —o0
asw tends to 0, a contradiction.

If n= o0 then%(F) is generated by an infinite semicircular systeq}i>1. If
we fix an integek > p+2f + 1, we can approximate, .. ., Xx by polynomials
(¢j)1<j<k as in(3), getting the estimate of the modified free entr@py with k
instead ofn. Takingm, 1/¢, R, ko — oo andw — 0 in this estimate, one obtains

X((Xj)lgjgk : (pi(v))lfisrU ; (q( )) 1<l<s, » {e“)}J I {f“ Yid,vs (Zu)1<u<p>

l<v<f l<v<f
< x (X1, ..., Xk),
Wy, . (v)
where(p;™)1<i<r,,1<v<f» (CI| )1<l<s, l<v<f> {e“ Fidvs {f“ }ilv, @and(zy)1<u<p
are as inProposition 3.4 If #; denotes the von Neumann algelira, . . ., x;}”

and E; the conditional expectation onto it, then
(=i 2ke BB 151z, - (Ee@ ) 1<, (EnCeff))

1<v<f 1<v<f
(Be(F)) 0 (Be@Dizusp)
converges in distribution &s— oo to -

((Xj)lgjgk, (pi(v))lgisrv ) ( )1<I<sU {e“ il {f“ Yid,vs (Zu)1<u<p)

1<v<f 1<v<f
Therefore
1 (i BB 1t or B@ ) 121 - (B
{Et(fj(|v )il (Et(Zu))lgugp)
< X (X, ...\ %)

for some large integdr> k. But this leads to a contradiction:

X(Xl,---,Xt)=X<(Xj)1gjgtI(Et(p. ))1<|<rL (Et(q| ))1<I<sL {Et(e“ Vil

<v< <v<

{Et(f(v))}j,l,v’ (Et(Zu))lsusp)

((XJ)1<]<|( (Et(p| ))1<|<r1,(Et(Q| ))1<|<s, {Et(e“ Wil

<v< <U<

{Et(f(v))}j,l,v’ (Et(zu))lfuip)
+ X XK1y -« -5 Xt)

< X (XL oo X))+ X ks - X)) = X (X, - X O
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Corollary 3.6. If % c £(Fy) is a subfactor of finite index and ifn p+2f + 2,
then% cannot be asymptotically decomposed as

lim 1 3" NN R NOEONY

Jt+1?

w—0 . -
1<jp,os jra = f
1<t<d
where(for eachw) % contains p self-adjoint elements®f the N7, ..., N'¢ are

nonprime subfactors @, and d> 1is an integer

Proof. Since® c ¥([Fy) is a subfactor of finite index£(F,) can be obtained from
% with the basic constructionlpnes 1983Jones and Sunder 1997here exists

a subfacto® c % such that®(Fn) = (P, &), wheree, is the Jones projection
associated to the inclusianc %. But (?, &y) = P?e,% [Jones and Sunder 1997
hence%(F,) can be decomposed @&,%. Now applyTheorem 3.5 O

Corollary 3.7. If n > p+-2f +1, the free group factof£ (F,,) cannot be decomposed
as
SBY ) NRENRZE NN,

1<ji,....jt41=f
1<t<d

whereZ c £(F,) contains p self-adjoint elements;, ..., Nt are nonprime sub-
factors of£(F,), and d> 1is an integer Moreovet if ? c £([F,) is a subfactor of
finite index and if = p+ 2f 4 2, then?® also cannot be decomposed as

sp* Z N ZEN L - NG EN

1<j1,...,jt41=f
1<t=<d

for any subseff containing p self-adjoint elements @f, any Ny, ..., N non-
prime subfactors of?, and any integer ¢ 1.

Proof. This follows fromTheorem 3.@andCorollary 3.6 with % =%, N¥ = Ny,
- ,N‘}) =N¢. O

Corollary 3.8settles a conjecture fronGe and Popa 199 the casen = cc.
Recall that for a type {Hactor .l one defines

(M) = min{f € N | 3 hyperfiniteRq, ..., Rt C M S.t.Sp’R1R2 - - - Rt = JM}.

