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A’Campo, Gibson and Ishikawa constructed links associated to immersed
compact one-manifolds in a two-dimensional disk, and determined the gor-
dian numbers for links of immersed arcs. We determine the gordian num-
bers for links associated with certain immersed circles.

1. Introduction

A’Campo [1999] constructed links of divides as an extension of the class of alge-
braic links, that is, links of singularities of algebraic curves. By his argument, a
link is associated to any immersed intervals (and circles) in a disk as follows.

Let D =
{

x = (x1, x2) ∈ R2
| ‖x‖

2
= x2

1 + x2
2 ≤ 1

}
be the unit disk in the real

plane R2. A divide P is a generic relative immersion in the unit disk (D, ∂ D) of
a finite number of 1-manifolds, that is, copies of the unit interval (I, ∂ I ) and the
unit circle [A’Campo 1998a, 1999; Hirasawa 2002; Ishikawa 2001b]. We also call
the image of such an immersion a divide. A branch of P is an image of the copies;
we shall call each image of the copies of the interval an interval branch, and each
image of the copies of the circle a circle branch. We shall call a divide with only
circle branches a circle divide, and call a divide with only interval branches an
interval divide. In this paper, we mainly consider circle divides.

Let Tx X be the tangent space at a point x of a manifold X , and TX be the tangent
bundle over a manifold X . We identify the 3-sphere S3 with the set

ST R2
=

{
(x, u) ∈ T R2

| x ∈ R2, u ∈ Tx R2, ‖x‖
2
+ ‖u‖

2
= 1

}
.

The link of a divide P is the set given by

L(P) =
{
(x, u) ∈ ST R2

| x ∈ P, u ∈ Tx P
}
.
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We orient the 3-sphere and the link L(P) as follows. We identify the tangent
bundle T R2

= R4 with the 2-dimensional complex space C2 by the map(
(x1, x2), (u1, u2)

)
7→

(
x1 +

√
−1u1, x2 +

√
−1u2

)
.

The tangent bundle T R2 is oriented by the complex orientation of C2, and the
3-sphere is naturally oriented by the complex orientation of the 4-ball{

(x, u) ∈ T R2
| x ∈ R2, u ∈ Tx R2, ‖x‖

2
+ ‖u‖

2
≤ 1

}
.

Let [a, b] be a small interval with a < b. Let φ : [a, b] → D be an embedding
whose image lies on P . We orient a part of the link L(P) as the image of the map

t 7→

(
φ(t),

√
1 − ‖φ(t)‖2∥∥φ̇(t)

∥∥ φ̇(t)
)

,

where φ̇(t) is the differential of φ(t). We can extend this orientation to L(P). A
divide link is the oriented link ambient isotopic to the link of some divide.

The gordian number (or unknotting number) of an r -component link L is the
minimum number of crossing changes needed to obtain the trivial link. The 4-
dimensional clasp number of L is the minimum number of double points for r
transversely-immersed disks in D4 with boundary L and with only finite double
points as singularities [Kawamura 2002b; 2002a]. A’Campo [1998a] showed that
the gordian number (and also, as we note in Section 3, the 4-dimensional clasp
number) of any interval divide link is equal to the number of double points of the
divide. Gibson and Ishikawa [2002] defined free divides and their links, and gave
an unknotting algorithm for free divides with only interval branches; we review
their arguments in Section 6. In this paper, we give an ‘unknotting operation’ for
certain circle divides, and determine the gordian number and the 4-dimensional
clasp number of the links of such divides.

We shall call embedded circles which all lie outside of all others, as illustrated
in Figure 1, a trivial circle divide.

Figure 1. A trivial circle divide.

Theorem 1.1. Suppose that a circle divide P can be transformed into a trivial
circle divide by a finite sequence of the moves illustrated in Figure 2 and diffeo-
morphisms of the unit disk. Then the gordian number and the 4-dimensional clasp
number of the link of P are equal to the sum of the number of circle branches and
the number of double points of P .
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Figure 2. Transformations of divides. Dashed curves represent
the boundary of the unit disk.

