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From a group H and h ∈ H , we define a representation ρ : Bn → Aut(H∗n),
where Bn denotes the braid group on n strands, and H∗n denotes the free
product of n copies of H . We call ρ the Artin type representation associated
to the pair (H, h). Here we study various aspects of such representations.

Firstly, we associate to each braid β a group 0(H,h)(β) and prove that
the operator 0(H,h) determines a group invariant of oriented links. We then
give a topological construction of the Artin type representations and of the
link invariant 0(H,h), and we prove that the Artin type representations are
faithful if and only if h is nontrivial. The last part of the paper is devoted to
the study of some semidirect products H∗n oρ Bn, where ρ : Bn → Aut(H∗n)

is an Artin type representation. In particular, we show that H∗n oρ Bn is a
Garside group if H is a Garside group and h is a Garside element of H .

1. Introduction

Throughout the paper, we shall denote by Bn the braid group on n strands, and by
σ1, . . . , σn−1 the standard generators of Bn .

Let H be a group and fix h ∈ H . Take n copies H1, . . . , Hn of H and consider
the group H∗n

= H1 ∗· · ·∗ Hn . We denote by φi : H → Hi the natural isomorphism
and we write hi = φi (h) ∈ Hi , for all i = 1, . . . , n. For k = 1, . . . , n − 1, let
τk : H∗n

→ H∗n be the automorphism determined by

τk :


φk(y) 7→ h−1

k φk+1(y) hk,

φk+1(y) 7→ hk φk(y) h−1
k ,

φ j (y) 7→ φ j (y) if j 6= k, k + 1

for y ∈ H . One can easily show the following.

Proposition 1.1. The mapping σk 7→ τk , k = 1, . . . , n − 1, determines a represen-
tation ρ : Bn → Aut(H∗n).
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Proof. This involves checking, case by case, that the usual braid group relations are
satisfied by the automorphisms τk . For example, both τkτk+1τk and τk+1τkτk+1 map
φk(y) to h−1

k h−1
k+1φk+2(y)hk+1hk , φk+1(y) to h−1

k hk+1φk+1(y)h−1
k+1hk , etc. Simi-

larly, one checks that τkτ j = τ jτk if k< j −1. We leave the details to the reader. �

Definition 1.2. The representation of Proposition 1.1 shall be called the Artin type
representation of Bn associated to the pair (H, h).

The special case where h is taken to be the identity, h = IdH , gives a represen-
tation of Bn by permutations of the free factors of H∗n . This representation has
image the full symmetric group Sn and kernel the pure braid group. All other Artin
type representations will be shown to be faithful (see Proposition 4.1).

If H = Z and h = 1 (a generator of Z in the additive notation), then H∗n
= Fn is

the free group of rank n and ρ is the classical representation introduced by Artin
[1925; 1947]. Another example which appears in the literature is the case where
H = Z and h is an arbitrary nonzero integer. This case was introduced by Wada
[1992] in his construction of group invariants of links. Sections 2 and 3 of the
present paper are inspired by [Wada 1992].

Our purpose in this paper is to study different aspects of the Artin type repre-
sentations.

Definition 1.3. Let ρ : Bn → Aut(H∗n) be the Artin type representation associated
to a pair (H, h). Let β ∈ Bn . Then we denote by 0(β)= 0(H,h)(β) the quotient of
H∗n by the relations

g = ρ(β)g, g ∈ H∗n.

For a braid β, we denote by β̂ the oriented link (or more precisely the equiv-
alence class of oriented links) represented by the closed braid of β as defined in
[Birman 1974]. Given two braids β1 and β2 (not necessarily with the same number
of strands), we prove in Section 2 that 0(β1) ' 0(β2) if β̂1 = β̂2. This allows us
to define a group invariant of oriented links, 0(H,h), by setting 0(H,h)(L) to be the
group 0(H,h)(β) for any braid β such that L = β̂. Note that, in the case H = Z and
h = 1, the invariant 0(Z,1) computes the link group, namely 0(Z,1)(L)∼= π1(S3

\ L)
for any link L in S3.

The goal of Section 3 is to give topological constructions of the Artin type
representations and of the groups 0(H,h)(β), for β ∈ Bn . If H = Z and h is a
nonzero integer, then our constructions coincide with Wada’s constructions [1992,
Section 3]. In fact, our constructions are straightforward extensions of Wada’s
constructions to all Artin type representations.

In Section 4, we prove that Artin type representations are faithful whenever h
is chosen nontrivial (Proposition 4.1). If h has infinite order, then the Artin type
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representation ρ : Bn → Aut(H∗n) contains the classical Artin representation and,
therefore, is faithful by [Artin 1925; 1947]. So, Proposition 4.1 is mostly of interest
in the case where h has finite order. In fact the proof may be easily reduced to the
case H = Z/kZ and h = 1, however we will not need to use any such reduction,
as our method applies just as easily in all cases. We note also that the case where
H is cyclic of order 2 follows (by somewhat different methods) from [Crisp and
Paris 2005, Section 2.3]. The proof of Proposition 4.1 is inspired by the proof of
[Shpilrain 2001, Theorem A], and it is based on Dehornoy’s work [1994; 1997a]
on orderings of the braid group.

The remaining sections (Sections 5 and 6) are dedicated to the study of semidi-
rect products H∗n oρ Bn , where ρ : Bn → Aut(H∗n) is the Artin type representation
associated to a pair (H, h).

If H = Z and h = 1, then H∗n oρ Bn is the Artin group A(Bn) associated to the
Coxeter graph Bn (not to be confused with the braid group Bn , which is itself an
Artin group, of type An−1). This result is implicit in [Lambropoulou 1994; Crisp
1999], and is described explicitly in [Crisp and Paris 2005]. The group A(Bn)

is well-understood. In particular, solutions to the word and conjugacy problems
in this group are known [Deligne 1972; Brieskorn and Saito 1972], it is torsion
free [Brieskorn 1973; Deligne 1972], its center is an infinite cyclic group [Deligne
1972; Brieskorn and Saito 1972], it is biautomatic [Charney 1992; 1995], and it
has an explicit finite dimensional classifying space [Deligne 1972; Bestvina 1999].

