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Kearton observed that mutation can change the concordance class of a knot.
A close examination of his example reveals that it is of 4-genus 1 and has a
mutant of 4-genus 0. The first goal of this paper is to show by examples that
for any pair of nonnegative integers m and n there is a knot of 4-genus m
with a mutant of 4-genus n.

A second result is a crossing change formula for the algebraic concor-
dance class of a knot, which is then applied to prove the invariance of the
algebraic concordance class under mutation. We conclude with an applica-
tion of crossing change formulas to give a short new proof of Long’s theorem
that strongly positive amphicheiral knots are algebraically slice.

1. Introduction

The main goal of this paper is to examine the effect of knot mutation on two con-
cordance invariants of knots, the 4-ball genus and the algebraic concordance class.
We completely describe the extent to which mutation can change the 4-genus, and
show that the algebraic concordance class of a knot, as defined in [Levine 1969b],
is invariant under mutation. In the course of our work we develop a crossing change
formula for the algebraic concordance class of a knot. We apply such an approach
to demonstrate that Long’s theorem that strongly positive amphicheiral knots are
algebraically slice is an immediate corollary of the Hartley–Kawauchi theorem that
such knots have Alexander polynomials that are squares. Lastly, we show that the
Hartley–Kawauchi theorem also follows from a similar crossing change approach.

Mutation and algebraic concordance. The construction of a mutant K ∗ of a knot
K consists in removing a 3-ball B from S3 that meets K in two proper arcs and
gluing it back in via an involution τ of its boundary S, where τ is orientation-
preserving and leaves the set S ∩ K invariant. This is among the subtlest construc-
tions of knot theory in that it leaves a wide range of knot invariants unchanged
[Adams 1989; Kawauchi 1994; 1996; Kirk 1989; Kirk and Klassen 1990; Meyer-
hoff and Ruberman 1990; Rong 1994; Ruberman 1987; 1999]. Most relevant to
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the work here is the statement of [Cooper and Lickorish 1999] that the Tristram–
Levine signatures, σω, are invariant under mutation, since, for ω a prime power root
of unity, these provide the strongest classical bounds on the 4-genus [Murasugi
1965; Tristram 1969]: 1

2 |σω(K )| ≤ g4(K ). We will prove a more general result
involving Levine’s homomorphism [1969b] from the knot concordance group C to
the algebraic concordance group G:

Theorem 1.1. Mutation does not change the image of a knot under Levine’s homo-
morphism.

One proof, given in Section 7, is entirely self-contained and gives a previously
unnoticed crossing change formula for the algebraic concordance class of a knot.
(As a side note, in Section 9 we use this crossing change formula to give a quick
derivation of a result of Long that strongly positive amphicheiral knots are alge-
braically slice.) Section 8 present an alternate proof of Theorem 1.1; this argument
is briefer, but depends on the detailed analysis of Seifert forms given in [Cooper
and Lickorish 1999].

Mutation and the 4-genus of a knot. The 4-genus of a knot, g4(K ), is the least
genus of an embedded surface bounded by K in the 4-ball. This can be defined in
either the smooth or topological locally flat category; the results of this paper apply
in either. It is an especially challenging invariant to compute; there remain knots of
low crossing number for which it is uncomputed, though the smooth category has
advanced considerably in recent years, most notably with the solution of the Milnor
conjecture giving the 4-genus of torus knots [Kronheimer and Mrowka 1993].

Almost nothing has been known concerning the interplay between mutation and
the 4-genus. Basically the only success in this realm consists of Kearton’s obser-
vation [1989] that an example of [Livingston 1983] yields an example for which
mutation changes the concordance class of a knot. A close examination of that
example shows that it has 4-genus 1, but it has a mutant of 4-genus 0. Further such
examples have since been developed in [Kirk and Livingston 1999; 2001]. Our
main result regarding the 4-genus is:

Theorem 1.2. For every pair of nonnegative integers m and n, there is a knot K
with mutant K ∗ satisfying g4(K ) = m and g4(K ∗) = n.

It should be noted that the original argument of [Livingston 1983] was based on
[Gilmer 1983], in which it is now known an error appears. To correct for that, one
must base the argument of [Livingston 1983] on a 3-fold branched cover rather
than the 2-fold cover. We do this here.

Strongly positive amphicheiral knots. A knot K is called strongly positive am-
phicheiral if, when viewed as a knot in R3, it has a representative that is invariant
under the map τ(x, y, z) = (−x, −y, −z) of R3. We consider two theorems:
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Theorem 1.3 [Long 1984]. A strongly positive amphicheiral knot is algebraically
slice.