Note that the definition of hyperfinite dimension is given in terms of hyperfinite
subalgebras. If one defined the hyperfinite dimension in terms of hyperfinite sub-
factors instead of hyperfinite subalgebras, the prod€ofollary 3.8would have
followed immediately fromCorollary 3.7 But with Definition 3.1, we need the
asymptotic indecomposability result fronmeorem 3.5

Corollary 3.8. ¢n(£(Fn)) > [%52] +1for 4 < n < oo.
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Proof. If ¢h(£(Fn) < [%52], thenL(Fn) = SPP PRz - -- R for some hyperfi-
nite subalgebra®,, ..., %+ and some integef with n > 2f +2. Letm > 1,

Y1, ..., Ym € £(F,) andw > 0 be fixed. There exist finite dimensional subalgebras
B =By(Y1, ..., Ym; ) C Ry, for 1 <v < f, such that

disty., (yj, BLBY - BY) <w for 1<j<m.

Each finite dimensional subalgeb#f’ is contained in a copy of the hyperfinite
[I1-factor, sayBy C RY = RL(Y1, ..., Ym; ) C £(Fn). Consequently,

disnl-llz(Yj ,RYRG - - 97%‘?) <o forl<j<m;
hence%([F,) admits an asymptotic decomposition of the form

contradictingTheorem 3.5inceRy, ..., R¢ are nonprime and > 2f +2. [0

Corollary 3.9. If ? c £(F,) is a subfactor of finite index anl < n < oo, then
(@) > [%53]+1.

Proof. Follows fromCorollary 3.6 O

4. Indecomposability over abelian subalgebras

Another estimate of free entropy is used to prove that the free group fa¢tq)
does not admit an asymptotic decomposition of the form
im Il
lim Ve N7 A E AR EO,

1<ji,...,jtq1<f
1<t=<d

where (for eaclw) the 7, ..., ¢ are abelian subalgebras${F,), %2 C £(Fn)

is a subset withp self-adjoint elementsj > 1 is an arbitrary integer, and >

p+ 2f 4+ 1. Similarly, for free group subfactors one has the followingn i
p+2f+2and®? c £(F,) is a subfactor of finite index, the#® does not admit
such an asymptotic decomposition either. In particular, the abelian dimension o
L(Fn) is > [252]+1 and the abelian dimension®fis > [ "53]+ 1. Forn= oo this
proves the second part of Ge and Popa'’s conjec@iesgnd Popa 1998the abelian
dimension of free group factors is infinite. The definitions of abelian dimension
and asymptotic decomposition over abelian subalgebras are given next.

Definition 4.1[Ge and Popa 1998If .t is a ll;-factor, the abelian dimension &f,
denoted’;(Jl), is defined as the smallest positive intedee N with the property
that there exist abelian subalgebsés . .., ¢ C M such thaBp A1y - - - A =
. If there is no such positive integel, () = +o0.
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Definition 4.2. A type ll;-factor M admits an asymptotic decomposition over

abelian subalgebras if, for amy> 1, anyxu, ..., X, € M, and anyw > 0, there
exist abeliank-subalgebrasl{ = sd1(Xy, ..., Xn; ®), ..., A = b5 (X1, ..., Xn; @)
of Ml and also a set” =%(xy, ..., Xn; w) C JAl containingp self-adjoint elements,
such that

Jtr1

diSfu-lz(Xj, Y AEOAYE A )<w fori<j=<n.
1<ji,e jraa=<f

1<t<d

In this situation we write

— lim I e .
A= lim V2 7 A FOAGAL - AREOAS
1<ji s jroa=f
1<t<d
Proposition 4.3gives an estimate of the free entropy of a (finite) system of
generators of a {Hactor.i that can be asymptotically decomposed as
im Il
lim W2y T AGEOATE - AGEOAT,
1<ji,...jig1<f
1<t<d
As in the statement dProposition 3.4the approximations in thg- ||2-norm (6)
hold for everyw > 0 if the Il;-factor can be decomposed as above.