A natural next step is to understand the groups H∗n oρ Bn in the case where ρ
is a Wada representation (of type 4), namely, when H = Z and h ∈ Z \ {0}. One
can readily establish that, for these representations, the group H∗n oρ Bn fails to
be an Artin group unless h = ±1. It turns out, however, that these groups do have
quite a lot in common with Artin groups: like the Artin groups, they belong to a
family of groups known as Garside groups.

Briefly, a Garside group is a group G which admits a left invariant lattice order
and contains a so-called Garside element, a positive element 1 whose positive
divisors generate G and such that conjugation by 1 leaves the lattice structure
invariant (there are also conditions placed on the positive cone of G, that it be
a finitely generated atomic monoid; see Section 5 for details). The notion of a
Garside group was introduced in [Dehornoy and Paris 1999] in a slightly restricted
sense, and in [Dehornoy 2002] in the larger sense in which it is now generally
used. Their theory is largely inspired by [Garside 1969], which treated the case of
braid groups, and [Brieskorn and Saito 1972], which generalized Garside’s work to
Artin groups. The Artin groups of spherical (or finite) type which include, notably,
the braid groups as well as the groups A(Bn) mentioned above, are motivating ex-
amples. Other interesting examples of Garside groups include all torus link groups
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[Picantin 2003] and some generalized braid groups associated to finite complex
reflection groups [Bessis and Corran 2004].

Garside groups have many attractive properties. Solutions to the word and conju-
gacy problems in these groups are known [Dehornoy 2002; Picantin 2001b; Franco
and González-Meneses 2003], they are torsion free [Dehornoy 1998], they admit
canonical decompositions as iterated direct products of “irreducible” components,
and the center of each component is an infinite cyclic group [Picantin 2001a],
they are biautomatic [Dehornoy 2002], and they admit finite dimensional classify-
ing spaces [Dehornoy and Lafont 2003; Charney et al. 2004]. Another important
property of the Garside groups is that there exist criteria in terms of presentations
to detect them [Dehornoy and Paris 1999; Dehornoy 2002].

In Section 6, we prove that, if H is a Garside group, h a Garside element of H ,
and ρ the Artin type representation associated to (H, h), then H∗n oρ Bn is also a
Garside group (Theorem 6.1). This result applies in particular to the case H = Z

and h ∈ Z\{0}, but also applies, for example, to the case where H is another braid
group, say H = Bl , and h =1k is a nontrivial power of the fundamental element
of Bl .

The proof of Theorem 6.1 is based on a necessary and sufficient criterion, ex-
plained in Section 5, for a group to be Garside. This criterion rests largely on the
“coherence” condition of [Dehornoy and Paris 1999] and is essentially a variation
on [Dehornoy 2002, Proposition 6.14]. Our version differs from Dehornoy’s [2002]
in that it is not algorithmic. In particular, we do not give any method for finding a
Garside element. However, our Criterion 5.9 is relatively easy to apply once one
has an appropriate presentation and an expression for a Garside element to hand.

Finally, in the Appendix we answer a question posed by Shpilrain [2001] in his
study of Wada’s representations.

Definition 1.4. Let G be a group. Two representations ρ, ρ ′
: Bn → Aut(G) are

called equivalent if there exist automorphisms φ : G → G and µ : Bn → Bn such
that ρ ′(µ(β))= φ−1

◦ ρ(β) ◦φ for all β ∈ Bn .

Remark. If two representations ρ, ρ ′
: Bn → Aut(G) are equivalent, then the

groups G oρ Bn and G oρ′ Bn are isomorphic.

Shpilrain’s question was simply to give a classification of Wada’s representations
up to equivalence. This classification is given in Proposition A.1.

2. Link invariants

Let H be a group, h ∈ H , and ρ : Bn → Aut(H∗n) be the Artin type representation
associated to (H, h). Recall that the group H∗n is defined as H∗n

= H1 ∗ · · · ∗ Hn ,
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where group isomorphisms φi : Hi → H are given for i = 1, 2, . . . , n. The goal of
this section is to prove the following.

Proposition 2.1. Let n,m ∈ N, and let β1 ∈ Bn and β2 ∈ Bm . If β̂1 = β̂2, then
0(H,h)(β1)' 0(H,h)(β2).

Definition 2.2 (Link invariant). Let L be an oriented link. We set 0(H,h)(L) :=

0(H,h)(β), where β is any braid (on any number of strings) such that L = β̂. By
Proposition 2.1, 0(H,h) is a well-defined group invariant of oriented links.

Proof of Proposition 2.1. Let n ∈ N and let β ∈ Bn . We write 0 for 0(H,h). By
Markov’s theorem [Birman 1974, Theorem 2.3], it suffices to show that

(1) 0(α−1βα)' 0(β) for all α ∈ Bn ,

(2) 0(βσn)' 0(β), and

(3) 0(βσ−1
n )' 0(β),

where βσn and βσ−1
n are viewed as braids on n + 1 strands.

Note that, if β ∈ Bn and n ≤ m, then the action of β via ρ on H∗m agrees with
the action via ρ on H∗n < H∗m , and is trivial on the free factors Hn+1, . . . , Hm .
We suppress ρ from our notation, writing simply β(g) to mean ρ(β)g, for any
β ∈ Bn and g ∈ H∗m . This also amounts to writing σk instead of τk .

We now prove conditions (1), (2) and (3) above.

(1) For β ∈ Bn , the group 0(β) is defined as the quotient of H∗n by the relations
g =β(g) for all g ∈ H∗n . Since, for α∈ Bn , the relation g =α−1βα(g) is equivalent
to the relation α(g) = β(α(g)), and α is an automorphism of H∗n , it is clear that
0(α−1βα) is defined by the same set of relations as 0(β).

(2) The group 0(βσn) may be defined as the quotient of H∗(n+1) by the family of
relations R(i, x) : φi (x) = βσn(φi (x)) for i = 1, 2, . . . , n + 1 and x ∈ H . Note
that σn(φn+1(x)) = hnφn(x)h−1

n . Therefore the relation R(n + 1, x) is equivalent
to the relation R′(n + 1, x) : φn+1(x)= β(hnφn(x)h−1

n ), where the right hand side
is actually an element of H∗n . In particular 0(βσn) is generated by the image of
H∗n . Also,

βσn(φn(x))= β(h−1
n φn+1(x)hn)= β(h−1

n )φn+1(x)β(hn).

