Pacific Journal of Mathematics

STANDARD GRAPHS IN LENS SPACES

YING-QING WU

Volume 220 No. 2

June 2005

STANDARD GRAPHS IN LENS SPACES

YING-QING WU

We prove the conjecture of Menasco and Zhang that a completely tubing compressible tangle consists of at most two families of parallel strands. This conjecture is related to problems concerning graphs in 3-manifolds, and follows from a theorem that states that a 1-vertex graph in M is standard, in a certain sense, if and only if the exteriors of all its nontrivial subgraphs are handlebodies.

1. Introduction

In this paper, a tangle is a pair (W, t), where W is a compact orientable 3-manifold such that ∂W is a sphere, and $t = \alpha_1 \cup \cdots \cup \alpha_n$ is a set of mutually disjoint, properly embedded arcs in W, called the *strands*. Denote by N(t) a regular neighborhood of t, and by $\eta(t) = \operatorname{Int} N(t)$ an open neighborhood of t. Let X = X(t) be the tangle space $W - \eta(t)$, and let P be the planar surface $\partial W \cap X = \partial W - \eta(\partial t)$. Denote by A_i the annulus $\partial N(\alpha_i) \cap X$. Thus $\partial X = P \cup (\bigcup A_i)$. The A_i -tubing of P is the surface $F_i = P \cup A_i$. Following Gordon [1987], we say that a set of curves $\{c_1, \ldots, c_k\}$ on the boundary of a handlebody H is primitive if there exist disjoint disks D_1, \ldots, D_k in H such that ∂D_i intersects $\bigcup c_j$ transversely at a single point lying on c_i . A set of annuli is primitive if their core curves form a primitive set. The surface P is A_i -tubing compressible if F_i is compressible, and it is completely A_i -tubing compressible if F_i can be compressed until it becomes a set of annuli parallel to $\bigcup_{j\neq i} A_j$. Equivalently, P is completely A_i -tubing compressible if X is a handlebody, and the set of annuli $\bigcup_{i\neq i} A_j$ is primitive on ∂X .

A tangle (W, t) is *completely tubing compressible* if the surface *P* above is completely A_i -tubing compressible for all *i*. Such tangles arise naturally in the study of reducible surgery on knots. For example, it follows from the proof of [Culler et al. 1987, Propositions 2.2.1 and 2.3.1] that if some surgery on a hyperbolic knot *K* produces a nonprime manifold *M*, then either the knot complement contains a closed essential surface, or there is a reducing sphere *S* cutting (M, K') into two

MSC2000: 57N10.

Keywords: lens spaces, graphs, handlebodies.

Partially supported by NSF grant DMS 9802558.

non-split completely tubing compressible tangles, where K' is the core of the Dehn filling solid torus.

Define a *band* in *W* to be an embedded disk *D* in *W* such that $D \cap \partial W$ consists of two arcs on ∂D . A subcollection of strands $t' = \{\alpha_1, \ldots, \alpha_k\}$ of *t* is *parallel* if there is a band *D* such that $D \cap t = t'$.

Define a *core arc* to be an arc α in W such that $W - \eta(\alpha)$ is a solid torus. Because of the uniqueness of the Heegaard splittings of S^3 , $S^2 \times S^1$ and lens spaces, it is easy to see that W has at most two core arcs up to isotopy, and one if W is a punctured S^3 , $S^2 \times I$ or L(p, 1). However, a set of core arcs may contain arbitrarily many parallel families. This is the same phenomenon as links in S^3 : A link L with ncomponents may have the property that all of its components are trivial knots (so the components are isotopic to each other in S^3), but the components of L are mutually non-parallel in the sense that they do not bound an annulus with interior disjoint from the link. The following theorem proves a conjecture of Menasco and Zhang [2001, Conjecture 5], which shows that this phenomenon will not happen if (W, t) is a completely tubing compressible tangle.

Theorem 1.1. If (W, t) is a completely tubing compressible tangle, then t consists of at most two families of parallel core arcs.

