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The retrosection theorem asserts that every closed Riemann surface of genus
g ≥ 1 can be uniformized by a Schottky group of rank g. Here we define
and topologically classify Klein–Schottky groups; these are the freely act-
ing extended Kleinian groups whose orientation-preserving subgroup is a
Schottky group. These groups yield uniformizations of all nonorientable
closed Klein surfaces.

1. Klein–Schottky Groups

One can define a Schottky group of genus g to be a geometrically finite Kleinian
group isomorphic to a free group of rank g and without parabolic transformations.
It is known that every Schottky group G is a Kleinian group of the second kind
[Maskit 1967], with connected region of discontinuity �(G) 6= ∅, where �(G)/G
is a closed Riemann surface of genus g. As a consequence of the retrosection
theorem [Bers 1975; Koebe 1910], every closed Riemann surface of genus g ≥ 1
can be uniformized by a Schottky group of rank g. An extended Kleinian group is
a group of hyperbolic isometries of H3, necessarily including orientation-reversing
ones, containing a Kleinian group as a subgroup of index 2. We say that an ex-
tended Kleinian group is freely acting if the stabilizer of any point of its region of
discontinuity (in the Riemann sphere) is trivial. A freely acting extended Kleinian
group may have elements that fix points in the interior of hyperbolic space.

A Klein–Schottky group is a freely acting extended Kleinian group whose orien-
tation-preserving subgroup is a Schottky group. If the orientation-preserving half
of the Klein–Schottky group G has rank g, we say that G is a Klein–Schottky
group of rank g.

If G is a Klein–Schottky group of rank g, then �(G)/G is a closed Klein surface
S of (algebraic) genus g. The orientation cover S+ of S can of course be realized
as S+

= �(G)/G+, where G+ is the orientation-preserving half of G.
We mention here, and will use without further mention, that the topological type

of a closed Klein surface is completely determined by its genus. That is, if S+
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S+

2 are closed Riemann surfaces of the same genus g and there is for i = 1, 2 an
orientation-reversing involution τi acting without fixed points on S+

i , then there is
a orientation-preserving homeomorphism α : S+

1 → S+

2 conjugating τ1 to τ2.
A glide reflection is an orientation-reversing isometry (of H3) with exactly two

fixed points, necessarily on the sphere at infinity; every glide reflection is conjugate,
in the full group of isometries of H3, to one of the form z → λz̄, where λ is real
and λ > 1. An imaginary reflection is an orientation-reversing isometry of order 2
with exactly one fixed point, which is required to be in the interior of hyperbolic
space; every imaginary reflection is conjugate to the transformation z → −1/z̄.

If G is a Klein–Schottky group and τ ∈ G − G+, then τ 2
∈ G+. Since Schottky

groups only contain loxodromic transformations, with the exception of the identity,
τ cannot be either a square root of a parabolic transformation or the square root of
an elliptic transformation of order at least two. Also, if τ has order 2, it cannot be
a reflection, for every reflection has a circle of fixed points, and we have required
that G act freely on �(G) = �(G+), which for a Schottky group is known to be
connected and everywhere dense in the sphere. It follows that G may only contain
glide reflections and imaginary reflections as orientation-reversing elements.

Deformations. To the best of our knowledge, there is no ready reference for the
theory of quasiconformal deformations of extended Kleinian groups. This theory
is not significantly different from the usual theory of quasiconformal deformations
of Kleinian groups; we present a brief outline here.

Let G be an extended Kleinian group, and let G+ be its orientation-preserving
half. A Beltrami differential for G is an L∞ function µ(z) on the extended complex
plane satisfying ‖µ‖∞ < 1 and

(∗)

µ ◦ γ (z)
γ ′(z)
γ ′(z)

= µ(z) for γ ∈ G+,

µ ◦ γ (z)
γ ′(z)
γ ′(z)

= µ̄(z) for γ ∈ G − G+,

where on the second line γ ′ is the derivative of γ with respect to z̄.
As in the usual theory, if µ is a Beltrami differential for G, there are solutions

wz̄ = µ(z)wz to the Beltrami equation that are quasiconformal homeomorphisms
of the extended complex plane; further, if w1 and w2 are two such solutions, there
is a Möbius transformation A such that w2 = A◦w1. It follows that there is a unique
such solution, called wµ, once one specifies its values at three distinct (limit) points
of G; these three limit points are usually taken to be 0, 1 and ∞.

It is classical that if γ ∈ G+, then wµ
◦γ ◦(wµ)−1 is again a Möbius transforma-

tion. One sees this by observing that wµ
◦ γ satisfies the same Beltrami equation
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as does wµ. That is, for γ ∈ G+, we compute

(wµ
◦ γ )z = (wµ

z ◦ γ )γz + (w
µ
z̄ ◦ γ )γ̄z = (wµ

z ◦ γ )γ ′,

(wµ
◦ γ )z̄ = (wµ

z ◦ γ )γz̄ + (w
µ
z̄ ◦ γ )γ̄z̄ = (w

µ
z̄ ◦ γ )γ ′.

We conclude that

(wµ
◦ γ )z̄

(wµ ◦ γ )z
=

(w
µ
z̄ ◦ γ )γ ′

(w
µ
z ◦ γ )γ ′

=
(µ ◦ γ )γ ′

γ ′
= µ.