Theorem 1.4 [Hartley and Kawauchi 1979]. If K is strongly positive amphicheiral,
the Alexander polynomial 1K is the square of a symmetric polynomial.

In Section 9 we use crossing change formulas developed earlier to prove that
Long’s theorem is an immediate corollary of the Hartley–Kawauchi result. In Sec-
tion 10 we use a crossing change argument to give a new proof of the Hartley–
Kawauchi theorem.

2. Background on Casson–Gordon invariants

A key tool in the proof of Theorem 1.2 is the main theorem from [Gilmer 1982]
bounding Casson–Gordon invariants in terms of the 4-genus of a knot. Here is
a simplified description of that result, based on the statement of the theorem and
later remarks in [Gilmer 1982].

Theorem 2.1 (Gilmer). Let K be an algebraically slice knot such that g4(K ) = g
and let Mq be the q-fold branched cover of S3 branched over K , with q a prime
power. Let β denote the linking form on H1(Mq , Z). Then β can be written as a
direct sum β1 ⊕ β2 such that

(1) β1 has a presentation of rank 2(q − 1)g, and

(2) β2 has a metabolizer D such that, for any character χ of prime power order
on H1(Mq , Z) given by linking with an element in D, one has

|σ(K , χ)| ≤ 2qg.

Here σ(K , χ) is the Casson–Gordon invariant, originally denoted σ1τ(K , χ)

in [Casson and Gordon 1986; Gilmer 1982]. We will need to know that D can
be taken to be equivariant with respect to the deck transformation of Mq . Details
concerning this and other points will be given below, as they arise.

In our applications the group H1(Mq , Z) will also be a vector space over a finite
field, in which case a metabolizer for β2 will be half-dimensional. Hence:

Corollary 2.2. In Theorem 2.1, if H1(Mq , Z) is isomorphic to H1(Mq , Zp), a Zp-
vector space, conclusion (1) can be restated as

(1) dim β1 ≤ 2(q − 1)g

and in (2) the metabolizer D satisfies

dim D ≥
1
2

(
dim H1(Mq , Zp) − 2(q − 1)g

)
.
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3. The building blocks

The figure illustrates a knot K J of genus 1. The bands in the surface are tied in
knots J and −J , for a knot J to be determined later. The twisting of the bands is
such that the Seifert matrix for K J is

( 0
1

2
0

)
.

J –J

Here −J denotes the concordance inverse of J , formed from J by reversing the
orientations of S3 and the knot. A diagram for −J is constructed by reflecting a
diagram for J through a vertical line on the page and reversing the orientation of
the knot. For K J , the knot in the right band is the reflection through a vertical line
of the knot in the left band. In all examples here, J can be taken to be reversible,
so the details of the orientation issues for J are not critical.

Knots related to this one have been carefully analyzed elsewhere, for exam-
ple [Gilmer and Livingston 1992; Livingston 1983; 2001], and the details of the
following results can be found there. Here are the relevant facts.

(1) If M3 denotes the 3-fold branched cover of S3 branched over K J , then

H1(M3, Z) = Z7 ⊕ Z7.

(2) As a Z7-vector space, H1(M3, Z) splits as the direct sum of a 2-eigenspace,
spanned by a vector e2, and a 4-eigenspace, spanned by a vector e4, with
respect to the linear transformation induced by the deck transformation.

(3) Linking with ei induces a character χi : H1(M3, Z) → Z7. Results of Lither-
land [1984] (see also [Gilmer 1993; Gilmer and Livingston 1992]) give

σ(K , χ2) = σ1/7(J ) + σ2/7(J ) + σ3/7(J ),

σ (K , χ4) = −σ1/7(J ) − σ2/7(J ) − σ3/7(J ),

where σa/b denotes the classical Levine–Tristram signature, also written as σω

with ω = e(a/b)2π i . To simplify notation we set, for any knot J ,

s7(J ) = σ1/7(J ) + σ2/7(J ) + σ3/7(J ).
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There are knots for which s7 is arbitrarily large, for instance connected sums
of trefoil knots, which are reversible.

4. The Basic Examples

We denote by L J the connected sum of K J with the reverse of −K J :

L J = K J # −K r
J .

As observed by Kearton, L J is a mutant of the slice knot K J # −K J .

Theorem 4.1. For any choice of J , we have g4(L J ) ≤ 1 and thus g4(nL J ) ≤ n.

