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Let (M, p) and (M̂, p̂) be the germs of real-analytic 1-infinite type hyper-
surfaces in C2. We prove that any formal equivalence sending (M, p) into
(M̂, p̂) is formally parametrized (and hence uniquely determined by) its jet
at p of a predetermined order depending only on (M, p). As an applica-
tion, we use this to examine the local formal transformation groups of such
hypersurfaces.

1. Introduction

A formal (holomorphic) mapping H : (C2, p) → (C2, p̂), with p, p̂ ∈ C2, is a
C2-valued formal power series

H(Z) = p̂ +

∑
|α|≥1

cα(Z − p)α, cα ∈ C2, Z = (Z1, Z2).

The map H is invertible if there exists a formal map H−1
: (C2, p̂) → (C2, p)

such that H(H−1(Z)) ≡ H−1(H(Z)) ≡ Z as formal power series; equivalently,
if the Jacobian of H is nonvanishing at p. We denote by J k(C2, C2)p, p̂ the jet
space of order k of (formal) holomorphic mappings (C2, p) → (C2, p̂), and by
j k
p(H) ∈ J k(C2, C2)p, p̂ the k-jet of H at p. (See Section 2 for further details.)

Suppose that (M, p) and (M̂, p̂) are (germs of) real-analytic hypersurfaces at p
and p̂ respectively, given by the real-analytic, real-valued local defining functions
ρ(Z , Z) and ρ̂(Z , Z). The formal map H is said to take (M, p) into (M̂, p̂) if

ρ̂
(
H(Z), H(Z)

)
≡ c(Z , Z)ρ(Z , Z)

(in the sense of power series) for some formal power series c(Z , Z); if in addition
the formal map is invertible, it is called a formal equivalence between (M, p) and
(M̂, p̂), and the germs themselves are called formally equivalent.

We wish to study the parametrization and finite determination of invertible for-
mal holomorphic mappings of C2 taking one real-analytic hypersurface M into
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another. There is a great deal of literature on this if M is assumed to be minimal at
p, that is, if there is no complex hypersurface through p in C2 contained in M ; see
the remarks at the end of this introduction. In the present paper, however, we shall
assume that M is not minimal at p, so that there exists a complex hypersurface
6 ⊂ C2 with p ∈ 6 ⊂ M . It is well known [Chern and Moser 1974; Baouendi
et al. 1999b, Chapter IV] that for any real-analytic hypersurface M ⊂ C2 and
point p ∈ M (not necessarily minimal), there exist local holomorphic coordinates
(z, w) ∈ C × C, vanishing at p, such that M is defined locally by the equation

Im w = 2(z, z, Re w),

where 2(z, z, s) is a real-valued, real-analytic function such that

2(z, 0, s) ≡ 2(0, z, s) ≡ 0.

Such coordinates are called normal coordinates for M at p, and are not unique. M
is said to be of finite type at p if 2(z, z, 0) 6≡ 0; otherwise M is of infinite type at p.
This definition is equivalent to being of finite type in the sense of [Kohn 1972] and
[Bloom and Graham 1977]. For real-analytic hypersurfaces, it is also equivalent
to minimality — indeed, if M is of infinite type at p, then (in normal coordinates)
M contains the nontrivial complex hypersurface 6 = {w = 0}. (For details see
[Baouendi et al. 1999b, Chapter I], for example.)

In this paper, we shall focus our attention on 1-infinite type points p of a real-
analytic hypersurface M ⊂ C2, i.e., points at which the normal coordinates above
satisfy the additional condition that 2s(z, z, 0) 6≡ 0. (See Section 2 for precise
definitions.) Our main result gives rational dependence of a formal equivalence
between 1-infinite type hypersurfaces on its jet of a predetermined order.

Theorem 1.1. Let M ⊂ C2 be a real-analytic hypersurface, and suppose p ∈ M
is of 1-infinite type. There exists an integer k such that, given any hypersurface
M̂ ⊂ C2 with (M̂, p̂) formally equivalent to (M, p), there exists a formal power
series of the form

(1) 9(Z; 3) =

∑
α

pα(3)

q(3)`α
(Z − p)α,

where pα, q are (respectively) C2- and C-valued polynomials on the jet space
J k(C2, C2)p, p̂ and the `α are nonnegative integers, such that any formal equiv-
alence H : (M, p) → (M̂, p̂) satisfies

q
(

j k
p(H)

)
= det

(
∂ H
∂ Z

(p)
)

6= 0 and H(Z) = 9
(
Z; j k

p(H)
)
.

Our proof (presented in Section 5) will actually give a constructive process for
determining such an k.
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Theorem 1.1 has a number of applications. The first states that any formal
equivalence between two germs of 1-infinite type hypersurfaces (M, p) and (M̂, p̂)

is determined by finitely many derivatives at p.

Theorem 1.2. Let (M, p) and k be as in Theorem 1.1. If H 1, H 2
: (M, p) →

(M̂, p̂) are formal equivalences and

∂ |α|H 1

∂ Zα (p) =
∂ |α|H 2

∂ Zα (p) for all |α| ≤ k,

then H 1
= H 2 as power series.

Our second application deals with the structure of jets of formal equivalences
in the jet space J k(C2, C2)p, p̂, or rather in the submanifold Gk(C2)p, p̂ of jets of
invertible maps taking (C2, p) to (C2, p̂). We shall denote by F(M, p; M̂, p̂) the
set of formal equivalences taking (M, p) into (M̂, p̂).

Theorem 1.3. Let (M, p) and k be as in Theorem 1.1. Then for any (germ of a)
real-analytic hypersurface (M̂, p̂) in C2, the mapping

j k
p : F(M, p; M̂, p̂) → Gk(C2)p, p̂

is an injection onto a real algebraic submanifold of Gk(C2)p, p̂.

Of special interest is the case (M̂, p̂) = (M, p), since F(M, p; M̂, p̂) becomes
a group under composition, called the formal stability group of M at p and denoted
by Aut(M, p). We shall denote by Gk(C2)p := Gk(C2)p,p the k-jet group of C2 at
p. The following result is then a corollary of Theorem 1.3.

Theorem 1.4. Let (M, p) and k be as in Theorem 1.1. Then the mapping

j k
p : Aut(M, p) → Gk(C2)p

defines an injective group homomorphism onto a real algebraic Lie subgroup of
Gk(C2)p.

The study of the (formal) transformation groups of hypersurfaces in CN has a
long history. Its roots can be traced back to E. Cartan, who studied the structure
of the local transformation groups of smooth Levi nondegenerate hypersurfaces in
C2 in [Cartan 1932a; 1932b]. These results were later extended to higher dimen-
sions by Chern and Moser in [Chern and Moser 1974], who also proved the finite
determination of such equivalences by their 2-jets.

Further results about the transformation groups of various classes of finite type
generic submanifolds of CN have been obtained more recently by a number of
mathematicians. Regarding the parametrization of transformation groups, we men-
tion the work of Zaitsev [1997], and Baouendi, Ebenfelt, and Rothschild [Baouendi
et al. 1999a], which presents modified versions of Theorems 1.2–1.4 valid for
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smooth generic submanifolds M, M̂ in CN with M of finite type and M̂ finitely
nondegenerate. Moreover, there exist a number of results concerning the finite
determination of local equivalences addressed in Theorem 1.2. We mention the
work of Baouendi, Mir, and Rothschild [Baouendi et al. 2002], which gives the best
finite determination results to date for the general case of finite type submanifolds
in CN , and Ebenfelt, Lamel, and Zaitsev [Ebenfelt et al. 2003], which addresses the
case C2 specifically, proving that the local equivalences between any two nonflat
real-analytic hypersurface are determined by a finite jet. The reader interested in
other recent work on these problems is directed to the excellent survey articles
[Rothschild 2003] and [Zaitsev 2002].

For the proofs of the four theorems above, it is convenient to work with for-
mal mappings between formal real hypersurfaces. Hence, the results presented
here will be reformulated and proved in this more general context. The following
section presents the necessary preliminaries and definitions. In what follows, the
distinguished points p and p̂ on M and M̂ , respectively, will, for convenience and
without loss of generality, be assumed to be 0.

2. Preliminaries and basic definitions

Formal mappings and hypersurfaces. Let X = (X1, . . . , X N ) be a N -tuple of
indeterminates, and let R denote a commutative ring with unity. We define

• R[[X ]] := the ring of formal power series in X with coefficients in R;

• R[X ] := the ring of polynomials in X with coefficients R.

For R = C, we shall also define

• C{X} := the ring of convergent power series in X with coefficients in C;

• Oε(X) := the ring of power series in X with coefficients in C that converge
for X j ∈ C, |X j | < ε, 1 ≤ j ≤ N .

We have canonical embeddings

C[X ] ⊂ Oε(X) ⊂ C{X} ⊂ C[[X ]].

A power series ρ ∈ C[[Z , ζ ]], where Z = (Z1, . . . , Z N ) and ζ = (ζ1, . . . , ζN ),
is called real if ρ(Z , ζ ) = ρ(ζ, Z), where ρ denotes the power series obtained by
replacing the coefficients of ρ by their complex conjugates. If, in addition, the
power series ρ satisfies the conditions

(2) ρ(0) = 0, dρ(0) 6= 0,

we say that ρ defines a formal real hypersurface M of CN through 0, and we write

M =
{
ρ(Z , Z) = 0

}
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and say that the pair (M, 0) is a formal real hypersurface. The function ρ is a
formal defining function for M . The reader should observe that if M is a formal
real hypersurface in CN with formal defining function ρ, then in general there is
no actual point set M ⊂ CN .

Suppose that ρ̂ is another formal power series (not necessarily real) satisfying
conditions (2). If there exists a power series a(Z , ζ ) (necessarily invertible at 0)
such that

ρ̂(Z , ζ ) = a(Z , ζ )ρ(Z , ζ ),

then we say that ρ̂ also defines the formal real hypersurface M , and again we write
M = {ρ̂(Z , Z) = 0}.

By a formal mapping H : (CN , 0) → (CN , 0), denoted H ∈ E(CN , CN )0,0, we
shall mean an element H ∈ C[[Z ]]

N such that H(0) = 0. We say H is a formal
change of coordinates if it is formally invertible, i.e., if there exists a formal map
H−1

: (CN , 0) → (CN , 0) such that

H(H−1(Z)) ≡ H−1(H(Z)) ≡ Z

as formal power series. As noted in the introduction, H is a formal change of
coordinates in CN if and only if its Jacobian at 0 is nonzero.

Given a formal change of coordinates H in CN , we define its corresponding
formal holomorphic change of variable by

Z = H(Z ′), ζ = H(ζ ′).

