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We prove the conjecture of Menasco and Zhang that a completely tubing
compressible tangle consists of at most two families of parallel strands. This
conjecture is related to problems concerning graphs in 3-manifolds, and
follows from a theorem that states that a 1-vertex graph in M is standard,
in a certain sense, if and only if the exteriors of all its nontrivial subgraphs
are handlebodies.

1. Introduction

In this paper, a tangle is a pair (W, t), where W is a compact orientable 3-manifold
such that ∂W is a sphere, and t =α1∪· · ·∪αn is a set of mutually disjoint, properly
embedded arcs in W , called the strands. Denote by N (t) a regular neighborhood
of t , and by η(t)= Int N (t) an open neighborhood of t . Let X = X (t) be the tangle
space W − η(t), and let P be the planar surface ∂W ∩ X = ∂W − η(∂t). Denote
by Ai the annulus ∂ N (αi ) ∩ X . Thus ∂ X = P ∪

(⋃
Ai

)
. The Ai -tubing of P is

the surface Fi = P ∪ Ai . Following Gordon [1987], we say that a set of curves
{c1, . . . , ck} on the boundary of a handlebody H is primitive if there exist disjoint
disks D1, . . . , Dk in H such that ∂ Di intersects

⋃
c j transversely at a single point

lying on ci . A set of annuli is primitive if their core curves form a primitive set.
The surface P is Ai -tubing compressible if Fi is compressible, and it is completely
Ai -tubing compressible if Fi can be compressed until it becomes a set of annuli
parallel to

⋃
j 6=i A j . Equivalently, P is completely Ai -tubing compressible if X is

a handlebody, and the set of annuli
⋃

j 6=i A j is primitive on ∂ X .
A tangle (W, t) is completely tubing compressible if the surface P above is com-

pletely Ai -tubing compressible for all i . Such tangles arise naturally in the study
of reducible surgery on knots. For example, it follows from the proof of [Culler
et al. 1987, Propositions 2.2.1 and 2.3.1] that if some surgery on a hyperbolic knot
K produces a nonprime manifold M , then either the knot complement contains a
closed essential surface, or there is a reducing sphere S cutting (M, K ′) into two
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non-split completely tubing compressible tangles, where K ′ is the core of the Dehn
filling solid torus.

Define a band in W to be an embedded disk D in W such that D ∩∂W consists
of two arcs on ∂ D. A subcollection of strands t ′

= {α1, . . . , αk} of t is parallel if
there is a band D such that D ∩ t = t ′.

Define a core arc to be an arc α in W such that W −η(α) is a solid torus. Because
of the uniqueness of the Heegaard splittings of S3, S2

×S1 and lens spaces, it is easy
to see that W has at most two core arcs up to isotopy, and one if W is a punctured
S3, S2

× I or L(p, 1). However, a set of core arcs may contain arbitrarily many
parallel families. This is the same phenomenon as links in S3: A link L with n
components may have the property that all of its components are trivial knots (so
the components are isotopic to each other in S3), but the components of L are
mutually non-parallel in the sense that they do not bound an annulus with interior
disjoint from the link. The following theorem proves a conjecture of Menasco and
Zhang [2001, Conjecture 5], which shows that this phenomenon will not happen
if (W, t) is a completely tubing compressible tangle.

Theorem 1.1. If (W, t) is a completely tubing compressible tangle, then t consists
of at most two families of parallel core arcs.

The problem is related to graphs in 3-manifolds. Let M = Ŵ be the union of W
with a 3-ball B, and let 0 = t̂ be the union of t with the straight arcs in B connecting
∂t to the central point v of B. Thus we have a graph t̂ in the closed 3-manifold
Ŵ with one vertex v and n edges e1, . . . , en corresponding to the arcs α1, . . . , αn

of t . A graph 0 is nontrivial if it contains at least one edge. The exterior of a
graph 0 in a 3-manifold M is E(0) = M − η(0). It will be shown (see Lemma
2.6 below) that the tangle (W, t) is completely tubing compressible if and only
if the exterior of any nontrivial subgraph of t̂ in Ŵ is a handlebody. Thus the
classification problem for completely tubing compressible tangles is equivalent to
the classification problem for 1-vertex graphs 0 in a 3-manifold M which have the
property that the exteriors of all its nontrivial subgraphs are handlebodies.

