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Let k be a finite field, a global field, or a local non-archimedean field, and
let H1 and H2 be split, connected, semisimple algebraic groups over k. We
prove that if H1 and H2 share the same set of maximal k-tori, up to k-
isomorphism, then the Weyl groups W(H1) and W(H2) are isomorphic, and
hence the algebraic groups modulo their centers are isomorphic except for
a switch of a certain number of factors of type Bn and Cn.

(Due to a recent result of Philippe Gille, this result also holds for fields
which admit arbitrary cyclic extensions.)

1. Introduction

Let H be a connected, semisimple algebraic group over a field k. It is natural to ask
to what extent the group H is determined by the k-isomorphism classes of maximal
k-tori contained in it. We study this question over finite fields, global fields and
local non-archimedean fields, and prove the following theorem.

Theorem 1.1 (Theorem 4.1). Let k be a finite field, a global field or a local non-
archimedean field, and let H1 and H2 be split, connected, semisimple algebraic
groups over k. Suppose that for every maximal k-torus T1 ⊂ H1 there exists a
maximal k-torus T2 ⊂ H2 such that the tori T1 and T2 are k-isomorphic, and vice
versa. Then the Weyl groups W (H1) and W (H2) are isomorphic.

Moreover, if we write W (H1) and W (H2) as a direct product of Weyl groups of
simple algebraic groups, W (H1)=

∏
31

W1,α, and W (H2)=
∏
32

W2,β , then there
exists a bijection i : 31 → 32 such that W1,α is isomorphic to W2,i(α) for every
α ∈31.

Since a split simple algebraic group with trivial center is determined by its Weyl
group, except for the groups of the type Bn and Cn , we have following theorem.

Theorem 1.2. Let k be as in Theorem 1.1, and let H1 and H2 be split, connected,
semisimple algebraic groups over k, with trivial center. Write H1 and H2 as direct
products of simple groups: H1 =

∏
31

H1,α, and H2 =
∏
32

H2,β . If H1 and H2

satisfy the condition given in Theorem 1.1, then there is a bijection i : 31 → 32
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such that H1,α is isomorphic to H2,i(α), except for the case where H1,α is a simple
group of type Bn or Cn , in which case H2,i(α) could be of type Cn or Bn .

From the explicit description of maximal k-tori in SO(2n+1) and Sp(2n) (see
for instance [Kariyama 1989, Proposition 2]) one finds that these groups contain
the same set of k-isomorphism classes of maximal k-tori.

We show by an example that the existence of split tori in the groups H1 and H2

is necessary. Note that if k is Qp, then the Brauer group of k is Q/Z. Consider the
central division algebras of degree five, D1 and D2, corresponding to 1/5 and 2/5
in Q/Z respectively, and let

H1 = SL1(D1) and H2 = SL1(D2).

The maximal tori in H1 and H2 correspond, respectively, to the maximal commu-
tative subfields in D1 and D2. But over Qp every division algebra of a fixed degree
contains every field extension of that degree (see [Pierce 1982, Proposition 17.10
and Corollary 13.3]), so H1 and H2 share the same set of maximal tori over k. But
they are not isomorphic, since it is known that SL1(D) ∼= SL1(D′) if and only if
D ∼= D′ or D ∼= (D′)op [Knus et al. 1998, 26.11].

This paper is arranged as follows. The description of the k-conjugacy classes
of maximal k-tori in an algebraic group H defined over k can be given in terms of
the Galois cohomology of the normalizer in H of a fixed maximal torus. Similarly,
the k-isomorphism classes of n-dimensional tori defined over k can be described
in terms of n-dimensional integral representations of the Galois group of k (the
algebraic closure of k) over k. Using these two descriptions, in Section 2 we obtain
a Galois cohomological description for the k-isomorphism classes of maximal k-
tori in H . Since we are dealing with groups that are split over the base field k, the
Galois action on the Weyl groups is trivial. This enables us to prove, in Section
4, that if split, connected, semisimple algebraic groups H1 and H2 of rank n share
the same set of maximal k-tori up to k-isomorphism, then the Weyl groups W (H1)

and W (H2), considered as subgroups of GLn(Z), share the same set of elements
up to conjugacy in GLn(Z).

This then is the main question to be answered: if the Weyl groups of two split,
connected, semisimple algebraic groups, W1 and W2, embedded in GLn(Z) in the
natural way, i.e., by their action on the character group of a fixed split maximal
torus, have the property that every element of W1 is GLn(Z)-conjugate to one
in W2 and vice versa, are the Weyl groups isomorphic? Much of the work in
this paper seeks to prove this statement by using elaborate information available
about the conjugacy classes in Weyl groups of simple algebraic groups together
with their standard representations in GLn(Z). Our analysis finally depends on the
knowledge of characteristic polynomials of elements in the Weyl groups considered
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as subgroups of GLn(Z). This information is summarized in Section 3. Using it
we prove the main theorem in Section 4.

We emphasize that if we were proving Theorems 1.1 and 1.2 for simple alge-
braic groups, our proofs would be relatively very simple. However, for semisimple
groups, we have to make a somewhat complicated inductive argument on the max-
imal rank among the simple factors of the semisimple groups H1 and H2.

We use the term “simple Weyl group of rank r” for the Weyl group of a simple
algebraic group of rank r . Any Weyl group is a product of simple Weyl groups in
a unique way (up to permutation). We say that two Weyl groups are isomorphic if
and only if the simple factors and their multiplicities are the same.