Then, since wµ
◦γ and wµ satisfy the same Beltrami equation, there is a Möbius

transformation γ µ such that wµ
◦ γ = γ µ

◦ wµ.
Similar computations for γ an orientation-reversing element of G yield

(w̄µ
◦ γ )z = (w̄µ

z ◦ γ )γz + (w̄
µ
z̄ ◦ γ )γ̄z = (w̄

µ
z̄ ◦ γ )γ̄z,

(w̄µ
◦ γ )z̄ = (w̄µ

z ◦ γ )γz̄ + (w̄
µ
z̄ ◦ γ )γ̄z̄ = (w̄µ

z ◦ γ )γz̄.

We want to conclude that w̄µ
◦ γ satisfies the same Beltrami equation as does

wµ, from which we will conclude that there is an orientation-reversing Möbius
transformation γ µ so that wµ

◦ γ = γ µ
◦ wµ. Hence we compute as follows:

(w̄µ
◦ γ )z̄

(w̄µ ◦ γ )z
=

(w̄
µ
z ◦ γ )γz̄

(w̄
µ
z̄ ◦ γ )γ̄z

=
(w

µ
z̄ ◦ γ )γz̄

(w
µ
z ◦ γ )γ̄z

=
(µ ◦ γ )γz̄

γ̄z
= µ.

Let G be an extended Kleinian group, with an invariant component 1 of its
set of discontinuity, where G acts freely on 1. Assume that S = 1/G is a
closed Klein surface and let S′ be a topologically equivalent Klein surface; i.e.,
S and S′ have the same genus. As is well known, we can replace the topological
homeomorphism with a diffeomorphism. Lift this diffeomorphism to obtain an
orientation-preserving diffeomorphism, say α : S+

→ (S′)+, from the orientation
cover of S to the orientation cover of S′, that conjugates the orientation-reversing
diffeomorphism of S+ onto that of (S′)+. Since S+ is closed, α is quasiconformal.
A lift of α to 1 defines a Beltrami differential µ satisfying equations (∗). Hence
the solution wµ of the Beltrami equation conjugates G into an extended Kleinian
group G ′, with an invariant component, 1′, where 1′/G ′

= S′, and wµ
: 1 → 1′

covers α.
It follows that the theory of quasiconformal deformation spaces of extended

Kleinian groups is essentially the same as the corresponding theory of deformation
spaces of Kleinian groups, except of course that these spaces are real analytic,
rather than complex analytic. In particular, as in the complex case, if µ satisfies
(∗) for all g ∈ G, then so does tµ, for t real. It follows that the deformation space
of G is connected; see Section 2 below.

From here on, we will use without further mention the basic fact that if there is
a topological equivalence between the nonorientable surfaces, S and S′, and there
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is an extended Kleinian group G uniformizing S, then there is a quasiconformal
deformation G ′ of G uniformizing S′.

Construction. One can easily construct several families of Klein–Schottky groups
as combination theorem free products of cyclic groups generated by glide reflec-
tions and imaginary reflections. One could also use cyclic groups generated by
loxodromic (including hyperbolic) transformations, but these turn out to be redun-
dant; see the sections on decomposition and reduction to normal form starting on
page 318.

Let m and n be nonnegative integers, with m + n > 0. Let D be a region in the
extended complex plane bounded by m + 2n disjoint circles. Label these circles
as B1, . . . , Bm , C1, C ′

1, . . . , Cn, C ′
n . For i = 1, . . . , m and j = 1, . . . , n, let αi

be an imaginary reflection mapping the inside of Bi to its outside and let β j be a
glide reflection mapping the inside of C j to the outside of C ′

j . It is easy to see that
G = 〈α1, . . . , αm, β1, . . . , βn〉 is a combination theorem free product of the cyclic
groups generated by these generators.

If m > 0, we can obtain the orientation-preserving half of G by looking at the
region R+ bounded by the 2(m − 1) + 4n circles

B1, . . . , Bm−1, C1, . . . , C ′

n, αm(B1), . . . , αm(Bm−1), αm(C1), . . . , αm(C ′

n)

and observing that for j = 1, . . . , m − 1 we have αm ◦ α j (B j ) = αm(B j ), with
αm ◦α j (R+)∩ R+

= ∅; for i = 1, . . . , n, αm ◦βi (Ci )=αm(C ′

i ), with αm ◦βi (R+)∩

R+
=∅; and for i =1, . . . , n, αm◦β−1

i (C ′

i )=αm(Ci ), with αm◦β−1
i (R+)∩R+

=∅.
We conclude that G+ is a classical Schottky group of rank m + 2n − 1, with free
generators αm ◦α1, . . . , αm ◦αm−1, αm ◦β1, . . . , αm ◦βn, αm ◦β−1

1 , . . . , αm ◦β−1
n .

Similarly, if m = 0, then n > 0, so we can look at the region R+ bounded by the
4n − 2 circles

C1, C ′

1, . . . , Cn−1, C ′

n−1, βn(C1), βn(C ′

1), . . . , bn(Cn−1), βn(C ′

n−1), Cn, βn(C ′

n).