So, in view of R′(n + 1, x), the relation R(n, x) is now equivalent to the relation
R′(n, x) : φn(x) = β(φn(x)). Finally, since σn(φi (x)) = φi (x) for all i < n, the
remaining relations R(i, x) are equivalent to R′(i, x) : φi (x) = β(φi (x)) for all
i = 1, 2, . . . , n − 1, and all x ∈ H . It now follows that 0(βσn)' 0(β).
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(3) Observe that 0(β−1) ' 0(β), since the relation g = β(g) is equivalent to
β−1(g)= g, for all g ∈ H∗n . Then

0(βσ−1
n )' 0(σnβ

−1)

' 0(β−1σn) by the proof of (1),

' 0(β−1) by the proof of (2),

' 0(β). �

3. Topological construction of the link invariants

Let X be a CW-complex, let P0 ∈ X be a basepoint, and let α : [0, 1] → X be
a loop based at P0. In this section we give a topological realization of the Artin
type representation of Bn associated to the pair (H, h) = (π1(X, P0), [α]), and
we deduce a topological construction of the link invariant 0(H,h) of the previous
section.

Let D = D(n+1
2 , n+1

2 ) denote the disk in C centered at n+1
2 of radius n+1

2 . Now,
we construct a space Y obtained from D by making n holes in D and gluing a copy
of X into each hole by identifying the circular boundary of the hole to the loop α
in X . Choose some small ε > 0 (we require only that ε < 1

8 ). Let

Y ′
= D \

( n⋃
k=1

D̊(k, ε)
)
,

where D̊(k, ε) denotes the open disk centered at k of radius ε. Take n copies
X1, . . . , Xn of X , denote by fk : X → Xk the natural homeomorphism, and write
αk = fk ◦α for all k = 1, . . . , n. Then

Y =

(
Y ′

t

( n⊔
k=1

Xk

)) /
∼,

where ∼ is the identification defined by

αk(t)∼ k + εe2
√

−1π t , k = 1, . . . , n, t ∈ [0, 1].

Finally, choose a basepoint Q0 ∈ ∂D for Y . The following result is a direct
consequence of the above construction.

Lemma 3.1. Let H = π1(X, P0), and let H1, . . . , Hn be n copies of H . Then
π1(Y, Q0)' H1 ∗ · · · ∗ Hn .

We now show that the braid group Bn acts on Y up to isotopy relative to the
boundary of D in such a way that the induced action on π1(Y ) is the Artin type
representation associated to (H, h), where h is the element of H = π1(X, P0)

represented by α.
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Let ξ ∈ C and 0< r < R. Define the half Dehn twist T = T (ξ, r, R) by

T (ξ + ρe
√

−1 θ )=


ξ + ρe

√
−1(θ−π) if 0 ≤ ρ ≤ r,

ξ + ρe
√

−1(θ−tπ) if r ≤ ρ ≤ R and t =
R−ρ

R−r
,

ξ + ρe
√

−1 θ if ρ ≥ R

(see Figure 1).

T
ξ

r

R

Figure 1. A half Dehn twist.

Let T D
k : D → D be the homeomorphism defined by

T D
k = T (k, ε, 2ε)−3

◦ T (k + 1, ε, 2ε)−1
◦ T

(
k +

1
2 ,

1
2 + ε, 1

2 + 2ε
)
.

Note that T D
k leaves invariant the set

⋃n
j=1 D( j, ε), and therefore restricts to a

homeomorphism T ′

k : Y ′
→ Y ′. See Figure 2.

One can verify (with a little effort) that T ′

k T ′

k+1T ′

k is isotopic to T ′

k+1T ′

k T ′

k+1
relative to ∂Y ′ for k = 1, . . . , n − 2, and that T ′

k T ′

l is isotopic to T ′

l T ′

k relative to

Xk

Tk

Xk+1

γk γk+1

Q0Q0

Figure 2. The homeomorphism T ′

k : Y ′
→ Y ′.
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∂Y ′ for |k−l|≥2. Moreover, T ′

k fixes ∂D and transforms the rest of ∂Y ′ as follows:

T ′

k( j + εe
√

−1 θ )=


j + εe

√
−1 θ if j 6= k, k + 1,

k + 1 + εe
√

−1 θ if j = k,

k + εe
√

−1 θ if j = k + 1.

Therefore, T ′

k extends to a homeomorphism Tk : Y → Y by setting, for all x ∈ X ,

Tk( f j (x))=


f j (x) if j 6= k, k + 1,

fk+1(x) if j = k,

fk(x) if j = k + 1.

The homeomorphism Tk is the identity on ∂D, Tk Tk+1Tk is isotopic to Tk+1Tk Tk+1

relatively to ∂D for k = 1, . . . , n −2, and Tk Tl is isotopic to Tl Tk relatively to ∂D
for |k − l| ≥ 2.

These observations show that Tk determines an automorphism τk :π1(Y, Q0)→

π1(Y, Q0). Moreover,

τkτk+1τk = τk+1τkτk+1

τkτl = τlτk

for k = 1, . . . , n − 2,

for |k − l| ≥ 2.

Thus the mapping σk → τk determines a representation ρ : Bn → Aut(π1(Y, Q0)).

... . . .Xk

αk

γk

Q0

Figure 3. The path γk .

Set Q0 =
n+1

2 −
√

−1 n+1
2 . Let γk : [0, 1] → Y be the path from Q0 to fk(P0)

shown in Figure 3. We identify π1(Y, Q0) with H∗n
= H1 ∗ · · · ∗ Hn in such a way

that the k-th embedding φk : H = π1(X, P0)→ Hk ⊂ H∗n is defined by

φk([β])= [γk fk(β)γ
−1
k ].

With this assumption, one can easily show the following.
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Proposition 3.2. The representation ρ : Bn → Aut(π1(Y, Q0)) described above
coincides with the Artin type representation of Bn associated to (H, h), where H =

π1(X, P0) and h is the element of H represented by α.

Proof. It suffices to observe, with the aid of Figure 2, that, for all k = 1, . . . , n −1
and all loops β at P0 in X ,

(i) Tk(γk fk(β)γ
−1
k ) is homotopic to γkα

−1
k γ−1

k γk+1 fk+1(β)γ
−1
k+1γkαkγ

−1
k ;

(ii) Tk(γk+1 fk+1(β)γ
−1
k+1) is homotopic to γkαk fk(β)α

−1
k γ−1

k ; and

(iii) Tk(γ j f j (β)γ
−1
j ) is homotopic to γ j f j (β)γ

−1
j , for all j 6= k, k+1. �

We now introduce some standard notions and facts concerning framings of links
and linking numbers. We refer the reader to [Rolfsen 1990], or any similar intro-
ductory text on knot theory, for further details.