Ishikawa has asked, in a private communication to the author, whether the above
theorem can be applied to slalom divides or ordered Morse divides; we answer this
question in Sections 4 and 5.

In Section 6 we review the definition of a free divide and its link defined by
Gibson and Ishikawa [2002], and extend Theorem 1.1 to certain free divides.

There are some circle divides to which we cannot apply Theorem 1.1, and we
study these in Section 7.

2. Hirasawa’s visualization of links of divides

Hirasawa [2002] has given an algorithm to draw a diagram of the link of a given
divide, which we review and restate in this section.

We fix the coordinates (x1, x2) of D. A regular isotopy of P in the space of
generic immersions does not change the isotopy type of the link L(P), hence we
may assume that divides are linear with slope ±1 except near the ‘corners’, where
a branch quickly changes its slope from ±1 to ∓1. For a divide P we draw a link
diagram by the following algorithm.

(1) For each branch B of P , we draw the boundary of a ‘very small’ neighborhood
of B in the disk D, and assign it the clockwise orientation, as illustrated in
Figure 3. In particular, we draw a ‘hairpin curve’ around each point of ∂ P as
illustrated on the right of Figure 3, where the dashed curve represents ∂ D.

P

L(P)

Figure 3. The first step of Hirasawa’s visualization.
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(2) Around double points, x2-maximal points, and x2-minimal points of P , we
modify the diagram as illustrated in Figure 4, where dashed curves represent
the boundary of D.

P

L(P)

Figure 4. The second step of Hirasawa’s visualization.

Proposition 2.1 [Hirasawa 2002]. For any divide P , the diagram obtained by the
above algorithm represents the link of P . �

In the next section, we apply this algorithm to show that the link of a circle
divide can be unknotted by changing as many crossings as the sum of the number
of circle branches and the number of double points under the condition supposed
in Theorem 1.1.

3. Gordian numbers of circle divide links

If we transform a divide as illustrated in Figure 2, left, we say that we remove
an outermost kink. We call the second and third moves in Figure 2 a divide self-
tangency move and a divide triangle move respectively. In this section, we study
these three transformations and prove Theorem 1.1.

By using Hirasawa’s visualization algorithm, we draw link moves associated to
these transformations. Removing an outermost kink is associated with the local link
move illustrated in Figure 5, top left. As Hirasawa showed [2002], this local move
is obtained by changing one crossing. A divide self-tangency move is associated
with the local link move illustrated in Figure 5, top right, which is obtained by
changing two crossings. A divide triangle move is associated with the local link
move illustrated in Figure 5, bottom. This local move does not change the link
type.
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divides

divide links

divides

divide links

Figure 5. Link moves associated with: removal of an outermost
kink (top left; dashed curves represent the boundary of D); divide
self-tangency move (top right); and divide triangle move (bottom).

The link of a trivial circle divide is a split sum of as many copies of the Hopf
link as the divide has circle branches. It is well known that the gordian number of
a Hopf link is one, which leads to the following lemma.

Lemma 3.1. Let P be a circle divide, and suppose that it can be transformed into
a trivial circle divide by a finite sequence of the moves illustrated in Figure 2 and
diffeomorphisms of the unit disk, where dashed curves represent the boundary of
D. Then the gordian number of the link of P is at most the sum of the number of
circle branches and the number of double points of P . �

Let L be an oriented link, and let F ⊂ D4 be a smooth, oriented 2-manifold
with ∂ F = L , where D4 is the 4-ball bounded by S3. We suppose that F has no
closed components, but do not assume that F is connected. We denote by χs(L)
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the greatest value of the Euler characteristic χ(F) for such 2-manifolds F ⊂ D4,
and call this invariant the slice Euler characteristic.

Lemma 3.2 [Kawamura 2002a]. For any r-component link, the 4-dimensional
clasp number is not greater than the gordian number, and is not less than 1

2(r−χs),
where χs is the slice Euler characteristic of the given link. �

In [Kawamura 2002c], the author proved the following result by showing the
quasipositivity of divide links and free divide links and applying a result due to
Rudolph [1993].