Since the exterior of a regular neighborhood of an edge of 0 is a solid torus, M
has a Heegaard splitting of genus 1, hence it must be S3, S2

× S1, or a lens space
L(p, q). Since L(p, q) ∼= L(p, −q) ∼= L(p, p−q) up to (possibly orientation
reversing) homeomorphism, we may always assume that 1 ≤ q ≤ p/2. When
M is S3, it follows from [Gordon 1987, Theorem 1] that the complement of any
subgraph of 0 is a handlebody if and only if 0 is planar, that is, it is contained in
a disk in S3. Scharlemann and Thompson [1991] generalize this to all abstractly
planar graphs in S3. See also [Wu 1992b] for an alternative proof. For the general
case, we need the following definitions.
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A v-disk D in M is the image of a map f : D2
→ M such that f is an embedding

except that it identifies two boundary points of D2 to a point v in M . The boundary
of D is ∂ D = f (∂ D2). A v-disk D in a solid torus V is standard if D ∩ ∂V = v,
and D is isotopic (rel v) to a v-disk D′ on ∂V , which is longitudinal in the sense
that there is a meridional disk 1 of V such that D′

∩ 1 is a nonseparating arc on
D′. We remark that it is important to require that the above isotopy be relative to
v as it guarantees that the exterior of D is a handlebody.

A graph with a single vertex is called a 1-vertex graph. Such a graph is con-
nected, and all of its edges are loops. A 1-vertex graph 0 = e1 ∪· · ·∪ek in V with
vertex v is in standard position if it is contained in a standard v-disk D in V . In
this case we also say that the edges of 0 are parallel.

Let V1 ∪ V2 be a genus-one Heegaard splitting of a closed 3-manifold M . Then
a 1-vertex graph 0 in M is in standard position (relative to the Heegaard splitting)
if either

(i) M is homeomorphic to S3, S2
× S1 or L(p, 1), and 0 is contained in a single

standard v-disk in V1 or V2, or

(ii) M is homeomorphic to L(p, q) with 2 ≤ q < p/2, and 0 is contained in two
standard v-disks, one in each Vi .

A 1-vertex graph 0 in M is standard if it is isotopic to a graph in standard posi-
tion. Since genus-one Heegaard splittings of 3-manifolds are unique up to isotopy
[Waldhausen 1968; Bonahon and Otal 1982; Schultens 1993], this is independent
of the choice of (V1, V2). The following theorem characterizes standard graphs in
3-manifolds.

Theorem 1.2. A nontrivial 1-vertex graph 0 in a closed orientable 3-manifold M is
standard if and only if the exterior of any nontrivial subgraph of 0 is a handlebody.

Note that the 3-manifold M in this theorem must be S3, S2
×S1, or a lens space.

For if 0 is standard then by definition M has a genus-one Heegaard splitting. On
the other hand, if the exterior of any nontrivial subgraph of 0 is a handlebody,
then in particular the exterior of an edge of 0 is a solid torus, so again M has a
genus-one Heegaard splitting.

2. Proof of the Theorems

The following lemma proves the easy direction of Theorem 1.2.

Lemma 2.1. If a 1-vertex graph 0 in a 3-manifold M is standard, then the exterior
of any nontrivial subgraph 0′ of 0 is a handlebody.

Proof. Clearly a subgraph of 0 is still standard, hence we need only prove the
lemma for 0′

= 0. Let (V1, V2) be a genus-one Heegaard splitting of M , and
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assume that 0 is contained in the union of D1 ∪ D2, where Di is a standard v-
disk in Vi . (The case that 0 is contained in a single standard v-disk is similar and
simpler.) Put 01 = 0 ∩ D1 = e1 ∪ · · · ∪ er−1 and 02 = 0 ∩ D2 = er ∪ · · · ∪ en .

From the definition, one can see that the manifold Vi −η(Di ) is a product Fi × I ,
where Fi is a once punctured torus. Therefore X = M−η(D1∪D2) is still a product
of I and a once punctured torus, which is a handlebody. One can choose a regular
neighborhood N (0) of 0 in M so that it is contained in N (D1 ∪ D2), and that
the closure of each component of N (D1 ∪ D2) − N (0) is a 3-ball Hi intersecting
∂ N (D1 ∪ D2) at two disks. Now M − η(0) is the union of X and the Hi . Since
each Hi can be considered as a 1-handle attached to X , it follows that M − η(0)

is a handlebody. �

The following lemma proves the other direction of Theorem 1.2 under a further
assumption which, by [Menasco and Zhang 2001, Lemma 1], implies that M = S3

or S2
× S1.

Lemma 2.2. Let 0 be a 1-vertex graph in a closed orientable 3-manifold such that
the exterior of any nontrivial subgraph of 0 is a handlebody. Let W = M − η(v),
and X = M − η(0). If P = ∂W ∩ X is compressible, then 0 is standard.