Consider an oriented m-component link L = K1 ∪ · · · ∪ Km in S3. The knot
Ki is an embedding Ki : S1

→ S3, and Ki (S1)∩ K j (S1) = ∅ for i 6= j . Define
a tubular neighborhood of Ki to be an embedding Ti : D2

× S1
→ S3 such that

Ti (0, ξ)= Ki (ξ) for all ξ ∈ S1. Here, D2 denotes the disk centered at 0 of radius 1 in
C. A framing of L is a collection {Ti : D2

×S1
→ S3

}
m
i=1 of embeddings such that Ti

is a tubular neighborhood of Ki , for i =1, . . . ,m, and Ti (D2
×S1)∩T j (D2

×S1)=

∅ for i 6= j . The longitude of the component Ki is the (oriented) embedding
λi : S1

→ S3 such that λi (ξ) = Ti (1, ξ) for all ξ ∈ S1. The framing of each
component Ki is determined up to isotopy by the homology class of its longitude
λi in the knot complement S3

\ Ki .
Given an oriented knot K , we identify H1(K ) := H1(S3

\ K ) with Z in such a
way that 1 ∈ Z is represented by the 1-cycle depicted in Figure 4(a). Let K1, K2

denote disjoint oriented knots in S3. One defines the linking number lk(K1, K2) ∈

Z to be the class [K1] ∈ H1(K2) = Z. The linking number lk(K1, K2) may be
measured from any regular projection of the link K1 ∪ K2 by counting with sign
the crossings where K1 passes over K2, as indicated in Figure 4(b). (Equally one

K

+1

K2K1 K2 K1

+1 −1

(b)(a)

Figure 4. Sign conventions.
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may choose to count undercrossings with the appropriate sign, and one quickly
sees that lk(K1, K2)= lk(K2, K1)).

Notation (Preferred framing). Let L = K1 ∪· · ·∪ Km be an m-component oriented
link in S3. Up to isotopy, there is a unique framing in which the longitude λi for
each component Ki satisfies the condition

m∑
j=1

lk(λi , K j )= 0 .

Note that, for j 6= i , lk(λi , K j ) = lk(Ki , K j ) and is determined by the oriented
link L . We shall refer to the above framing as the preferred framing of L .

We now wish to associate to an oriented link L the space �(L , X) obtained by
performing a ‘generalized’ surgery on the link L according to the preferred framing
just described. More precisely, let L = K1∪· · ·∪Km and let {Ti : D2

×S1
→ S3

}
m
i=1

be the preferred framing. Let T̊i denote the interior of Ti (D2
×S1) for i =1, . . . ,m,

and set

�′(L)= S3
\

( m⋃
i=1

T̊i

)
.

Take m copies X1, . . . , Xm of X , denote by fi : X → X i the natural homeomor-
phism, and write αi = fi ◦α. Then

�(L , X)=

(
�′(L)t

( m⊔
i=1

(X i × S1)

)) /
∼,

where ∼ is the identification defined by putting

(αi (t), η)∼ Ti (e2
√

−1π t , η), i = 1, . . . ,m, t ∈ [0, 1], η ∈ S1.

The following proposition yields a second proof of the fact that 0(H,h) is a link
invariant for any finitely generated group H and any element h ∈ H .

Proposition 3.3. Let β be a braid, and let β̂ denote the closed braid of β. Let X
be a CW-complex with basepoint P0 and let α be a loop in X . Then π1(�(β̂, X))
is isomorphic to 0(H,h)(β), where H = π1(X, P0) and h is the element of H repre-
sented by α.

Proof. We first remind the reader of the standard construction of the closed braid
β̂ from a braid β [Birman 1974]. The notation used to describe this construction
will be needed for the completion of the proof. Firstly, decompose S3 as follows:
let T1, T2 be two copies of the solid torus D × S1 and write

S3
= T1

⋃
κ:∂T1→∂T2

T2 ,
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β̂ =β =

Figure 5. Braid closure.

where the identifying map κ is a homeomorphism carrying ∂D to S1 and S1 to
∂D. Let g denote the inclusion of T1 in S3, and let f : D ×[0, 1] → T1 = D × S1

be the identification map defined by

f (p, t)= (p, e2
√

−1π t), for p ∈ D and t ∈ [0, 1].

The closed braid β̂ is the oriented link which is induced by composing the braid
β : {1, . . . , n} × [0, 1] → D × [0, 1] with the map g ◦ f : D × [0, 1] → S3. The
orientation on β̂ is naturally induced from a choice of orientation of the interval
[0, 1].

Given a standard projection of a braid β we may describe a projection of the
closed braid β̂ with the same number of crossings, as indicated in Figure 5. We
now produce a framing 3 of β̂ by choosing a longitude λi for each component Ki

of β̂ whose projections are as indicated in Figure 6 in the vicinity of a crossing, and
otherwise parallel to the link projection. It is easily enough verified, by counting
overcrossings, that this framing is exactly the preferred framing of β̂.

σ−1
k

Ki

λi

σk

Figure 6. Choosing a framing for β̂ = K1 ∪ · · · ∪ Km .
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Write β = σ
ε1
k1
σ
ε2
k2
. . . σ

εr
kr

and define T D
β : D → D as the composition of the

homeomorphisms (T D
k j
)ε j for j = 1, . . . , r . Similarly, define Tβ = T ε1

k1
T ε2

k2
. . . T εr

kr
:

Y → Y . For j = 1, . . . , n, denote by b j the point j + ε on ∂D( j, ε). This is the
point on ∂Y ′ to which the basepoint of X j is attached when forming Y . Since T D

β is
isotopic to IdD relative to ∂D, there is a homeomorphism U : D×[0, 1]→ D×[0, 1]

such that U (x, 0) = (x, 0), U (x, 1) = (T D
β (x), 1), for all x ∈ D, and U fixes

∂D × [0, 1] pointwise. Moreover, by construction, U carries( n⊔
j=1

D( j, ε)
)

× [0, 1]

to a tubular neighborhood of (a representative of) the braid β, and g ◦ f ◦U carries
the arcs {b j × [0, 1] : j = 1, . . . , n} to a framing of β̂ equivalent to that described
in Figure 6, namely the preferred framing. Consequently the space �(β̂, X) is
homeomorphic to T ′

1 ∪ T2 where

T ′

1 = Y × [0, 1]/
(
(y, 0)∼ (Tβ(y), 1)

)
.