If M = {ρ(Z , Z) = 0} is a formal real hypersurface of CN , we say M is expressed
in the Z ′ coordinates by {ρ(H(Z ′), H(Z ′)) = 0}.

If M̂ = {ρ̂(Z , Z) = 0} is another formal real hypersurface of CN , then a formal
mapping H ∈ E(CN , CN )0,0 is said to take M into M̂ if there exists a power series
c(Z , ζ ) (not necessarily invertible at 0) such that

ρ̂
(
H(Z), H(ζ )

)
= c(Z , ζ )ρ(Z , ζ ).

In this situation we write as H : (M, 0) → (M̂, 0). This definition is independent
of the power series used to define M and M̂ .

If H : (M, 0)→ (M̂, 0) is as above and H is invertible, it follows that H−1 takes
M̂ into M . In this case we say that M and M̂ are formally equivalent, and that H
is a formal equivalence between them, denoted H ∈ F(M, 0; M̂, 0).

The motivation behind these definitions is the following. If the formal series ρ

defining the formal real hypersurface M is actually convergent, then the equation
ρ(Z , Z) = 0 defines a real-analytic hypersurface M of CN passing through the
origin. Moreover, if H : CN

→ CN is a holomorphic mapping with H(0) = 0, and
M, M̂ are both real-analytic hypersurfaces of CN , then H(M) ⊂ M̂ if and only if
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the formal mapping H maps the formal real hypersurface M into the formal real
hypersurface M̂ .

For each positive integer k, we denote by J k(CN , CN )0,0 the jet space of order k
of (formal) holomorphic mappings (CN , 0) → (CN , 0), and by j k

0 : E(CN , CN ) →

J k(CN , CN )0,0 the corresponding jet mapping taking a formal mapping H to its
k-jet at 0, j k

0 (H). We denote by Gk(CN )0 ⊂ J k(CN , CN )0,0 the collection of k-jets
of invertible formal mappings of (CN , 0) to itself.

Given coordinates Z and Ẑ on CN , we may identify the jet space J k(CN , CN )0,0

with the set of degree-k polynomial mappings of (CN , 0) → (CN , 0). The coor-
dinates on J k(CN , CN )0,0, which we denote by 3, can then be taken to be the
coefficients of these polynomials. Formal changes of coordinates in CN yield
polynomial changes of coordinates in J k(CN , CN )0,0.

If M is a formal real hypersurface in CN , there is a formal change of coordi-
nates Z = (z, w) ∈ C[[z, w]]

N with z = (z1, . . . , zN−1), such that M , under the
corresponding formal holomorphic change of variable Z = Z(z, w), ζ = Z(χ, τ )

)
,

is defined by

ρ(z, w, χ, τ ) :=

(
w−τ

2i

)
− 2

(
z, χ,

w+τ

2

)
∈ C[[Z , ζ ]],

where 2∈C[[z, χ, s]] is real and satisfies 2(z, 0, s)=2(0, χ, s)=0. Such coordi-
nates are called normal coordinates for M ; see [Baouendi et al. 1999b, Chapter IV].

Using the formal Implicit Function Theorem to solve for w above, we see that
there exists a unique formal power series Q ∈ C[[z, χ, τ ]] with Q(0, 0, 0) = 0 such
that ρ

(
z, Q(z, χ, τ ), χ, τ

)
≡ 0; moreover, Q is convergent whenever 2 is. This

implies that there exists a power series a(z, w, χ, τ ), nonvanishing at 0, such that
ρ(z, w, χ, τ ) = a(z, w, χ, τ )

(
w − Q(z, χ, τ )

)
; whence we may write (abusing

notation)

(3) M =

{(
w−w

2i

)
= 2

(
z, z, w+w

2

)}
=
{
w = Q(z, z, w)

}
.

Observe that the normality of the coordinates implies Q(z, 0, τ ) = Q(0, χ, τ ) = τ .
Given normal coordinates Z = (z, w) for M as above, define the numbers

m, r, L , K ∈ {0, 1, 2, . . . } ∪ {∞} as follows. Set

(4) m := sup {q : 2s j (z, χ, 0) ≡ 0 for all j < q} .

If m = ∞ (i.e., if 2 ≡ 0), then set r = L = K = ∞. Otherwise, set

r := sup
{
q : 2zαχβsm (0, 0, 0) = 0 for all |α| + |β| < q

}
,(5)

L := sup
{
q : 2χβsm (z, 0, 0) ≡ 0 for all |β| < q

}
,(6)

K := sup
{
q : 2zαχβsm (0, 0, 0) = 0 for all |α| < q, |β| = L

}
.(7)
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We shall show in Theorem 2.1 that this 4-tuple of numbers is independent of the
normal coordinates used to define them.

We say that M is of finite type at 0 if m = 0; otherwise M is of infinite type at
0. If we wish to emphasize the number m ≥ 1, we shall say that M is of m-infinite
type at 0 if m < ∞, and is flat at 0 if m = ∞. We shall further say M is of finite
type r at 0 if m = 0, and is of m-infinite type r at 0 if 1 ≤ m < ∞.

We conclude these definitions by stating a few known results concerning these
numbers in the case when M is a real-analytic hypersurface in CN . In this case, it is
known that the pair (m, r) is a biholomorphic invariant of M ; see [Meylan 1995].
If M is of infinite type at 0, it contains a formal complex hypersurface 6 passing
through 0. (In normal coordinates, we may take 6 = {w = 0}.) In fact, m > 0 is
constant along the complex hypersurface 6 ⊂ M through 0. And while r is not
constant along 6, there exists a proper, real-analytic subvariety V ⊂ 6 outside of
which all points are of m-infinite type 2. See [Ebenfelt 2002] for details.

Statement of results. Our first result shows that the 4-tuple (m, r, L , K ) (and hence
the notion of being m-infinite type r at a point) is in fact a formal invariant of a
hypersurface.

Theorem 2.1. Let (M, 0) be a formal real hypersurface of CN . Then the numbers
(m, r, L , K ) are independent of the choice of normal coordinates used to define
them. Moreover, if (M̂, 0) is formally equivalent to (M, 0) and has the corre-
sponding 4-tuple (m̂, r̂ , L̂, K̂ ), then (m, r, L , K ) = (m̂, r̂ , L̂, K̂ ).

We shall then focus on the case N = 2 and m = 1. We may now state the
generalizations of Theorems 1.1 through 1.4 valid for formal real hypersurfaces.
Our main result is the following.

Theorem 2.2. Let (M, 0) be a formal real hypersurface in C2 of 1-infinite type.
There exists an integer k such that given any formal real hypersurface (M̂, 0) in
C2 formally equivalent to (M, 0), there exists a formal power series of the form

(8) 9(Z; 3) =

∑
α

pα(3)

q(3)`α
Zα,

where pα, q are (respectively) C2- and C-valued polynomials on the jet space
J k(C2, C2)0,0 and the `α are nonnegative integers, such that any formal equiva-
lence H ∈ F(M, 0; M̂, 0) satisfies

q
(

j k
0 (H)

)
= det

(
∂ H
∂ Z

(0)
)

6= 0, H(Z) = 9
(
Z; j k

0 (H)
)
.

It is clear from the remarks made in the previous section that Theorem 2.2 is a
more general version of Theorem 1.1 from the introduction. As a consequence of
this result, we have the following, from which Theorem 1.2 is derived.
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Theorem 2.3. Let (M, 0) be a formal real hypersurface in C2 of 1-infinite type,
and let k be the number described in Theorem 2.2. If (M̂, 0) is a formal hyper-
surface formally equivalent to (M, 0), and H 1, H 2

: (M, 0) → (M̂, 0) are formal
equivalences such that

∂ |α|H 1

∂ Zα (0) =
∂ |α|H 2

∂ Zα (0) for all |α| ≤ k,

then H 1
= H 2 as power series.

We shall then prove the following generalization of Theorem 1.4.

Theorem 2.4. Let M and k be as in Theorem 2.2. The mapping

j k
0 : Aut(M, 0) → Gk(C2)0

defines an injective group homomorphism onto a real algebraic Lie subgroup of
Gk(C2)0.

The following generalization of Theorem 1.3 is a consequence of Theorem 2.4.

Theorem 2.5. Let M and k be as in Theorem 2.2. For any formal real hypersurface
M̂ in C2, the mapping

j k
0 : F(M, 0; M̂, 0) → J k(C2)0

is an injection onto a real algebraic submanifold of Gk(C2)0.

3. Formal invariance of type conditions

In this section, we shall prove Theorem 2.1, or rather a slightly sharper statement
of which Theorem 2.1 is an immediate consequence:

Proposition 3.1. Let (M, 0) be a formal real hypersurface in CN , given in normal
coordinates Z = (z, w) by Equation (3). Let (M̂, 0) be a formal real hypersurface
in CN , given in normal coordinates Ẑ = (ẑ, ŵ) by the corresponding “hatted”
defining functions:

M̂ =

{
ŵ−ŵ

2i
= 2̂

(
ẑ, ẑ, ŵ+ŵ

2

)}
=
{
ŵ = Q̂(ẑ, ẑ, ŵ)

}
.

Define as in Section 2 the 4-tuple (m, r, L , K ) for M and the corresponding 4-tuple
(m̂, r̂ , L̂, K̂ ) for M̂ . If M and M̂ are formally equivalent, then (m, r, L , K ) =

(m̂, r̂ , L̂, K̂ ).

We begin with a useful lemma concerning the form of formal mappings in nor-
mal coordinates. It is proved in the same way as [Baouendi et al. 1999b, Lemma
9.4.4].
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Lemma 3.2. Let M, M̂ be formal hypersurfaces in CN through 0, expressed in
normal coordinates as in Proposition 3.1. If H = (F, G) : (M, 0) → (M̂, 0) is a
formal mapping, then G(z, w) = wg(z, w) for some g ∈ C[[z, w]]. Moreover, if
H is a formal equivalence, then F(z, 0) ∈ C[[z]]N−1 is a formal equivalence, and
g(0, 0) 6= 0.

As a consequence of this lemma, we shall henceforth write formal equivalences
(in suitable normal coordinates) as

(9) H(z, w) =
(

f (z, w),wg(z, w)
)
,

with f = ( f 1, . . . , f N−1) ∈ C[[z, w]]
N−1 satisfying det fz(0, 0) 6= 0 and g ∈

C[[z, w]] satisfying g(0, 0) 6= 0. Observe that the condition that H map M formally
into M̂ may be written as

(10) Q(z, χ, τ )g
(
z, Q(z, χ, τ )

)
≡ Q̂

(
f
(
z, Q(z, χ, τ )

)
, f (z, χ), τ g(χ, τ )

)
.