Proposition 4.3. Let z, ..., z, be self-adjoint elements oflb-factor .t and let
(Ay)1<v<f be afamily of abelian subalgebras f. Let X, ..., X, be self-adjoint
generators of(l and assume that there exist projectiond'p .., i € i, and

complex noncommutative polynomiédg )1« <n of degree at most @where d> 1

is fixed in the variables(z,)1<y<p such that

i —Qj _(v) <i< <u< j =
(6) HXJ P ((p. )%g.v_sr? : (Zu)l_u_p) HZ <w forj=1...n,
wherew € (0, a] is a given positive numbgand such that in all monomials of
everye; the projections 8’ and [’ are separated by someg i v # w. Then

(7) X(Xl,---,xn)fc(n, p7aad7 f)+(n_p_2f)|0gw’

where a= max{l|xjll2 + 1|1 < j < n} and C(n, p,a,d, f) is a constant that
depends only on,m, a, d, f.

Proof. As in the proof ofProposition 3.4ve can assume tha :¢}‘< forl<j=<n,
and fix R > 0. Consider an arbitrary element

((Bj )1§j§n, (Pi(v)) %sisrv s (Zu)lsus p)

<v<f
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of

FR((Xj)lgjgn, (pi(v))%sigrv ) (Zu)1§u5p§ m, Kk, 6)

<v<f

for some large integems), k and smalle > 0. Possibly after further restricting
m ande, we can find mutually orthogonal projectio@s”, ..., Q" e M52 with
rankQ” = [z(p")k] fori =1,...,r,, such that

H Bj — ] ((Qi(”’)lfifrv , (Zu)1§u§p> “2 <w foralll<j<n.

1<v<f

If S\”, ..., 8 e.M?are fixed, mutually orthogonal projections with ragk’ =
[(p")k] for every 1<i <r,, then there exists a unitaty® e QU(k) such that
QY =U®*gU® for every 1<i <r,. The previous inequality becomes

“ Bj — ¢j (@w)) Lsi<rys (Zw)1zuzp, (REU™, Im U(U))lfvff) H2< w,

=v=

and all the components ¢f are polynomials of degrees3d+2 in the lastp+4-2 f
variables. Reasoning as in the last part of the pro@froposition 3.4ve can easily
obtain now the estimatg(xy, ..., X)) <C(n, p,a,d, f)+(n—p—-2f)logw. O

Abelian dimension of free group factors.

Theorem 4.4.1f n > p+ 2f + 1, the free group factof£(F,) does not admit an
asymptotic decomposition of the form

lim 1o N A gAY E AR A

Jt+1?

w—0 . -
1<ji,...jta=<f
1<t<d
where each subsét” contains p self-adjoint elements?, ..., 4% C £(F,) are

abelianx-subalgebras and & 1 is an integer

Proof. Apply Proposition 4.3n the same manner thRroposition 3.4vas used in
the proof ofTheorem 3.5 O

Corollary 4.5. If % c £(Fy,) is a subfactor of finite index and ifn p+2f + 2,
then® cannot be asymptotically decomposed as

lim Mo N g0 AFe AV A A

Jt+1°

w—0 . -
1<ji,....jtya<f
1<t<d
where each subsét” contains p self-adjoint elements®f thesd?, ..., 47 C P

are abelianx-subalgebrasand d> 1is an integer

Proof. This is a direct consequence™fieorem 4.4nd of decompositiofe(F,) =
Pey P (see the proof o€orollary 3.6. O
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Corollary 4.6. If n> p+2f +1, the free group factof?(FF,,) cannot be decomposed
as
sp* Z A EAE - - Esly, g,

1<ji, jry1=f
1<t<d

where% c £(F,) contains p self-adjoint elements!y, ..., s are abelianx-
subalgebras off(F,), and d > 1 is an integer Moreover if ? ¢ L(Fp) is a
subfactor of finite index and if r p+2f + 2, then® also cannot be decomposed
as

5p” Z Aj A, A EA G,

1<ji,e.jry1=f
1<t<d

for any subseif containing p self-adjoint elements ®f any s, ..., ¢ abelian
x-subalgebras of?, and any integer d> 1.