We therefore have π1(T ′

1)
∼= H∗n

∗ 〈t〉
/(

t xt−1
= ρ(β)x for x ∈ H∗n

)
, an HNN-

extension. Attaching T2 to T ′

1 has the effect of simply killing the stable letter t .
Consequently

π1(�(β̂, X))∼= H∗n/(
x = ρ(β)x for x ∈ H∗n )

= 0(H,h)(β). �

4. Faithfulness

Recall that, for any group H and for n ∈ N, we write H∗n for the free product
H1 ∗ · · · ∗ Hn , where each free factor Hi is isomorphic to H by an isomorphism
φi : H → Hi . The aim of this section is to prove the following.

Proposition 4.1. Let ρ : Bn → Aut(H∗n) be the Artin type representation of Bn

associated to the pair (H, h) where H is a group and h ∈ H .

(i) If h 6= IdH , then ρ is faithful.

(ii) If h = IdH , then ker(ρ) is the pure braid group and Bn/ ker(ρ) ∼= Sn , the
symmetric group, acts by permutations of the free factors of H∗n (respecting
the isomorphisms {φ1, . . . , φn}).

Remark. Part (ii) of this proposition requires no proof but is included here for
completeness. We concern ourselves below with the case of h nontrivial.

As pointed out in the introduction, the proof of Proposition 4.1(i) is strongly
inspired by the proof of [Shpilrain 2001, Theorem A], and its main ingredient is
the following:
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Proposition 4.2 [Dehornoy 1994; 1997a]. Let B[2,n] denote the subgroup of Bn

generated by σ2, . . . , σn−1 (namely the braid group on the second through nth
strings). Let β ∈ Bn . Then either

(1) β ∈ B[2,n] , or

(2) one of β or β−1 can be written as α0σ1α1σ1α2 . . . σ1αl , where l ≥ 1 and
α0, . . . , αl ∈ B[2,n] .

The following lemma is preliminary to the proof of Proposition 4.1. We first fix
a nontrivial h ∈ H , and write hi = φi (h) for i = 1, . . . , n.

Lemma 4.3. Let K = H2 ∗ · · · ∗ Hn . Let u ∈ H∗n such that the normal form of u
with respect to the decomposition H∗n

= H1 ∗ K starts with h−1
1 and ends with h1.

(1) The normal form of ρ(σ1)(u) with respect to the decomposition H∗n
= H1 ∗ K

also starts with h−1
1 and ends with h1.

(2) Let k ∈{2, . . . , n−1} and ε∈{±1}. The normal form of ρ(σ εk )(u) with respect
to the decomposition H∗n

= H1 ∗ K also starts with h−1
1 and ends with h1.

Proof. Let v ∈ H1 ∗ H2. Suppose that the normal form of v is

v = φ1(x1) φ2(y1) . . . φ1(xl) φ2(yl),

where x1, . . . , xl, y1, . . . , yl−1 ∈ H \ {Id}, and yl ∈ H . Then

ρ(σ1)(v)= h−1
1 ·φ2(x1) · h2

1φ1(y1)h−2
1 · . . . ·φ2(xl) · h2

1φ1(yl) h−1
1 ;

thus the normal form of ρ(σ1)(v) starts with h−1
1 .

Similarly, if the normal form of v is

v = φ2(y1) φ1(x1) . . . φ2(yl) φ1(xl),

where x1, . . . , xl, y2, . . . , yl ∈ H \ {Id} and y1 ∈ H , then the normal form of
ρ(σ1)(v) ends with h1.

Now, write
u = v0w1 v1 . . . wl vl,

where vi ∈ (H1∗H2)\{Id} andw j ∈ (H3∗· · ·∗Hn)\{Id}, and l ≥ 0. The hypothesis
that u starts with h−1

1 implies that v0 starts with h−1
1 , and the hypothesis that u ends

with h1 implies that vl ends with h1. Both groups, H1 ∗ H2 and H3 ∗ · · · ∗ Hn , are
invariant by ρ(σ1), and ρ(σ1) is the identity on H3 ∗ · · · ∗ Hn . So,

ρ(σ1)(u)= ρ(σ1)(v0) ·w1 · ρ(σ1)(v1) · . . . ·wl · ρ(σ1)(vl).

By the observations above, ρ(σ1)(v0) starts with h−1
1 and ρ(σ1)(vl) ends with h1;

thus ρ(σ1)(u) starts with h−1
1 and ends with h1.
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Let k ∈ {2, . . . , n − 1} and ε ∈ {±1}. Write

u = h−1
1 w1 v1 . . . vl−1wl h1,

where v1, . . . , vl−1 ∈ H1 \{Id} and w1, . . . , wl ∈ K \{Id}. Both groups, H1 and K ,
are invariant by ρ(σ εk ), and ρ(σ εk ) is the identity on H1. So

ρ(σ εk )(u)= h−1
1 · ρ(σ εk )(w1) · v1 · · · · · vl−1 · ρ(σ εk )(wl) · h1;

thus the normal form of ρ(σ εk )(u) starts with h−1
1 and ends with h1. �

Proof of Proposition 4.1(i). We argue by induction on n. Assume n = 2. We have

ρ(σ 2l
1 )(h1)= (h2h1)

−lh1(h2h1)
l
6= h1, for l ∈ Z \ {0}

ρ(σ 2l+1
1 )(h1)= (h2h1)

−lh−1
1 h2h1(h2h1)

l
6= h1, for l ∈ Z;

thus the representation ρ : B2 → Aut(H1 ∗ H2) is faithful.
Now, assume n ≥ 3. Let β ∈ Bn \ {Id}. By Proposition 4.2, either β ∈ B[2,n], or

one of β or β−1 is written α0σ1 . . . σ1αl , where l ≥ 1 and α0, . . . , αl ∈ B[2,n].
Suppose β ∈ B[2,n]. By induction, ρ(β) acts nontrivially on K = H2 ∗ · · · ∗ Hn;

thus ρ(β) acts nontrivially on H∗n
= H1 ∗ K .