The question studied in this paper seems relevant for the study of Mumford–
Tate groups over number fields. The author was informed, after the completion of
the paper, that Theorem 1.1 over a finite field is implicit in the work of Larsen and
Pink [1992]. We would like to mention that although much of the paper could be
said to be implicitly contained in [Larsen and Pink 1992], the theorems we state
(and prove) are not explicitly stated there, and our proofs are also different.

2. Galois cohomological lemmas

We begin by fixing notation. Let k denote an arbitrary field and let G(k/k) be
the Galois group of k (the algebraic closure of k) over k. Let H denote a split,
connected, semisimple algebraic group defined over k and let T0 be a fixed split
maximal torus in H , of dimension n. Let W be the Weyl group of H with respect
to T0. Then we have an exact sequence of algebraic groups defined over k,

0−→ T0 −→ N (T0)−→W −→ 1

where N (T0) denotes the normalizer of T0 in H .
The above exact sequence gives us a map ψ : H 1(k, N (T0))→ H 1(k,W ). It is

well known that a certain subset of H 1(k, N (T0)) classifies k-conjugacy classes of
maximal k-tori in H . For the sake of completeness, we formulate this as a lemma
in the case of split, connected, semisimple groups.

Lemma 2.1. Let H be a split, connected, semisimple algebraic group defined over
a field k and let T0 be a fixed split maximal torus in H . The natural embedding
N (T0) ↪→H induces a map9 :H 1(k, N (T0))→H 1(k, H). The set of k-conjugacy
classes of maximal tori in H are in one-one correspondence with the subset of
H 1(k, N (T0)) which is mapped to the neutral element in H 1(k, H) by the map 9.

Proof. Let T be a maximal k-torus in H and let L be a splitting field of T , that is,
assume that the torus T splits as a product of Gms over L . We assume that the field
L is Galois over k. By the uniqueness of maximal split tori up to conjugacy, there
exists an element a ∈ H(L) such that aT0 a−1

= T . Then for any σ ∈G(L/k), we
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have σ(a)T0 σ(a)−1
= T , as both T0 and T are defined over k. This implies that(

a−1σ(a)
)
T0

(
a−1σ(a)

)−1
= T0.

Therefore a−1σ(a) ∈ N (T0). This enables us to define a map G(L/k)→ N (T0)

which sends σ to a−1σ(a), and by composing this map with the natural map
G(k/k)→ G(L/k), we get a map φa : G(k/k)→ N (T0). We check that

φa(στ)= φa(σ )σ
(
φa(τ )

)
for all σ, τ ∈ G(k/k), and hence that φa is a 1-cocycle. If b ∈ H(L) is another
element such that bT0 b−1

= T , we see that

φa(σ )= (b−1a)−1φb(σ )σ (b−1a).

Thus the element [φa] ∈ H 1(k, N (T0)) is determined by the maximal torus T , and
so we denote it by φ(T ). It is clear that φ(T ) is determined by the k-conjugacy
class of T . Moreover, if φ(T ) = φ(S) for two maximal tori T and S in H , then
one can check that these two tori are conjugate over k. Indeed, if T = aT0 a−1 and
S = bT0 b−1 for a, b ∈ H(k) then for any σ ∈ G(k/k),

a−1σ(a)= c−1(b−1σ(b)
)
σ(c)

for some c ∈ N (T0). Then σ(bca−1) = bca−1 for all σ ∈ G(k/k), and hence
bca−1

∈ H(k) and (bca−1)T (bca−1)−1
= S. Further, it is clear that the image of

φ in H 1(k, N (T0)) is mapped to the neutral element in H 1(k, H) by 9.
Moreover, if φ1 : G(k/k)→ N (T0) is a 1-cocycle such that 9(φ1) is neutral

in H 1(k, H), then φ1(σ ) = a−1σ(a) for some a ∈ H(k). Then the cohomology
class [φ1] ∈ H 1(k, N (T0)) corresponds to the maximal torus S1 = aT0a−1 in H .
Since a−1σ(a)= φ1(σ ) ∈ N (T0), the torus S1 is invariant under the Galois action,
and so we conclude that it is defined over k. Thus the image of φ is the inverse
image of the neutral element in H 1(k, H) under the map 9. This is the complete
description of the k-conjugacy classes of maximal k-tori in the group H .

Finally, we observe that the detailed proof we have given above amounts to
looking at the exact sequence 1→ N (T0)→ H→ H/N (T0)→ 1 which gives an
exact sequence

H/N (T0)(k)−→ H 1(k, N (T0))−→ H 1(k, H)

of pointed sets. Therefore H/N (T0)(k), which is the variety of conjugacy classes
of k-tori in H , is identified with the elements of H 1(k, N (T0))which become trivial
in H 1(k, H). �

We also recall the correspondence between k-isomorphism classes of n-dimen-
sional k-tori and equivalence classes of n-dimensional integral representations of
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G(k/k). Let T0=Gn
m be the split torus of dimension n, let T1 be an n-dimensional

torus defined over k, and let L1 denote the splitting field of T1. Since the torus
T1 is split over L1, we have an L1-isomorphism f : T0→ T1. The Galois action
on T0 and T1 gives us another isomorphism, f σ := σ f σ−1

: T0→ T1. Again one
sees that the map ϕ f :G(k/k)→AutL1(T0), given by σ 7→ f −1 f σ , is a 1-cocycle.
Since the torus T0 is already split over k, we have AutL1(T0) ∼= Autk(T0), and
hence the Galois group G(k/k) acts trivially on AutL1(T0), which is isomorphic
to GLn(Z). Therefore, ϕ f is actually a homomorphism from the Galois group
G(k/k) to GLn(Z). This homomorphism gives an n-dimensional integral repre-
sentation of the absolute Galois group, G(k/k). By changing the isomorphism f
to any other L1-isomorphism from T0 to T1, we get a conjugate of ϕ f . Thus the
element [ϕ f ] in H 1(k,GLn(Z)) is determined by T1 and we denote it by ϕ(T1).
Thus a k-isomorphism class of an n-dimensional torus gives us an equivalence
class of n-dimensional integral representations of the Galois group, G(k/k). This
correspondence is known to be bijective [Platonov and Rapinchuk 1994, 2.2].