Proof. Apply Theorem 4.4andCorollary 4.5for * =%, s = A, ..., A7 =sls.
O

Corollary 4.7settles the second part of the conjecture of Ge and Pogeg]
in the casen = oo. As a reminderfa () is defined as

min{ f € N | 3 abelian«-algebrasdy, ..., s C M S.t.5p d1slp - - ot = M}
for every type lj-factor ..
Corollary 4.7. £a(£(Fn)) > [%5%] +1for 4 < n < oo.
Proof. This follows from the first part o€orollary 4.6with % = {1}. d

Corollary 4.8. If ? c £(Fy) is a subfactor of finite index anl < n < oo, then
(@) = [F3] + 1.

Proof. Apply the second part dEorollary 4.6 a
Remark 4.9. One can combine both indecomposability propertie€@f,) into a

single statement: ifi > p+2f 4 1, the free group facta?(F,) does not admit an
asymptotic decomposition of the form

lim I-ll2 Z J‘/szg)lgzwﬂ/tcjuzgzw L M?:gzw./(/lq)

Jt+1°

w—0 . -
1<j1,....jtya<f
1<t<d
where each subsgt’ containsp self-adjoint elements, eactt, ..., MY C L(Fn)

is either a nonprime subfactor or an abeliasubalgebra and > 1 is an integer.
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STABLE REFLEXIVE SHEAVES
ON SMOOTH PROJECTIVE 3-FOLDS

PETERVERMEIRE

Motivated by Hartshorne’s work on curves in P3, we study the properties
of reflexive rank-2 sheaves on smooth projective threefolds.

1. Introduction

We work over an algebraically closed field of characteristic 0.

There has been a tremendous amount of interest in recent years in the study
curves on Calabi-Yau threefolds, and especially on the general quirfiit. itn
this note, motivated by Hartshorne’s work9[78 1980 on curves inP3, we study
the properties of reflexive rank-2 sheaves on smooth projective threefolds.

Some similar results are obtained iBdllico and Mir6-Roig 199F for Fano
threefolds (and somewhat more generally). The greatest advantage of our resul
is the determination of explicit effective bounds for the third Chern clas®f a
reflexive sheafTheorem 13 and of explicit bounds for vanishing of higher coho-
mology and the existence of global sectio@®follary 13. In Section 3we write
out these bounds for the case of a smooth threefold hypersurface of degree

We refer the reader téfartshorne 198dor basic properties of reflexive sheaves.
Recall the followingSerre correspondender reflexive sheaves (the referenced
result is only forP3, but as noted inHartshorne 19781.1.1] the general case
follows immediately from the proof):

Theorem 1[Hartshorne 19804.1]. Let X be a smooth projective threefoli
an invertible sheaf with Fi(X, M*) = H2(X, M*) = 0. There is a one-to-one
correspondence between

(1) pairs (%, s), where.Z is a rank2 reflexive sheaf on X with2.# = M and
se I'(%) is a section whose zero set has codimengiand

(2) pairs (Y, &), where Y is a closed Cohen—Macaulay curve ing&nerically a
local complete intersectigrand & € I'(Y, wy ® 0y ® M*) is a section that
generates the sheak ® vy ® M* except at finitely many points

MSC2000: 14J60.
Keywords: reflexive sheaves, Serre correspondence, Chern classes.
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Furthermore c3(%) = 2pa(Y) — 2— co(F)Cr(wx) — C2(F)C1(F). O

The case wher¢ is locally free corresponds the cur¥ebeing a local complete
intersection. Furthermorey ® wy ® M* =0y, £ is a nonzero section amgd(.% ) =
0. In this case we saY is subcanonical

Example 2. SupposeX C P*is a smooth hypersurface of degoseY X a smooth
rational curve. ThelY is the zero locus of a section of some rank two vector bundle
V if and only if Y is a line or a plane conic in the embedding givendyy(1). If

Y is a line, then\2V = 0x(3—d); if Y is a plane conic, thep?V = Ox (4 —d).