Suppose β = α0σ1 . . . σ1αl , where l ≥ 1 and α0, . . . , αl ∈ B[2,n]. Let

u = ρ(σ1αl)(h1)= ρ(σ1)(h1)= h−1
1 h2h1.

By Lemma 4.3, the normal form of ρ(α0σ1 . . . σ1αl−1)(u) = ρ(β)(h1) starts with
h−1

1 and ends with h1. In particular, ρ(β)(h1) 6= h1; thus ρ(β) 6= Id.
Finally, suppose β−1

= α0σ1 . . . σ1αl , where l ≥ 1 and α0, . . . , αl ∈ B[2,n]. By
the previous case, ρ(β−1) 6= Id; thus ρ(β) 6= Id. �

5. Garside groups

In this section we give a brief presentation of the definition and salient properties
of a Garside group, and then establish the necessary and sufficient criteria for a
group to be a Garside group which we shall use in the subsequent section. Our
Criterion 5.9 is essentially a variation on [Dehornoy 2002, Proposition 2.1]. The
theory of Garside groups, as developed in [Dehornoy and Paris 1999; Dehornoy
1997b; 2002], provides the most natural general setting for the combinatorial ar-
guments contained in Garside’s original treatment [1969] of the braid groups, and
its generalization to Artin groups in [Brieskorn and Saito 1972].

Definition 5.1. Let M be an arbitrary monoid. We say that M is atomic if there
exists a function ν : M → N such that

• ν(a)= 0 if and only if a = 1;

• ν(ab)≥ ν(a)+ ν(b) for all a, b ∈ M .
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Such a function ν : M → N is called a norm on M . An element a ∈ M is called an
atom if it is indecomposable, namely, if a = bc then either b = 1 or c = 1.

We note that any generating set of M contains the set of all atoms. In particular,
M is finitely generated if and only if it has only finitely many atoms. For details
see [Dehornoy and Paris 1999].

Given that a monoid M is atomic, we may define left and right invariant partial
orders ≤L and ≤R on M as follows:

• set a ≤L b if there exists c ∈ M such that ac = b;

• set a ≤R b if there exists c ∈ M such that ca = b.

We shall call these the left and right divisibility orders on M .

Definition 5.2. A Garside monoid is a monoid M such that

(i) M is atomic and finitely generated;

(ii) M is (left and right) cancellative, i.e. abc = ab′c implies b = b′;

(iii) (M,≤L) and (M,≤R) are lattices;

(iv) there exists an element 1 ∈ M , which we call a Garside element, such that

(a) the set L(1) := {x ∈ M : x ≤L 1} generates M , and
(b) the sets L(1) and R(1) := {x ∈ M : x ≤R 1} are equal.

Definition 5.3. For any monoid M one can define the group G(M) which is pre-
sented by the generating set M and relations ab = c whenever ab = c in M . There
is an obvious canonical homomorphism M → G(M). This homomorphism is not
injective in general. The group G(M) is known as the group of fractions of M .
Define a Garside group to be the group of fractions of a Garside monoid.

Remark. (1) A Garside monoid M satisfies Öre’s conditions (left and right can-
cellativity and the existence of common upper bounds in (M,≤L)); thus the canon-
ical homomorphism M → G(M) is injective. Moreover the partial orders ≤L and
≤R extend respectively to left- and right-invariant lattice orders on G(M) with
positive cone M .

(2) A Garside element is never unique. For example, if 1 is a Garside element,
then 1k is also a Garside element for all k ≥ 1 [Dehornoy 2002, Lemma 2.2].

(3) Elsewhere in the literature the condition that M is finitely generated is often
incorporated into condition (iv) of the definition by saying that the set L(1) is
finite. It seems more natural to state this condition separately. Note that, if M is
finitely generated and atomic, then L(a)= {x ∈ M : x ≤L a} is finite for all a ∈ M .
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We now introduce some terminology needed in order to state Criterion 5.9.

For a finite set S, we denote by S∗ the free monoid on S. The elements of S∗

are called words on S. The empty word is denoted by ε. Let ≡ be a congruence
relation on S∗, and let M = (S∗/≡). For w ∈ S∗, we denote by w the element of
M represented by w, and we call w an expression of w.

Definition 5.4. A complement is a function f : S × S → S∗ such that f (x, x)= ε

for all x ∈ S. To a complement f : S × S → S∗ we associate the two monoids

M f
L =

〈
S | x f (x, y) = y f (y, x) for x, y ∈ S

〉+
,

M f
R =

〈
S | f (y, x)x = f (x, y)y for x, y ∈ S

〉+
.

For u, v ∈ S∗, we write u ≡
f
L v if u and v are expressions of the same element of

M f
L , and we write u ≡

f
R v if u and v are expressions of the same element of M f

R .

Definition 5.5. A word w in (S ∪ S−1)∗ is f -reversible on the left in one step
to a word w′ if w′ is obtained from w by replacing some subword x−1 y (with
x, y ∈ S) by the corresponding word f (x, y) f (y, x)−1. Let p ≥ 0. We say that
w is f -reversible on the left in p steps to a word w′ if there exists a sequence
w0 = w,w1, . . . , wp = w′ in (S ∪ S−1)∗ such that wi−1 is f-reversible on the left
in one step to wi for all i = 1, . . . , p. The property “w is f-reversible on the left
to w′” is denoted by w→

f
L w

′.
We define f -reversibility on the right in a similar way, replacing subwords yx−1

(with x, y ∈ S) by the corresponding words f (x, y)−1 f (y, x). The property “w is
f-reversible on the right to w′” is denoted by w→

f
R w

′.

It is shown in [Dehornoy 1997b] that a reversing process is confluent, namely:

Proposition 5.6 [Dehornoy 1997b, Lemma 1]. Let f : S×S → S∗ be a complement,
and let w ∈ (S ∪ S−1)∗. Suppose that the word w is f -reversible on the left in
p steps to a word uv−1, with u, v ∈ S∗. Then any sequence of left f -reversing
transformations starting from w leads in p steps to uv−1.

Definition 5.7. Let f : S × S → S∗ be a complement and let u, v ∈ S∗. Assume
that there exist u′, v′

∈ S∗ such that u−1v→
f
L u′(v′)−1. By Proposition 5.6, u′ and

v′ are unique (if they exist). Then we write u′
= C f

L (u, v) and v′
= C f

L (v, u). One
has, by [Dehornoy 1997b, Lemma 2],

uC f
L (u, v)≡

f
L vC f

L (v, u).