Moreover, for convenience, we shall formally expand f and g as

(11) f (z, w) =

∑
n≥0

fn(z)
n!

wn, g(z, w) =

∑
n≥0

gn(z)
n!

wn.

The main technical lemma in the proof of Proposition 3.1 is the following.

Lemma 3.3. Suppose M, M̂ are formal hypersurfaces in CN through 0, expressed
in normal coordinates as in Proposition 3.1, and assume that H : (M, 0) → (M̂, 0)

is a formal equivalence. Then for every j ≥ 0, if

Q̂(ẑ, χ̂ , 0) ≡ Q̂ τ̂ (ẑ, χ̂ , 0) − 1 ≡ Q̂ τ̂ 2(ẑ, χ̂ , 0) ≡ · · · ≡ Q̂ τ̂ j (ẑ, χ̂ , 0) ≡ 0,

then

(12) Q(z, χ, 0) ≡ Qτ (z, χ, 0) − 1 ≡ Qτ 2(z, χ, 0) ≡ · · · ≡ Qτ j (z, χ, 0) ≡ 0.

Moreover, g0(z), g1(z), . . . , g j (z) are all real constants (with g0(z) nonzero), and

Qτ j+1(z, χ, 0) ≡ g(0) j Q̂ τ̂ j+1
(

f0(z), f0(χ), 0
)
.

To prove Lemma 3.3, we make use of two results. The first is a generalization
of the Chain Rule due to Faa de Bruno; see [Range 1986], for example:

Lemma 3.4 (Faa de Bruno’s Formula). Suppose that f =
(

f1, f2, . . . , f`
)
∈ C`

[[z]]
with z ∈ C and f (0) = 0, and suppose h(z1, z2, . . . , z`) ∈ C[[z1, z2, . . . , z`]]. Then

∂v

∂zv

{
h
(

f (z)
)}

=

∑
[α1

]+[α2
]+···

+[α`
]=v

v! hz1|α1|z2|α2|···z`
|α`|

(
f (z)

)
α1! α2! · · · α`!

∏
1≤q≤v
1≤p≤`

(
f p

(q)(z)
q!

)α
p
q

,
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where each α p
= (α

p
1 , . . . , α

p
v ) denotes an v-dimensional multi-index, and

|α p
| =

v∑
q=1

α p
q , [α p

] =

v∑
q=1

q α p
q , α p

! =

v∏
q=1

(α p
q )!

The proof is a routine induction, and is left to the reader. The other result we
shall need gives a second characterization of the number m:

Proposition 3.5 [Baouendi and Rothschild 1991, Proposition 1.7]. Let M , m, 2,
and Q be as above. Then

m = sup
{

q :
∂ j

∂τ j

{
Q(z, χ, τ ) − τ

}∣∣∣
τ=0

≡ 0 for all j < q
}
.

Furthermore,

Qτm (z, χ, 0) =


1 + i 2s(z, χ, 0)

1 − i 2s(z, χ, 0)
if m = 1,

2i 2sm (z, χ, 0) if 2 ≤ m < ∞.

Proof of Lemma 3.3. Differentiating identity (10) v times in τ , setting τ = 0, and
canceling v! from both sides yields the identity

(13)
∑

k+[ξ ]=v

g|ξ |(z) Qτ k (z, χ, 0)

k! ξ !

v∏
p=1

(
Qτ p(z, χ, 0)

p!

)ξp

≡

∑
[α1

]+···+[αn
]+[β1

]+···

···+[βn
]+[γ ]=v

Q̂ ẑ(|α1|,...,|αn |)χ̂ (|β1|··· ,|βn |)τ̂ |γ |

(
f0(z), f0(χ), 0

)
α1! · · · αn! β1! · · · βn! γ !

×

∏
1≤q≤v
1≤u≤n

( ∑
[η]=q

f u
|η|

(z)

η!

q∏
r=1

(
Qτ r (z, χ, 0)

r !

)ηr
)αu

q
( f u

q (χ)

q!

)βu
q
(

gq−1(χ)

(q − 1)!

)γq

.

We now proceed by induction. For j = 0, we assume only that Q̂(ẑ, χ̂ , 0) ≡ 0.
Setting τ = 0 in identity (10), we find

Q(z, χ, 0) g
(
z, Q(z, χ, 0)

)
≡ Q̂

(
f0(z), f0(χ), 0

)
= 0.

Since g(z, Q(z, χ, 0)) does not vanish at z = χ = 0, we conclude Q(z, χ, 0) ≡ 0.
Applying the v = 1 case of identity (13), we find

Qτ (z, χ, 0)g0(z) ≡ Q̂ τ̂

(
f0(z), f0(χ), 0

)
g0(χ).

Setting χ = 0 yields g0(z) ≡ g0(0) = g0(0), whence g0(z) is a real constant r , and
since H is invertible, r 6= 0 necessarily. Dividing gn(z) = g0(χ) = r 6= 0 from both
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sides of the identity above yields

Qτ (z, χ, 0) ≡ Q̂ τ̂

(
f0(z), f0(χ), 0

)
,

which proves the j = 0 case.
Now, assume that the lemma holds for some j − 1 ≥ 0; we shall prove it for j .

Suppose that (12) holds. By induction, we know that

Q(z, χ, 0) ≡ Qτ (z, χ, 0) − 1 ≡ Qτ 2(z, χ, 0) ≡ · · · ≡ Qτ j−1(z, χ, 0) ≡ 0,

that g0, g1, . . . , g j−1 are constant functions, and that

Qτ j (z, χ, 0) ≡ r j−1 Q̂ τ̂ j
(

f0(z), f0(χ), 0
)
.

In the j = 1 case, this implies Qτ (z, χ, 0) ≡ 1; otherwise it implies Qτ j (z, χ, 0) ≡

0, as desired.
Substituting these values into identity (13) (with v = j + 1), we obtain

r Qτ j+1(z, χ, 0) + ( j + 1)g j (z) ≡ r j+1 Q̂ τ̂ j+1
(

f0(z), f0(χ), 0
)
+ ( j + 1)g j (χ).

Setting χ = 0 yields

( j + 1)g j (z) = ( j + 1)g j (0) = ( j + 1)g j (0),

so g j (z) is a real constant. Subtracting ( j + 1)g j (z) from both sides and dividing
by r 6= 0 completes the induction. �

Corollary 3.6. Let M, M̂ be formal real submanifolds of CN through 0, given in
normal coordinates as in Proposition 3.1. Define m for M and the corresponding
m̂ for M̂ . If M and M̂ are formally equivalent, then m = m̂.

Proof. Lemma 3.3 implies m ≥ m̂. Then reverse the roles of M and M̂ . �

We shall be primarily interested in formal real hypersurfaces which are of infinite
type, but nonflat, at 0. That is, formal hypersurfaces of m-infinite type for some
positive integer m. In this case, Corollary 3.6 may be strengthened as follows.

Proposition 3.7. If M is of m-infinite type at 0 and H ∈ F(M, 0; M̂, 0), then M̂ is
of m-infinite type at 0, g0, g1, . . . , gm−1 are constant, and

0 6≡ 2sm (z, χ, 0) ≡ g0(0)m−1 2̂ŝm
(

f0(z), f0(χ), 0
)
.

Proof. Put together Lemma 3.3, Corollary 3.6, and Proposition 3.5. �

We now have the necessary ingredients to prove Proposition 3.1.

Proof of Proposition 3.1. We have seen that m = m̂. If the hypersurfaces are of
finite type, then it is well known that the triple (r, L , K ) is a formal invariant. (An
outline of the proof that r is a formal invariant, for example, may be found in
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[Baouendi et al. 1999b, Chapter I].) Similarly, r = ∞ if and only if m = m̂ = ∞,
which in turn holds if and only if r̂ = ∞; and likewise if L = ∞ or K = ∞.
Hence, it suffices to assume that all the numbers in question are positive integers.
By Proposition 3.7, we have

0 6≡ 2sm (z, χ, 0) ≡ g0(0)m−1 2̂ŝm
(

f0(z), f0(χ), 0
)
.

A straightforward induction using Faa de Bruno’s formula implies that for any
multi-indices α and β,

2zαχβsm (z, χ, 0) = g0(0)m−1
∑

|µ|≤|α|

|ν|≤|β|

2̂ẑµχ̂ν ŝm
(

f0(z), f0(χ), 0
)

× Pαβ
µν

((
( f u

0 )zγ (z)
)
|γ |≤|µ|

,
(
( f u

0)χ δ (χ)
)
|δ|≤|ν|

)
,

where each Pαβ
µν is a polynomial in its arguments.

This implies that 2zαχβsm (0, 0, 0) = 0 whenever |α| + |β| < r̂ , whence r ≥ r̂
necessarily. Reversing the roles of M and M̂ yields r = r̂ . Similarly, the equality
of r and r̂ then implies that 2χβsm (z, 0, 0) ≡ 0 whenever |β| < L̂ , whence L ≥ L̂;
reversing the roles of the formal hypersurfaces establishes equality. The proof that
K = K̂ is similar, and is left to the reader. �

4. The 1-infinite type case in C2

Notation and results. From now on we deal only with formal real hypersurfaces of
C2, and in particular those hypersurfaces that are of 1-infinite type at 0. Suppose
that M is such a formal hypersurface. We shall write M in normal coordinates
Z = (z, w) as in (3). Since M is of 1-infinite type, this implies that we can write
Q(z, χ, τ ) = τ S(z, χ, τ ) for some S ∈ C[[z, χ, τ ]], so that

(14) M =

{(
w−w

2i

)
= 2

(
z, z, w+w

2

)}
=
{
w = w S(z, z, w)

}
.

For convenience, we shall write

(15) θ(z, χ) =

∞∑
j=0

θ j (z)
j !

χ j
:= 2s(z, χ, 0) 6≡ 0

Observe that θ j (z) ≡ 0 if j < L and θ
( j)
L (0) = 0 if j < K ,where L , K are defined

by equations (6) and (7). It will be useful for later computations to observe that
Proposition 3.5 implies

(16) S(z, χ, 0) =
1 + i θ(z, χ)

1 − i θ(z, χ)
,
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whence repeated differentiation in χ yields

(17) Sχ j (z, 0, 0) =


1 if j = 0,

0 if 1 ≤ j ≤ L − 1,

2i θL(z) if j = L ,

2i θL+1(z) − 4θ1(z)2 if j = L + 1.