Proof. Here is an illustration of L J , showing also a simple closed curve on the
genus-2 Seifert surface F . This curve has self-linking number 0 and represents the

J –J J–J

slice knot J # − J . Thus F can be surgered in the 4-ball to reduce its genus to 1,
showing that L J bounds a surface of genus 1 in the 4-ball, as desired. �

The homology of the 3-fold branched cover of L J , N3, naturally splits as

(Z7 ⊕ Z7) ⊕ (Z7 ⊕ Z7),

with a 2-eigenspace spanned by the vectors e2 ⊕0 and 0⊕e′

2, which we abbreviate
simply by e2 and e′

2. Similarly for the 4-eigenspace. We denote the corresponding
Z7-valued characters given by linking with e2 and e′

2 by χ2 and χ ′

2, respectively.

Theorem 4.2. The Casson–Gordon invariants of L J are given by

σ(L J , aχ2 + bχ ′

2) = ε(a)s7(J ) + ε(b)s7(J ),

σ (L J , aχ4 + bχ ′

4) = −
(
ε(a)s7(J ) + ε(b)s7(J )

)
,

where ε(x) = 0 or 1 depending on whether x = 0 or x 6= 0 modulo 7.
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Proof. This follows from the additivity of Casson–Gordon invariants; see [Lither-
land 1984] or [Gilmer 1983]. The only unexpected aspect of the formula is that,
since we are dealing with K J # −K r

J , it might have been anticipated that the differ-
ence ε(a)s7(J )− ε(b)s7(J ) would appear rather than the sum. This switch occurs
because the connected sum involves the mirror image of the reverse, rather than
simply the mirror image; thus the role of J and −J are reversed in the second
summand. �

5. Proof of Theorem 1.2

As observed by Kearton, for any knots L1 and L2, the connected sums L1 # −L2

and L1 # −Lr
2 are mutants of each other. It follows immediately that for m < n, the

knot nL J is a mutant of mL J # (n −m)(K J # −K J ). Since K J # −K J is slice, this
second knot is concordant to, and hence of the same 4-genus as, mL J . To prove
Theorem 1.2 we show that for each positive integer n there exists a knot J such
that g4(mL J ) = m for all m ≤ n.

Fix a positive integer n and select an arbitrary m with 1 ≤ m ≤ n. The knot J
will be chosen as its necessary properties become apparent.

Suppose that mL J bounds a surface F in the 4-ball with genus g(F) = k <

m. Let V3 denote the 3-fold branched cover of B4 branched over F having for
boundary the m-fold connected sum m N3. Also, abbreviate by D the image of
Tor H2(V3, m N3, Z) in H1(m N3, Z). An examination of the proof of Gilmer’s the-
orem in [Gilmer 1982] reveals that this D is the metabolizer given in our statement
of the result, Theorem 2.1. Thus |σ(mL J , χ)| ≤ 6k for any χ corresponding to an
element in D.

With Z7-coefficients, H1(m N3, Z) has dimension 4m, so by Gilmer’s theorem
we have dim H1(m N3, Z)−2 dim D ≤ 2(3−1)k = 4k. Hence D is nontrivial, since
k < m.

Observe that by its construction, D is equivariant with respect to the deck trans-
formation and hence contains an eigenvector. Assume that it is a 2-eigenvector. If
we write H1(m N3, Z) = ⊕m H1(N3, Z), the 2-eigenvectors are naturally denoted
e2,i and e′

2,i , with 1 ≤ i ≤ m, where e2,i and e′

2,i are the 2-eigenvectors in the i-th
summand. A nontrivial 2-eigenvector in D will be of the form

∑
i ai e2,i+

∑
i bi e′

2,i .
Using additivity, the Casson–Gordon invariant corresponding to the dual character
is given by: (∑

i

ε(ai )

)
s7(J ) +

(∑
i

ε(bi )

)
s7(J ).

To complete the proof, observe that this sum is greater than or equal to s7(J ),
so that if J is chosen so that s7(J ) > 6n a contradiction is achieved. Notice that
the choice of J depends only on n and not m.
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A similar argument applies if D contains only a 4-eigenvector.