Proof. Let D be a compressing disk of P . First assume that D is separating in W ,
cutting W into W1 and W2. Let 0i be the subgraph of 0 consisting of edges whose
intersection with W is contained in Wi . Each 0i is nontrivial as otherwise ∂ D
would be trivial on P , contradicting the hypothesis that it is a compressing disk.
Now Wi is contained in the exterior of 0 j (for j 6= i) which is a handlebody by
assumption. Since ∂Wi = S2 and handlebodies are irreducible, it follows that the
Wi are 3-balls, hence W is also a 3-ball, and so M = S3. In this case, by [Gordon
1987, Theorem 1] or [Scharlemann and Thompson 1991], the graph 0 is planar in
S3, which is easily seen to be equivalent to the condition that it is standard.

Now assume the D is non-separating in W . In this case W cannot be a 3-ball
or punctured lens space, so it must be a punctured S2

× S1, and so D cuts W into
W ′

= S2
× I . The manifold X ′

= W ′
−η(t) is obtained from X by cutting along a

nonseparating disk D, so it is a handlebody of genus n−1, and attaching 2-handles
to any proper subset of

⋃
Ai yields a handlebody. By [Gordon 1987, Theorem 2],

the set
⋃

Ai is standard on ∂ X ′, which implies that there is a band D′
= C × I

in W ′
= S2

× I containing t = 0 ∩ W . It is clear that such a band D extends to a
standard v-disk D′′ in M = S2

× S1 containing 0. �

A trivial arc in a solid torus V is one which is isotopic rel ∂ to an arc on ∂V .
Let γ be a (p, q)-curve on T = ∂V . A properly embedded arc α in V is γ -trivial
if it lies on a meridian disk D of V such that ∂ D intersects γ at p points. One can
show that α is γ -trivial if and only if it is isotopic to an arc α′ on T which always
intersects γ in the same direction. When α is γ -trivial, the jumping number of α
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with respect to γ , denoted by u = u(α, γ ), is defined to be the smallest intersection
number between α′ and γ for α′

⊂ T isotopic to α. It should be noticed that not
all trivial arcs in V are γ -trivial. Put X = V − Int N (α), and denote by X [γ ] the
manifold obtained by attaching a 2-handle to X along γ . The following theorem
is essentially [Wu 2004, Theorem 2.2], and characterizes trivial arcs α in V such
that X [γ ] is a solid torus.

Lemma 2.3. Let α be a trivial arc in a solid torus V , let γ be a (p, q)-curve on
T = ∂V disjoint from α, where 0 < q ≤ p/2, and let X = V − Int N (α). Then
X [γ ] is a solid torus if and only if α is γ -trivial and the jumping number u(α, γ )

is equal to 1 or q . �

Lemma 2.4. Theorem 1.2 is holds if M = L(p, q) and 0 has at most two edges.

Proof. If 0 has only one edge e1, then V1 = N (e1) and V2 = M − Int V1 form a
genus-one Heegaard splitting of L(p, q). We may isotope e1 to standard position
in V1, and the result follows.

We now assume that 0 = e1 ∪ e2. Let V1 = N (e1), and V2 = M − Int V1, which
by assumption is a solid torus. Since e2 intersects e1 at the vertex v of 0, we may
assume that e2 ∩ V1 is an unknotted arc lying on a meridional disk D′ of V1. Let
D be another meridional disk of V1 disjoint from D′, and let γ be the curve ∂ D
on T = ∂Vi . Since M is a lens space L(p, q), it follows that γ is a (p, q) curve
on T with respect to some longitude-meridian pair of V2. Let α be the embedded
arc e2 ∩ V2 in V2. Then the boundary of α lies on the curve γ ′

= ∂ D′, which is a
parallel copy of γ .

Note that V2 −η(α) = M −η(0), so by assumption it is a handlebody, which we
denote H . The frontier N (α)∩H of N (α) is an annulus A which must be primitive
on H , because attaching the 2-handle N (α) to H along A forms the solid torus V2.
Hence the core curve α of the attached 2-handle N (α) is a trivial arc in V2.

Let β be an arc on γ ′ connecting the two endpoints of α. Then β is isotopic
to the arc e2 ∩ V1 on the disk D′, hence the curve α ∪ β is isotopic to e2, which
by assumption has exterior a solid torus in L(p, q). Therefore, by Lemma 2.3, α

is γ -trivial, and the jumping number j (α, γ ) is either 1 or q . By definition α is
isotopic rel ∂ to an arc α′ on T intersecting γ transversely at j (α, γ ) points in the
same direction.