We now define a new, rather technical, invariant for 1-infinite type hypersur-
faces. Letting δ

j
k denote the Kronecker delta function, we define the number

T ∈ {0, 1} by

(18) T :=

K−2∏
q=0

δ0
θ

(q)

L+1(0)
.

That is, T = 1 if and only if θL+1(z) = O(|z|K−1); by means similar to the proofs
for the numbers r , L , and K , it can be shown that T is a formal invariant. Details
are left to the reader.

Now assume that M̂ is a formal real hypersurface of C2 that is formally equiv-
alent to M , and write it in normal coordinates Ẑ = (ẑ, ŵ) as

(19) M̂ =

{
ŵ−ŵ

2i
= 2̂

(
ẑ, ẑ, ŵ+ŵ

2

)}
=
{
ŵ = ŵ Ŝ(ẑ, ẑ, ŵ)

}
,

We write θ̂ (ẑ, χ̂) := 2̂ŝ(ẑ, χ̂ , 0) as above.
If H : (M, 0)→ (M̂, 0) is a formal equivalence, Lemma 3.2 implies that H(z, w)

is of the form given by (9), with f, g ∈ C[[z, w]] and fz(0, 0)g(0, 0) 6= 0. Observe
that identity (10) can be rewritten (after canceling an extra τ from both sides) as

(20) S(z, χ, τ )g
(
z, τ S(z, χ, τ )

)
≡ g(χ, τ ) Ŝ

(
f
(
z, τ S(z, χ, τ )

)
, f (z, χ), τ g(χ, τ )

)
.

We shall continue to use the formal Taylor expansions of f and g in w given by
equation (11), and shall write

(21) fn(z) :=

∑
k≥0

1
k!

ak
n zk, gn(z) :=

∑
k≥0

1
k!

bk
n zk,

where the bar denotes complex conjugation. Note that, in particular, a0
0 =0, a1

0 6=0,

and b0
0 = b0

0 6= 0.
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Finally, for n ≥ 0, define the formal rational mapping ϒn
: (C2, 0) → (C4, 0) by

ϒn
1 (z, χ) := K

θL(z)
θ ′

L(z)

(1+i θ(z, χ)

1−i θ(z, χ)

)n
θz(z, χ)− L

θ L(χ)

θ ′

L(χ)
θχ (z, χ),

ϒn
2 (z, χ) := (1 + θ(z, χ)2)

((1+i θ(z, χ)

1−i θ(z, χ)

)n
− 1

)
− 2i n

θ L(χ)

θ ′

L(χ)
θχ (z, χ),

ϒn
3 (z, χ) := δ1

L δ1
T

(
δ1

K θ
(L)
1 (0)

θχ (z, χ, 0)

θ ′

1(χ)

+
θ

(K )
1 (0)θ

(K )
2 (0) − θ

(K+1)
1 (0)θ

(K−1)
2 (0)

K θ
(K )
1 (0)2

θ1(χ)

θ ′

1(χ)
θχ (z, χ)

−

(1+i θ(z, χ)

1−i θ(z, χ)

)n
(

θ1(z)
(
1 + θ(z, χ)2)

+

(
θ2(z)
θ ′

1(z)
− 2i n

θ1(z)2

θ ′

1(z)

)
θz(z, χ)

)

+
θ

(K−1)
2 (0)

θ
(K )
1 (0)

(
θ1(χ)

(
1 + θ(z, χ)2)

+

(
θ2(χ)

θ ′

1(χ)
+ 2i n

θ1(χ)2

θ ′

1(χ)

)
θχ (z, χ)

))
,

ϒn
4 (z, χ) := δ1

K

(
θ1(χ)

θ ′

1(0)

(
1 + θ(z, χ)2)

−
θz(z, χ)

θ ′

1(z)

(1+i θ(z, χ)

1−i θ(z, χ)

)n

+
θχ (z, χ)

θ ′

1(0)

(
2i n

θ1(χ)2

θ ′

1(χ)
+

θ2(χ)

θ ′

1(χ)
−

θ ′′

1 (0)

θ ′

1(0)

θ1(χ)

θ ′

1(χ)

))
,

where the θ j are defined by (15). We shall prove in the next section that these four
equations actually define formal power series in (z, χ), rather than quotients of
formal power series.

Observe that the formal mapping ϒn depends on the choice of normal coordi-
nates Z = (z, w) for the formal hypersurface M .

We are now able to state the main technical result of the paper, which may be
viewed as a sharper version of Theorem 2.2, but with conjugated derivatives.

Theorem 4.1. Let (M, 0) be a formal real hypersurface in C2 which is of 1-infinite
type, given in normal coordinates Z = (z, w) by equation (14). Define ϒn(z, χ) as
immediately above. For each n ∈ N, define the complex vector space

(22) Vn(M) := spanC

{
υn

s,t := ϒn
zsχ t (0, 0) : s, t ∈ N

}
⊂ C4.

Then the dimension of the vector space Vn(M) is a formal invariant for each n,
and the invariant set of integers

(23) D(M) :=
{
n ∈ N : dimC Vn(M) < 2 + δ1

K + δ1
L δ1

T
}
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is always finite.
Furthermore, given a formal real hypersurface (M̂, 0) in C2 formally equivalent

to (M, 0), normal coordinates Ẑ = (ẑ, ŵ) for M̂ , and n ∈ N, there exists a formal
power series An(z; 1, 3) ∈ C[1, 3][[z]]2, with (z, 1,3) ∈ C×C×C4|D(M)|, such
that (

fn(z), gn(z)
)
≡ An

(
z;

1
a1

0b0
0

,
(
a0

j , b0
j , a1

j , b1
j
)

j∈D(M)

)
.

for any H ∈ F(M, 0; M̂, 0).
Moreover, if M and M̂ are convergent, there exists an ε > 0 such that the map

z 7→ An

(
z;

1
a1

0b0
0

,
(
a0

j , b0
j , a1

j , b1
j
)

j∈D(M)

)
lies in Oε(z)2 for every H ∈ F(M, 0; M̂, 0) and every n ∈ N.

Examples. We now use Theorem 4.1 and Proposition 3.7 to calculate the formal
transformation groups of various 1-infinite type hypersurfaces.

Example 4.2. Consider the family of 1-infinite type hypersurfaces

M j
c :=

{
(z, w) : Im w = c Re w |z|2 j} , c ∈ R \ {0}, j ≥ 1.

Observe that L = K = j , T = 1, and θ(z, χ) = czχ . If n > 0, it can be shown
that {υn

2 j,2 j , υ
n
3 j,3 j } is a basis for Vn(M j

c ) if j ≥ 2, and that adding the vectors
{υn

2,3, υ
n
3,2} extends this to a basis for Vn(M1

c ). Hence, in any case, we have
D(M j

c )={0}, so any formal equivalence with source M j
c is determined by (a1

0, b0
0).

Applying Proposition 3.7 with M = M̂ = M j
c implies f0(z) = ε z for some ε ∈ C

with |ε| = 1. It thus follows that

Aut(M j
c , 0) = {(z, w) 7→ (ε z, r w) : ε ∈ C, |ε| = 1, r ∈ R \ {0}} .

In particular, every formal automorphism converges.
Observe that for j 6=k, the hypersurfaces M j

c and Mk
b are not formally equivalent

(Theorem 2.1). On the other hand, M j
c and M j

b are formally equivalent if and only
if c/b > 0. In this case, applying Proposition 3.7 implies that f0(z) = α z for some
α ∈ C of modulus (c/b)1/2 j . It thus follows that

F(M j
c , 0; M j

b , 0) =

{
(z, w) 7→

( c
b

)1/2 j(
εz, r w

)
: ε ∈ C, |ε| = 1, r ∈ R \ {0}

}
.

Hence, the hypersurfaces M j
c are formally equivalent if and only if they are bi-

holomorphically equivalent if and only if b and c have the same sign.
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Example 4.3. Consider the family of 1-infinite type hypersurfaces

N j
b :=

{
(z, w) : Im w = 2 Re w Re(bzz j )

}
, b ∈ C \ {0}, j ≥ 2.

Note L = 1, K = j , and θ(z, χ) = bzχ j
+ bz jχ . If n > 0, it can be shown that

{υn
2,2, υ

n
3,2, υ

n
3,3

}
forms a basis for Vn(N j

b ), so we again conclude that D(N j
b )={0}.

Hence, every formal equivalence H with source N j
b is determined by the values

a1
0 and b0

0.
Now, Proposition 3.7 applied to the case M = M̂ = N j

b implies that a1
0 is a

( j−1)-th root of unity and that f0(z) = z/a1
0 . We conclude that

Aut(N j
b , 0) =

{
(z, w) 7→ (ε z, r w) : ε ∈ C, ε j−1

= 1, r ∈ R \ {0}
}
.

Note that every formal automorphism converges.

Example 4.4. Consider the hypersurface

M :=

{
(z, w) : Im w =

Re w |z|2

1 +
√

1 − |z|4
, |z| < 1

}
.

It is easy to check that L = K = 1 in this case and that D(M) = {0, 1, 2}. (In fact,
ϒ1

4 ≡0 and 2i ϒ2
1 ≡ϒ2

2 .) A complete calculation of the stability group of this hyper-
surface is given in [Kowalski 2002b], and reveals it to be a real-analytic hyper-
surface whose stability group at the origin is determined by 3-jets but not by 2-jets.

In fact, this example can be generalized as follows. Define for k = 2, 3, 4, . . .

the set

Mk :=

{
(z, w) : w = w

(
i |z|2 +

√
1 − |z|4

)2/k
}

,

where the principal branch of ζ 7→ ζ 2/k is meant. A straightforward calculation
shows that each Mk defines a real hypersurface and that M2 = M above. It can
also be shown that D(Mk) = {0, k/2, k} ∩ Z, and that the stability group of Mk

is determined by (k + 1)-jets, but not by jets of any lesser order; for details, see
[Kowalski 2002a, Chapter 7]. Hence, even though Theorem 4.1 asserts that D(M)

is always finite, the integers themselves can be arbitrarily large and, consequently,
the required jet-order can be as well.

5. Proofs of the main results

Proof of Theorem 4.1. A basic outline of the proof can be divided into four steps.

(1) Given a fixed set of normal coordinates Z = (z, w), we prove that for each
n ∈ N the power series fn(z) and gn(z) are rationally parametrized by the
values (a j

` , b j
` ) for ` = 0, 1 and 0 ≤ j ≤ n.
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(2) We prove that under these conditions, if n 6∈ D(M), the 4-tuple of complex
numbers (a0

n, a1
n, b0

n, b1
n) is itself a polynomial in 1/(a1

0 b0
0) and (a j

` , b j
` ) for

` = 0, 1 and 0 ≤ j ≤ n − 1.