The problem is related to graphs in 3-manifolds. Let $M = \widehat{W}$ be the union of W with a 3-ball B, and let $\Gamma = \widehat{t}$ be the union of t with the straight arcs in B connecting ∂t to the central point v of B. Thus we have a graph \widehat{t} in the closed 3-manifold \widehat{W} with one vertex v and n edges e_1, \ldots, e_n corresponding to the arcs $\alpha_1, \ldots, \alpha_n$ of t. A graph Γ is *nontrivial* if it contains at least one edge. The *exterior* of a graph Γ in a 3-manifold M is $E(\Gamma) = M - \eta(\Gamma)$. It will be shown (see Lemma 2.6 below) that the tangle (W, t) is completely tubing compressible if and only if the exterior of any nontrivial subgraph of \widehat{t} in \widehat{W} is a handlebody. Thus the classification problem for 1-vertex graphs Γ in a 3-manifold M which have the property that the exteriors of all its nontrivial subgraphs are handlebodies.

Since the exterior of a regular neighborhood of an edge of Γ is a solid torus, M has a Heegaard splitting of genus 1, hence it must be S^3 , $S^2 \times S^1$, or a lens space L(p,q). Since $L(p,q) \cong L(p,-q) \cong L(p,p-q)$ up to (possibly orientation reversing) homeomorphism, we may always assume that $1 \le q \le p/2$. When M is S^3 , it follows from [Gordon 1987, Theorem 1] that the complement of any subgraph of Γ is a handlebody if and only if Γ is planar, that is, it is contained in a disk in S^3 . Scharlemann and Thompson [1991] generalize this to all abstractly planar graphs in S^3 . See also [Wu 1992b] for an alternative proof. For the general case, we need the following definitions.

A *v*-disk *D* in *M* is the image of a map $f: D^2 \to M$ such that *f* is an embedding except that it identifies two boundary points of D^2 to a point *v* in *M*. The boundary of *D* is $\partial D = f(\partial D^2)$. A *v*-disk *D* in a solid torus *V* is *standard* if $D \cap \partial V = v$, and *D* is isotopic (rel *v*) to a *v*-disk *D'* on ∂V , which is longitudinal in the sense that there is a meridional disk Δ of *V* such that $D' \cap \Delta$ is a nonseparating arc on *D'*. We remark that it is important to require that the above isotopy be relative to *v* as it guarantees that the exterior of *D* is a handlebody.

A graph with a single vertex is called a *1-vertex graph*. Such a graph is connected, and all of its edges are loops. A 1-vertex graph $\Gamma = e_1 \cup \cdots \cup e_k$ in V with vertex v is *in standard position* if it is contained in a standard v-disk D in V. In this case we also say that the edges of Γ are parallel.

Let $V_1 \cup V_2$ be a genus-one Heegaard splitting of a closed 3-manifold M. Then a 1-vertex graph Γ in M is *in standard position* (relative to the Heegaard splitting) if either

- (i) *M* is homeomorphic to S^3 , $S^2 \times S^1$ or L(p, 1), and Γ is contained in a single standard *v*-disk in V_1 or V_2 , or
- (ii) *M* is homeomorphic to L(p, q) with $2 \le q < p/2$, and Γ is contained in two standard *v*-disks, one in each V_i .

A 1-vertex graph Γ in *M* is *standard* if it is isotopic to a graph in standard position. Since genus-one Heegaard splittings of 3-manifolds are unique up to isotopy [Waldhausen 1968; Bonahon and Otal 1982; Schultens 1993], this is independent of the choice of (V_1, V_2) . The following theorem characterizes standard graphs in 3-manifolds.

Theorem 1.2. A nontrivial 1-vertex graph Γ in a closed orientable 3-manifold M is standard if and only if the exterior of any nontrivial subgraph of Γ is a handlebody.

Note that the 3-manifold M in this theorem must be S^3 , $S^2 \times S^1$, or a lens space. For if Γ is standard then by definition M has a genus-one Heegaard splitting. On the other hand, if the exterior of any nontrivial subgraph of Γ is a handlebody, then in particular the exterior of an edge of Γ is a solid torus, so again M has a genus-one Heegaard splitting.

2. Proof of the Theorems

The following lemma proves the easy direction of Theorem 1.2.