6. The growth of g4(nK ) for algebraically slice knots K

For a general knot K one has g4(nK ) ≤ ng4(K ) but one does not usually have
an equality. In the case of a knot T , such as the trefoil, for which the 4-genus is
detected by a classical (additive) invariant, such as the signature, one can some-
times demonstrate that g4(nT ) = ng4(T ). But for algebraically slice knots with
g4(K ) 6= 0 such arguments are not possible. In fact, it is unknown whether in
the topological category there is such an algebraically slice knot for which the
equality holds for all n. (In the smooth setting, Livingston [2003] has constructed
an algebraically slice knot K for which g4(K )= τ(K )= 1, where τ is the invariant
defined in [Ozsváth and Szabó 2003]. Since τ is additive and bounds g4, it follows
that g4(nK ) = ng4(K ) for all n.) We will here observe that one can come quite
close for the knot TJ , where TJ is the knot illustrated below, built as K J is, only

J J

with J tied in both bands rather than J in one band and −J in the other. (Similar
results hold for K J and L J but the proof would require the continued use of 3-fold
covers rather than the 2-fold cover for which the estimates are simpler.)

Theorem 6.1. For all ε with 0 < ε < 1, there is a knot J such that g4(nTJ ) >

(1 − ε)ng4(TJ ) for all n > 0.

Proof. Our proof builds upon Gilmer’s original argument [1982]. Observe first that
g4(TJ ) ≤ 1. For the 2-fold branched cover we have that H1(M2, Z) = Z3 ⊕Z3 and
the Z3-dimension satisfies dim H1(nM2, Z3) = 2n.

If nTJ bounds a surface in the 4-ball of genus k at most (1−ε)n, then by Gilmer’s
theorem there exists a self-annihilating summand D with

dim H1(nM2, Z3) − 2 dim D ≤ 2k

and such that |σ(nK J , χ)| ≤ 4k for all characters χ dual to elements in D.
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One computes that dim D ≥ n −k. A linear algebra argument, basically Gauss–
Jordan elimination, now implies that some element of D will be of the form

⊕
i χi

with at least n − k of the χi nontrivial, and for each of these χi the corresponding
Casson–Gordon invariant is at least 2σ1/3(J ). Thus we have the equation∣∣(n − k)2σ1/3(J )

∣∣ ≤ 4k.

Since k ≤ (1 − ε)n, this reduces to
∣∣εn2σ1/3(J )

∣∣ ≤ 4(1 − ε)n, which is to say∣∣σ1/3(J )
∣∣ ≤

2(1 − ε)

ε
.

The proof is completed by noting that for any ε one can select a J for which this
inequality does not hold. �

7. Mutation and algebraic concordance

In this section we develop a crossing change formula for the algebraic concordance
class of a knot in order to prove Theorem 1.1: mutation preserves the algebraic
concordance class of a knot. Certain knot invariants, such as the Alexander poly-
nomial and Tristram–Levine signatures, provide algebraic concordance invariants,
and these have been shown to be mutation invariants (see for instance [Cooper and
Lickorish 1999; Lickorish and Millett 1987]), but the general question of whether
mutation can change the algebraic concordance class has remained open. We note
that changing a knot to its orientation reverse is a very special case of mutation
and reversal does not change the algebraic concordance class of a knot, as follows
from [Long 1984]. (More directly, it can be shown that the complete set of alge-
braic concordance invariants defined by Levine [1969a] are unchanged by matrix
transposition, the operation on Seifert matrices induced by reversal.)

We will first present a proof that the normalized Alexander polynomial is in-
variant under mutation; this argument is not new but must be presented to set up
the needed notation for the analysis of algebraic concordance that follows. This
is followed by a review of the theory and algebra of Levine’s [1969a] algebraic
concordance group G. In the last part of the section we present a crossing change
formula for the algebraic concordance class of a knot and use this to prove the
mutation invariance of this class.

The Alexander and Conway polynomial. For an oriented link L , a choice of con-
nected Seifert surface F for L , and a choice of basis for H1(F, Z) there is a Seifert
matrix V (L), say of dimension r × r . The (normalized) Alexander polynomial
1L(t) of L can be defined by setting

Vt(L) = (1 − t)V + (1 − t̄)V t and 1L(t) =
1
zr det Vt(L),
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where V t denotes the transpose, t̄ = t−1 and z = t−1/2
− t1/2. (Recall that 1L(t)

can be expressed as a polynomial in z, 1L(t) = CL(z) ∈ Z[z], and this defines
the Conway polynomial [1970].) Notice that z2

= −(1 − t̄ )(1 − t), so that if r is
even (for instance, when L is connected, so r is twice the genus of F), we have
1L ∈ Z[t̄, t] and elementary algebraic manipulations lead to the usual normalized
Alexander polynomial,

1L(t) = t−r/2 det(V − tV t).

(This polynomial is clearly independent of change of basis and an observation be-
low will show that it is an S-equivalence invariant [Trotter 1973] and thus depends
only on K .)