Since the group H that we consider here is split over the base field k, the Weyl
group W of H is defined over k, and W (k) = W (k). Therefore G(k/k) acts
trivially on W , and hence H 1(k,W ) is the set of conjugacy classes of elements
in Hom(G(k/k),W ). Since W acts faithfully on the character group of T0, we
can consider W ↪→ GLn(Z) and thus each element of H 1(k,W ) gives us an in-
tegral representation of the absolute Galois group. For a maximal torus T in H ,
we already have an n-dimensional integral representation of G(k/k), as described
above. We prove that this representation is equivalent to a Galois representation
given by an element of H 1(k,W ).

Lemma 2.2. Let H be a split, connected, semisimple algebraic group defined over
k. Fix a maximal split k-torus T0 in H . Let T be a maximal k-torus in H , let φ(T )∈
H 1(k, N (T0)) be the cohomology class corresponding to the k-conjugacy class of
T in H , and let ϕ(T ) ∈ H 1(k,GLn(Z)) be the cohomology class corresponding
to the k-isomorphism class of T . Then the integral representations given by ϕ(T )
and i ◦ψ ◦φ(T ) are equivalent, where ψ : H 1(k, N (T0))→ H 1(k,W ) is induced
by the natural map from N (T0) to W , and i is the natural map from H 1(k,W ) to
H 1(k,GLn(Z)).

Proof. Let L be a splitting field of T , then an element a∈H(L) such that aT0 a−1
=

T enables us to define a 1-cocycle φa :G(k/k)→N (T0) given by φa(σ )=a−1σ(a).
The element φ(T ) ∈ H 1(k, N (T0)) is precisely the class [φa].

Further, we treat conjugation by a as an L-isomorphism f : T0→ T , and then
it can be checked that the map f σ := σ f σ−1 is precisely conjugation by σ(a).
The element ϕ(T ) ∈ H 1(k,GLn(Z)) is equal to [ϕ f ], where ϕ f (σ ) = f −1 f σ .
Now, the map ψ : N (T0)→W is the natural map taking an element α ∈ N (T0) to
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α := α · T0 ∈W = N (T0)/T0. Hence we have

ψ
(
φa(σ )

)
= a−1σ(a)= f −1 f σ = ϕ f (σ ).

Since the action of W on T0 is given by conjugation, it is clear that the integral
representation of the Galois group G(k/k), given by ψ(φ(T )), is equivalent to the
one given by ϕ(T ). �

Thus, a k-isomorphism class of a maximal torus in H gives an element in
H 1(k,W ). We note here that not every subgroup of the Weyl group W may appear
as a Galois group of some finite extension K/k. For instance, if k is a local field
of characteristic zero it is known that the Galois group of any finite extension over
k is a solvable group [Serre 1979, IV].

If we assume that the base field k is either a finite field or a local non-archimedean
field, we have the following result.

Lemma 2.3. Let k be a finite field or a local non-archimedean field and let H be
a split, connected, semisimple algebraic group defined over k. Fix a split maximal
torus T0 in H and let W denote the Weyl group of H with respect to T0. An element
in H 1(k,W ) which corresponds to a homomorphism ρ : G(k/k)→W with cyclic
image, corresponds to a k-isomorphism class of a maximal torus in H under the
mapping ψ : H 1(k, N (T0))→ H 1(k,W ).

Proof. Consider the map 9 : H 1(k, N (T0))→ H 1(k, H) induced by the inclusion
N (T0) ↪→ H . If we denote the neutral element in H 1(k, H) by ι, then by Lemma
2.1 the set

X :=
{

f ∈ H 1(k, N (T0)) :9( f )= ι
}

is in one-one correspondence with the k-conjugacy classes of maximal k-tori in H .
By Lemma 2.2, it is enough to show that [ρ] ∈ψ(X), where ψ : H 1(k, N (T0))→

H 1(k,W ) is induced by the natural map from N (T0) to W .
By Tits’ theorem [1966, 4.6], there exists a subgroup W of N (T0)(k) such that

the sequence
0−→ µn

2 −→W −→W −→ 1

is exact. Let N denote the image of ρ in W . We know that N is a cyclic subgroup
of W . Let w be a generator of N and w be a lifting of w to W . Since the base field
k admits cyclic extensions of any given degree, there exists a map ρ1 from G(k/k)
to W whose image is the cyclic subgroup generated by w. Since the Galois action
on W is trivial, as W is a subgroup of N (T0)(k), the map ρ1 could be treated as a
1-cocycle from G(k/k) to N (T0). Consider [ρ1] as an element in H 1(k, N (T0)),
then ψ[ρ1] = [ρ] ∈ H 1(k,W ). We now consider two cases.

Case 1: k is a finite field.
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By Lang’s Theorem [1956, Corollary to Theorem 1], H 1(k, H) is trivial and so
the set X coincides with H 1(k, N (T0)). Therefore the element [ρ1]∈H 1(k, N (T0))

corresponds to a k-conjugacy class of maximal k-torus in H . Then, by Lemma 2.2,
[ρ] = ψ[ρ1] corresponds to a k-isomorphism class of maximal k-tori in H .