Lemma 2.1. If a 1-vertex graph Γ in a 3-manifold M is standard, then the exterior of any nontrivial subgraph Γ' of Γ is a handlebody.

Proof. Clearly a subgraph of Γ is still standard, hence we need only prove the lemma for $\Gamma' = \Gamma$. Let (V_1, V_2) be a genus-one Heegaard splitting of M, and

assume that Γ is contained in the union of $D_1 \cup D_2$, where D_i is a standard *v*disk in V_i . (The case that Γ is contained in a single standard *v*-disk is similar and simpler.) Put $\Gamma_1 = \Gamma \cap D_1 = e_1 \cup \cdots \cup e_{r-1}$ and $\Gamma_2 = \Gamma \cap D_2 = e_r \cup \cdots \cup e_n$.

From the definition, one can see that the manifold $V_i - \eta(D_i)$ is a product $F_i \times I$, where F_i is a once punctured torus. Therefore $X = M - \eta(D_1 \cup D_2)$ is still a product of I and a once punctured torus, which is a handlebody. One can choose a regular neighborhood $N(\Gamma)$ of Γ in M so that it is contained in $N(D_1 \cup D_2)$, and that the closure of each component of $N(D_1 \cup D_2) - N(\Gamma)$ is a 3-ball H_i intersecting $\partial N(D_1 \cup D_2)$ at two disks. Now $M - \eta(\Gamma)$ is the union of X and the H_i . Since each H_i can be considered as a 1-handle attached to X, it follows that $M - \eta(\Gamma)$ is a handlebody.

The following lemma proves the other direction of Theorem 1.2 under a further assumption which, by [Menasco and Zhang 2001, Lemma 1], implies that $M = S^3$ or $S^2 \times S^1$.

Lemma 2.2. Let Γ be a 1-vertex graph in a closed orientable 3-manifold such that the exterior of any nontrivial subgraph of Γ is a handlebody. Let $W = M - \eta(v)$, and $X = M - \eta(\Gamma)$. If $P = \partial W \cap X$ is compressible, then Γ is standard.

Proof. Let *D* be a compressing disk of *P*. First assume that *D* is separating in *W*, cutting *W* into W_1 and W_2 . Let Γ_i be the subgraph of Γ consisting of edges whose intersection with *W* is contained in W_i . Each Γ_i is nontrivial as otherwise ∂D would be trivial on *P*, contradicting the hypothesis that it is a compressing disk. Now W_i is contained in the exterior of Γ_j (for $j \neq i$) which is a handlebody by assumption. Since $\partial W_i = S^2$ and handlebodies are irreducible, it follows that the W_i are 3-balls, hence *W* is also a 3-ball, and so $M = S^3$. In this case, by [Gordon 1987, Theorem 1] or [Scharlemann and Thompson 1991], the graph Γ is planar in S^3 , which is easily seen to be equivalent to the condition that it is standard.

Now assume the *D* is non-separating in *W*. In this case *W* cannot be a 3-ball or punctured lens space, so it must be a punctured $S^2 \times S^1$, and so *D* cuts *W* into $W' = S^2 \times I$. The manifold $X' = W' - \eta(t)$ is obtained from *X* by cutting along a nonseparating disk *D*, so it is a handlebody of genus n - 1, and attaching 2-handles to any proper subset of $\bigcup A_i$ yields a handlebody. By [Gordon 1987, Theorem 2], the set $\bigcup A_i$ is standard on $\partial X'$, which implies that there is a band $D' = C \times I$ in $W' = S^2 \times I$ containing $t = \Gamma \cap W$. It is clear that such a band *D* extends to a standard *v*-disk *D''* in $M = S^2 \times S^1$ containing Γ .