Example 3. SupposeX c P* is a smooth hypersurface of degrégY c X a
smooth elliptic curve. ThelY is the zero locus of a section of some rank two
vector bundlev with A2V = 0x(5—d).

Finally, we recall some basic formulae:
Proposition 4. Let.# be a coherent sheaf of rank r on a smooth threefold Xen
X(X, F) = 5e1(F)° = jeu(F)ea(F) — jeu(X)ca(F) + ze(X)en(F)?
+15C1(X)°C1(F) + £562(X)C1(F) + 2361(X)C2(X) + 3C3(F).

Note also that if# has rank two and L is an invertible shedhen

(1) cu(F ® L) =ci(F) +2c(L),

(2) c2o(F ®L) =Co(F) + ca(L)Cu(F) + ca(L)?,

() a(F ®L) =c3(F).

2. Stability and Boundedness

Definition 5. Let L be a very ample line bundle on a smooth projective vanéety
A reflexive coherent shea¥ on X is L-semistabléf for every coherent subsheaf
F' of # with 0 < rank.%’ < rank.%, we haveu (%', L) < u(%#, L), where

B Cl(}‘).[L]dim X-1
~ (rank.Z) [L]dimX"

If the inequality is strict,# is L-stable Note that if rank7 = 2, it suffices to take
7' invertible.

w(F, L)

Definition 6. We say that a reflexive sheaf is normalized with respect to f
-1 < u(#,L) <0. AsL is typically fixed, we usually say simply tha¥ is
normalized Note that sinceu(%# ® L, L) = u(#, L) + 1, there exists, for any
fixed.#, a uniquek € Z such thatZ ® LX is normalized with respect tb.

For a fixed X, our goal is to give a bound ocy(.%#) in terms ofci(.%#) and
c2(%). Note that the formula focs in Theorem Ilgives:
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Lemma 7. Let X be a smooth threefqltl a very ample line bund|e# a rank two
reflexive sheafA%.# = M a line bundle with H(M*) = H2(M*) =0. If se ['(.%)
is a section whose zero locus is a curtreen
c3(#) < d? - 3d — co(F)C1(wx) — C2(F)C1(F)

where d= ca(F)cy(L).
Proof. In light of Theorem 1we need only note that the degree of the curve section
in the embedding given by isd = cy(.#)c1(L). The fact that Pa(Y)—2<d?—3d
is just the bound coming from the degree of a plane curve. O

The idea now is: given a very ample line bundliebound the twist of# by L'
needed to produce a section, and then use the boubenima 7 First note the
following elementary result:

Lemma 8. Let.# be a reflexive sheaf on a smooth projective variety X with a very
ample line bundle LIf either

(1) Z# is L-stable andu(.%#, L) <0or

(2) 7 is L-semistable angt(.%#, L) <0

then H°(X, .#) = 0.

Proof. Suppose otherwise tha¥ has a sectio®x — .%. Dualizing, we get a

surjection7* — 4y C Ox; dualizing again we have & 4y — .7, but 4§ is

invertible andH (X, %) = Homg, (A, Ox) # 0. Henceu (4%, L) > 0 and the

result follows. O
The main technical result is:

Proposition 9. Let X be a smooth projective threefold with very ample line bundle
L and withPicX = ZL. Let.# be a normalized L-semistable ra2kreflexive
sheaf and D be a general member of the linear systdm Assume that the
general member of the linear systéIm® Op| is not rational and that m< O is an
integer satisfying

2m < 3u(®x, L) —2u(%#, L) — 2.
Then H(Zp(mD)) = 0.

Remark 10. The assumption that the general member of the linear sy$t&0p |
is not rational can be dropped if we require that

2m < 3u(Ox, L) — 2u(F, L) — 4.

As this would impact all further estimates, we have chosen to add the extra hypoth
esis rather than explicitly keeping track of the two separate cases. The intereste
reader will have little trouble altering the bounds in subsequent arguments in case
where this is of interest (say a threefold quadric hypersurface).