Here is a local picture of link diagrams for links L−, L+, and Ls , with the

L− L+ Ls

diagrams identical outside the local picture. Any crossing change and smoothing
can be achieved using this local change. In the diagram for L− a Reidemeister
move eliminates the two crossings. If Seifert’s algorithm is used to construct a
Seifert surface F0 for L− using this simplified diagram, the corresponding Seifert
matrix will be denoted A. The Seifert surfaces for the links L− and L+ that arise
from Seifert’s algorithm applied to the given diagrams are formed from F0 by
adding two twisted bands. From this we have that V (L±) is given by a (r + 2) ×

(r + 2) matrix of the form

V (L±) =


a1 0

A ...
...

ar 0
a1 · · · ar b 1
0 · · · 0 0 ε±

 ,

where all entries are identical in these two matrices except that ε− =0 and ε+ =−1.
V (Ls) is given by the same matrix, with the last row and column deleted.

A few consequences of these calculations follow quickly.

Theorem 7.1. The normalized Alexander polynomial is an S-equivalence invariant
and hence is a knot invariant.

Proof. S-equivalence is generated by the operation on Seifert matrices that takes a
matrix A and replaces it with the matrix denoted V (L−) above. That this doesn’t
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change the Alexander polynomial is easily checked: expand the relevant determi-
nant along the last column and then along the last row. �

Theorem 7.2 (The Conway skein relation). The Alexander polynomial satisfies
1L+

− 1L−
= z1Ls .

Proof. This again is a simple exercise in algebra, expanding the determinant along
the last column and then last row. �

Theorem 7.3. The Alexander polynomials of mutant knots are the same.

Proof. In the construction of the mutant K ∗, if the intersection of K with the
ball B that is being taken out and replaced via an involution is invariant under the
extension of that involution to the 3-ball, then K ∗

= K and the polynomials are
the same. In general, a series of crossing changes and smoothings converts K ∩ B
into invariant tangles, so, via the Conway skein relation, the polynomial of K ∗ is
the same as that for K . �

If K is a knot, the Alexander polynomial satisfies 1K (1) = 1 and in particular
1K (t) is nontrivial. Hence, in the matrices above, working now with K instead of
L , At is nonsingular. Thus, for Vt(K±) the same set of row and column operations
can be used to eliminate the entries corresponding to the ai in V . There results
the following matrix Wt(K±), where the entries are rational functions in t and the
matrix is hermitian with respect to the involution induced by the map t → t̄ :

Wt(K±) =


0 0

At
...

...

0 · · · 0 c(t) 1 − t

0 · · · 0 1 − t̄ ε±(1−t)(1−t̄ )


.

Lemma 7.4. The ratio 1K+
/1K−

is equal to c(t) + 1.

Proof. This follows from a calculation of the relevant determinants. �

Algebraic concordance. An algebraic Seifert matrix is a square integral matrix V
satisfying det(V − V t) = ±1. Such a matrix is called metabolic if it is congruent
to a matrix of the form (

0 A
B C

)
,

with A, B, and C square. Levine defined the algebraic concordance group G to
be the set of equivalence classes of algebraic Seifert matrices, with V1 and V2

equivalent if V1 ⊕ −V2 is metabolic. The group operation is induced by direct
sum.
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A rational algebraic concordance group GQ can be similarly defined, where now
it is required that det

(
(V −V t)(V +V t)

)
6= 0. Levine [1969a] proved that the in-

clusion G → GQ is injective.
Consider next the set of nonsingular hermitian matrices with coefficients in the

field Q(t), where Q(t) has the involution t → t̄ . In this case the equivalence relation
generated by congruence to metabolic matrices results in the Witt group of Q(t),
denoted W (Q(t)).

Theorem 7.5. The map

V → Vt = (1 − t)V + (1 − t̄)V t

induces an injection G → W (Q(t)).

Proof. A proof is given in [Litherland 1984] for GQ (denoted there by WS(Q, −)),
and the theorem follows from the injectivity of the inclusion G → GQ. In defining
GQ, Litherland restricts to nonsingular matrices, but as he notes, Levine proved
that every class in G has a nonsingular representative. To simplify notation, we
will use Wt(K ) to denote both the matrix and the Witt class represented by the
matrix when the meaning is clear in context. �

Crossing changes and algebraic concordance. From the calculations and nota-
tion above, if a crossing change is performed on a knot K , the difference of Witt
classes associated to the Seifert forms is given by

Wt(K+) − Wt(K−) = (At ⊕ C+) ⊕ −(At ⊕ C−),

where

C± =

(
c(t) 1 − t
1 − t̄ ε±(1 − t)(1 − t̄)

)
.