A *trivial arc* in a solid torus V is one which is isotopic rel ∂ to an arc on ∂V . Let γ be a (p, q)-curve on $T = \partial V$. A properly embedded arc α in V is γ -*trivial* if it lies on a meridian disk D of V such that ∂D intersects γ at p points. One can show that α is γ -trivial if and only if it is isotopic to an arc α' on T which always intersects γ in the same direction. When α is γ -trivial, the *jumping number* of α with respect to γ , denoted by $u = u(\alpha, \gamma)$, is defined to be the smallest intersection number between α' and γ for $\alpha' \subset T$ isotopic to α . It should be noticed that not all trivial arcs in V are γ -trivial. Put $X = V - \text{Int } N(\alpha)$, and denote by $X[\gamma]$ the manifold obtained by attaching a 2-handle to X along γ . The following theorem is essentially [Wu 2004, Theorem 2.2], and characterizes trivial arcs α in V such that $X[\gamma]$ is a solid torus.

Lemma 2.3. Let α be a trivial arc in a solid torus V, let γ be a (p,q)-curve on $T = \partial V$ disjoint from α , where $0 < q \le p/2$, and let $X = V - \text{Int } N(\alpha)$. Then $X[\gamma]$ is a solid torus if and only if α is γ -trivial and the jumping number $u(\alpha, \gamma)$ is equal to 1 or q.

Lemma 2.4. Theorem 1.2 is holds if M = L(p, q) and Γ has at most two edges.

Proof. If Γ has only one edge e_1 , then $V_1 = N(e_1)$ and $V_2 = M - \text{Int } V_1$ form a genus-one Heegaard splitting of L(p, q). We may isotope e_1 to standard position in V_1 , and the result follows.

We now assume that $\Gamma = e_1 \cup e_2$. Let $V_1 = N(e_1)$, and $V_2 = M - \text{Int } V_1$, which by assumption is a solid torus. Since e_2 intersects e_1 at the vertex v of Γ , we may assume that $e_2 \cap V_1$ is an unknotted arc lying on a meridional disk D' of V_1 . Let D be another meridional disk of V_1 disjoint from D', and let γ be the curve ∂D on $T = \partial V_i$. Since M is a lens space L(p, q), it follows that γ is a (p, q) curve on T with respect to some longitude-meridian pair of V_2 . Let α be the embedded arc $e_2 \cap V_2$ in V_2 . Then the boundary of α lies on the curve $\gamma' = \partial D'$, which is a parallel copy of γ .

Note that $V_2 - \eta(\alpha) = M - \eta(\Gamma)$, so by assumption it is a handlebody, which we denote *H*. The frontier $N(\alpha) \cap H$ of $N(\alpha)$ is an annulus *A* which must be primitive on *H*, because attaching the 2-handle $N(\alpha)$ to *H* along *A* forms the solid torus V_2 . Hence the core curve α of the attached 2-handle $N(\alpha)$ is a trivial arc in V_2 .

Let β be an arc on γ' connecting the two endpoints of α . Then β is isotopic to the arc $e_2 \cap V_1$ on the disk D', hence the curve $\alpha \cup \beta$ is isotopic to e_2 , which by assumption has exterior a solid torus in L(p, q). Therefore, by Lemma 2.3, α is γ -trivial, and the jumping number $j(\alpha, \gamma)$ is either 1 or q. By definition α is isotopic rel ∂ to an arc α' on T intersecting γ transversely at $j(\alpha, \gamma)$ points in the same direction.

First suppose that $j(\alpha, \gamma) = 1$. Then $e'_2 = \alpha' \cup \beta$ is a simple closed curve on T intersecting the meridian curve γ of V_1 transversely at a single point, and is hence a longitude of V_1 . Since β lies on $\partial D'$ and $e_2 \cap V_1$ is an arc on D', there is an isotopy of $\Gamma \cap V_1$ in V_1 deforming $e_2 \cap V_1$ to the arc β , and e_1 to a loop e'_1 in standard position in V_1 . The isotopy deforms Γ to the graph $\Gamma' = e'_1 \cup e'_2$, with a single vertex v' on T. Since e'_2 is a longitude on ∂V_1 and e'_1 is in standard position,

 $e'_1 \cup e'_2$ bounds a v'-disk Δ in V_1 . Pushing $\Delta - v'$ to the interior of V_1 deforms Γ' to a graph in standard position, and hence the result follows.