Proposition 3.3 [Kawamura 2002c]. Let P be a divide or a free divide. Let r1 be
the number of interval branches of P , and δ be the number of double points of P .
Then the slice Euler characteristic of the link of P is r1 − 2δ. �

We explain the definition of a free divide and its links in Section 6.

Theorem 3.4. Let P be a divide or a free divide. The gordian number and the 4-
dimensional clasp number of the link of P are not less than the sum of the number
of double points and the number of circle branches of P .

Proof. Each interval branch of P represents one component of the link of P , and
each circle branch of P represents two components of the link of P . By Lemma
3.2 and Proposition 3.3, the gordian number and the 4-dimensional clasp number
of the link of P are not less than the sum of the number of double points and the
number of circle branches of P . �

Ishikawa [2001a, Theorem 5.10], also showed this result, though he commented
on only the gordian number.

Furthermore, by the results due to A’Campo [1998a] and Gibson and Ishikawa
[2002], the 4-dimensional clasp number and the gordian number of the link of an
interval divide or a free interval divide are equal to the number of the double points,
as the author remarked in [Kawamura 2002c, 2004].

Proof of Theorem 1.1. Let P be a circle divide which can be transformed into a
trivial circle divide by a finite sequence of the moves illustrated in Figure 2 and
diffeomorphisms of the unit disk. The gordian number and the 4-dimensional clasp
number of the link of P are (by Lemma 3.1) not greater than, and (by Theorem
3.4) not less than, the sum of the number of circle branches and the number of
double points of P . �

4. Slalom circle divides

For a connected divide P , let the complementary regions D − P be colored black
and white in chessboard fashion. Let 0 (respectively 0′) be the graph constructed
by taking for each black (respectively white) region a vertex, and for each double
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point of P an edge connecting the vertices which are taken for black (respectively
white) regions abutting at that point. The divide P is a slalom divide if either 0

and 0′ is a tree (a slalom tree TP ) [A’Campo 1998b; Hirasawa 2002]. A slalom
divide is a connected divide such that every arc of P except near double points
is accessible from the boundary of the unit disk D without passing through P
[Ishikawa 2001b]. We call a slalom divide with only circle branches a slalom
circle divide. Both divides illustrated in Figure 6 are slalom circle divides.

Removing an outermost kink from a slalom circle divide P is associated with
removing a vertex of degree 1 and the edge adjacent to it from TP . Therefore
any slalom circle divide can be transformed into a trivial circle divide by a finite
sequence of moves removing outermost kinks, and diffeomorphisms of the unit
disk. Then for any slalom circle divide, the gordian number and the 4-dimensional
clasp number of its link are equal to the sum of the number of double points and
the number of circle branches.

5. Ordered Morse circle divides

An ordered Morse divide is a divide whose x1-coordinate has at most one maximal
value and at most one minimal value as a function [Couture and Perron 2000].
We shall call an ordered Morse divide with only circle branches an ordered Morse
circle divide. Couture and Perron [2000] showed that the link of any ordered Morse
divide is the closure of a positive braid, and that any algebraic link is the link of
some ordered Morse divide. In [Kawamura 2002a], the author showed that the
gordian number and the 4-dimensional clasp number for any closed positive braid
with r components are both equal to 1

2(r − χs). By combining this result with
Proposition 3.3, these invariants of an ordered Morse circle divide are both equal
to the sum of the number of circle branches and the number of the double points.

In this section, as an alternative proof of the above result, we show that the link
of any ordered Morse circle divide can be transformed into a trivial circle divide
by a finite sequence of the moves illustrated in Figure 2 and diffeomorphisms of
the unit disk.

Figure 6. Slalom circle divides.
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Figure 7. An ordered Morse circle divide.

Let P be an ordered Morse circle divide. Except near x1-maximal or x1-minimal
points, P may be regarded as a braid diagram where all crossings are replaced with
double points. Let δ j be a symbol of a double point of P where the j-th lowest
x2-value arc intersects with the ( j+1)-th lowest x2-value arc. Let a1, . . . , ak be the
x1-values of all double points of P . We may assume that distinct pairs of double
points never have the same x1-values, and that a1 < a2 < · · · < ak . If δ ji is the
symbol of the double point with x1-value ai , then we may represent P as the word
δ j1 . . . δ jk . Let Dn be the set of all such products of δ1, . . . , δn−1 with relations

δiδ j = δ jδi if |i − j | > 1,(1)

δiδ jδi = δ jδiδ j if |i − j | = 1.(2)

The second relation is given by a divide triangle move. For example, the ordered
Morse circle divide illustrated in Figure 7 is represented as the word δ2δ1δ3δ1δ2δ1

where δ1, δ2, δ3 ∈ D4. In the following, we regard Dk as the subset of Dn by the
natural injection when k < n.