In this case, we obtain β1, . . . , βn−1, βn ◦β1◦β−1
n , . . . , βn ◦βn−1◦β−1

n , β2
n as 2n−1

generators for G+.
In any case, we have shown that G+ is a classical Schottky group, having rank

m + 2n − 1. It follows that G is a Klein–Schottky group of rank m + 2n − 1.
The quotient space S = �(G)/G is a closed Klein surface of topological genus
m + 2n. We call this group, G, and any quasiconformal deformation of G, an
(m, n)-Klein–Schottky group.

Uniqueness. It follows from the combination theorem that, if G is an (m, n)-
Klein–Schottky group, then, as an abstract group, G = A1 ∗· · ·∗ Am ∗ B1 ∗· · ·∗ Bn ,
where each Ai has order 2 and each B j is infinite cyclic. It follows that G has
exactly m conjugacy classes of nontrivial finite subgroups.
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Proposition 1.1. Let G be an (m, n)-Klein–Schottky group, and let G ′ be an
(m′, n′)-Klein–Schottky group. Then G and G ′ represent topologically equivalent
Klein surfaces if and only if m + 2n = m′

+ 2n′.

Proof. We remarked above that G+ is a Schottky group of rank m + 2n − 1. It
follows that �(G+)/G+ and �((G ′)+)/(G ′)+ are topologically equivalent if and
only if m +2n = m′

+2n′, from which it follows that �(G)/G and �(G ′)/G ′ are
topologically equivalent if and only if m + 2n = m′

+ 2n′. �

Proposition 1.2. Let G be an (m, n)-Klein–Schottky group, and let G ′ be an
(m′, n′)-Klein–Schottky group. Then G and G ′ are topologically equivalent uni-
formizations of some topological Klein surface if and only if (m, n) = (m′, n′).

Proof. If (m, n) = (m′, n′), then, since G and G ′ are both combination theorem
free products of m cyclic groups generated by imaginary reflections, and n cyclic
groups generated by glide reflections, it follows from the free product combination
theorem that G and G ′ are topologically equivalent.

Conversely, if G and G ′ are topologically equivalent, then, by Proposition 1.1,
m +2n = m′

+2n′. Also, since they are topologically equivalent, they are isomor-
phic, so they have the same number of nonconjugate cyclic subgroups of order 2;
it follows that m=m′, and then n = n′. �

It is well known that we can replace the topological equivalence in the above
with quasiconformal equivalence, and so obtain the following.

Proposition 1.3. Let G be an (m, n)-Klein–Schottky group, and let G ′ be an
(m′, n′)-Klein–Schottky group. Then G and G ′ are quasiconformally equivalent
Klein–Schottky groups if and only if (m, n) = (m′, n′).

Characterization. It is well known that Schottky groups can be characterized as
follows. Let S+ be a fixed closed Riemann surface of genus g ≥ 1, and let σ :

S̃+
→ S+ be a regular covering of S+, where S̃+ is planar. Then the group of deck

transformations for this covering is a Schottky group if and only if this covering
is a lowest planar regular covering of S+ (see [Maskit 1988, p. 317]). The next
two propositions say that the Klein–Schottky groups are the lowest regular planar
coverings of closed Klein surfaces.

Proposition 1.4. There is no planar regular cover of a Klein surface that is lower
than the covering defined by a Klein–Schottky group.

Proof. Let G be a Klein–Schottky group covering the closed Klein surface S, and
let σ : �(G) → S = �(G)/G be the natural cover map. Assume that there is
a regular covering, τ : S̃ → S, where S̃ is planar, and that there is a cover map
ρ : �(G) → S̃, so that σ = τρ. We need to show that ρ is a homeomorphism.
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If necessary, we replace ρ by γρ, for an appropriately chosen γ , so that ρ is
orientation-preserving.

We start with the observation that the cover map from any orientable covering
surface to S necessarily factors through the orientation cover S+ of S. It follows
that σ and τ both factor through S+. Then we can write σ = πσ1 and τ = πτ1,
where π : S+

→ S is the orientation cover, and σ1 and τ1 are chosen so as to
preserve orientation.

It follows from πσ1 = πτ1ρ that either σ1 = τ1ρ or ωσ1 = τ1ρ, where ω is
an orientation-reversing deck transformation in the cover group of π : S+

→ S.
Since σ1, τ1 and ρ all preserve orientation, and ω does not, it must be the case that
σ1 = τ1ρ. Since the Schottky cover is the lowest planar regular covering of S+, ρ

is a homeomorphism. �

Proposition 1.5. Let p : S̃ → S be a planar regular cover of S with the property
that there is no lower planar regular covering. Then the deck group of this cover
can be realized as a Klein–Schottky group.

Proof. As above, every planar regular cover of S factors through S+, from which
it follows that S̃, as a cover of S+, is a lowest planar regular cover; hence it is
topologically equivalent to a Schottky cover. It is well known that every planar
regular cover of a Riemann surface can be realized by a Kleinian group; hence
there is a Schottky group G+, so that the natural projection from �(G+) to S+ is
conformally equivalent to the given cover from S̃ to S+.