If no such words u′, v′ exist, we write C f
L (u, v)= C f

L (v, u)= ∞.
Similarly, define the words C f

R (u, v) and C f
R (v, u) to be the unique elements of

S∗ which satisfy vu−1
→

f
R C f

R (u, v)
−1C f

R (v, u), or write C f
R (u, v)=C f

R (v, u)=∞

if no such words exist.
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Definition 5.8 [Dehornoy 1997b, p. 120]. Let f : S × S → S∗ be a comple-
ment. We say that f is coherent on the left if, for all x, y, z ∈ S such that
C f

L ( f (x, y), f (x, z)) 6= ∞ we have

C f
L ( f (x, y), f (x, z))≡

f
L C f

L ( f (y, x), f (y, z)).

Similarly, we say that f is coherent on the right if, for all x, y, z ∈ S such that
C f

R ( f (z, x), f (y, x)) 6= ∞ we have

C f
R ( f (z, x), f (y, x))≡

f
R C f

R ( f (z, y), f (x, y)).

It can be shown [Dehornoy 1997b, Lemma 4] that if an atomic monoid M can
be written M = M f

L where the complement f is coherent on the left, then M is
left cancellative and (M,≤L) is a quasi-lattice: every pair of elements x, y ∈ M
which has a common upper bound (z such that x ≤L z and y ≤L z) has a least
upper bound, written x ∨L y. This argument is based on Garside’s [1969] original
argument (see also [Brieskorn and Saito 1972]), and forms the cornerstone of the
theory of Garside groups. (The analogous statement when M = Mg

R is atomic and
g is coherent on the right obviously holds as well.)

We are now ready to state a criterion for a monoid M to be a Garside monoid:

Criterion 5.9. Let M be a monoid. Then M is a Garside monoid if and only if it
satisfies the following properties:

(C1) M is finitely generated and atomic.

(C2) There exist complements f : S1 × S1 → S∗

1 , coherent on the left, and g :

S2 × S2 → S∗

2 , coherent on the right, such that M ∼= M f
L and M ∼= Mg

R .

(C3) M possesses a Garside element, namely an element1 ∈ M such that the sets
L(1) = {x ∈ M : x ≤L 1} and R(1) = {x ∈ M : x ≤R 1} are equal and
generate M .

Proof. Suppose first that M satisfies (C1), (C2), and (C3). It follows from [De-
hornoy 1997b, Lemma 4] (see the remark above) that M is left and right cancella-
tive and (M,≤L) is a quasi-lattice. In this situation we may define an operation
\L : M × M → M ∪ {∞} such that a(a\Lb) = a ∨L b if a and b have a common
upper bound, and a\Lb =∞ otherwise. According to [Dehornoy 2002, Proposition
2.1], the above conditions together with the following condition (D) are sufficient
to show that M is a Garside monoid:

(D) There exists a finite subset P ⊂ M which generates M and which is closed
under the operation \L (namely, if a, b ∈ P then a\Lb ∈ P).

We show that M satisfies (D). Let P = L(1) = R(1). Note that, by (C3), P
generates M . Let a, b ∈ P . Since a ≤L 1 and b ≤L 1, we have a ∨L b ≤L 1.
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Let c ∈ M such that 1 = (a ∨L b)c = a(a\Lb)c. Then (a\Lb)c ≤R 1; thus
(a\Lb)c ≤L 1 (since, by (C3), L(1) = R(1)); therefore (a\Lb) ≤L 1, that is
(a\Lb) ∈ P .

Now suppose that M is a Garside monoid. Clearly, M satisfies (C1) and (C3).
So, we just need to show that M satisfies (C2). Choose some finite generating set
S for M , and consider complements f : S × S → S∗ and g : S × S → S∗ such that

x f (x, y)= x ∨L y , g(x, y)x = y ∨R x ,

for all x, y ∈ S. Then, by [Dehornoy and Paris 1999, Theorem 4.1], M = M f
L = Mg

R ,
and, by [Dehornoy 2002, Lemma 5.2], f is coherent on the left and g is coherent
on the right. �

It will be convenient, in Section 6, to have the following characterization of a
Garside element.

Lemma 5.10 (Garside elements). Let M be a (left and right) cancellative monoid.
Then 1 is a Garside element (meaning that L(1) coincides with R(1) and gener-
ates M) if and only if the following condition holds:

(C4) L(1) := {x ∈ M : x ≤L 1} generates M and there exists a (necessarily
unique) monoid automorphism τ : M → M such that w1 = 1τ(w) for all
w ∈ M .

Consequently, we may replace condition (C3) in Criterion 5.9 with condition (C4).

Proof. We first show sufficiency. Suppose that (C4) is satisfied. In particular,
we have τ(1) = 1 and therefore τ(L(1)) = L(1) (since τ is a monoid au-
tomorphism). On the other hand, by using left and right cancellation one eas-
ily obtains from the equation x1 = 1τ(x) that τ(L(1)) = R(1). But then
L(1)= τ(L(1))= R(1) and, by hypothesis (C4), L(1) also generates M . Thus
1 is a Garside element.

Now suppose that 1 is a Garside element. By cancellativity and the fact that
L(1)= R(1), one has a well-defined bijection c : L(1)→ L(1) such that x c(x)=
1 for all x ∈ L(1). Note that, if x ∈ L(1) then so is c(x) and 1 may be written
either x c(x) or c(x)c2(x). Thus x1 = x c(x)c2(x) = 1c2(x), for all x ∈ L(1).
Since L(1) generates M , it follows by cancellativity that the bijection c2 extends
uniquely to a monoid automorphism τ satisfying (C4). �

6. Semidirect products

We now turn back to the Artin type representations. Given an Artin type represen-
tation ρ : Bn → Aut(H∗n) associated to a group H and an element h ∈ H , we may
form the semidirect product H∗n oρ Bn . The aim of this section is to prove the
following.
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Theorem 6.1. Assume that H is the group of fractions of a Garside monoid M and
that h ∈ M is a Garside element. Let G = H∗n oρ Bn , where ρ : Bn →Aut(H∗n) de-
notes the Artin type representation associated to (H, h) (as defined in the Introduc-
tion), and let P be the submonoid of G generated by M1 = φ1(M) and the monoid
B+

n of positive braids. Then P is a Garside monoid, 1 = (h1σ1σ2 . . . σn−1)
n is a

Garside element of P , and G is the group of fractions of P .