Proposition 5.1. Any ordered Morse circle divide can be transformed into a trivial
circle divide by a finite sequence of the moves illustrated in Figure 2 and diffeo-
morphisms of the unit disk.

The argument of the proof is partially similar to that due to Rudolph [1983]
where he gave a upper bound of the gordian number for any knot represented as
the closure of a positive braid. Before the proof, we prepare some lemmas.

Lemma 5.2. Let P be a connected, ordered Morse circle divide, and WP ∈ D2m

be the word representing P . where m is the number of x1-maximal points of P . We
suppose m > 1 and that WP does not include two consecutive letters equal under
the relations of D2m . If WP does not include δ2m−1, then we can obtain an ordered
Morse divide with (m −1) x1-maximal points from P by a finite sequence of divide
triangle moves and removing an outermost kink.

Proof. Since the given divide P is connected, WP contains δ2m−2 at least once.
We suppose that WP contains δ2m−2 at least twice. Then WP is of the form
α0δ2m−2w0δ2m−2β0, where w0 ∈ D2m−2 is nontrivial. By relation (1) and the above
assumption for WP , w0 contains δ2m−3 at least once. By relation (1) we may
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assume that w0 begins with δ2m−3 and ends with δ2m−3. If w0 = δ2m−3, we have
WP = α0δ2m−3δ2m−2δ2m−3β0 by relation (2). Then the number of occurrences of
the symbol δ2m−2 in WP decreases.

Suppose that w0 6= δ2m−3. Then w0 is of the form δ2m−3w1ρ0, where w1 ∈D2m−3

and ρ0 ∈D2m−2 begins and ends with δ2m−3. We continue this process iteratively as
long as possible, writing wi = δ2m−3−iwi+1ρi , where wi+1 ∈ D2m−3−i , and where
ρi is either empty (in which case so is wi+1) or begins and ends with δ2m−3−i .
Then we have

WP = α0δ2m−2δ2m−3 . . . δ2m−2−iδ2m−3−iρi−1 . . . ρ0δ2m−2β0

for some i , where ρi−1 is not empty. Let ρi−1 = δ2m−2−iρ
′

i−1. Then by relations
(1) and (2) we have

WP = α0δ2m−3−iδ2m−2δ2m−3 . . . δ2m−2−iδ2m−3−iρ
′

i−1ρi−2 . . . ρ0δ2m−2β0.

Hence we can decrease the length of w0. We may thus assume that the length of
w0 is one; it contracted with w0 6= δ2m−3.

Therefore, if WP does not include δ2m−1, we may immediately assume that WP

contains δ2m−2, that is WP = α0δ2m−2β0 for some α0, β0 ∈ D2m−2. The ordered
Morse circle divide represented as the word α0β0 ∈ D2m−2 is obtained from P by
removing an outermost kink adjacent to the double point represented by δ2m−2. �

Lemma 5.3. Let P be a connected, ordered Morse circle divide, and WP ∈ D2m be
the word which represents P , where m is the number of x1-maximal points of P .
Suppose that m > 1, and that WP does not include two consecutive letters equal
under relations (1) and (2). If WP includes δ2m−1 at least twice, then the number
of occurrences of δ2m−1 in WP is decreased by the relations (1) and (2) in D2m .

Proof. The argument of the proof is same as that used for decreasing the number
of occurrences of δ2m−2 in the proof of Lemma 5.2. �

Lemma 5.4. Let P be a connected, ordered Morse circle divide, and WP ∈ D2m

be the word representing P , where m is the number of x1-maximal points of P . We
suppose m > 1 and that WP does not include two consecutive letters equal under
relations (1) and (2). If WP includes δ2m−1 once, then P can be transformed into a
divide which has one of the parts of divides illustrated in Figure 8 by the relations
(1) and (2) in D2m .