In fact, as soon as we conformally map S̃ onto a subset of the Riemann sphere,
the group of deck transformations is automatically conjugated into a Schottky
group. It is known that if G+ is a Schottky group, then �(G+) is of class OAD;
that is, it admits no holomorphic function with finite Dirichlet norm (see [Ahlfors
and Sario 1960, p. 241]). It follows from this (see p. 200 of the same reference)
that every conformal map from �(G+) into the extended complex plane is frac-
tional linear. Then the complex conjugate of such a conformal map is necessarily
an orientation-reversing Möbius transformation; in particular, every element of
G − G+ is an orientation-reversing Möbius transformation. Thus, after this conju-
gation, the deck group of the original cover of S by S̃ is a Klein–Schottky group.

�

Decomposition. Throughout this section, G is a given Klein–Schottky group, and
G+ is its orientation-preserving half, so that G+ is a Schottky group of some rank
g. Write S = �(G)/G and S+

= �(G)/G+, so that S+ is the orientation cover of
S. Also, write the cover maps as σ :�(G)→ S, σ+

:�(G)→ S+, and π : S+
→ S.

Since S is nonorientable, the loops on S fall into two classes; the orientation-
preserving loops, which lift to loops on S+, and the orientation-reversing ones,
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which lift to open arcs on S+. Of course, the square of an orientation-reversing
loop is orientation-preserving and lifts to a loop on S+.

Since �(G) is not simply connected, the planarity theorem [Maskit 1965] says
we can find a set of simple disjoint homotopically distinct loops W1, . . . , Ws on
S, and positive integers a1, . . . , as , where ai is even whenever Wi is orientation-
reversing, so that each W ai

i lifts to a loop on �(G) and so that

ρ : �(G) → S

is the highest regular covering of S for which these loops all lift to loops.
It is clear that we can assume that each ai is the minimal power with the property

that W ai
i lifts to a loop.

We first observe that if Wi is orientation-preserving, then ai = 1. For, if not,
the planar regular covering of S, whose defining subgroup is the smallest normal
subgroup containing Wi to the first power, and all the other W j to the power a j ,
would be strictly lower than the cover σ :�(G)→ S, which cannot be. Of course, if
ai =1, then Wi is necessarily orientation-preserving. Similarly, if Wi is orientation-
reversing, then ai = 2, since ai is necessarily even and G contains no elements of
finite order greater than 2.

Since the cover map σ factors through S+, each of the loops W ai
i lifts to a loop

on S+. We can assume that this set of loops W1, . . . , Ws is minimal on S, from
which it follows that the set of lifts is minimal on S+.

We next use the standard decomposition technique [Maskit 1973; Abikoff and
Maskit 1977] to decompose G into a combination theorem free product. We start
with W1, and let W1 be the set of all lifts of W1 to �(G). Since the Wi are all
simple and disjoint, W1 consists of a set of simple disjoint loops. The loops of
W1 divide �(G) into (open) regions; let R1 be one of these, and let G1 be its
stabilizer. Since each simple loop of W1 is necessarily homotopically nontrivial
in �(G), G1 6= G. Hence there is some element α1 ∈ G − G1 mapping some
boundary component of R1 onto a (perhaps different) boundary component of R1.
If α1 maps a boundary component of R1 onto itself, label this boundary component
as B1; otherwise, label it C1.

In the former case, we have α2
1 ∈ G1, and α2

1 preserves B1; this can occur only if
α1 is an imaginary reflection. Using the third combination theorem [Maskit 1993],
we see that G is the free product of G1 and the group of order 2, 〈α1〉.

In the second case, where C1 and C ′

1 = α1(C1) 6= C1, we use the second com-
bination theorem [Maskit 1993] to observe that G is a combination theorem HNN
extension of G1, and, since the stabilizer of C1 in G1 is necessarily trivial, that G
is the free product of G1 and the infinite cyclic group, 〈α1〉.

Next consider S1 = �(G1)/G1, with the loops W2, . . . , Ws marked on it; these
are the projections to S1 of the liftings of these loops from S to �(G) ⊂ �(G1).
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It is clear that the loops W a2
2 , . . . , W as

s lift to loops in �(G1), and that every loop
on S1 that lifts to a loop is freely homotopic to some product of conjugates of these
loops. Hence we can iterate the above procedure. We have shown:

Theorem 1.6. Let G be a Klein–Schottky group. Then G is a free product, in the
sense of combination theorems, of a finite number of cyclic groups, where each
of these cyclic groups is generated by either a loxodromic transformation, a glide
reflection or an imaginary reflection.

Reduction to normal form. Let G be a Klein–Schottky group defined as a free
product of m imaginary reflections, n1 glide reflections and n2 loxodromic transfor-
mations. That is, there is a fundamental domain R for G, bounded by m+2n1+2n2

disjoint simple loops,

B1, . . . , Bm, C1, C ′

1, . . . , Cn1, C ′

n1
, D1, D′

1, . . . , Dn2, D′

n2
,

and there are generators, β1, . . . , βm, γ1, . . . , γn1, δ1, . . . , δn2 , where βi , for i =

1 . . . , m, is an imaginary reflection mapping Bi onto itself; γi , for i = 1, . . . , m1, is
a glide reflection mapping Ci onto C ′

i , with γi (R)∩R =∅; and δi , for i =1, . . . , n2,
is a loxodromic transformation mapping Di onto D′

i , with δi (R)∩ R = ∅. Our goal
is to find a perhaps different set of loops, and perhaps different set of generators
for the same group G, but with the same properties, so that for this new set of
generators, n2 = 0.