(3) We prove that D(M), defined by these normal coordinates, is always finite.

(4) We show that the dimension of Vn(M) (and hence the set D(M)) is indepen-
dent of the normal coordinates used to define it.

To fix notation throughout the proof, we assume that M is always given in normal
coordinates Z = (z, w) by (14). We also set D=D(M) and Vn

=Vn(M). Similarly,
M̂ , whenever a target formal hypersurface is needed, will always be given in normal
coordinates Ẑ = (ẑ, ŵ) by (19). If H : (M, 0) → (M̂, 0) is a formal equivalence,
we set

1(H) :=
1

a1
0b0

0

∈ C \ {0},

λn
2(H) :=

(
a1

n, b0
n
)
∈ C2,

λn
3(H) :=

(
a1

n, b0
n, a0

n
)
∈ C3,

λn
4(H) :=

(
a1

n, b0
n, a0

n, b1
n
)
∈ C4,

3n
j (H) :=

(
λ0

j (H), λ1
j (H), . . . , λn

j (H)
)
∈ C j (n+1).

We also use the following conventions for naming various types of polynomials
and power series.

• Qd(X; 3)∈C[X, 3]≡C[3][X ] denotes a polynomial in X of degree d whose
coefficients are polynomial in 3.

• P(3; X) ∈ C[[X, 3]] ≡ C[[X ]][3] denotes a polynomial in 3 whose coeffi-
cients are power series in X .

• R(X; 3) ∈ C[[X, 3]] ≡ C[3][[X ]] denotes a power series in X whose coeffi-
cients are polynomial in 3.

Assume the normal coordinates Z and Ẑ for M and M̂ are fixed. We now tackle
the first step, the parametrizing of fn and gn . We begin with a lemma.

Lemma 5.1. Let (M, 0) and (M̂, 0) be formally equivalent formal 1-infinite type
hypersurfaces as above. There exist unique formal power series U, V ∈ C[[X, Y ]],
vanishing at 0, such that

f0(z) = U
(

z,
z

a1
0

)
, f0(χ) = V

(
χ, a1

0 χ
)

for any H ∈ F(M, 0; M̂, 0). If both M and M̂ are convergent hypersurfaces, then
U, V ∈ C{X, Y }.
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Proof. Proposition 3.7 implies that

(24) θ(z, χ) ≡ θ̂
(

f0(z), f0(χ)
)
.

Differentiating this L times in χ using Faa de Bruno’s formula and setting χ = 0
yields the identity

(25) θL(z) ≡ (a1
0)

L θ̂L
(

f0(z)
)
.

Differentiating this K times in z and setting z = 0 yields

(26) θ
(K )
L (0) =

(
a1

0

)K (a1
0
)L

θ̂
(K )
L (0).

In particular, we find that for any formal equivalence H ∈ F(M, 0; M̂, 0),

(27)
∣∣ f ′

0(0)
∣∣= ∣∣a1

0

∣∣= ∣∣∣∣∣θ (K )
L (0)

θ̂
(K )
L (0)

∣∣∣∣∣
1/(L+K )

=: µ ∈ R \ {0}.

We can write

θL(z) =
1

K !
θ

(K )
L (0)zK t (z),

for some t ∈ C[[z]] with t (0) = 1. Thus, there exists a unique power series u(z)
with u(0) = 1 such that u(z)K

= t (z). Similarly, write

θ̂L(ẑ) =
1

K !
θ̂

(K )
L (0) ẑK û(ẑ)K ,

with û(0) = 1. Define the formal power series

ι(ẑ, X, Y ) := ẑ û(ẑ) − µ2 Y u(X).

Observe that ι(0, 0, 0)= 0 and ιẑ(0, 0, 0)= 1, whence the formal Implicit Function
Theorem implies the existence of a unique power series U (X, Y ), vanishing at
(0, 0), such that ι

(
U (X, Y ), X, Y

)
≡ 0.

Now, suppose that H ∈ F(M, 0; M̂, 0). Then identity (25) may be written as

1
K !

θ
(K )
L (0)

(
z u(z)

)K
≡ (a1

0)
L 1

K !
θ̂

(K )
L (0)

(
f0(z) û( f0(z))

)K
.

Replacing θL
(K )(0) by equation (26) and canceling common terms yields the iden-

tity (
a1

0 z u(z)
)K

≡
(

f0(z) û( f0(z))
)K

.

Formally extracting K-th roots on both sides, we conclude that the two power series
in the brackets differ only by some multiple ε ∈ C with εK

= 1. However, since

∂

∂z
(
a1

0 z u(z)
)∣∣

z=0 = a1
0 = f ′

0(0) =
∂

∂z
(

f0(z) û( f0(z))
)∣∣

z=0,
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we conclude that ε = 1 necessarily. Moreover, since a1
0 a1

0 = µ2, we have

µ2
(

z
a1

0

)
u(z) ≡ f0(z) û

(
f0(z)

)
.

Hence, ι
(

f0(z), z, z/a1
0

)
≡ 0, so by the uniqueness of U , we conclude f0(z) =

U
(
z, z/a1

0

)
. Conjugating this result yields f0(χ)= V (χ, a1

0 χ), where V is defined
by V (X, Y ) := U (X, Y/µ2).

Finally, observe that if M and M̂ are convergent, then the power series θ (hence
also u) and θ̂ (hence û) are convergent. Thus the holomorphic Implicit Function
Theorem implies that U and V are necessarily convergent near (0, 0) ∈ C2. �

We can now extend this lemma to show that fn and gn are similarly parametrized
for any n ≥ 0.

Proposition 5.2. Let (M, 0), (M̂, 0) be formally equivalent formal 1-infinite type
hypersurfaces as above. Then for every n ∈ N, there exists a formal power series
Bn(z; 1, 3) ∈ C[1, 3][[z]]2 such that

(28)
(

fn(z), gn(z)
)
= Bn

(
z; 1(H), 3n

2+δ1
K +δ1

T
(H)

)
for any H ∈ F(M, 0; M̂, 0). In addition, if n ≥ 1, then in fact

(29)
fn(z)
f ′

0(z)
= T 1

n
(
z; 1(H), 3n−1

2+δ1
K +δ1

T
(H)

)
−

L
a1

0

(
θL(z)
θ ′

L(z)

)
a1

n +
n
b0

0

(
θL(z)
θ ′

L(z)

)
b0

n

+
i δ1

K

2b0
0

(
1

θ ′

1(z)

)
b1

n +
δ1

T

a1
0

(
2i n

θ1(z)2

θ ′

L(z)
−

θL+1(z)
θ ′

L(z)
+

L a2
0

a1
0

θL(z)
θ ′

L(z)

)
a0

n,

(30) gn(z) = T 2
n
(
z; 1(H), 3n−1

2+δ1
K +δ1

T
(H)

)
+ b0

n +
2i b0

0 δ1
T

a1
0

(
θ1(z)

)
a0

n

with T (z; 1, 3n−1
2+δ1

K +δ1
T
) ∈ C2

[1, 3n−1
2+δ1

K +δ1
T
][[z]].

Moreover, if M and M̂ are convergent, there exists an ε > 0 such that the map

z 7→ Bn
(
z; 1(H), 3n

2+δ1
K +δ1

T
(H)

)
lies in Oε(z)2 for every n ∈ N and every H ∈ F(M, 0; M̂, 0).

Proof. For convenience, we shall set γ = 2 + δ1
K + δ1

T . We proceed by induction.
The n = 0 case follows immediately from Lemma 5.1 and the fact that g0(z) ≡ b0

0
(Proposition 3.7), so let us assume that the proposition is true up to some n−1 ≥ 0.
To prove (28), it suffices to prove that equations (29) and (30) hold.
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Suppose that H : (M, 0) → (M̂, 0) is a formal equivalence.1 Differentiating
identity (20) n times in τ using Faa de Bruno’s formula and setting τ = 0 (or,
equivalently, substituting Q(z, χ, τ ) = τ S(z, χ, τ ) and v = n +1 into (13)) yields

(31) −S(z, χ, 0)n+1gn(z) + b0
0 Ŝẑ

(
f0(z), f0(χ), 0

)
S(z, χ, 0)n fn(z)

+b0
0 Ŝχ̂

(
f0(z), f0(χ), 0

)
fn(χ) + Ŝ

(
f0(z), f0(χ), 0

)
gn(χ)

≡ Pn

(
b0

0,
(

f j (z), g j (z), f j (χ), g j (χ)
)n−1

j=1; z, χ, f0(z), f0(χ)
)
,

where Pn(3; X), with (3, X) ∈ C4n−3
× C4, depends only on M and M̂ and not

the map H . (An explicit formula for Pn is given following the proof of Proposition
5.2.) Note that Lemma 3.3 implies Ŝ

(
f0(z), f0(χ), 0

)
= S(z, χ, 0), whence

Ŝẑ
(

f0(z), f0(χ), 0
)
=

Sz(z, χ, 0)

f ′

0(z)
, Ŝχ̂

(
f0(z), f0(χ), 0

)
=

Sχ (z, χ, 0)

f ′

0(χ).

If equation (28) holds for some n ∈ N, then

(32) λn
4(H) =

(
(Bn)

1
z , (Bn)

2, (Bn)
1, (Bn)

2
z
)
(0; 1(H), 3n

γ (H))

=: βn(1(H), 3n
γ (H)).

Applying the inductive hypothesis to this and substituting this into equation (31)
yields

(33)
(

f j (χ), g j (χ)
)
= B j

(
χ;

(a1
0

µ

)2
1(H),

(
β`(1(H), 3`

γ (H))
) j
`=0

)
for j < n, where µ is defined in equation (27). Substituting these values into (31)
yields

(34) −S(z, χ, 0)n+1gn(z) + S(z, χ, 0)gn(χ) + b0
0 Sz(z, χ, 0)S(z, χ, 0)n fn(z)

f ′

0(z)

+b0
0 Sχ (z, χ, 0)

fn(χ)

f ′

0(χ)
≡ Rn(z, χ; 1(H), 3n−1

γ (H)),

with Rn(X; 3) independent of the mapping H for each n ≥ 0.
On one hand, substituting χ = 0 and the identities from equations (16) and (17)

into (34) yields

(35) gn(z) = Rn(z, 0; 1(H), 3n−1
γ (H)) + b0

n +
2i b0

0

a1
0

(
θ1(z)

)
a0

n .