Case 2: k is a local non-archimedean field.
By [Platonov and Rapinchuk 1994, Proposition 2.10] there exists a semisimple,

simply connected algebraic group H̃ , which is defined over k, together with a k-
isogeny π : H̃ → H . We have already fixed a split maximal torus T0 in H ; let
T̃0 be the split maximal torus in H̃ which gets mapped to T0 by the covering map
π . It can be seen that by restriction we get a surjective map π : N (T̃0)→ N (T0),
where the normalizers are taken in appropriate groups. Moreover, the induced map
π1 : W̃ →W is an isomorphism.

We define the maps

ψ̃ : H 1(k, N (T̃0))→ H 1(k, W̃ ) and 9̃ : H 1(k, N (T̃0))→ H 1(k, H̃)

in the same way as the maps ψ and 9 are defined for the group H .
Consider the following diagram, where the horizontal arrows represent natural

maps.
H̃ ←−−− N (T̃0) −−−→ W̃

π

y π

y yπ1

H ←−−− N (T0) −−−→ W,

It is clear that this diagram is commutative and hence so is the following one.

H 1(k, H̃)
9̃
←−−− H 1(k, N (T̃0))

ψ̃
−−−→ H 1(k, W̃ )

π∗

y π∗

y yπ∗1
H 1(k, H) ←−−−

9
H 1(k, N (T0)) −−−→

ψ
H 1(k,W ).

Since π1 is an isomorphism, the map π∗1 is a bijection. Now consider an element
[ρ] ∈ H 1(k,W ) such that the image of the 1-cocycle ρ is a cyclic subgroup of
W , and let [ρ̃] be its inverse image in H 1(k, W̃ ) under the bijection π∗1 . Using
Tits’ theorem [1966] as above, we lift [ρ̃] to an element [ρ̃1] in H 1(k, N (T̃0)).
Since H̃ is simply connected and k is a non-archimedean local field, H 1(k, H̃) is
trivial [Bruhat and Tits 1967; Kneser 1965a, 1965b]. Therefore, 9̃[ρ̃1] is neutral
in H 1(k, H̃) and so is π∗(9̃[ρ̃1]) in H 1(k, H). By commutativity of the diagram,
we have that the element [ρ] ∈ H 1(k,W ) has a lift π∗[ρ̃1] in H 1(k, N (T0)) such
that 9(π∗[ρ̃1]) is neutral in H 1(k, H). Thus the element [ρ] corresponds to a k-
isomorphism class of a maximal torus in H . �
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3. Characteristic polynomials

For a finite subgroup W of GLn(Z), we define ch(W ) to be the set of characteristic
polynomials of elements of W , and ch∗(W ) to be the set of irreducible factors of
elements of ch(W ). Since all the elements of W are of finite order, the irreducible
factors (over Q) of the characteristic polynomials are cyclotomic polynomials. We
denote by φr the r -th cyclotomic polynomial, that is, the irreducible monic poly-
nomial over Z satisfied by a primitive r -th root of unity. We define

mi (W )=max
{
t : φt

i divides f for some f ∈ ch(W )
}

and
m′i (W )=min

{
t : φt

2 ·φ
mi (W )
i divides f for some f ∈ ch(W )

}
.

For positive integers i 6= j , we define

mi, j (W )=max
{
t + s : φt

i ·φ
s
j divides f for some f ∈ ch(W )

}
.

If U1 is a subgroup of GLn(Z) and U2 is a subgroup of GLm(Z), then U1×U2 can
be treated as a subgroup of GLm+n(Z). Then

ch(U1×U2)=
{

f1 · f2 : f1 ∈ ch(U1), f2 ∈ ch(U2)
}
.

Moreover, one can easily check that

mi (U1×U2)=mi (U1)+mi (U2),

m′i (U1×U2)=m′i (U1)+m′i (U2)

for all i , and
mi, j (U1×U2)=mi, j (U1)+mi, j (U2)

for all i, j . A simple Weyl group W of rank n has a natural embedding in GLn(Z).
We obtain a description of the sets ch∗(W ) with respect to this natural embedding.
Here we use the following result due to T. A. Springer [1974, Theorem 3.4(i)] about
the fundamental degrees of the Weyl group W . We recall that the degrees of the
generators of the invariant algebra of the Weyl group are called as the fundamental
degrees of the Weyl group.

Theorem 3.1 (Springer). Let W be a complex reflection group with fundamental
degrees d1, d2, . . . , dm . An r-th root of unity occurs as an eigenvalue for some
element of W if and only if r divides one of the fundamental degrees di of W .

Equivalently, the irreducible polynomial φr is in ch∗(W ) if and only if r divides
one of the fundamental degrees di of the reflection group W .