Proof. For the given divide P , the word WP has the form αδ2m−1β where α and
β are words in D2m−1. By the same argument as that for decreasing the number
of δ2m−2 in the proof of Lemma 5.2, we can show that if α or β includes δ2m−2

at least twice, then the number of occurrences of δ2m−2 decreases by relations (1)
and (2) in D2m−1. If each of α and β includes δ2m−2 at most once, then P contains
one of the parts of divides illustrated in Figure 8. �
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(a) (b) (c) (d)

Figure 8. Parts of ordered Morse divides whose words include
δ2m−1 once.

If we apply divide self-tangency moves to the parts illustrated in Figure 8 (d),
the new divide may not be an ordered Morse divide. So, we define a new set of
words which represent such divides. For an ordered Morse circle divide, we replace
some of the double points represented by the symbol δn−1 with the copies of the
part illustrated on the left in Figure 9, which we represent by the symbol εn−1. Let
Dn(ε) be the set of products of εn−1 and words in Dn with relations

(3) εn−1δi = δiεn−1 for 1 ≤ i ≤ n − 3.

We shall call a divide represented by the word in Dn(ε) an almost ordered Morse
divide with index n. For example, the circle divide illustrated on the right in Figure
9 is represented by the word δ2δ4δ3δ1ε5δ3δ2δ4δ3 where δ1, . . . , δ5 ∈ D6. An almost
ordered Morse circle divide with index 2 is isotopic to the disjoint sum of ordered
Morse circle divides with one x1-maximal point.

Figure 9. An almost ordered Morse circle divide and a part of it.

Lemma 5.5. Let P be a connected, almost ordered Morse circle divide with index
2m, and WP ∈D2m(ε) the word that represents P . Suppose that m >1, and that WP

does not contain two consecutive letters equal under relations (1)–(3) in D2m(ε).
Then we can obtain an almost ordered Morse circle divide with index 2(m−1) from
P by a finite sequence of the transformations illustrated in Figure 2 and diffeomor-
phisms of the unit disk. Thus P can be transformed into a disjoint sum of ordered
Morse circle divides with fewer than m x1-maximal points, by a finite sequence of
the moves illustrated in Figure 2 and diffeomorphisms of the unit disk.

Proof. The word WP is represented by the product α1ε2m−1α2 . . . ε2m−1αk where
α1, . . . , αk ∈ D2m . By the same argument as that in the proof of Lemma 5.2, we
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may assume that δ2m−1 appears at most once in each α j . When α j does not include
δ2m−1, by the same argument as that in the proof of Lemma 5.2, we may assume
that δ2m−2 appears in α j once, that is α j = β jδ2m−2β

′

j where β j , β
′

j ∈ D2m−2.
Suppose that α j includes δ2m−1 once, that is, α j = γ jδ2m−1γ

′

j with γ j , γ
′

j in
D2m−1. By the same argument as in the proof of Lemma 5.4, we may assume that
each of γ j and γ ′

j includes δ2m−2 at most once. Then we may assume that α j =

β jδ
′

jβ
′

j , where β j , β
′

j lie in D2m−2 and δ′

j has the form δ2m−2δ2m−1 or δ2m−1δ2m−2

or δ2m−2δ2m−1δ2m−2 ( = δ2m−1δ2m−2δ2m−1) or δ2m−2δ2m−1δ2m−3δ2m−2.
For each α j , we define α′

j ∈ D2m−2 as follows:

α′

j =


β jβ

′

j if α j ∈
{
β jδ2m−2β

′

j , β jδ2m−2δ2m−1β
′

j ,

β jδ2m−1δ2m−2β
′

j , β jδ2m−2δ2m−1δ2m−2β
′

j

}
,

β jε2m−3β
′

j if α j = β jδ2m−2δ2m−1δ2m−3δ2m−2β
′

j .

The product W ′
= α′

1α
′

2 . . . α′

k is a word in D2m−2, representing an almost ordered
Morse circle divide with index 2(m − 1) as follows.