Since G contains at least one orientation-reversing element, either m 6= 0 or
n1 6= 0.

If n1 6= 0, then it is a now standard procedure (see [Chuckrow 1968]) to find new
loops, so that we can replace the generators γ1 and δ1 by the generators γ1 and γ1δ1.
Chuckrow’s procedure is to draw a simple path v inside R from the base point on
C1 to the base point on D′

1, and then replace C1 by a simple loop, C̃1, that is freely
homotopic to C1 ·v · D′

1 ·v−1 (if necessary, replace D1 and D′

1 by their inverses, so
that there is such a simple loop). Then note that C̃1, γ1(C̃1), D1 and γ1 ◦ δ1(D1)

are four disjoint simple loops bounding a common region. This procedure works
equally well for orientation-reversing transformations as for orientation-preserving
ones.

After this move, we have increased n1 by one and decreased n2 by one. After a
finite number of such steps, we will have reached the point where n2 = 0.

In the other case, where we start with n1 = 0 and n2 6= 0, we must have m 6= 0
since G is extended Kleinian. Draw a simple path v, which except for its endpoints
lies entirely in the fundamental domain R, from the base point x on B1 to the
base point y on D1. It is easy to find a simple β1-invariant loop, call it B ′

1, that
separates D1 and β1(D′

1) from D′

1 and β1(D1). Roughly speaking, B ′

1 can be found
by following v from x to y; then following D1 (or its inverse) back to y; then v−1
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back to x ; then B1 (or B−1
1 ) to β1(x); then β1(v) to β1(D1); then β1(D1) (or its

inverse) back to β1(x); then the inverse of β1(v) back to β1(x) ∈ B1; then continue
the circuit of B1 back to x .

We now have a new fundamental region R′, bounded by B ′

1, D1 and β1(D′

1), and
new generators, β1 and β1δ1, which both reverse orientation. Hence we have de-
creased the number of orientation-preserving generators, and increased the number
of orientation-reversing generators.

Theorem 1.7. Let G be a Klein–Schottky group. Then there are unique integers,
m and n, so that G is an (m, n)-Klein–Schottky group.

Proof. The procedure above shows that any Klein–Schottky group G can be written
as an (m, n)-Klein–Schottky group. We saw in Proposition 1.2 that the integers m
and n are uniquely determined by the group. �

2. Spaces of Klein–Schottky Groups

For each genus g ≥ 0, the usual space of Schottky groups, Sg, is the space of all
sets of g generators of Schottky groups of genus g, modulo conjugation by the
Möbius group. This is the same as starting with a particular set of free generators
for a Schottky group, G0, and considering its quasiconformal deformations up to
conjugation by Möbius transformations. It is well known that, complex analyti-
cally, Sg is a point for g = 0, the punctured unit disc for g = 1, and a domain of
holomorphy of complex dimension 3g − 3, which can be realized as a subdomain
of C3g−3, for g ≥ 2; see [Hejhal 1975; Kra and Maskit 1981].

If we fix a pair of nonnegative integers, (m, n), so that g = m +2n −1, we then
define KS+

g (m, n) to be the locus of those Schottky groups that can be extended
to a Klein–Schottky group of genus g and type (m, n). We call it the extended
Klein–Schottky space of genus g and type (m, n). We can also view this space
as follows. For each pair (m, n), we choose a particular set of generators for a
particular (m, n)-Klein–Schottky group G0, and we choose generators for G+

0 , the
orientation-preserving half of G0, as on page 316. Then KS+

g (m, n) is the space
of quasiconformal deformations of G0, modulo conjugation by an orientation-
preserving Möbius transformation. Each such deformation is of course also a
deformation of G+

0 , and so can be regarded as a point in Sg.
It is well known that for g ≥ 2 this yields KS+

g (m, n) as a submanifold of real
dimension 3g −3. We have already remarked on page 315 that each KS+

g (m, n) is
connected. We also remark that it is easy to see that, for every g ≥ 1, we can write
g in the form g = m + 2n − 1 in exactly r(g) = [(g + 3)/2] distinct ways, where
[k] is the greatest integer less than or equal to k. This shows that there are exactly
r(g) spaces of Klein–Schottky groups in the space of Schottky groups of genus g.
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We should also define KSg(m, n), the space of Klein–Schottky groups of genus
g and type (m, n). A point in KSg(m, n) is, as above, a quasiconformal deforma-
tion of G0, but here two such deformations are equivalent if one is a conjugate
of the other by a perhaps orientation-reversing Möbius transformation. One easily
sees that, for g ≥ 2, KS+

g (m, n) is a branched two-sheeted covering of KSg(m, n).
In this section, we discuss the intersections of the r(g) spaces of extended Klein–

Schottky groups within the Schottky space of genus g. We also discuss the topology
of these spaces for low genus.

In general, two extended Klein–Schottky spaces of genus g will intersect if and
only if there is a Schottky group of genus g that has two distinct extensions to
Klein–Schottky groups, where these extensions are of the two different types.