First suppose that j (α, γ ) = 1. Then e′

2 = α′
∪ β is a simple closed curve on

T intersecting the meridian curve γ of V1 transversely at a single point, and is
hence a longitude of V1. Since β lies on ∂ D′ and e2 ∩ V1 is an arc on D′, there is
an isotopy of 0 ∩ V1 in V1 deforming e2 ∩ V1 to the arc β, and e1 to a loop e′

1 in
standard position in V1. The isotopy deforms 0 to the graph 0′

= e′

1 ∪ e′

2, with a
single vertex v′ on T . Since e′

2 is a longitude on ∂V1 and e′

1 is in standard position,
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e′

1 ∪ e′

2 bounds a v′-disk 1 in V1. Pushing 1 − v′ to the interior of V1 deforms 0′

to a graph in standard position, and hence the result follows.
Now suppose that j (α, γ ) = q > 1. Choose a meridional disk D2 of V2 contain-

ing α′ and intersecting γ at p points. Since γ ′ is a (p, q) curve, and the jumping
number of α is q , we can choose the arc β on γ ′ with ∂β = ∂α so that the interior
of β is disjoint from ∂ D2, hence e′′

2 = α′
∪β is a longitude of V2. By an isotopy of

0∩V1 we can deform e2∩V1 to β, and e1 to a loop e′

1 in standard position in V1. Let
v′

= e′

1 ∩e′′

2 . Then we can isotope e′′

2 rel v′ to an edge e′

2 in V2, which by definition
is in standard position in V2 because e′′

2 is a longitude of V2. It follows that 0 is
isotopic to the graph 0′

= e′

1 ∪ e′

2 in standard position, hence 0 is standard. �

Suppose F is a surface on the boundary of a 3-manifold X , and c is a simple
closed curve in F . Denote by Xc the manifold obtained from X by attaching a
2-handle to X along c, and by Fc the corresponding surface in Xc. More explicitly,
Xc = X ∪ϕ (D2

× I ) where ϕ identifies ∂ D2
× I to a regular neighborhood A of c

in F , and Fc = (F − A)∪ (D2
×∂ I ). We need the following version of the handle

addition lemma.

Lemma 2.5. Let F be a surface on the boundary of a 3-manifold X , let K a 1-
manifold in F with F − K compressible in X , and let c be a simple loop in F − K .
If Fc has a compressing disk 1 in Xc, then F − c has a compressing disk 1′ in X
such that ∂1′

∩ K ⊂ ∂1 ∩ K .

Proof. This was proved in [Wu 1992a, Theorem 1], which says that under the
hypotheses of the lemma we have |∂1′

∩ K | ≤ |∂1 ∩ K |, but that was proved by
showing that ∂1′

∩ K ⊂ ∂1 ∩ K . When K = ∅, this reduces to Jaco’s Handle
Addition Lemma [1984, Lemma 1]. �

Lemma 2.6. A tangle (W, t) is completely tubing compressible if and only if the
exterior of any nontrivial subgraph of t̂ in Ŵ is a handlebody.

Proof. Let Ai denote the annulus ∂ N (αi ) ∩ ∂ X . The exterior of a subgraph 0′

of 0 = t̂ in Ŵ is the same as the exterior of the corresponding strands of t in
W , which can be obtained from X = W − η(t) by attaching 2-handles to those
annuli Ai corresponding to the edges ei in 0−0′. Therefore the condition that the
exterior of any nontrivial subgraph of t̂ in Ŵ is a handlebody implies that attaching
2-handles to X along any proper subset of

⋃
Ai yields a handlebody. By [Gordon

1987, Theorem 1] this implies that any proper subset of
⋃

Ai is a primitive set on
∂ X . Hence (W, t) is completely tubing compressible.

On the other hand, if (W, t) is completely tubing compressible, and 0′ is a
proper subgraph of 0 which does not contain the edge ei , say, then the set

⋃
j 6=i A j

is primitive on ∂ X , and since the exterior E(0′) of 0′ can be obtained by attaching
2-handles to X along a subset of primitive set

⋃
j 6=i A j , it follows that E(0′) is a

handlebody. �
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Proof of Theorem 1.2. By Lemma 2.1 we need only show that if the exterior of any
nontrivial subgraph of 0 is a handlebody then 0 is standard. Let W = M −η(v), let
t = W ∩0, let X = M −η(0) = W −η(t), and let P = ∂W ∩ X . By Lemma 2.2 we
may assume that P is incompressible, so by Lemma 2.6 and [Menasco and Zhang
2001, Lemma 1], the manifold M is a lens space L(p, q). Up to homeomorphism
we may assume that 1 ≤ q ≤ p/2.