Since At ⊕ −At is Witt trivial, as is C−, only C+ contributes to the difference
of Witt classes. Diagonalization, the identification of c(t)+1 with 1L+

/1K−
, and

a final multiplication of a basis element (by 1K−
) yields the following theorem.

Theorem 7.6. Wt(K+) − Wt(K−) is represented by the matrix(
1K+

(t)1K−
(t) 0

0 −1

)
,

and thus the difference is determined by the Alexander polynomials of the knots.

The special case of ω =−1 in the following corollary is a result from [Murasugi
1965]. The proof of the corollary follows from Theorem 7.6 by setting t = ω and
induction on the number of crossing changes needed to reduce K to an unknot. To
avoid the matrix being nonsingular, we must restrict to prime power roots of unity.

Corollary 7.7. For ω a prime power root of unity, sign(1K (ω)) = (−1)σω(K )/2.
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We now have the main result of this section, the following corollary of Theorem
7.6, a restatement of Theorem 1.1.

Corollary 7.8. The algebraic concordance class of a knot is invariant under mu-
tation; that is, Wt(K ) = Wt(K ∗) for any knot K and its mutant K ∗.

Proof. A sequence of crossing changes in the tangle in K that is being mutated
converts it into a tangle that is invariant under mutation. Thus we have a sequence
of knots

K = K0, K1, . . . , Kn = K ∗

n , K ∗

n−1, . . . , K ∗

0 = K ∗,

where Kn = K ∗
n . By the previous theorem and the mutation invariance of the

Alexander polynomial, each pair of successive differences is equal:

Wt(Ki ) − Wt(Ki+1) = Wt(K ∗

i ) − Wt(K ∗

i+1).

Thus Wt(K )−Wt(Kn)= Wt(K ∗)−Wt(K ∗
n ). Since Kn = K ∗

n , the proof is complete.
�

8. Generalized Mutation

Cooper and Lickorish [1999] studied the effect of a generalization of mutation,
called genus-2 mutation, on the Seifert form of a knot. Here we deduce from
their result an alternative proof of Theorem 1.1. In fact, since they demonstrate
that generalized mutation generates a finer relation than mutation, a stronger result
than Theorem 1.1 is in fact achieved.

Genus-2 mutation consists of removing a solid handlebody of genus 2 that con-
tains a knot K from S3 and replacing it via an involution of the boundary. The
involution is selected to extend to the solid handlebody so that it has three fixed
arcs. The resulting knot is called K ∗. According to [Cooper and Lickorish 1999]
there are Seifert matrices for K and K ∗ of the form

V =

(
A B t

B C

)
and V ∗

=

(
A B t

B C t

)
,

respectively, where A and C are square and B is of the form (0 | b) for some single
column b. Since V is a Seifert matrix and V − V t

= (A − At)⊕ (C − C t), we see
that A and C are also algebraic Seifert matrices. Note that

Vt =

(
At −z2 B t

−z2 B Ct

)
and V ∗

t =

(
At −z2 B t

−z2 B (C t)t

)
where z = t−1/2

− t1/2 and z2
= −(1−t)(1−t̄) = −(1−t) − (1−t̄).

Since A is a Seifert matrix, At is nonsingular and hermitian. Let

P =

(
I z2(At)

−1 B t

0 I

)
.
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Then Vt and V ∗
t are congruent to P̄ t Vt P and P̄ t V ∗

t P , respectively, which in turn
are seen, after a simple computation, to equal(

At 0
0 Ct − z4 B(At)

−1 B t

)
and

(
At 0
0 (C t)t − z4 B(At)

−1 B t

)
.

Suppose that A is an m ×m matrix. Let α(t) ∈ Q(t) be the (m, m) entry of (At)
−1

and recall that B = (0 | b) for some single column b with integral entries. It is easy
to see that

B(At)
−1 B t

= α(t)bbt .

In particular, it is symmetric. For simplicity, let E = Ct − z4 B(At)
−1 B t . Then

E t
= (C t)t − z4 B(At)

−1 B t and we have that Vt and V ∗
t are congruent to At ⊕ E

and At ⊕ E t , respectively. The difference of Witt classes of Vt and V ∗
t is given by

(At ⊕ E) ⊕ −(At ⊕ E t).