394 PETER VERMEIRE

Proof of Proposition 9 We proceed by contradiction. Latbe the smallest integer,
if one exists, satisfying the inequality and such thEX(.%p (m D)) is nonzero for
the general, hence every, membetlof. We will showm > 0.

Fix a smooth membeb such that%p is locally free. The proposed section
yields a sequence

0— 0p — Zp(MD) — #7(2mD) ® A\2.Z — 0,

whereZ c D is zero-dimensional of lengtty(-# (m D)). Choose a smooth curve
C in the systenLp]| (i.e., in the class oD.[L]) with ZNC empty. Tensoring the
sequence above Ifi yields an extension of line bundles.

The class of the extension lies in

Extl, (Oc. Oc(~2mD) ® A2F*) = H(C, Oc(~2m D) ® A2F*).

Note thatKc = Kx ® 6c(2D). Now, as the inequality in the hypotheses is easily
seen to be equivalent to

—2m[LT® — c1(Z).[L1? > Kx.[L1?+ 2[L]® = 29(C) — 2
the extension group vanishes, hence
Fc(mD) =0c & [0c(2mD) ® \°.7 ]
andh®(C, .Zc(mD)) = 1. By minimality ofm, we see also that
h%(D,.Zp(mD)) = 1.

Now blow up X alongC, and considerr : Blc(X) — X. We have a morphism
f : Blc(X) — P! given by the pencil of divisors ifiL| containingC. It is easy
to see that foreveryone of these divisorsh®(.#p(mD)) = 1. Then, because
7*.% is reflexive, f.7*.% (mD) is invertible Hartshorne 19801.4,1.7]. However,
we know thatH%(%p(mD)) - HO(%c(mD)) is an isomorphism and therefore
f,r*#(MmD) = f,n* %c(mD) = 0p1, where the lastisomorphism follows directly
from the splitting of.%¢.

ConsequentlyH%(X, .# (mD)) # 0 and som > 0 by Lemma 8 contradicting
the assumption than is negative. O

Corollary 11. With notation and hypotheses adHgposition 9 if

2k > max{0, 2+ 2u(Z, L) — 3u(Ox, L)},
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then H*(D, Kp ® .# (kD)) = O for the general member Of , furthermore k is
such that

(6k?+ 6k +2) — (6k +3) (21 (F, L) +3u(Ox, L))
- (6C2(F) — c1(X)? — Ber(F)? — Bcr(F)er(X) — Ca(X))[L]
B [L]® ’
then H(D, Kp ® Z (kD)) # 0.
Proof. We can choos® smooth and so tha¥# is locally free. Then

h?(D, Kp ® Z4 (kD)) = h°(D, Fp(—kD)),

which is zero byProposition 9
Because of the vanishing &f2 above, the second part follows directly from a
computation of the Euler characteristic. d

Corollary 12. With notation and hypotheses asRsoposition 9there exists a
constantp depending on.%), co(%#), c1(L) and ¢(®x) such that if r> p then
H(D, Kp ® Z§(rD)) =0.

Proof. By the previous corollary, there is a constant depending on the above param
eters such that i is larger than that constant, th&m ® 75 (kD) has a section.
Choosing thesmallestsuch integek we have a sequence

0— 0p — Kp ® #35(kD) — .#7(2kD) ® K3 ® A\2.F* — 0,
where, as aboveZ D is zero-dimensional of length
€ =c2(:Fp) — (c1(Kp) + ker(G(D))) c1(:Fp) + (c1(Kp) + ke (@(D)))?.

Leta € Z be such thaK% ® A\27* = L% BecauseD is a smooth surface,
H1(D, 6(pD)) = 0 for p > 3c1(L)% — 5 (by [Bertram et al. 19911.10], for in-
stance). Further, by the standard uniform regularity restrhford 1966 p.103],
H(D, #z((2k + t)D) ® K3 ® A2Z*) vanishes fort > ¢ — 2k — o« — 2 and
t >3ci(L)3—7—2k —a.