Table 3.2 lists the fundamental degrees and the divisors of degrees for the simple
Weyl groups (see [Humphreys 1990, 3.7]).
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Type Degrees Divisors of degrees

An 2, 3, . . . , n+1 1, 2, . . . , n+1
Bn 2, 4, . . . , 2n 1, 2, . . . , n, n+2, n+4, . . . , 2n for n even

1, 2, . . . , n, n+1, n+3, . . . , 2n for n odd
Dn 2, 4, . . . , 2n−2, n 1, 2, . . . , n, n+2, n+4, . . . , 2n−2 for n even

1, 2, . . . , n, n+1, n+3, . . . , 2n−2 for n odd
G2 2, 6 1, 2, 3, 6
F4 2, 6, 8, 12 1, 2, 3, 4, 6, 8, 12
E6 2, 5, 6, 8, 9, 12 1, 2, 3, 4, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30

Table 3.2. Fundamental degrees and divisors of the simple Weyl groups

Using Theorem 3.1 and Table 3.2, we can now easily compute the set ch∗(W )

for any simple Weyl group W . We summarize them below.

ch∗(W (An))= {φ1, φ2, . . . , φn+1}

ch∗(W (Bn))= {φi , φ2i : i = 1, 2, . . . , n}

ch∗(W (Dn))= {φi , φ2 j : i = 1, 2, . . . , n, j = 1, 2 . . . , n− 1}

ch∗(W (G2))= {φ1, φ2, φ3, φ6}

ch∗(W (F4))= {φ1, φ2, φ3, φ4, φ6, φ8, φ12}

ch∗(W (E6))= {φ1, φ2, φ3, φ4, φ5, φ6, φ8, φ9, φ12}

ch∗(W (E7))= {φ1, φ2, . . . , φ10, φ12, φ14, φ18}

ch∗(W (E8))= {φ1, φ2, . . . , φ10, φ12, φ14, φ15, φ18, φ20, φ24, φ30}

4. Main result

In this section, k is either a finite field, a global field or a non-archimedean local
field. We now restate the main result, Theorem 1.1.

Theorem 4.1. Let H1 and H2 be split, connected, semisimple algebraic groups
defined over k. Suppose that for every maximal k-torus T1 ⊂ H1 there exists a
maximal k-torus T2⊂ H2 such that the torus T2 is k-isomorphic to the torus T1 and
vice versa. Then, the Weyl groups W (H1) and W (H2) are isomorphic.

Moreover, if we write W (H1) and W (H2) as a direct product of Weyl groups of
simple algebraic groups, W (H1)=

∏
31

W1,α, and W (H2)=
∏
32

W2,β , then there
exists a bijection i : 31 → 32 such that W1,α is isomorphic to W2,i(α) for every
α ∈31.

The proof of this theorem occupies the rest of this section. Clearly the groups
H1 and H2 are of the same rank, say n. Let W1 and W2 denote the Weyl groups
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of H1 and H2, respectively. We always treat W1 and W2 as subgroups of GLn(Z).
We first prove a lemma which transforms the information about k-isomorphism of
maximal k-tori in the groups H1 and H2 into some information about the conjugacy
classes of the elements of the corresponding Weyl groups W1 and W2.

Lemma 4.2. Under the hypotheses of Theorem 4.1, for every element w1 ∈ W1,
there exists an element w2 ∈ W2 such that w2 is conjugate to w1 in GLn(Z) and
vice versa.

Proof. Let w1 ∈ W1 and let N1 denote the subgroup of W1 generated by w1.
Since the base field k admits any cyclic group as a Galois group, there is a map
ρ1 : G(k/k)→W1 such that ρ1(G(k/k))= N1.

We first consider the case where k is a finite field or a local non-archimedean
field. By Lemma 2.3, the element [ρ1] ∈ H 1(k,W1) corresponds to a maximal
k-torus in H1, say T1. By the hypothesis, there exists a torus T2 ⊂ H2 which is
k-isomorphic to T1. We know by Lemma 2.2 that there exists an integral Galois
representation ρ2 : G(k/k)→ GLn(Z) corresponding to the k-isomorphism class
of T2 which factors through W2. Let N2 := ρ2(G(k/k)) ⊆ W2. Since T1 and T2

are k-isomorphic tori, the corresponding Galois representations, ρ1 and ρ2, are
equivalent. This implies that there exists g ∈ GLn(Z) such that N2 = gN1g−1.
Then w2 := gw1g−1

∈ N2 ⊆W2 is a conjugate of w1 in GLn(Z). We can start with
an element w2 ∈W2 and obtain its GLn(Z)-conjugate in W1 in the same way.

Now we consider the case when k is a global field. Let v be a non-archimedean
valuation of k and let kv be the completion of k with respect to v. Clearly the
groups H1 and H2 are defined over kv. Let T1,v be a maximal kv-torus in H1.
Then by Grothendieck’s theorem [Borel and Springer 1968, 7.9, 7.11] and the
weak approximation property [Platonov and Rapinchuk 1994, Proposition 7.3],
there exists a k-torus in H , say T1, such that T1,v is obtained from T1 by the base
change. By hypothesis, we have a k-torus T2 in H2 which is k-isomorphic to T1.
Then the torus T2,v, obtained from T2 by the base change, is kv-isomorphic to T1,v.
Thus, every maximal kv-torus in H1 has a kv-isomorphic torus in H2. Similarly,
we can show that every maximal kv-torus in H2 has a kv-isomorphic torus in H1.
Then the proof follows by the previous case. �

Corollary 4.3. Under the hypotheses of Theorem 4.1, ch(W1) = ch(W2) and
ch∗(W1) = ch∗(W2). In particular, mi (W1) = mi (W2), m′i (W1) = m′i (W2) and
mi, j (W1)=mi, j (W2) for all i, j .