Each α j represents an outermost kink or one of the parts illustrated in Figure 8.
The divide represented by W ′ is obtained from P by a finite sequence of the trans-
formations illustrated in Figure 2 and diffeomorphisms of the unit disk. Actually,
we obtain α′

j from α j by the following transformations.
We remove the outermost kink adjacent to the double point represented by δ2m−2

for α j = β jδ2m−2β
′

j , and we apply the divide self-tangency move to reduce two
double points δ2m−1 and δ2m−2 for α j =β jδ2m−2δ2m−1β

′

j or α j =β jδ2m−1δ2m−2β
′

j .
For α j = β jδ2m−2δ2m−1δ2m−2β

′

j , we apply the triangle move as illustrated on the
left in Figure 10, remove two new outermost kinks, and finally remove a new out-
ermost kink. For α j = β jδ2m−2δ2m−1δ2m−3δ2m−2β

′

j , we apply the transformation
illustrated on the right in Figure 10, where the divide self-tangency move is applied
twice. �

Proof of Proposition 5.1. Let WP ∈ D2m represent a given ordered Morse circle
divide P with m x1-maximal points. We may assume that P is connected.

If m = 1, then P is an immersed circle and it is obvious that P can be trans-
formed into a trivial divide by a finite sequence of divide self-tangency moves and
removing outermost kinks.

Next we consider the case m > 1. We assume that any ordered Morse circle
divide with fewer than m x1-maximal points can be transformed into a trivial circle
divide by a finite sequence of the moves illustrated in Figure 2 and diffeomorphisms
of the unit disk. If P is an immersion of at least two circles, then it can be trans-
formed into a disjoint sum of ordered Morse divides by divide self-tangency moves
and divide triangle moves, with at most (m − 1) x1-maximal points.
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Figure 10. Transformations on certain (almost) ordered Morse divides.

Removing two consecutive equal letters from WP gives a divide self-tangency
move on P and decreases the number of double points of P . We assume that WP

does not contain two equal consecutive letters by relations (1)–(3) for D2m(ε). By
Lemma 5.3, we may assume that δ2m−1 appears in WP at most once. By Lemma
5.2, if WP does not include δ2m−1, P can be transformed into an ordered Morse
circle divide which has (m−1) x1-maximal points, by removing an outermost kink.

If WP includes δ2m−1 once, we may assume, by Lemma 5.4, that P has one of
the parts of divides illustrated in Figure 8. The argument for this case is almost the
same as that in the proof of Lemma 5.5. If P has one of the parts illustrated in Fig-
ure 8 (a) or (b), then we can smooth two double points represented by δ2m−1δ2m−2

or δ2m−2δ2m−1 in WP by a divide self-tangency move. The new divide is an ordered
Morse circle divide with (m − 1) x1-maximal points.

We suppose that the ordered Morse circle divide P contains the part illustrated
in Figure 8 (c). We make a new divide P ′ from P by a divide triangle move as
illustrated on the left in Figure 10. Though the word WP ′ which represents P ′ in
the above rule includes δ2m−1 twice, we can remove both double points represented
as δ2m−1 by removing two outermost kinks.

Therefore, for the above cases, the divide P can be transformed into an ordered
Morse circle divide with (m − 1) x1-maximal points, by a finite sequence of the
moves illustrated in Figure 2 and diffeomorphisms of the unit disk.

If P contains the part illustrated in Figure 8 (d), we obtain an almost ordered
Morse circle divide P ′′ with index 2(m −1) if m > 2, or a disjoint sum of ordered
Morse circle divides with one x1-maximal point if m = 2, by applying two divide
self-tangency moves as illustrated on the right in Figure 10. By Lemma 5.5, P ′′

can be transformed into a disjoint sum of ordered Morse circle divides with fewer
than (m − 1) x1-maximal points by a finite sequence of the moves illustrated in
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Figure 2 and diffeomorphisms of the unit disk. This proves the proposition for
m > 1. �

Proposition 5.1 implies the following result by means of Theorem 1.1.