Since At ⊕−At is Witt trivial, only E ⊕−E t contributes to the difference of Witt
classes. Observe that E is a nonsingular hermitian matrix since At ⊕ E and At are.
There is a nonsingular matrix Q such that F = Qt E Q is diagonal. This implies
that F = F t

= Qt E t Q. Using congruence by base change Q⊕ Q, we see E ⊕−E t

is congruent to F ⊕ −F , which is Witt trivial. Thus, Vt = V ∗
t in W (Q(t)) and K

and K ∗ are algebraically concordant since G → W (Q(t)) is injective.

9. Strongly positive amphicheiral knots

A knot K is called strongly positive amphicheiral if it is invariant under an orien-
tation-reversing involution of S3 that preserves the orientation of K . This is easily
seen to be equivalent to the statement that K , when viewed as a knot in R3

⊂ S3,
is isotopic to a knot, again denoted by K , that is invariant under the involution
τ : R3

→ R3 given by τ(x) = −x , where x ∈ R3.
Hartley and Kawauchi [1979] proved that if K is strongly positive amphicheiral

then 1K (t) = (F(t))2 for some Alexander polynomial F . Long [1984] proved that
strongly positive amphicheiral knots are algebraically slice. Here we demonstrate
that Long’s theorem is in fact a corollary of the Hartley–Kawauchi theorem and
the crossing change formula for the algebraic concordance class.

A bit of notation will be helpful: for a strongly amphicheiral knot that is invariant
under the involution τ , τ defines a pairing of the crossing points in a diagram of
K . A paired crossing change on such a K consists of changing both of a pair of
crossings. Notice that since τ is orientation-reversing, the two crossings will be of
opposite sign, so we denote the original knot K+− and the knot formed by making
the paired crossing changes K−+.
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Lemma 9.1. A sequence of paired crossing changes converts a strongly positive
amphicheiral knot into the unknot.

Proof. Since an involution of S1 cannot have one fixed point, K misses the origin
in R3 and thus projects to a knot K in the quotient R3

− {0}/τ ≡ RP2
× R. Since

K lifts to a single component in the cover, it is homotopic to standard generator of
π1(RP2

× R), whose lift is an unknot in the cover. That homotopy can be carried
out by a sequence of crossing changes, each of which lifts to a pair of crossing
changes in the cover. �

Theorem 9.2 [Long 1984]. A strongly positive amphicheiral knot is algebraically
slice.

Proof. Let K be the knot. By the previous lemma we need only show that
Wt(K+−) − Wt(K−+) represents 0 in W (Q(t)).

Working in the Witt group we can write

Wt(K+−) − Wt(K−+) =
(
Wt(K+−) − Wt(K−−)

)
−

(
Wt(K−+) − Wt(K−−)

)
.

Applying Theorem 7.6, this is represented by the difference(
1K+−

(t)1K−−
(t) 0

0 −1

)
⊕ −

(
1K−+

(t)1K−−
(t) 0

0 −1

)
Applying the Hartley–Kawauchi theorem, we write

1K+−
(t) = F(t)2 and 1K−+

(t) = G(t)2,

and then cancel the (−1) summands to arrive at the difference(
F(t)21K−−

(t) 0
0 −G(t)21K−−

(t)

)
.

This form has a metabolizer generated by the vector (G(t), F(t)) ∈ Q(t)2, and
hence it is trivial in the Witt group, as desired. �

10. The Hartley–Kawauchi Theorem

Here we present a combinatorial proof of the theorem that for strongly positive
amphicheiral knots the Alexander polynomial is a square of an Alexander polyno-
mial. The proof also gives an alternative, though longer, route to Long’s theorem
than was given in the previous section. We begin by considering the existence of
an equivariant Seifert surface for such a knot.

If Seifert’s algorithm for constructing a Seifert surface is applied to a diagram
for a strongly amphicheiral knot that is invariant under τ , the resulting surface
will be invariant. In addition, τ restricted to this surface is orientation-preserving
since τ preserves the orientation of the knot that is the boundary of the surface.
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However τ reverses the positive normal direction since it reverses the orientation
of R3. Thus:

Lemma 10.1. Let K be a strongly positive amphicheiral knot with involution τ . A
Seifert surface F of K can be constructed so that F is invariant under τ and its
Seifert form θ satisfies

θ(τu, τv) = −θ(v, u)

for all u, v ∈ H1(F).