Proof. Since the Weyl groups W1 and W2 share the same set of elements up to
conjugacy in GLn(Z), the sets ch(W1) and ch(W2) are the same, and hence the
sets ch∗(W1) and ch∗(W2) are also the same. Further, for a fixed integer i , φmi (W1)

i
divides an element f1 ∈ ch(W1). But since ch(W1) = ch(W2), the polynomial
φ

mi (W1)
i also divides an element f2 ∈ ch(W2). Therefore mi (W1) ≤ mi (W2). We
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obtain the inequality in the other direction in the same way and hence mi (W1) =

mi (W2). Similarly, we can prove that m′i (W1)=m′i (W2), and also that, for integers
i 6= j , the sets{

(t1, s1) : φ
t1
i ·φ

s1
j divides some element f1 ∈ ch(W1)

}
,{

(t2, s2) : φ
t2
i ·φ

s2
j divides some element f2 ∈ ch(W2)

}
are the same for i = 1, 2. It follows that mi, j (W1)=mi, j (W2). �

We now prove the following result before going on to prove the main theorem.

Theorem 4.4. Let H1 and H2 be split, connected, semisimple algebraic groups of
rank n. Suppose that mi (W (H1)) = mi (W (H2)), that m′i (W (H1)) = m′i (W (H2)),
and that mi, j (W (H1))=mi, j (W (H2)) for all i, j . Let m be the maximum possible
rank among the simple factors of H1 and H2. Let W ′1 and W ′2 denote the product
of the Weyl groups of rank m simple factors of , respectively, H1 and H2. Then the
groups W ′1 and W ′2 are isomorphic.

Proof. We denote W (H1) by W1 and W (H2) by W2. We prove that if a simple Weyl
group of rank m appears as a factor of W1 with multiplicity p, then it appears as
a factor of W2, with the same multiplicity. We prove this lemma case by case,
depending on the type of rank m simple factors of H1 and H2.

We prove this result by comparing the sets ch∗(W ) for the simple Weyl groups
of rank m. We observe from Table 3.2 that the maximal degree of the simple Weyl
group of exceptional type, if any, is the largest among the maximal degrees of
simple Weyl groups of rank m. The next largest maximal degree is that of W (Bm),
the next one is that of W (Dm), and finally the Weyl group W (Am) has the smallest
maximal degree. We use the relation between the elements of ch∗(W ) and the
degrees of the Weyl group W , given by Theorem 3.1. So, we begin the proof of
the lemma with the case of exceptional groups of rank m, prove that it occurs with
the same multiplicity for i = 1, 2. Then we prove the lemma for Bm , then for Dm

and finally we prove the lemma for the group Am .

Case 1: One of H1 or H2 contains a simple exceptional factor of rank m.
We first treat the case of the simple group E8, that is, we assume that 8 is

the maximum possible rank of the simple factors of the groups H1 and H2. We
know that m30(W (E8)) = 1. Observe that φ30 is an irreducible polynomial of
degree 8, and hence cannot occur in ch∗(W ) for any simple Weyl group of rank at
most 7. Moreover, from Theorem 3.1 and Table 3.2, it is clear that m30(W (A8))=

m30(W (B8)) = m30(W (D8)) = 0. Hence the multiplicity of E8 in Hi is given by
m30(Wi ) which is the same for i = 1, 2.
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Similarly for the simple algebraic group E7, observe that m18(W (E7))= 1 and
m18(W )= 0 for any simple Weyl group W of rank at most 7. Then the multiplicity
of E7 in Hi is given by m18(Wi ) which is the same for i = 1, 2.

The case of E6 is done by using m9, since it is clear that m9(W ) = 0 for any
simple Weyl group W of rank at most 6.

The cases of F4 and G2 are done similarly by using m12 and m6 respectively.

Case 2: One of H1 or H2 has Bm or Cm as a factor.
Since W (Bm)∼=W (Cm), we treat the case of Bm only. By case 1, we can assume

that the exceptional group of rank m, if any, occurs with the same multiplicities in
both H1 and H2, and hence while counting the multiplicities mi , m′i and mi, j , we
can (and will) ignore the exceptional groups of rank m.

Observe that m2m(W (Bm)) = 1 and m2m(W ) = 0 for any other simple Weyl
group W of classical type of rank at most m. However, it is possible that m2m(W ) 6=

0 for a simple Weyl group W of exceptional type of rank less than m. If m ≥ 16
then this problem does not arise, therefore the multiplicity of Bm in Hi for m ≥ 16
is given by m2m(Wi ), which is the same for i = 1, 2. We do the cases of Bm for
m ≤ 15 separately.

For the group B2, we observe that m4(W (B2)) = 1 and m4(W ) = 0 for any
other simple Weyl group W of rank at most 2. Thus, the case of B2 is done using
m4(W1)=m4(W2).

For the group B3, we have m6(W (B3)) = 1, but then m6(W (G2)) is also 1.
Observe that m4(W (B3))= 1 and m4(W (G2))= 0. We do this case by looking at
the multiplicities of φ4 and φ6, so we do not worry about the simple Weyl groups
W of rank at most 3 for which the multiplicities m4(W ) and m6(W ) are both zero.
Now, let the multiplicities of B3, G2 and B2 in the group Hi be, respectively, pi , qi

and ri , for i = 1, 2. Then, using m6(W1)=m6(W2), we see that p1+q1= p2+q2.
Using m4 we have p1+r1= p2+r2 and using m4,6 we see p1+q1+r1= p2+q2+r2.
Combining these equalities, we see that p1 = p2, that is, the group B3 appears in
both the groups H1 and H2 with the same multiplicity.

For the group B4, we observe that m8(W (B4))=1. Since φ8 has degree 4, it can-
not occur in ch(W ) for any simple Weyl group of rank at most 3 and m8(W (A4))=

m8(W (D4))= 0. Since we are assuming by case 1 that the group F4 occurs in both
H1 and H2 with the same multiplicity, we are done in this case also.