On the other hand, differentiating identity (34) L times in χ , setting χ = 0, and
using the identities from equations (16) and (17) yields (after rearranging terms)

1We remark that the construction given in this section can be carried out if no formal equivalence
exists between M and M̂ .
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the identity

θ ′

L(z)
fn(z)
f ′

0(z)

≡ −
i

2b0
0

(Rn)χ j
(
z, 0; 1(H), 3n−1

γ (H)
)
+

n+1
b0

0

θL(z)gn(z) +
i

2b0
0

bL
n

−
1
b0

0

(
θL(z)

)
b0

n −
L
a1

0

(
θL(z)

)
a1

n −
1
a1

0

(
θL+1(z) + 2i θ1(z)2

−
L a2

0

a1
0

θL(z)
)

a0
n .

Using the formula for gn(z) from equation (35) and observing that (θ1)
2

= θ1 θL

for every L ≥ 1, we can rewrite this identity as

(36) θ ′

L(z)
fn(z)
f ′

0(z)

≡ −
i

2b0
0

(Rn)χ j
(
z, 0; 1(H), 3n−1

γ (H)
)
−

n
b0

0

(
θL(z)

)
b0

n +
i

2b0
0

bL
n

−
L
a1

0

(
θL(z)

)
a1

n +
1
a1

0

(
− θL+1(z) + 2i nθ1(z)2

+
L a2

0

a1
0

θL(z)
)

a0
n .

We complete the proof by examining cases.

Case 1. K = 1. In this case L = T = 1 necessarily, so γ = 4 and θ ′

L(z) = θ ′

1(z)
is a multiplicative unit. Dividing it on both sides of (36) yields (29); equation (30)
follows from (35).

Case 2. K > 0. In this case, setting z = 0 in (36) yields

0 = −
i

2b0
0

(Rn)χ j
(
z, 0; 1(H), 3n−1

γ (H)
)
+

i
2b0

0

bL
n ,

whence we may replace bL
n in identity (36) by (Rn)χ j

(
z, 0; 1(H), 3n−1

γ (H)
)
.

Thus, after rearranging the terms again, we may rewrite (36) as

(37) θ ′

L(z)
fn(z)
f ′

0(z)

≡

K−2∑
j=0

(rn
j

(
1(H),3n−1

γ (H)
)

j !
z j

+R1
n
(
z; 1(H),3n−1

0 (H)
))

−
n
b0

0

(
θL(z)

)
b0

n

−
L
a1

0

(
θL(z)

)
a1

n +
1
a1

0

(
− θL+1(z) + 2i nθ1(z)2

+
L a2

0

a1
0

θL(z)
)

a0
n,

with the rn
j polynomials and R1

n(z; 1, 3) of order at least K−1 in z.
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Case 2A. T = 1. Note that γ = 3. Since θ
( j)
L+1(0) = 0 for j < K−1, differentiating

(37) in z (up to K−2 times) yields the relations

rn
j
(
1(H), 3n−1

3 (H)
)
= 0, 0 ≤ j ≤ K − 2.

This does not imply that the polynomials rn
j (1, 3) are themselves identically zero;

merely that they vanish whenever

(1, 3) =
(
1(H), 3n−1

3 (H)
)

for some formal equivalence H ∈ F(M, 0; M̂, 0).
Consequently, we may remove the first K−1 summands of the right-hand ex-

pression in identity (37). Observe that all the remaining summands are of order at
least K−1 in z, and hence can be divided by θ ′

L(z) to form another power series.
This division yields (29); (30) follows from (35).

Case 2B. T =0. Note that γ =2. We know there exists some j0 ∈{1, 2, . . . , K −2}

such that θ
( j0)
L+1(0) 6= 0. Differentiating the identity (37) j0 times in z and setting

z = 0, we obtain

0 = rn
j0

(
1(H), 3n−1

2 (H)
)
−

θ
( j0)
L+1(0)

a1
0

a0
n,

whence we may replace a0
n in (35) and (37) by

a1
0 rn

j0(1(H), 3n−1
2 (H))

θ
( j0)
L+1(0)

to obtain

θ ′

L(z)
fn(z)
f ′

0(z)
≡

K−2∑
j=0

( r̃n
j (1(H), 3n−1

2 (H))

j !
z j

+ R2
n(z; 1(H), 3n−1

2 (H))

)
−

n
b0

0

(
θL(z)

)
b0

n −
L
a1

0

(
θL(z)

)
a1

n,

gn(z) = R3
n
(
z, 0; 1(H), 3n−1

2 (H)
)
+ b0

n.

Thus, (30) holds; arguing as in the proof of Case 2A now yields (29).

The only thing missing from the proof is the convergence statement. Assume
now that M and M̂ define real-analytic hypersurfaces in C2 through 0. Hence,
there exists a δ > 0 such that

S(z, χ, τ ) ∈ Oδ(z, χ, τ ), Ŝ
(
ẑ, χ̂ , τ̂

)
∈ Oδ

(
ẑ, χ̂ , τ̂

)
.

Without loss of generality, we shall assume that δ is chosen small enough such that
θL(z) 6= 0 for 0 < |z| < δ, since the zeros of a nonconstant holomorphic function
of one variable are isolated.
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Similarly, since U (X, Y ) ∈ C{X, Y } vanishes at 0 by Lemma 5.1, there exists
an η > 0 such that U (X, Y ) ∈ Oη(X, Y ) and satisfies

∣∣U (X, Y )
∣∣ < δ whenever

|X |, |Y | < η.
Choose ε < min{δ, η, µη}, where µ is defined by equation (27). We claim this

is the desired ε > 0; the proof is by induction. The case n = 0 follows from
Lemma 5.1. Assuming this choice of ε holds up to some n − 1, then observe that
the mapping

(z, χ) 7→ Rn
(
z, χ; 1(H), 3n−1

γ (H)
)

≡ Pn

(
b0

0,
(

f j (z), g j (z), f j (χ), g j (χ)
)n−1

j=1; z, χ, f0(z), f0(χ)
)

converges if |z|, |χ | < δ for any H ∈ F(M, 0; M̂, 0). Fix such an H . By equation
(35), we conclude gn(z) converges on the ball B1(0, ε) = {z ∈ C : |z| < ε}. On the
other hand, we have shown that θ ′

L(z) fn(z)/ f ′

0(z) = zK−1q
(
z; 1(H), 3n−1

γ (H)
)
,

with q( · ;1(H), 3n−1
γ (H)) convergent on B1(0, ε). Since θ ′

L(z) converges for
|z| < ε and in the ε-ball vanishes only at z = 0 (of order K − 1), we conclude that
fn(z) converges on B1(0, ε) as well, which completes the proof. �

It is of interest to note that as a consequence of Proposition 5.2, we see that
if M and M̂ are real-analytic hypersurfaces in C2 and H is a formal equivalence
between them, the formal mappings z 7→ Hwn (z, 0) are convergent for every n ∈

N; moreover, they converge on some common ε-neighborhood of 0 ∈ C, with ε

independent of n and H .
Because it is useful in doing calculations, we now give the explicit formula for

Pn . Using Faa de Bruno’s formula, we have

Pn

((
f j ,g j , f j ,g j

)n−1
j=0; z,χ, ẑ, χ̂

)
= pn

((
f j ,g j , f j ,g j

)
0≤ j≤n−1,

(
Sτ j (z,χ,0)

)
0≤ j≤n,

(
Ŝẑ j χ̂ k τ̂ `(ẑ, χ̂ ,0)

)
0≤ j+k+`≤n

)
where pn is the universal polynomial

pn

((
f j , g j , f j , g j

)
0≤ j≤n−1,

(
S j
)

0≤ j≤n,
(
Ŝ( j,k,`)

)
0≤ j+k+`≤n

)
≡

∑
α∈Nn

k+[α]=n
|α|<n

n! g|α| Sk

k! α!

n∏
p=1

(
Sp−1

(p−1)!

)αp

−

∑
α,β,γ∈Nn

k+[α]+[β]+[γ ]=n
[α],[β],k<n

n! gk Ŝ(|α|,|β|,|γ |)

k! α! β! γ !

×

n∏
p=1

 ∑
ξ∈Np

[ξ ]=p

f|ξ |

ξ !

n∏
q=1

(
Sq−1

(q−1)!

)ξq

αp(
f p

p!

)βp
(

g p−1

(p−1)!

)γp

.
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In particular, observe that

(38)

Pn
(
(0, 0, g0, g0, 0, 0, . . . , 0); z, χ, ẑ, χ̂

)
= −g0 Sτ n (z, χ, 0) + gn

0 Ŝτ̂ n (ẑ, χ̂ , 0).

This completes the first step of the proof. We move on to the second step, which
involves parametrizing 3n .

Proposition 5.3. Let (M, 0) and (M̂, 0) be formal hypersurfaces of 1-infinite type
which are formally equivalent as above. Then for every n ∈ N, there exists a power
series

An(z; 1, 3) ∈ C[1, 3][[z]]2

such that (
fn(z), gn(z)

)
= An

(
z; 1(H),

(
λn

2+δ1
K +δ1

Lδ1
T
(H)

)
j∈D(M), j≤n

)
.

for any H ∈ F(M, 0; M̂, 0). Moreover, if M and M̂ are convergent, there exists an
ε > 0 such that the map

z 7→ An

(
z; 1(H),

(
λn

2+δ1
K +δ1

Lδ1
T
(H)

)
j∈D(M), j≤n

)
lies in Oε(z)2 for every n ∈ N and every H ∈ F(M, 0; M̂, 0).

Proof. We continue with the notation from Proposition 5.2; in particular, we shall
continue to let γ denote 2 + δ1

K + δ1
T . Observe that Proposition 5.3 follows im-

mediately from Proposition 5.2 if it can be shown that for every n 6∈ D(M), there
exists a Cγ -valued polynomial ωn(1, 3) such that

(39) λn
γ (H) = ωn(1(H), 3n−1

2+δ1
K +δ1

Lδ1
T
(H)

)
for all H ∈ F(M, 0; M̂, 0).

To see this, suppose equation (39) holds for every n 6∈ D(M). An easy induction
shows that for every n ∈ N, there exists a Cγ -valued polynomial ω̃n(1, 3) such
that

λn
γ (H) = ω̃n

(
1(H),

(
λ

j
2+δ1

K +δ1
Lδ1

T
(H)

)
j∈D, j≤n

)
.

Substituting this into the power series for Bn given by Proposition 5.2 completes
the proof.