The cases g = 0 and g = 1. For g = 0, the only possibility is that (m, n) = (1, 0),
and KS+

g (1, 0), is a single point.
For g = 1, it is easy to observe that the two spaces, KS+

1 (2, 0) and KS+

1 (0, 1),
coincide. If G ∈ KS1(2, 0), then the product of the two generators, which are
both imaginary reflections, is hyperbolic; further, every hyperbolic transforma-
tion can be written as a product of two imaginary reflections. In the case that
(m, n) = (0, 1), the square of the generator is hyperbolic; further, every hyperbolic
transformation has a unique orientation-reversing square root. We have shown that
every hyperbolic transformation has an extension to both a group in KS+

1 (2, 0) and
a group in KS+

1 (0, 1). We conclude that we can view both of these spaces of Klein–
Schottky groups as being the space of hyperbolic Möbius transformations modulo
conjugation, which we can identify with, for example, the open unit interval. We
could also more directly identify KS+

1 (2, 0) with the positive reals given as the
distance in H3 between the fixed points of the (imaginary reflection) generators,
and we could identify KS+

1 (0, 1) with the multiplier of the (glide reflection) gen-
erator, which we could take as lying in the open unit interval. We also note that
every hyperbolic transformation is conjugate to one of the form z 7→ λz, with λ

real and positive, from which we conclude that KS+

1 (2, 0) = KS1(2, 0), and that
KS+

1 (0, 1) = KS1(0, 1).
We can view the universal covering of these spaces — that is, the space of Klein

bottles, marked by generators for the fundamental group — as the space of com-
plex numbers τ that are pure imaginary and positive. Then the universal covering
group is generated by the transformations z 7→ z̄ + 1/2 and z 7→ z + τ . The
first exponential map, w1 = e2π i z , transforms this universal covering group to
the group in KS1(2, 0), where the product of the generators is the transformation
w1 7→ e2π iτw1. The second exponential map, w2 = e2π i z/τ , transforms this univer-
sal covering group to the group in KS1(0, 1), where the square of the generator is
the transformation w2 7→ e2π i/τw2.
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The case g = 2. In genus 2 there are exactly two distinct Klein–Schottky spaces
inside the Schottky space S2; they are KS+

2 (1, 1) and KS+

2 (3, 0).

Theorem 2.1. KS+

2 (1, 1) ∩ KS+

2 (3, 0) = ∅.

Proof. Assume to the contrary that both Klein–Schottky subspaces of the space of
Schottky groups of genus 2 intersect. It follows that there is a Schottky group J of
genus 2, a Klein–Schottky group G1 = 〈β, γ 〉 of genus 2 and type (1, 1), where β

is an imaginary reflection and γ is a glide reflection, and there is a Klein–Schottky
group G2 = 〈β1, β2, β3〉 of genus 2 and type (3, 0), where βi is in imaginary
reflection, i = 1, 2, 3, so that G+

1 = J = G+

2 . In particular, all three of these
groups are nonelementary and have the same limit set.

We remark that if η is an imaginary reflection and p ∈ H3 is its unique fixed
point, then any hyperbolic line L ⊂ H3 containing p will be invariant, but not
pointwise fixed, under η; that is, η will interchange the two endpoints of L , while
fixing p. It follows that if the fixed points of the generators β1, β2 and β3 all
lie on the same hyperbolic line L ⊂ H3, then the pair of end points of L will be
invariant under G2, but not necessarily pointwise fixed, and hence, since the index
of G2 in J is 2, this pair of endpoints of L will also be invariant under J . Since
J is nonelementary, this is impossible. We conclude that the fixed points of these
three generators of G2 are distinct and not collinear in H3; in particular, their three
fixed points span a hyperbolic plane P ⊂ H3. Since each βi is conjugate to the
transformation (in the 3-ball), x 7→ −x , βi (P) = P , and, in its action on P , βi is
a half-turn; that is, an elliptic transformation of order 2. It follows that J = G+

2 , is
a Fuchsian group acting on P , and preserving both sides of P . Since J is discrete
and free on two hyperbolic generators, it is of the second kind, representing either
a sphere with three holes, or a torus with one hole. Since G2 is generated by three
half-turns whose fixed points are noncollinear, J = G+

2 represents a torus with one
hole.

Next, since G1 is a Z2-extension of the nonelementary Fuchsian group J , it
also keeps the plane P invariant. It follows that β and γ both preserve P . In
general, a glide reflection preserves exactly two planes; for one of these planes, it
interchanges the two sides, and for the other, it preserves both sides. Of course, β

interchanges the two sides of P , and every element of J preserves both sides of P .
Since βγ ∈ J , and β interchanges the two sides of P , so does γ . Hence γ , which
is orientation- reversing, preserves orientation on P; that is, it acts as a hyperbolic
transformation. Since G1 is the free product of the subgroups generated by β and
γ , the fixed point of β does not lie on the axis of γ .