To understand the effect of crossing changes, we consider two figures. The first
represents a portion of a symmetric diagram of a strongly amphicheiral knot, say
K+−:

The dot in center of the figure represents the origin in R3, the center of sym-
metry. For the knot K−+ the diagram will be the same, only a symmetric pair of
crossing changes has been made. Thus, for K−+ the clasps pull apart, leaving a
knot, denoted K ′, with diagram as follows:

Suppose that K ′ has an equivariant Seifert surface F0 given by Seifert’s algo-
rithm and H1(F0) has symplectic basis w1, . . . , wr . Then an equivariant Seifert
surface F for K+− is given by adding four bands to F0. The basis for H1(F0)

can be naturally extended to symplectic one for H1(F), w1, . . . , wr , x, y, τ x, τ y,
where y has trivial Seifert pairing with all elements other than x and itself, and x
has trivial Seifert pairing with τ y.

Let A be the Seifert matrix of F0 with respect to w1, . . . , wr and let T denote
the matrix representing the action of τ on H1(F0). Then Lemma 10.1 applied to
F0 can be rewritten in terms of matrices: T t AT = −At . After hermitianizing and
taking inverses, we have

T (At)
−1T t

= −(At
t)

−1
= −(At)−1.
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To find the Seifert matrix for F with respect to the basis above, a couple of
things have to be clarified. First, note that

θ(x, τ x) = −θ(ττ x, τ x) = −θ(x, τ x),

and hence θ(x, τ x) = 0. Similarly, θ(τ x, x) = 0. Next, let

a =

θ(w1, x)
...

θ(wr , x)

 and T = (ti j )1≤i, j≤r .

Then θ(w1, τ x)
...

θ(wr , τ x)

 =

−θ(x, τw1)
...

−θ(x, τwr )

 =

−
∑

j t j1θ(x, w j )
...

−
∑

j t jrθ(x, w j )



= −T t

θ(x, w1)
...

θ(x, wr )

 = −T t a.

It follows readily that the Seifert matrix for K+− is the (r +4)× (r +4) matrix

V ε
=


A a 0 −T t a 0
at b 1 0 0
0 0 ε 0 0

−at T 0 0 −b 0
0 0 0 −1 −ε

 , where ε = −1.

Similarly, for K−+ the same matrix arise, only in this case ε = 0. After hermi-
tianizing we get

V ε
t =


At −z2a 0 z2T t a 0

−z2at
−z2b 1 − t 0 0

0 1 − t̄ −z2ε 0 0
z2at T 0 0 z2b −(1−t̄)

0 0 0 −(1−t) z2ε

 ,

where z = t−1/2
− t1/2. Let

P =


I z2(At)

−1a 0 −z2(At)
−1T t a 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
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Let W ε
t = P̄ t V ε

t P . Then

W ε
t =


At 0 0 0 0
0 −z2b − z4at(At)

−1a 1 − t z4at(At)
−1T t a 0

0 1 − t̄ −z2ε 0 0
0 z4at T (At)

−1a 0 z2b − z4at T (At)
−1T t a −(1 − t̄)

0 0 0 −(1 − t) z2ε

 .

Let c(t) = −z2b − z4at(At)
−1a. Since W ε

t is hermitian, c(t) = c(t). The (1, 1)-
entry of the lower right 2 × 2 submatrix of W ε

t is

z2b − z4at (
T (At)

−1T t) a = z2b + z4at(At)−1a = −c(t) = −c(t).

Let d(t) = z4at(At)
−1T t a. Then the 1 × 1 matrix d(t) is equal to its transpose

z4at T (At
t)

−1a = z4at T
(
−T (At)

−1T t) a = −z4at(At)
−1T t a = −d(t),

and hence d(t)=0. Also, note that z4at T (At)
−1a =d(t)=0 since W ε

t is hermitian.
Thus V ε

t is congruent, by base change P , to

At ⊕ C ⊕ −C t ,

where

C =

(
c(t) 1 − t
1 − t̄ −z2ε

)
.

Since det P = 1,

1K+−
= (c(t) + 1)2 1

zr det At = (c(t) + 1)21K−+
,

where c(t) = c(t̄). This proves the Hartley–Kawauchi theorem.
Next, to prove Long’s theorem, we will show that Vt(K+−), At , and Vt(K−+)

are all Witt-equivalent. It suffices to show that C ⊕ −C t is Witt-trivial. Observe
that C is nonsingular and hermitian since At ⊕ C ⊕ −C t and At are. There is a
nonsingular matrix Q such that D = QtC Q is diagonal. This implies that

D = Dt
= QtC t Q.

Using congruence by base change Q ⊕ Q, we see that C ⊕ −C t is congruent to
D ⊕−D, which is Witt trivial. Thus, K+− and K−+ are algebraically concordant.
This proves Long’s theorem.
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