Hence, we must show that a relation of the form given in (39) holds for each
n 6∈ D(M). To this end, define the power series

ϒ̃n
: (C2, 0) → (C4, 0)
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by ϒ̃n
j = ϒn

j for j 6= 3, and set

ϒ̃n
3 (z, χ) := δ1

T

(
δ1

K θ
(L)
1 (0)

θχ (z, χ)

θ ′

L(χ)

+
L
(
θ

(K )
L (0)θ

(K )
L+1(0) − θ

(K+1)
L (0)θ

(K−1)
L1

(0)
)

K θ
(K )
1 (0)2

θ L(χ)

θ ′

L(χ)
θχ (z, χ)

−

(1+i θ(z, χ)

1−i θ(z, χ)

)n
(

θ1(z)
(
1 + θ(z, χ)2)

+

(
θL+1(z)
θ ′

L(z)
− 2i n

θ1(z)2

θ ′

L(z)

)
θz(z, χ)

)

+
θ

(K−1)
L1

(0)

θ
(K )
L (0)

(
θ1(χ)

(
1 + θ(z, χ)2)

+

(
θ L+1(χ)

θ ′

L(χ)
+ 2i n

θ1(χ)2

θ ′

L(z)

)
θχ (z, χ)

))
.

Observe that

δ1
L ϒ̃n

3 = ϒn
3 .

Reconsider the identity (34). If we substitute into it the explicit formulas for
fn(z) and gn(z) given in Proposition 5.2, as well as the corresponding formulas
for fn(χ) and gn(χ) given by equation (33), we can rewrite this as

(40) ϒ̃n(z, χ)t κn(1(H), λ0
2(H)

)
λn

4(H) ≡ W n(z, χ; 1(H), 3n−1
γ (H)

)
,

where the superscript t denotes the transpose operation, κn(1, λ) is the 4 × 4
matrix of polynomials defined by

κn(1, λ0
2) :=


(L/K ) 1(b0

0)
2

−n/K −δ1
T (L/K ) a2

0 12(b0
0)

3 0

0 −i/2 0 0

0 0 −δ1
T 1(b0

0)
2 0

0 0 0 δ1
K i/2


(by Lemma 5.1, a2

0 is a polynomial in a1
0), and

W n(z, χ; 1, 3) ∈ C[1, 3][[z, χ]].

Denote by κ̃n the 4 × 4 matrix function

κ̃n(1, λ0
2) :=


(K/L) 1(a1

0)
2 2i n/L1(a1

0)
2

−a2
0 1a1

0 0

0 2i 0 0

0 0 −δ1
T 1(a1

0)
2 0

0 0 0 −δ1
K 2i

 .
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Observe that if a1
0 b0

0 6= 0, then

κn
(

1
a1

0 b0
0

, λ0
2

)
· κ̃n

(
1

a1
0 b0

0

, λ0
2

)
=


1 0

L a2
0

K a1
0
(δ1

T −1) 0

0 1 0 0

0 0 δ1
T 0

0 0 0 δ1
K


j

,

For convenience, we denote by κn
j the upper-left j× j submatrix of κn for 1≤ j ≤4;

we define κ̃n
j similarly. We now complete the proof by examining cases.

Case 1. K = 1. Observe that L = T = 1 necessarily, so ϒ̃n
= ϒn and κn

4 , κ̃n
4

are matrix inverses for all n ∈ N. Suppose that n 6∈ D(M), and choose a basis
{υn

s j ,t j
}

4
j=1 for Vn . If 4 is the 4×4 matrix whose j-th row is υn

s j ,t j
, then it follows

that 4 is invertible. Now, differentiating (40) s j times in z, t j times in χ , and
setting z = χ = 0 (for j = 1, 2, 3, 4), we obtain the 4×4 linear system of equations
of the form

4κn
4
(
1(H), λ2

0(H)
)
λn

4 = wn(1(H), 3n−1
4 (H)

)
,

Thus, we may take

ωn(1, 3n−1
4 ) := κ̃n

4 (1, λ2
0)4

−1 wn(1, 3n−1
4 )

to complete the proof.

Case 2. K > L = 1 = T . We have ϒ̃n
= ϒn

= (ϒn
1 , ϒn

2 , ϒn
3 , 0) and κn

3 , κ̃n
3 are

inverses for all n ∈ N. Observe too that (40) reduces to(
ϒn

1 (z, χ),ϒn
2 (z, χ),ϒn

3 (z, χ)
)t

κn
3
(
1(H), λ0

2(H)
)
λn

3(H)

≡ W n(z, χ; 1(H), 3n−1
3 (H)

)
.

The proof now follows the exact same lines as in the previous case.

Case 3. T = 0. Since this implies K > 1, it follows that ϒ̃n
= ϒn

= (ϒn
1 , ϒn

2 , 0, 0)

and κn
2 , κ̃n

2 are inverses for all n ∈ N. Here, the identity (40) reduces to

(41)(
ϒn

1 (z, χ),ϒn
2 (z, χ)

)t
κn

2
(
1(H), λ0

2(H)
)
λn

2(H) ≡ W n(z, χ; 1(H), 3n−1
2 (H)

)
.

The proof now follows the exact same lines as in the previous two cases.

Case 4. L > 1 = T . Observe that identity (40) reduces to

(42)
(
ϒn

1 (z, χ),ϒn
2 (z, χ), ϒ̃n

3 (z, χ)
)t

κn
3
(
1(H), λ0

2(H)
)
λn

3(H)

≡ W n(z, χ; 1(H), 3n−1
3 (H)

)
.
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We claim that a0
n =σ n(1(H), 3n−1

3 (H)) for every n ∈N, where σ n is a polynomial.
Hence, we can write(

fn(z), gn(z)
)
= Bn

(
z; 1(H), 3n

3(H)
)
= B̃n

(
z; 1(H), 3n

2(H)
)
;

that is, fn(z) and gn(z) are given by expressions of the same form as in Proposition
5.2, but without the a0

n term. Hence, identity (40) reduces to identity (41), and the
proof proceeds as in Case 3.

To prove the claim, we proceed by induction. For n = 0, this is trivial, as a0
0 = 0.

For the inductive step, we consider two cases.

Case 4A. θ
(K−1)
L+1 (0) = 0. Then equation (29) implies

a0
n = fn(0) = a1

0 T 1
n
(
0; 1(H), 3n−1

3 (H)
)
.

Conjugating this and applying equation (33) yields a0
n = T̃ (1(H), 3n−1

3 (H)) for
some polynomial T̃ (1, 3). But by the inductive hypothesis, 3n−1

3 (H) is itself a
polynomial in (1(H), 3n−1

2 (H)), so the induction is complete in this case.

Case 4B. θ
(K−1)
L+1 (0) 6= 0. Differentiating (42) L − 1 times in χ and setting χ = 0

yields the identity∣∣θ (K−1)
L+1 (0)

∣∣2∣∣θ (K )
L (0)

∣∣2 θL(z)a0
n = Wχ L−1

(
z, 0; 1(H), 3n−1

3 (H)
)
.

Differentiating this K times in z and setting z = 0 yields a0
n = T̃ (1(H), 3n−1

3 (H))

for some polynomial T̃ (1, 3). But by the inductive hypothesis, 3n−1
3 (H) is itself

a polynomial in (1(H), 3n−1
2 (H)), so the induction is complete in this case. �

This completes the second step. We move on to the third step, counting the
elements of D.

Proposition 5.4. Given a fixed set of normal coordinates Z on M , the set D(M)

defined by equation (23) has at most 2(2 + δ1
K + δ1

Lδ1
T ) elements.

Proof. Consider the power series ϒn(z, χ) defined on page 120; we must prove
that for all but 2(2 + δ1

K + δ1
Lδ1

T ) integers n ∈ N, the set Vn(M) has dimension
2 + δ1

K + δ1
L δ1

T .
Consider the matrix

ξ(n) :=

 ↑ ↑ ↑ ↑

υn
2K ,2L υn

3K ,3L υn
3K ,2L υn

2K ,3L

↓ ↓ ↓ ↓


t

.

Our goal will be to show that for all but at most 2(2 + δ1
K + δ1

Lδ1
T ) integers n ∈ N,

the first 2+δ1
K +δ1

Lδ1
T rows are linearly independent, which implies that n 6∈ D(M).
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Using Faa de Bruno’s formula, we compute that

(ϒn
1 )χ2L (z, 0) = 2i

(2L)!

(L!)2 K θ
(K )
L (z)2 n + Q0(n; (∂νθ(z, 0))|ν|<3L+K+1

)
,

(ϒn
1 )χ3L (z, 0) = −2

(3L)!

(L!)3 K θ
(K )
L (z)3 n2

+ Q1(n; (∂νθ(z, 0))|ν|<4L+K+1
)
,

(ϒn
2 )χ2L (z, 0) = −2

(2L)!

(L!)2 θ
(K )
L (z)2 n2

+ Q1(n; (∂νθ(z, 0))|ν|<3L+K+1
)
,

(ϒn
2 )χ3L (z, 0) = −

4i
3

(3L)!

(L!)3 θ
(K )
L (z)3 n3

+ Q2(n; (∂νθ(z, 0))|ν|<4L+K+1
)
,

(ϒn
3 )χ2(z, 0) = δ1

Lδ1
T
(
− 4θ

(K )
1 (z)3 n2

+ Q1(n; (∂νθ(z, 0))|ν|<K+4
))

,

(ϒn
3 )χ3(z, 0) = δ1

Lδ1
T
(
− 16i θ (K )

1 (z)4 n3
+ Q2(n; (∂νθ(z, 0))|ν|<K+5

))
,

(ϒn
4 )χ2(z, 0) = δ1

K
(
Q0(n; (∂νθ(z, 0))|ν|<5

))
,

(ϒn
4 )χ3(z, 0) = δ1

K
(
12θ1(z)2 n2

+ Q1(n; (∂νθ(z, 0))|ν|<5
))

.

Setting α := θ
(K )
L (0) it follows, we may write ξ(n) = C1(n) + C2(n), with C1(n)

given by

2i K (2L)! (2K )! α2

(L! K !)2 n
−2(2L)! (2K )! α2

(L! K !)2 n2 0 0

−2K (3L)! (3K )! α3

(L! K !)3 n2 −4i(3L)! (3K )! α3

3(L! K ! )3 n3 0 0

0 0 δ1
Lδ1

T
−4(3K )! α3

(K !)3 n2 0

0 0 0 δ1
K 72α2n2


and C2(n) of the form

Q0(n; j3L+3K+1
0 θ) Q1(n; j3L+3K+1

0 θ) δ1
L δ1

T Q1(n; j3K+4
0 θ) δ1

K Q0(n; j7
0 θ)

Q1(n; j4L+4K+1
0 θ) Q2(n; j4L+4K+1

0 θ) δ1
L δ1

T Q2(n; j4K+5
0 θ) δ1

K Q2(n; j9
0 θ)

Q1(n; j3L+4K+1
0 θ) Q2(n; j3L+4K+1

0 θ) δ1
L δ1

T Q1(n; j4K+4
0 θ) δ1

K Q0(n; j8
0 θ)

Q1(n; j4L+3K+1
0 θ) Q2(n; j4L+3K+1

0 θ) δ1
L δ1

T Q2(n; j3K+5
0 θ) δ1

K Q2(n; j8
0 θ)

 .