The natural generators for J = G+

1 are βγ and βγ −1. Since J represents a
torus with a hole, the axes of these two generators must cross. However, we can
easily construct these axes as follows. Draw the line R through the fixed point



324 RUBÉN A. HIDALGO AND BERNARD MASKIT

of β orthogonal to the axis of γ ; denote reflection in R by ρ. Draw the line R1

orthogonal to R and passing through the fixed point of β; denote reflection in R1

by ρ1. Then β = ρρ1 = ρ1ρ. Draw the lines R2 and R3, and denote reflections in
these lines by ρ2 and ρ3, respectively, so that γ = ρρ2 = ρ3ρ. Since J is purely
hyperbolic, R1 is disjoint from both R2 and R3 including at the circle at infinity.
Now the axis of βγ is the common perpendicular of R2 and R1, and the axis of
βγ −1 is the common perpendicular of R3 and R1. Since these two axes are both
orthogonal to R1, they do not cross. We have reached the desired contradiction. �

We have in fact shown that we can identify the space KS+

2 (3, 0) with the space
of Fuchsian groups representing a torus with a hole, as follows. Let (β1, β2, β3)

be imaginary reflections generating a (3, 0)-Klein–Schottky group, G. Then we
saw above that there is a G-invariant plane P so that P/G is a sphere with one
hole and three orbifold points of order 2; every such group has a unique torsion-
free subgroup representing a torus with a hole. Conversely, if F ′ is a Fuchsian
group of the second kind representing a torus with a hole, then F ′ has a unique Z2

extension F , where H2/F is a disc with three orbifold points of order 2. Choose
elliptic generators (β ′

1, β
′

2, β
′

3) for F . Then we can conjugate F so that it acts on
the upper half-plane; and then we can regard F as acting on the plane P ⊂ H3,
whose boundary on the sphere at infinity is the real axis; and, for i = 1, 2, 3, define
βi by requiring that βi |P = β ′

i |P , and that βi interchanges the two half-spaces
bounded by P . Then G = 〈β1, β2, β3〉 is a group in KS+

2 (3, 0).

Proposition 2.2. There is a natural real-analytic diffeomorphism between the
space KS+

2 (3, 0) and the space of fuchsian groups of the second kind representing
a disc with three orbifold points of order 2; which in turn is diffeomorphic to the
space of Fuchsian groups representing a torus with one hole; in particular, the
space KS+

2 (3, 0) is topologically a cell of real dimension 3.

We also remark that if G ∈ KS+

2 (3, 0), the reflection in the invariant plane P
spanned by the fixed points of the generators commutes elementwise with G; this
shows that KS+

2 (3, 0) = KS2(3, 0).

In contrast to the above, one expects that π1(KS+

2 (1, 1)) is infinite cyclic, for
there is a natural embedding of KS+

2 (1, 1) into a thickened cylinder. A point in
KS+

2 (1, 1) is given by a pair of generators: (β, γ ), defined up to conjugation in the
group of all isometries of H3. We consider these groups as operating in the upper
half-space, with coordinates (z, t), z ∈ C, t > 0. Given any pair of generators,
(β, γ ) for a group in KS+

2 (1, 1), normalize so that γ (z, t) = k(z̄, t), where k is
real and k > 1. We can further normalize so that the fixed point of β lies in the
plane passing through (0, 1), orthogonal to the axis of γ . In fact, we can further
normalize so that the coordinate (z, t) of the fixed point of β is such that <(z) ≥ 0.
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Since the fixed point of β cannot lie on the axis of γ , we can uniquely specify
this pair of generators, up to conjugation, by the multiplier k, lying in the interval,
(1, ∞), and by the location of the fixed point of β, which we can regard as lying
in a punctured disc. Since every such point with k sufficiently large, and with the
fixed point of β at (z, t), where t is sufficiently small, corresponds to a point in
KS+

2 (1, 1), we see that there is at least one nontrivial loop in KS2(1, 1).

The general case. We saw above that the two different spaces of Klein–Schottky
groups, inside the space of Schottky groups of genus 2, do not intersect. The fol-
lowing two theorems show that, for every odd genus, there are intersecting spaces
of Klein–Schottky groups. We expect that in even genus, as in genus 2, distinct
Klein–Schottky spaces are disjoint; this will be explored elsewhere.

Theorem 2.3. Let a and b be positive integers, and let g = 2(a + b) − 1. Then

KS+

g (2a, b) ∩ KS+

g (2b, a) 6= ∅.

Proof. Consider a collection of a +b+1 pairwise disjoint circles, each orthogonal
to the real line and bounding a common domain. Denote these circles as S0, S1,
. . . , Sa+b. Let τ(z) = z̄ and, for each j = 0, . . . , a + b, let σ j be an imaginary
reflection keeping invariant both the real axis and the circle S j . Then τ commutes
with each σ j , j = 0, . . . , a + b.

For, j = 1, . . . , a + b, let σ ′

j denote the imaginary reflection in the circle S′

j =

σ0(S j ). We also let ρ j = τσ0σ j . Let G1 be the Klein–Schottky group of type
(2a, b) generated as follows:

G1 = 〈σ1, . . . , σa, σ
′

1, . . . , σ
′

a, ρa+1, . . . , ρa+b〉.

Let G2 be the Klein–Schottky group of type (2b, a) generated as follows:

G2 = 〈σa+1, . . . , σa+b, σ
′

a+1, . . . , σ
′

a+b, ρ1, . . . , ρa〉.