ConsequentlyH*(D, Kp ® #5(rD)) = 0 for

r>max{¢—k—a—2 3c(L)3—7—k—al. O
Corollary 13. With notation and hypotheses asRmoposition 9 there exists an
integerp, depending ong.%), c2(%), c1(L) and ¢ (®x) such that if r> p, then
HOX, Kx ® F*® L") #£0.
Proof. The vanishing oH* andH?2 on D described in the corollaries above gives

H?(X, Kx®.Z*®L") =0. The result now follows by another Euler characteristic
argument (se@roposition 4. O
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Theorem 14.Let X be a smooth projective threefold with very ample line bundle
L and withPicX = ZL. Let.# be an L-semistable rankR+eflexive sheaf Then
there exists an integer C depending al.€), co(%#), c1(L) and G (©x) such that

C > c3(%).

Proof. As c3(#) is unaffected by twisting by a line bundle, we may assume that
% is normalized. The preceding results apply and we can take a sectiog ®f
F*® LK for somek, bounded as i€orollary 13 We then have an exact sequence

0—0x > Kx®F* ®L* > A @K@ L*@N°F* -0,
whereY C X is a curve. Computing Euler characteristics gives
2pa(Y) — 2= didz + c3(F) + C1(wx)da,
where
dh = c1(Kx ® F* ® LX) = —c1(F) — 2c1(X) + 2kea (L)

and
= C(Kx®F* @ LY

= Co(F) +C1(F)cr(X) — ke (F)ep (L) + e (X)? — 2kep (X)ea (L) +kPer (L)%
In the embedding determined hy the degree of the curwéis preciselyd,c; (L).
This impliesd,ci (L) (d2c1(L) — 3) > 2pa(Y) — 2 and so

daCa (L) (d2Ca(L) — 3) — didz — daC1(wx) > C3(F). O

3. Explicit bounds

Let X be a smooth hypersurface #f of degreed > 2, and.# a rank twolL-
semistable reflexive sheaf. In this case, we hiye = Ox(d — 5); sinceL-
semistability is independent of the choice lof we takeL = 0(1). Note that
[L]® = d, thatc(@x) = (10— 5d + d?)cy(L)?, and thatu(®x, L) = 3(5—d).
Further, if.Z is normalized them (%, L) =0 oru(%,L) = —%. We explicitly
compute the bound in the cag€.%#, L) = 0, the other case being exactly analo-
gous, though a bit more notationally cluttered. For notational convenience we let
S=cy(F)cu(l).

The first bound irCorollary 11becomes

k > max{0, 2(3d — 1D},

so here it suffices to takde> 0 if d < 5 andk > %(Sd —11) if d > 5.
The second bound iGorollary 11becomes

(6k+3)(3d —15) (6S—35d + 15d2 — 2d3)

6k + 6k + 2
(6k? + 6Kk +2) + > 5

> 0;
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hence

—3d? 4 13d + +/11d% — 150d3 4 391d2 + 48d S
4d
whenS > ‘%8(—11d3 + 15002 — 391d), otherwise the second bound @orollary
11is unnecessary.
In Corollary 12 note thatK p = 0p (d —4) and that the bound fop is irrelevant
since the vanishing holds already fpe= 0. The length ofZ is at most

k >

S+d(d—4+k)?
so for the vanishindd?(D, Kp ® Z5(rD)) = 0 we need
2r > S+d(d—4+k)2—2(d — 4).

In Corollary 13 we compute the Euler characteristicsf*(m) and takem >r
such thaty (Kx ® Z*(m)) — 3(c3(#)) > 0. We have

x (Kx ® Z*(m)) — 3(c3(F))
= & (2m+d - 5)(d*+ 2md? — 5d? — 10md-+ 10d + 2m?d — 65);

hence we need

—d?+5d ++/5d2—d4+12dS
g 2d '
As before, this bound is irrelevant unleSs> liz(d3 —5d).
For example, in the case of the quintic we obtain

(1) for S> 13:
256c3(F) < (32082 +80S+/60S—525— 4004S— 540v/60S—525+ 11955
X (32082 +80S+/60S—525— 40685 — 548y/60S—525+ 12339;

(2) for S<13:
16c3(.%) < (5 + 184S+ 1620 (55 + 180S+ 1536).
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