For the group B5, we have m10(W (B5)) = 1 and m10(W ) = 0 for any other
simple Weyl group of classical type of rank at most 5. Since 5 does not divide the
order of W (G2) or W (F4), it follows that m10(W (G2))=m10(W (F4))= 0 and so
we are done.

The group B6 is another group where the exceptional groups give problems. We
have m12(W (B6)) = 1, but m12(W (F4)) is also 1. Observe that m10(W (B6)) = 1,
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but m10(W (F4)) = 0. Now, let the multiplicities of B6, D6, B5 and F4 in Hi be,
respectively, pi , qi , ri and si . Then p1 + s1 = m12(W1) = m12(W2) = p2 + s2.

Similarly, comparing m10, we see that

p1+ q1+ r1 = p2+ q2+ r2.

Then, we compare m10,12 of the groups W1 and W2, to see that

p1+ q1+ r1+ s1 = p2+ q2+ r2+ s2.

Combining this equality with the one obtained by m10, we get that s1= s2 and hence
p1 = p2. Thus the group B6 occurs in both H1 and H2 with the same multiplicity.

We have m14(W (E6)) = 0, therefore the group B7 is characterized by φ14 and
hence it occurs in both H1 and H2 with the same multiplicity.

For the group B8, we have m16(W (B8)) = 1. Since φ16 has degree 8, it cannot
occur in ch∗(W ) for any of the Weyl groups of G2, F4, E6 or E7. Thus, the group
B8 is characterized by φ16 and hence it occurs in both H1 and H2 with the same
multiplicity.

The group B9 has the property that m18(W (B9)) = 1. But m18(W (E7)) =

m18(W (E8)) = 1, and so we conclude that the multiplicity of E8 is the same for
both W1 and W2 using m30. Then we compare the multiplicities m18,m16 and
m16,18 to prove that the group B9 occurs in both the groups H1 and H2 with the
same multiplicity.

Now we examine the case B10. Here m20(W (B10))= 1. Observe that m20(W )=

0 for any other simple Weyl group W of rank at most 10, except E8. Then the
multiplicity of B10 in Hi is m20(Wi )−m30(Wi ) and hence it is the same for i =1, 2.

The same method also works for B12, that is, the multiplicity of B12 in Hi is
m24(Wi )−m30(Wi ).

The multiplicities of B11, B13 and B14 in Hi are given by m22(Wi ),m26(Wi ) and
m28(Wi ) and hence they are the same for i = 1, 2.

For B15, we have m30(W (B15)) = m30(W (E8)) = 1, and m30(W ) = 0 for any
other simple Weyl group W of rank at most 15. Observe also that m28(W (B15))=

m28(W (B14)) = 1, and m28(W ) = 0 for any other simple Weyl group W of rank
at most 15. Then by comparing m30, m28 and m28,30 we get the desired result that
B15 occurs in both H1 and H2 with the same multiplicity.

Case 3: One of H1 or H2 has Dm as a factor.
For this case, we assume that the exceptional group of rank m, if any, and the

group Bm occur in both H1 and H2 with the same multiplicities.
We observe that 2m−2 is the largest integer r such that φr ∈ ch∗(W (Dm)), but

m2m−2(W (Bm−1))= 1. Hence we always have to compare the group Dm with the
group Bm−1.
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Let us assume that m ≥ 17, so that φ2m−2 6∈ ch∗(W ) for any simple Weyl group
of exceptional type of rank less than m.

We know that m2m−2(W (Dm))=m2m−2(W (Bm−1))=1 and that m2m−2(W )=0
for any other simple Weyl group W of classical type of rank at most m. Further,
(X+1)(Xm−1

+1) is the only element in ch(W (Dm)) which has φ2m−2 as a factor.
Similarly Xm−1

+ 1 is the only element in ch(W (Bm−1)) which has φ2m−2 as a
factor. Observe that m′2m−2(W (Dm))=m′2m−2(W (Bm−1))+1 and m′2m−2(W )= 0
for any other simple Weyl group W of rank at most m. Let pi and qi be, respec-
tively, the multiplicities of the groups Dm and Bm−1 in Hi , for i = 1, 2. Then by
considering m2m−2, we have p1 + q1 = p2 + q2. Further if m is even, then by
considering m′2m−2 we have 2p1+q1 = 2p2+q2. These two equalities imply that
p1 = p2. If m is odd then m′2m−2 itself gives p1 = p2. Thus the group Dm appears
in both H1 and H2 with the same multiplicity.

Now we consider the groups Dm , for m ≤ 16.
For D4, we have to consider the simple algebraic groups B3 and G2. Comparing

the multiplicities m6, m4 and m4,6 we see that G2 occurs in both H1 and H2 with
the same multiplicity, and then we proceed as above to prove that D4 also occurs
with the same multiplicity in both the groups H1 and H2

For the group D5, we first prove that the multiplicity of F4 is the same for
both H1 and H2 using m12 and then prove the required result by considering m5,
m8 and m5,8. While dealing with the case D6, we observe that m10(W (G2)) =

m10(W (F4))=0, and so this case follows by an argument similar to that for m≥17.
The case D7 is proved by considering m7, m12 and m7,12. For D8, we first prove that
the group E7 occurs in both H1 and H2 with the same multiplicity by considering
m18 and then proceed as above. For D9, we prove that E8 occurs in both H1 and
H2 with the same multiplicity by considering m30 and proceed as for m ≥ 17. For
D10, we prove that E8 appears in both H1 and H2 with the same multiplicity by
considering m30, and the same follows for E7 by considering m18, m16 and m16,18.