Now suppose that $j(\alpha, \gamma) = q > 1$. Choose a meridional disk D_2 of V_2 containing α' and intersecting γ at p points. Since γ' is a (p, q) curve, and the jumping number of α is q, we can choose the arc β on γ' with $\partial\beta = \partial\alpha$ so that the interior of β is disjoint from ∂D_2 , hence $e_2'' = \alpha' \cup \beta$ is a longitude of V_2 . By an isotopy of $\Gamma \cap V_1$ we can deform $e_2 \cap V_1$ to β , and e_1 to a loop e_1' in standard position in V_1 . Let $v' = e_1' \cap e_2''$. Then we can isotope e_2'' rel v' to an edge e_2' in V_2 , which by definition is in standard position in V_2 because e_2'' is a longitude of V_2 . It follows that Γ is isotopic to the graph $\Gamma' = e_1' \cup e_2'$ in standard position, hence Γ is standard. \Box

Suppose *F* is a surface on the boundary of a 3-manifold *X*, and *c* is a simple closed curve in *F*. Denote by X_c the manifold obtained from *X* by attaching a 2-handle to *X* along *c*, and by F_c the corresponding surface in X_c . More explicitly, $X_c = X \cup_{\varphi} (D^2 \times I)$ where φ identifies $\partial D^2 \times I$ to a regular neighborhood *A* of *c* in *F*, and $F_c = (F - A) \cup (D^2 \times \partial I)$. We need the following version of the handle addition lemma.

Lemma 2.5. Let F be a surface on the boundary of a 3-manifold X, let K a 1manifold in F with F - K compressible in X, and let c be a simple loop in F - K. If F_c has a compressing disk Δ in X_c , then F - c has a compressing disk Δ' in X such that $\partial \Delta' \cap K \subset \partial \Delta \cap K$.

Proof. This was proved in [Wu 1992a, Theorem 1], which says that under the hypotheses of the lemma we have $|\partial \Delta' \cap K| \le |\partial \Delta \cap K|$, but that was proved by showing that $\partial \Delta' \cap K \subset \partial \Delta \cap K$. When $K = \emptyset$, this reduces to Jaco's Handle Addition Lemma [1984, Lemma 1].

Lemma 2.6. A tangle (W, t) is completely tubing compressible if and only if the exterior of any nontrivial subgraph of \hat{t} in \widehat{W} is a handlebody.

Proof. Let A_i denote the annulus $\partial N(\alpha_i) \cap \partial X$. The exterior of a subgraph Γ' of $\Gamma = \hat{t}$ in \widehat{W} is the same as the exterior of the corresponding strands of t in W, which can be obtained from $X = W - \eta(t)$ by attaching 2-handles to those annuli A_i corresponding to the edges e_i in $\Gamma - \Gamma'$. Therefore the condition that the exterior of any nontrivial subgraph of \hat{t} in \widehat{W} is a handlebody implies that attaching 2-handles to X along any proper subset of $\bigcup A_i$ yields a handlebody. By [Gordon 1987, Theorem 1] this implies that any proper subset of $\bigcup A_i$ is a primitive set on ∂X . Hence (W, t) is completely tubing compressible.

On the other hand, if (W, t) is completely tubing compressible, and Γ' is a proper subgraph of Γ which does not contain the edge e_i , say, then the set $\bigcup_{j \neq i} A_j$ is primitive on ∂X , and since the exterior $E(\Gamma')$ of Γ' can be obtained by attaching 2-handles to X along a subset of primitive set $\bigcup_{j \neq i} A_j$, it follows that $E(\Gamma')$ is a handlebody.

Proof of Theorem 1.2. By Lemma 2.1 we need only show that if the exterior of any nontrivial subgraph of Γ is a handlebody then Γ is standard. Let $W = M - \eta(v)$, let $t = W \cap \Gamma$, let $X = M - \eta(\Gamma) = W - \eta(t)$, and let $P = \partial W \cap X$. By Lemma 2.2 we may assume that P is incompressible, so by Lemma 2.6 and [Menasco and Zhang 2001, Lemma 1], the manifold M is a lens space L(p, q). Up to homeomorphism we may assume that $1 \le q \le p/2$.