We shall denote by ξ j (n) the upper-left j × j submatrix of ξ(n) for j = 1, 2, 3, 4.
We complete the proof by examining cases.

Case 1. K = 1. In this case L = T = 1 as well, whence 2 + δ1
K + δ1

Lδ1
T = 4. By

examining the matrix ξ4(n), and in particular the term of highest order in n in each
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of its entries, we find that

det ξ4(n) = 110592α10 n8
+ Q7(n; j9

0 θ).

Since α 6= 0, this is a nonzero, eighth degree polynomial in n, and hence has at
most eight distinct zeros (in the complex plane). If det ξ4(n0) 6= 0, then the four
rows of ξ(n0) are linearly independent, which completes the claim.

Case 2. K > L = T = 1. In this case, we have 2 + δ1
K + δ1

Lδ1
T = 3. By examining

the highest order terms in n as above, we find that

det ξ3(n) = 64 K
(2K )!(3K )!2

(K !)8 α8 n6
+ Q5(n; j4K+5

0 θ).

Arguing as above implies that for all but (at most) six integers n, the matrix ξ3(n)

is invertible, whence the first three rows of ξ(n) are linearly independent. This
completes the claim.

Case 3. L > 1 or T = 0. Since either of these conditions necessarily implies K > 1,
we conclude that 2 + δ1

K + δ1
Lδ1

T = 2. Since

det ξ2(n) = −
4
3

K
(2L)! (3L)! (2K )! (3K )!

(L! K !)5 α5 n4
+ Q3(n; j4L+4K+1

0 θ),

the proof is complete by arguments similar to the previous case. �

Note that while D(M) is always finite, it is also never empty. Indeed, 0 ∈ D(M)

for any 1-infinite type hypersurface M , since it is easy to check that ϒ0
2 (z, χ) ≡ 0.

This completes the third step of the proof. We complete the proof by showing
that D(M) is independent of the choice of normal coordinates used to define it. In
fact, we prove the following, which completes the proof of Theorem 4.1.

Proposition 5.5. Suppose that M , Z = (z, w), ϒn , and Vn
= Vn(M) are as above.

Let (M̂, 0) be formally equivalent to (M, 0), with corresponding power series ϒ̂n

and subspaces V̂ n
= Vn(M̂) defined using the normal coordinates Ẑ = (ẑ, ŵ).

Then for every n ∈ N, the dimensions of Vn and V̂ n are equal. In particular,
the dimension of subspace Vn(M) ⊂ C4 is independent of the choice of normal
coordinates used to define it.

Proof. Let H(z, w) =
(

f (z, w),wg(z, w)
)

be a formal equivalence between M
and M̂ . Consider the formal power series

(z, χ) 7→ ϒ̂n( f0(z), f0(χ)
)
∈ C[[z, χ]]

4,

which may be viewed as the power series ϒ̂n given in the Z coordinates. Using
Faa de Bruno’s formula and the fact that f0 : (C, 0) → (C, 0) is a formal change
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of coordinates, it is straightforward to verify that

spanC

{
υ̂n

s,t :=
∂s+t

∂zs∂χ t ϒ̂
n( f0(z), f0(χ)

)∣∣ z=0
χ=0

: s, t ∈ N
}

= V̂ n.

From (24) we derive

θ̂ẑ
(

f0(z), f0(χ)
)
=

θz(z, χ)

f ′

0(z)
, θ̂χ̂

(
f0(z), f0(χ)

)
=

θχ (z, χ)

f′0(χ)
,

whereas repeated differentiation of this in χ yields

p̂L+1
(

f0(z)
)
=

1
2(a1

0)
L+2

(
2a1

0 pL+1(z) − (L + 1)L a2
0 pL(z)

)
.

From this and identity (25), it follows by an elementary (albeit involved) calculation
that

ϒ̂n
1
(

f0(z), f0(χ)
)
= ϒn

1 (z, χ),

ϒ̂n
2
(

f0(z), f0(χ)
)
= ϒn

2 (z, χ),

ϒ̂n
3
(

f0(z), f0(χ)
)
=

1
a1

0
ϒn

3 (z, χ)+
δ1

T a2
0

K (a1
0)

2
ϒn

1 (z, χ),

ϒ̂n
4
(

f0(z), f0(χ)
)
= a1

0 ϒn
4 (z, χ).

Now, suppose that {υ̂n
s j ,t j

}
`0
j=1 is any collection of vectors in V̂ n; consider the

corresponding vectors υn
s j ,t j

∈ Vn . Observe that if 4̂, 4 denote the 4×`0 matrices
whose columns are, respectively, the υ̂n

s j ,t j
, υn

s j ,t j
, then in view of the above identi-

ties, these matrices necessarily have the same rank. In particular, the columns of 4̂

are linearly independent if and only if the columns of 4 are. From this it follows
that V̂ n and Vn have the same dimension. �

The main results. We use Theorem 4.1 to prove the main theorems stated at the
end of Section 2. We begin with Theorem 2.2.

Proof. Let M be a formal real hypersurface of 1-infinite type at 0. Observe that the
result of Theorem 2.2 is independent of the choice of coordinates Z , so without loss
of generality let us take Z = (z, w) to be normal coordinates for M , so that M is
given by equation (14). Let D=D(M) be as in Theorem 4.1, and set k :=2+max D,
which exists since D is a finite set.

To prove this k is sufficient, suppose M̂ is a formally equivalent formal real
hypersurface. Define the corresponding An as in Theorem 4.1. Fix a formal equiv-
alence H ∈ F(M, 0; M̂, 0). Conjugating the formula for ( fn, gn) implies that(

fn(χ), gn(χ)
)
= An

(
1

a1
0 b0

0

,
(
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
,
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whence

(a0
n, b0

n, a1
n, b1

n) = An

(
1

a1
0 b0

0

,
(
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
, n = N,

with An ∈ C[1, 3]
4. Substituting this into An , and recalling that

1(H) =
1

a1
0 b0

0

=
a1

0

µ2b0
0

,

where µ is defined by (27), we can write(
fn(z), gn(z)

)
= 0n

(
z;

1

a1
0 b0

0

,
(
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
,

with 0n(z; 1, 3) ∈ C[1, 3][[z]]2. Write

0n
z j

(
0;

1

a1
0 b0

0

,
(
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
=:

cn
j

((
a0

j , b0
j , a1

j , b1
j

)
j∈D

)
(
a1

0 b0
0

)`n
j

,

with `n
j ∈ N and cn

j a C2-valued polynomial.
Now, observe that

∂`+ j H
∂z`∂w j (0, 0) =

(
a`

j , j b`
j−1

)
.

In particular, a0
j is a term in (the coordinates of) j k

0 (H), a1
j and b0

j are terms in

j k+1
0 (H), and b1

j is a term in j j+2
0 (H). Hence, c j

n is a polynomial in j2+max D
0 (H)=

j k
0 (H) and

0 6= a1
0 b0

0 = det
(
∂ H
∂ Z

(0, 0)
)

=: q
(

j k
0 (H)

)
,

so the proof is complete in view of equation (11). �

By inspecting Propositions 5.2 through 5.5, we see that we can replace the k
given in the proof by k := 1+δ1

K +max D to get a better bound in the K > 1 case,
and if D = {0}, then we may take k = 1 since b1

0 = 0 by Proposition 3.7.
We now use this result to prove Theorem 2.3.

Proof. Let M, k be as in Theorem 2.2. Suppose that M̂ is formally equivalent to
M , and let 9 be the formal power series from Theorem 2.2. If H 1, H 2

: (M, 0) →

(M̂, 0) are two formal equivalences that satisfy

∂ |α|H 1

∂ Zα (0) =
∂ |α|H 2

∂ Zα (0) for all |α| ≤ k,

it follows that j k
0 (H 1) = j k

0 (H 2). If we call this common jet 30, it follows from
Theorem 2.2 that H 1(Z) ≡ 9(Z; 30) ≡ H 2(Z), as desired. �
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We now tackle the two applications of Theorem 2.2 mentioned in Section 2.
First we prove Theorem 2.4.

Proof. Let M, k be as in Theorem 2.2, and let 9 be the formal power series defined
in accord with that theorem with M̂ = M . That the mapping

j k
0 : Aut(M, 0) → J k

0 (C2, C2)0,0

is injective follows from Theorem 2.3. Observe that 30 ∈ J k(C2, C2)0,0 is in the
image of j k

0 if and only if q(30) 6= 0 — so that 30 ∈ Gk(C2)0) — and

30 = j k
0
(
9( · , 30)

)
,(43)

ρ
(
9(Z , 30), 9ζ, 30)

)
= a(Z , ζ )ρ(Z , ζ )(44)

for some multiplicative unit a(Z , ζ ) ∈ C[[Z , ζ ]], where ρ is a defining power series
for M . In view of equation (8), (43) is a finite set of polynomial equations in
30, whereas (44) is a (possibly countably infinite) set of polynomial equations in
(30, 30). Hence, the image of the mapping j k

0 is a locally closed subgroup of the
Lie group Gk(C2)0, and so is a Lie subgroup. �

And as a corollary, we have Theorem 2.5.

Proof. Let M, k be as in Theorem 2.2, and let (M̂, 0) be formally equivalent to
(M, 0). Injectivity of the jet map again follows from Theorem 2.3. Now, fix a
formal equivalence H0 : (M, 0) → (M̂, 0); then any other formal equivalence is of
the form H := H0 ◦ A, where A ∈ Aut(M, 0). In particular,

j k
0
(
F(M, 0; M̂, 0)

)
=
{

j k
0 (H0 ◦ A) : A ∈ Aut(M, 0)

}
=
{

j k
0 (H0) · j k

0 (A) : A ∈ Aut(M, 0)
}

= j k
0 (H0) · j k

0
(
Aut(M, 0)

)
.

Hence, the image of F(M, 0; M̂, 0) is merely a coset of the algebraic Lie subgroup
j k
0

(
Aut(M, 0)

)
in the Lie group Gk(C2)0, and so is itself a real-algebraic sub-

manifold of Gk(C2)0. �
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