By Lemma 2.4 we may assume that n ≥ 3, and by induction we may assume that
any nontrivial proper subgraph of 0 is standard. In particular, each ei is standard
in M , so it is isotopic to a core of either V1 or V2. Since n ≥ 3, at least two of the
ei are cores of the same V j , hence up to relabeling we may assume without loss of
generality that e1 and e2 are both isotopic to a core of V2.

Consider the graph 0′
= e1∪· · ·∪en−1. By induction 0′ is standard, so the edges

are contained in two v-disks if M = L(p, q) with 2 ≤ q < p/2, and one v-disk
otherwise. Notice that in the first case the core of V1 is homotopic to q times the
core of V2, so they represent different elements in π1 M . Since by assumption e1

and e2 are isotopic to the core of V2, it follows that they are on the same v-disk.
In either case there is a v-disk D1 containing both e1 and e2. Taking a subdisk
bounded by e1 ∪e2 and pushing its interior off D1, we get a v-disk D2 bounded by
e1 ∪e2 with interior disjoint from 0′. Note that D2 may intersect en . However, the
following lemma says that D2 can be rechosen to have interior disjoint from en as
well.

Lemma 2.7. There is a v-disk D3 bounded by e1 ∪e2 with interior disjoint from 0.

Proof. Consider the handlebody X = M − η(0). Let ci be the meridian curve of
ei on F = ∂ X , and put C = {c1, . . . , cn}. Let K = c1 ∪ · · · ∪ cn−1. By Lemma
2.2, the tangle (W, t) is completely tubing compressible, so K is a primitive set on
∂ X , hence F − K is compressible. We now apply Lemma 2.6 to (X, F, K , c) with
c = cn . After attaching a 2-handle to cn , the manifold X ′

= Xcn is the same as the
exterior of the graph 0′

= e1 ∪ · · · ∪ en−1, and the surface Fcn is ∂ X ′.
Recall that e1 ∪e2 bounds a v-disk D2 in M with interior disjoint from 0′, so its

restriction to X ′
= Xcn is a compressing disk 1 of ∂ X ′

= Fcn intersecting each of
c1 and c2 at a single point, and is disjoint from c3, . . . , cn−1. Therefore, by Lemma
2.6, there is a compressing disk 1′ of F −cn in X , such that ∂1′ intersects each of
c1 and c2 at most once, and is disjoint from c3, . . . , cn−1. Since it is a compressing
disk of F − cn , it is also disjoint from cn .

Now ∂1′ cannot be disjoint from C , because we have assumed that the surface
P homotopic to F − C is incompressible. Also, ∂1′

∩ C cannot be a single point
in c1, say, because then the frontier of a regular neighborhood of 1′

∪ c1 would be
a compressing disk of F − C , which is again a contradiction. It follows that ∂1′

intersects each of c1 and c2 at exactly one point, and is disjoint from all the other
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c j . Since 0 is a spine of N (0), by shrinking N (0) to 0, the disk 1′ becomes a
v-disk D3 in M bounded by e1 ∪ e2, with interior disjoint from 0. This completes
the proof of the lemma. �

We now continue the proof that 0 is standard in M . By induction we may
assume that 0′′

= e2 ∪ · · · ∪ en is in standard position in M = V1 ∪ V2, with e2 on
a v-disk D′ in V2, say, which contains all the edges of 0′′ in V2. Consider the disk
D3 bounded by e1 ∪ e2 as given by Lemma 2.7. It has interior disjoint from 0, so
by considering D3 ∩ D′ and using an innermost-circle-outermost-arc argument one
can show that D3 can be modified so that it intersects D′ only along the edge e2.
Pushing the part of D3 near e2 slightly off e2, we get a v-disk D4 with boundary
the union of e1 and a loop e′

1 on D′, which is a parallel copy of e2 intersecting 0

only at v. One can then isotope e1 via the disk D4 to the edge e′

1, which lies on the
v-disk D′. Thus after this isotopy all edges of 0 are now contained in the v-disks
which contain 0′′. Therefore 0 is also standard by definition. �

Proof of Theorem 1.1. Suppose (W, t) is completely tubing compressible. Then
by Lemma 2.6 the corresponding graph t̂ in Ŵ = W ∪ B has the property that
the exterior of any proper subgraph of t̂ is a handlebody. By Theorem 1.2, t̂ is
contained in the union of at most two v-disks D1 and D2, with Di in Vi . By an
isotopy rel t̂ we may assume that Di ∩∂W consists of two arcs, hence D1 ∩W and
D2 ∩ W are two disjoint bands in W containing t , and the result follows. �
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