By Lemma 2.4 we may assume that $n \ge 3$, and by induction we may assume that any nontrivial proper subgraph of Γ is standard. In particular, each e_i is standard in M, so it is isotopic to a core of either V_1 or V_2 . Since $n \ge 3$, at least two of the e_i are cores of the same V_j , hence up to relabeling we may assume without loss of generality that e_1 and e_2 are both isotopic to a core of V_2 .

Consider the graph $\Gamma' = e_1 \cup \cdots \cup e_{n-1}$. By induction Γ' is standard, so the edges are contained in two *v*-disks if M = L(p, q) with $2 \le q < p/2$, and one *v*-disk otherwise. Notice that in the first case the core of V_1 is homotopic to q times the core of V_2 , so they represent different elements in $\pi_1 M$. Since by assumption e_1 and e_2 are isotopic to the core of V_2 , it follows that they are on the same *v*-disk. In either case there is a *v*-disk D_1 containing both e_1 and e_2 . Taking a subdisk bounded by $e_1 \cup e_2$ and pushing its interior off D_1 , we get a *v*-disk D_2 bounded by $e_1 \cup e_2$ with interior disjoint from Γ' . Note that D_2 may intersect e_n . However, the following lemma says that D_2 can be rechosen to have interior disjoint from e_n as well.

Lemma 2.7. *There is a v-disk* D_3 *bounded by* $e_1 \cup e_2$ *with interior disjoint from* Γ *.*

Proof. Consider the handlebody $X = M - \eta(\Gamma)$. Let c_i be the meridian curve of e_i on $F = \partial X$, and put $C = \{c_1, \ldots, c_n\}$. Let $K = c_1 \cup \cdots \cup c_{n-1}$. By Lemma 2.2, the tangle (W, t) is completely tubing compressible, so K is a primitive set on ∂X , hence F - K is compressible. We now apply Lemma 2.6 to (X, F, K, c) with $c = c_n$. After attaching a 2-handle to c_n , the manifold $X' = X_{c_n}$ is the same as the exterior of the graph $\Gamma' = e_1 \cup \cdots \cup e_{n-1}$, and the surface F_{c_n} is $\partial X'$.

Recall that $e_1 \cup e_2$ bounds a *v*-disk D_2 in *M* with interior disjoint from Γ' , so its restriction to $X' = X_{c_n}$ is a compressing disk Δ of $\partial X' = F_{c_n}$ intersecting each of c_1 and c_2 at a single point, and is disjoint from c_3, \ldots, c_{n-1} . Therefore, by Lemma 2.6, there is a compressing disk Δ' of $F - c_n$ in *X*, such that $\partial \Delta'$ intersects each of c_1 and c_2 at most once, and is disjoint from c_3, \ldots, c_{n-1} . Since it is a compressing disk of $F - c_n$, it is also disjoint from c_n .

Now $\partial \Delta'$ cannot be disjoint from *C*, because we have assumed that the surface *P* homotopic to F - C is incompressible. Also, $\partial \Delta' \cap C$ cannot be a single point in c_1 , say, because then the frontier of a regular neighborhood of $\Delta' \cup c_1$ would be a compressing disk of F - C, which is again a contradiction. It follows that $\partial \Delta'$ intersects each of c_1 and c_2 at exactly one point, and is disjoint from all the other

 c_j . Since Γ is a spine of $N(\Gamma)$, by shrinking $N(\Gamma)$ to Γ , the disk Δ' becomes a *v*-disk D_3 in *M* bounded by $e_1 \cup e_2$, with interior disjoint from Γ . This completes the proof of the lemma.

We now continue the proof that Γ is standard in M. By induction we may assume that $\Gamma'' = e_2 \cup \cdots \cup e_n$ is in standard position in $M = V_1 \cup V_2$, with e_2 on a v-disk D' in V_2 , say, which contains all the edges of Γ'' in V_2 . Consider the disk D_3 bounded by $e_1 \cup e_2$ as given by Lemma 2.7. It has interior disjoint from Γ , so by considering $D_3 \cap D'$ and using an innermost-circle-outermost-arc argument one can show that D_3 can be modified so that it intersects D' only along the edge e_2 . Pushing the part of D_3 near e_2 slightly off e_2 , we get a v-disk D_4 with boundary the union of e_1 and a loop e'_1 on D', which is a parallel copy of e_2 intersecting Γ only at v. One can then isotope e_1 via the disk D_4 to the edge e'_1 , which lies on the v-disk D'. Thus after this isotopy all edges of Γ are now contained in the v-disks which contain Γ'' . Therefore Γ is also standard by definition.