We reflect in the circle S1 to obtain the following generators for the orientation-
preserving half of G1:

G+

1 =
〈
σ1σ2, . . . ,σ1σa,σ1σ

′

1, . . . ,σ1σ
′

a,σ1ρa+1, . . . ,σ1ρa+b,σ1ρ
−1
a+1, . . . ,σ1ρ

−1
a+b

〉
.

We likewise reflect in the circle Sa+1 to obtain the following generators for the
orientation-preserving half of G2:

G+

2 =
〈
σa+1σa+2, . . . , σa+1σa+b, σa+1σ

′

a+1, . . . , σa+1σ
′

a+b, σa+1ρ1, . . . ,

σa+1ρa, σa+1ρ
−1
1 . . . , σa+1ρ

−1
a

〉
.
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We claim that G+

1 = G+

2 . Since we can interchange the roles of a and b, it
obviously suffices to show that G+

2 ⊂ G+

1 . Since, for j = 1, . . . , b,

(σ1ρa+1)
−1(σ1ρa+ j ) = σa+1σa+ j ;

we conclude that the generators of G+

2 of the form σa+1σa+ j are contained in G+

1 .
We next observe that, since τ commutes with every σi ,

(σ1ρa+1)
−1(σ1ρ

−1
a+ j ) = σa+1σ

′

a+ j ;

we conclude that the generators of G+

2 , σa+1σ
′

a+ j , j = 1 . . . , b, are also in G+

1 .
Now, using the fact that τ commutes with σ0 and that

(σ1ρa+1)
−1σ1σi = σa+1τσ0σi = σa+1ρi ,

we conclude that the generators of G+

2 , σa+1ρi , i =1, . . . , a, also lie in G+

1 . Finally,
we observe that

(σa+1ρa+1)
−1σ1σ

′

i = σa+1σiσ0τ = σa+1ρ
−1
i ,

from which we conclude that the generators of G+

2 , σa+1ρ
−1
i , i = 1, . . . , a also lie

in G+

1 . We have shown that G+

2 ⊂ G+

1 . �

Theorem 2.4. Let a be a positive integer, and let g = 2a − 1. Then

KS+

g (2a, 0) ∩ KS+

g (0, a) 6= ∅.

Proof. As above, we start with a + 1 circles, S0, . . . , Sa all orthogonal to the real
axis, and all bounding a common domain. For each i = 0, . . . , a, let σi be an
imaginary reflection keeping both Si and the real axis invariant. For i = 1, . . . , a,
let S′

i = σ0(Si ), and let σ ′

i = σ0σiσ0.
Continuing as above, let τ(z) = z̄; note that τ commutes with every σi and with

every σ ′

i . Also, for i = 1, . . . , a, set ρi = τσ0σi .
Define

G1 = 〈σ1, . . . , σa, σ
′

1 . . . , σ ′

a〉,

G2 = 〈ρ1, . . . , ρa〉.

Reflecting in the circle S1, we can write the generators for Schottky groups that
are the orientation-preserving halves of these groups as

G+

1 = 〈σ2σ1, . . . , σaσ1, σ
′

1σ1, . . . , σ
′

aσ1〉,

G+

2 = 〈ρ1ρ1, . . . , ρaρ1, ρ
−1
2 ρ1, . . . , ρ

−1
a ρ1〉.

One easily computes that, for i = 1, . . . , a, ρiρ1 = σ ′

i σ1, and that, for i =

2, . . . , a, ρ−1
i ρ1 = σiσ1. Hence G+

1 = G+

2 . �
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Corollary 2.5. If g ≡ 1 mod 4 , then every Klein–Schottky space of genus g
intersects at least one other Klein–Schottky space.

Proof. If G is a (m, n)-Klein–Schottky group of genus g, then g = m + 2n − 1;
hence, if g is odd, then m is even. That is, if g is odd, then every Klein–Schottky
group of genus g is a (2a, b)-Klein–Schottky group.

One sees at once that (2a, b) = (2b, a) if and only if a = b. However, if a = b,
then g = 2(a + b) − 1 ≡ 3 mod 4. Therefore, for g ≡ 1 mod 4, and for all
possible choices of a and b, the spaces KS+

g (2a, b) and KS+

g (2b, a) are distinct
and intersect. �

Remark. The universal covering space of Schottky space is the Teichmüller space,
which is topologically a cell. The group of deck transformations for this covering
is a subgroup of the mapping class group, or Teichmüller modular group [Maskit
1971]. We can likewise recognize the universal covering of a Klein–Schottky space
as either (i) a real subspace of the Teichmüller space, or (ii) as the space of extended
Fuchsian groups representing Klein surfaces, of fixed genus, modulo conjugation
by the full group of isometries of the hyperbolic plane. Using Fenchel–Nielsen
coordinates, one easily sees, using this second representation, that the universal
covering space of an extended Klein–Schottky space is topologically a cell. Using
the first representation, one obtains that the fundamental group of an extended
Klein–Schottky space is a subgroup of the fundamental group of Schottky space.
Generators for the fundamental group of Schottky space are known [Luft 1978]; it
is not clear if these results also hold for extended Klein–Schottky spaces.
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