For the groups Dm , where m≥11, the only simple Weyl group W of exceptional
type such that φ2m−2 ∈ ch∗(W ) is W (E8), but for Dm , with m≤ 15, we can assume
that E8 occurs in both H1 and H2 with the same multiplicity by considering m30

and hence we are done. For the group D16, we take care of E8 by considering m30,
m28 and m28,30. Other arguments are similar to the case m ≥ 17.

Case 4: One of H1 or H2 has Am as a factor.
We now consider the case of simple algebraic group of type Am . Here, as usual,

we assume that all other simple algebraic groups of rank m occur with the same
multiplicities in both H1 and H2.

If m is even, then m + 1 is odd and hence mm+1(W ) = 0 for any simple Weyl
group W of classical type of rank less than m. If m ≥ 30, then we do not have to
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bother about the exceptional simple groups of rank less than m. If m is odd and
m ≥ 31, then φm+1 occurs in ch∗(W (Br )) and ch∗(W (Dr+1)) for r ≥ (m + 1)/2.
Then we compare the multiplicities mm , mm+1 and mm,m+1 and find that the group
Am occurs in H1 and H2 with the same multiplicity. We must therefore consider
the cases m ≤ 29 separately.

The cases A1 and A2 are easy since there are no exceptional groups of rank 1.
For A3 we use m3,m4 and m3,4 to get the result, and the case A4 follows similarly
by using m5. The group A5 is more problematic, since neither m6(W (B3)) nor
m6(W (G2)) nor m6(W (F4)) vanish, but this is solved by first proving that F4 ap-
pears with the same multiplicity using m12 and then using the multiplicities m5, m6

and m5,6. The case A6 is solved by using m7, and for A7 we use m7, m8 and m7,8.
With A8, we can first assume that the multiplicity of E7 is the same for both H1

and H2 by using m18, and then use m7, m9 and m7,9 to get the result. For A9 we
can again get rid of E7 and E8 using the multiplicities m18 and m30. Then we are
left with the groups B5 and E6, and so here we use m7, m10 and m7,10 to get the
result.

Further, we note that for even m ∈ {10, 12, 16, . . . , 28}, we have mm+1(W )= 0
for any simple Weyl group of rank less than m. Thus, the multiplicities of the
groups Am in Hi , for even m ∈ {10, 12, 16, . . . , 28}, are characterized by consider-
ing mm+1(Wi ) and are hence the same for i = 1, 2. The case A14 follows by using
m13,m15 and m13,15.

Thus, the only remaining cases are Am where m is odd and 11 ≤ m ≤ 29. We
observe that for odd m ∈ {11, 13, 17, . . . , 29}, the only simple Weyl group W of
rank less than m, with mm(W ) 6= 0, is Am−1. Moreover, mm+1(W (Am−1)) = 0,
so the cases of the groups Am , for odd m ∈ {11, 13, 17, . . . , 29}, are solved by
considering mm,mm+1 and mm,m+1.

The only remaining case is A15, which can be solved by considering m13,m16

and m13,16. �

We now prove the main theorem of this paper.

Proof of Theorem 4.1. Recall that W1 and W2 denote the Weyl groups of H1 and
H2 respectively. Let m0 be the maximum among the ranks of simple factors of
the groups H1 and H2. It is clear from Corollary 4.3 that mi (W1) = mi (W2), that
m′i (W1) = m′i (W2) and that mi, j (W1) = mi, j (W2) for any i, j . Then we apply
Theorem 4.4 to conclude that the products of rank m0 simple factors in W1 and W2

are isomorphic.
Let m be a positive integer less than m0. For i = 1, 2, let W ′i be the subgroup of

Wi which is the product of the Weyl groups of simple factors of Hi of rank greater
than m. We assume that the groups W ′1 and W ′2 are isomorphic and then we prove
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that the products of the Weyl groups of rank m simple factors of H1 and H2 are
isomorphic. This will complete the proof of the theorem by an induction argument.

Let Ui be the subgroup of Wi such that Wi = Ui ×W ′i . Then, since m j (W ′1) =
m j (W ′2) and m′j (W

′

1)=m′j (W
′

2), we have

m j (U1)=m j (W1)−m j (W ′1)=m j (W2)−m j (W ′2)=m j (U2),

m′j (U1)=m′j (W1)−m′j (W
′

1)=m′j (W2)−m′j (W
′

2)=m′j (U2)

and similarly
mi, j (U1)=mi, j (U2).

Now we use Theorem 4.4 to conclude that the subgroups of Wi which are products
of the Weyl groups of simple factors of Hi of rank m are isomorphic, for i = 1, 2.

The proof of the theorem can now be completed by the downward induction on
m. It also follows from the proof of Theorem 4.4, that the Weyl groups of simple
factors of H1 and H2 are pairwise isomorphic. �

Remark 4.5. We remark here that the above proof is valid even if we assume
that the Weyl groups W (H1) and W (H2) share the same set of elements up to
conjugacy in GLn(Q), not just in GLn(Z). Thus Theorem 1.1 is true under the
weaker assumption that the groups H1 and H2 share the same set of maximal k-
tori up to k-isogeny, not just up to k-isomorphism.

We also remark that the above proof holds over the fields k which admit arbitrary
cyclic extensions and which have cohomological dimension ≤ 1.

Remark 4.6. Philippe Gille [2004] has recently proved that the map ψ described
in Lemma 2.2 is surjective for any quasisplit semisimple group H . Therefore our
main result, Theorem 1.1, now holds for all fields k which admit cyclic extensions
of arbitrary degree.
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