Corollary 5.6. For any ordered Morse circle divide, the gordian number and the
4-dimensional clasp number of its link are equal to the sum of the number of double
points and the number of branches. �

By Proposition 5.1 and Lemma 5.5, we have the following result, which gives
other examples of the divides which can be applied Theorem 1.1.

Proposition 5.7. Any almost ordered Morse circle divide can be transformed into
a trivial circle divide by a finite sequence of the moves illustrated in Figure 2
and diffeomorphisms of the unit disk. Therefore the gordian number and the 4-
dimensional clasp number of the link of such a divide are equal to the sum of the
number of double points and the number of branches. �

The argument in this section implies that Theorem 1.1 can be applied to a large
subset of circle divide links.

6. Free divide links

Free divides and their links were defined by Gibson and Ishikawa [2002]. A free
divide P is a generic nonrelative immersion in the unit disk D of a finite number
of 1-manifolds. The image of the boundary of the copies of the unit interval might
not lie in the boundary of the unit disk. We call a point of such a boundary image
a free endpoint of P .

Let EP be the set of all free endpoints of P . At each free endpoint x ∈ EP , there
are two limits v = (r cos θ, r sin θ) and v′

= (r cos θ ′, r sin θ ′) of tangent vectors
of P , where r =

√
1 − ‖x‖2 and θ ′

= θ ± π . Let [a, b] be a small interval with
a < b, and let φ : [a, b] → P be an embedding with φ(b) = x . We define

v = lim
t→b

√
1 − ‖φ(t)‖2

‖φ̇(t)‖
φ̇(t)

and define two paths from v to v′ in {u ∈ Tx D | ‖x‖
2
+ ‖u‖

2
= 1} as follows:

l(P, x, +) =
{
(r cos(θ + t), r sin(θ + t)) ∈ Tx D

∣∣ r =

√
1 − ‖x‖2, t ∈ [0, π]

}
l(P, x, −) =

{
(r cos(θ − t), r sin(θ − t)) ∈ Tx D

∣∣ r =

√
1 − ‖x‖2, t ∈ [0, π]

}
We also denote by l(P, x, ±) the image of l(P, x, ±) under the map

Tx D → T D; u 7→ (x, u).
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A link of a free divide P is the set

L(P; {εx}x∈EP ) =
{
(x, u) ∈ ST R2

| x ∈ P − EP , u ∈ Tx P
}
∪

⋃
x∈EP

l(P, x, εx)

where εx is a sign + or − for the free endpoint x . The orientation of the link of
a free divide is given by same argument as that of the link of a divide. We note
that the link of the given free divide may not be defined uniquely and depends on
the signs of the free endpoints, though Proposition 3.3 and Theorem 3.4 do not
depend on signs. A free divide link is the oriented link ambient isotopic to the link
of a free divide with some signs for the free endpoints. We note that replacing an
endpoint in ∂ D with a free endpoint accessible from ∂ D does not change the link
type. Then we may assume that all free endpoints are not accessible from ∂ D.

If an interval branch has no free endpoint, then we shall call it a relative branch,
otherwise it is said to be a free branch. A free branch is even if it has two free
endpoints with same sign, and odd if not [Gibson and Ishikawa 2002]. We shall
say that a branch is trivial if it includes no double points of a given divide.

By extending Hirasawa’s visualization algorithm to a free divide, we obtain a
diagram of its link. Except near free endpoints, we draw a diagram by the same
algorithm as that for divides. Around each free endpoint, we modify the diagram
as illustrated in Figure 11, where dashed curves represent ∂ D (see [Kawamura
2002c]).

By this algorithm, we obtain the following lemma.

Lemma 6.1. Let P be a free divide and I be a trivial interval branch of P . If I is
odd or relative, then the link of I is a trivial component which is split from other
components of the link of P . �

P L(P) P L(P)

Figure 11. l(P, x, εx).

Gibson and Ishikawa [2002] showed that a reduction, that is the transformation
on divides illustrated in Figure 12, is lifted to a crossing change on links as follows.
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Figure 12. A reduction.