Proof of Theorem 1.1. Suppose (W, t) is completely tubing compressible. Then by Lemma 2.6 the corresponding graph \hat{t} in $\widehat{W} = W \cup B$ has the property that the exterior of any proper subgraph of \hat{t} is a handlebody. By Theorem 1.2, \hat{t} is contained in the union of at most two *v*-disks D_1 and D_2 , with D_i in V_i . By an isotopy rel \hat{t} we may assume that $D_i \cap \partial W$ consists of two arcs, hence $D_1 \cap W$ and $D_2 \cap W$ are two disjoint bands in *W* containing *t*, and the result follows.

Acknowledgements

I would like to thank Menasco and Zhang for raising the problems, and for posing an insightful conjecture [2001, Conjecture 5].

References

- [Bonahon and Otal 1982] F. Bonahon and J.-P. Otal, "Scindements de Heegaard des espaces lenticulaires", C. R. Acad. Sci. Paris Sér. I Math. 294:17 (1982), 585–587. MR 83f:57008 Zbl 0502.57006
- [Culler et al. 1987] M. Culler, C. M. Gordon, J. Luecke, and P. B. Shalen, "Dehn surgery on knots", *Ann. of Math.* (2) **125**:2 (1987), 237–300. MR 88a:57026 Zbl 0633.57006
- [Gordon 1987] C. M. Gordon, "On primitive sets of loops in the boundary of a handlebody", *Topology Appl.* **27**:3 (1987), 285–299. MR 88k:57013 Zbl 0634.57007
- [Jaco 1984] W. Jaco, "Adding a 2-handle to a 3-manifold: an application to property *R*", *Proc. Amer. Math. Soc.* **92**:2 (1984), 288–292. MR 86b:57006 Zbl 0564.57009
- [Menasco and Zhang 2001] W. Menasco and X. Zhang, "Notes on tangles, 2-handle additions and exceptional Dehn fillings", *Pacific J. Math.* **198**:1 (2001), 149–174. MR 2002f:57012 Zbl 1049. 57013
- [Scharlemann and Thompson 1991] M. Scharlemann and A. Thompson, "Detecting unknotted graphs in 3-space", J. Differential Geom. **34**:2 (1991), 539–560. MR 93a:57012 Zbl 0751.05033

- [Schultens 1993] J. Schultens, "The classification of Heegaard splittings for (compact orientable surface) $\times S^{1}$ ", *Proc. London Math. Soc.* (3) **67**:2 (1993), 425–448. MR 94d:57043 ZbI 0789.57012
- [Waldhausen 1968] F. Waldhausen, "Heegaard-Zerlegungen der 3-Sphäre", *Topology* **7** (1968), 195–203. MR 37 #3576 Zbl 0157.54501
- [Wu 1992a] Y. Q. Wu, "A generalization of the handle addition theorem", *Proc. Amer. Math. Soc.* **114**:1 (1992), 237–242. MR 92c:57018 Zbl 0737.57007
- [Wu 1992b] Y. Q. Wu, "On planarity of graphs in 3-manifolds", *Comment. Math. Helv.* **67**:4 (1992), 635–647. MR 93m:57002 Zbl 0812.57005
- [Wu 2004] Y.-Q. Wu, "The classification of Dehn fillings on the outer torus of a 1-bridge braid exterior which produce solid tori", *Math. Ann.* **330**:1 (2004), 1–15. MR MR2091675 Zbl 1055.57030

Received February 4, 2002. Revised January 6, 2003.

YING-QING WU DEPARTMENT OF MATHEMATICS UNIVERSITY OF IOWA IOWA CITY, IA 52242

wu@math.uiowa.edu