Lemma 6.2 [Gibson and Ishikawa 2002]. Let P and P ′ be free divides. If P ′

is obtained from P by a reduction, and the signs of vertices of P ′ are equal to
those of P , then L(P ′

; {εx}x∈EP ′ ) is obtained from L(P; {εx}x∈EP ) by changing
one crossing. �

The preceding lemmas yield the next theorem as an extension of Theorem 1.1.

Theorem 6.3. Let P be a divide or a free divide and P ′ the circle divide obtained
from P by removing all interval branches. We suppose that each interval branch
is odd or can be transformed into a relative trivial branch by reductions, and that
P ′ can be transformed into a trivial circle divide by a finite sequence of the moves
illustrated in Figure 2 and diffeomorphisms of the unit disk. Then the gordian
number and the 4-dimensional clasp number of any link of P are equal to the sum
of the number of circle branches and the number of double points of P .

The supposition for interval branches cannot be omitted in Theorem 6.3. For
example, consider a small trivial interval branch I surrounded by a trivial circle
branch C . If I is odd, the link L(I ∪C, {ε1, ε2}) is the split sum of a trivial knot and
a Hopf link. Then L(I ∪ C, {ε1, ε2}) has gordian number and 4-dimensional clasp
number 1. If I is even, L(I ∪ C, {ε1, ε2}) is a (3, −3)-torus link with the opposite
orientation on one component. Then L(I ∪ C, {ε1, ε2}) has gordian number and
4-dimensional clasp number 3 (see [Kawamura 2002a]).

Proof of Theorem 6.3. Let B be an interval branch of the given divide P . By Lem-
mas 6.1 and 6.2, the component of the link of P associated to B is transformed into
a trivial component split from the other components by crossing changes associated
with reductions on B. By repeating such moves, the link L(P) is transformed into
the split sum of L(P ′) and a trivial link with same many components as the interval
branches. By Theorem 1.1, the gordian number of L(P ′) is equal to the sum of
the number of circle branches and the number of double points of P ′. Hence the
gordian number and the 4-dimensional clasp number of L(P) are not greater than
the sum of the number of circle branches and the number of double points of P .
We complete the proof by applying Theorem 3.4. �

This result gives examples which include circle branches and where the equality
holds for the inequality in Theorem 3.4. In particular, Theorem 6.3 implies the
following result.
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Corollary 6.4. Let P be a divide and P ′ be the circle divide obtained from P
by removing all interval branches. We suppose that P ′ can be transformed into a
trivial circle divide by a finite sequence of the moves illustrated in Figure 2 and
diffeomorphisms of the unit disk. Then the gordian number and the 4-dimensional
clasp number of the link of P are equal to the sum of the number of circle branches
and the number of double points of P . �

Let P be a slalom divide or an ordered Morse divide. By means of this result,
the gordian number and the 4-dimensional clasp number of the link of P are equal
to the sum of the number of circle branches and the number of double points of P ,
even if P has both of interval branches and circle branches.

7. A limaçon and concentric circles

We now consider two types of circle divide to which Theorem 1.1 cannot be ap-
plied.

Example 7.1. The divide illustrated in Figure 13 is obtained as a limaçon and none
of the transformations illustrated in Figure 2 can be applied to it. Its link consists
of two trivial knots with linking number 4. The 4-dimensional clasp number is not
less than the linking number [Kawamura 2002b], hence both the gordian number
and the 4-dimensional clasp number of the link of this divide are 4. Therefore they
are not equal to the sum of the number of circle branches and the number of double
points. Ishikawa [2001a] also remarked on this fact for the gordian number.

Figure 13. A limaçon.

Finally, we consider a nontrivial circle divide without double points.

Example 7.2. If a divide consists of n concentric circles, then its link consists
of 2n trivial knots and the linking number of any two components is 1 or −1.
Hence its gordian number and 4-dimensional clasp number are 2n2

− n, since the
4-dimensional clasp number is not less than the sum of the absolute values of the
linking numbers for any two components [Kawamura 2002b]. Therefore they also
differ from the sum of the number of circle branches and the number of double
points if n is greater than 1.

Examples 7.1 and 7.2 show that Theorem 1.1 does not in general determine the
gordian numbers and the 4-dimensional clasp numbers of circle divide links.
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