The first step in the proof is to find a presentation for H∗n oρ Bn:

Proposition 6.2. Let H = 〈S | R〉 be a presentation for H , and let D ∈ S∗ be an
expression for h. Then G = H∗n oρ Bn has a presentation with generators

S ∪ {σ1, . . . , σn−1}

and relations

r

σiσi+1σi = σi+1σiσi+1

σiσ j = σ jσi

σi x = xσi

xσ1 Dσ1 = σ1 Dσ1 D−1x D

for r ∈ R,

for i = 1, . . . , n − 2,

for |i − j | ≥ 2,

for x ∈ S and i = 2, . . . , n − 1,

for x ∈ S .

Proof of the proposition. Let G0 denote the abstract group generated by the union
S∪{σ1, . . . , σn−1}, subject to the relations given in the statement of the proposition.
Set X =

(⋃n
i=1 φi (S)

)
∪{σ1, . . . , σn−1}. With a little effort one can verify that the

mapping ϕ : X → G0 defined by

ϕ(φi (x)) = σ−1
i−1 . . . σ

−1
1 Di−1x D1−iσ1 . . . σi−1 for i = 1, . . . , n and x ∈ S,

ϕ(σi ) = σi for i = 1, . . . , n − 1

determines a homomorphism ϕ : G → G0, and somewhat more easily that the
mapping ψ : S ∪ {σ1, . . . , σn−1} → G defined by

ψ(x) = φ1(x) for x ∈ S

ψ(σi ) = σi for i = 1, . . . , n − 1

determines a homomorphism ψ : G0 → G. One checks without much difficulty
that (ψ ◦ϕ)(a)= a for all a ∈ X , and (ϕ ◦ψ)(b)= b for all b ∈ S ∪{σ1, . . . , σn−1};
thus ψ ◦ϕ = IdG and ϕ ◦ψ = IdG0 . �

Proof of Theorem 6.1. Let τ : M → M denote the automorphism of M induced by
conjugation by h−1, so that xh = hτ(x) for all x ∈ M (see Lemma 5.10). Let S be a
finite generating set for M . We may, and do, choose S so that τ(S)= S (for instance
we may simply choose S to be the set of atoms of M). Define f : S×S → S∗ so that
x f (x, y)= y f (y, x)= x ∨L y for all pairs x, y ∈ S. Similarly define g : S×S → S∗
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so that g(x, y)y = g(y, x)x = x ∨R y for all pairs x, y ∈ S. As pointed out in the
proof of Criterion 5.9, one has M = M f

L = Mg
R , f is coherent on the left, and g is

coherent on the right. We simply write ∼ for the congruence relation on S∗ defined
by the relations in M (namely, ≡

f
L , or equally ≡

g
R). Let D ∈ S∗ be an expression of

h. Note that for x ∈ S we have x D ∼ Dτ(x) and τ−1(x)D ∼ Dx , where τ(x) and
τ−1(x) also denote elements of the generating set S. The last family of relations
appearing in Proposition 6.2 may be replaced with xσ1 Dσ1 = σ1 Dσ1τ(x) for all
x ∈ S, or equivalently with τ−1(x)σ1 Dσ1 = σ1 Dσ1x for all x ∈ S.

Let X = S ∪{σ1, . . . , σn−1}. Let λ : X × X → X∗ be the complement defined by

λ(x, y) = f (x, y) for x, y ∈ S, λ(σi , x) = x for x ∈ S and i ≥ 2,

λ(x, σ1) = σ1 Dσ1 for x ∈ S, λ(σi , σ j ) = σ jσi for |i − j | = 1,

λ(σ1, x) = Dσ1τ(x) for x ∈ S, λ(σi , σ j ) = σ j for |i − j | ≥ 2,

λ(x, σi ) = σi for x ∈ S and i ≥ 2,

and let δ : X × X → X∗ be the complement defined by

δ(x, y) = g(x, y) for x, y ∈ S, δ(x, σi ) = x for x ∈ S and i ≥ 2,

δ(σ1, x) = σ1 Dσ1 for x ∈ S, δ(σ j , σi ) = σiσ j for |i − j | = 1,

δ(x, σ1) = τ−1(x)σ1 D for x ∈ S, δ(σ j , σi ) = σ j for |i − j | ≥ 2,

δ(σi , x) = σi for x ∈ S and i ≥ 2.

Let P0 denote the monoid defined by the presentation with generators X and rela-
tions as laid out in Proposition 6.2. Then clearly P0 ∼= Mλ

L
∼= Mδ

R . We denote by
≈ the congruence relation on X∗ defined by the relations of P0. (So ≈ is the same
congruence relation as ≡

λ
L and ≡

δ
R). We now show that P0 satisfies Criterion 5.9

with complements λ and δ and Garside element 1 = (Dσ1σ2 . . . σn−1)
n . It will

follow that P0 is a Garside monoid with group of fractions G and is canonically
isomorphic to the submonoid P ⊂ G in the statement of the Theorem.

Clearly P0 is finitely generated. We check that P0 is atomic. Let ν : M → N

be a norm for M . Let 6 = {σ1, . . . , σn−1} and define the function ` : 6∗
→ N by

`(σi1 . . . σil )= l. We define a function νP : X∗
→ N as follows. Let w ∈ X∗. Write

w = u1v1 . . . ulvl , where u1 ∈ S∗, u2, . . . , ul ∈ S∗
\ {ε}, v1, . . . , vl−1 ∈ 6∗

\ {ε},
and vl ∈6∗. Then

νP(w)= ν(u1u2 . . . ul)+ `(v1v2 . . . vl).

One can easily verify that νP is invariant with respect to all of the relations given
in Proposition 6.2, and therefore defines a function νP : P0 → N. Moreover, it is
easily seen that νP is a norm, and therefore P0 is atomic.
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Figure 7. Left coherence of λ with respect to triple {σ1, σ2, x}.
The labels which, for clarity, are missing from the back side may
be easily inferred from the relations shown on the front side.

The proof that λ is coherent on the left may be deduced from the existence,
for each triple α, β, γ ∈ X , of a certain tiling of the 2-sphere by relations from
Mλ

L (i.e., relations of the form αλ(α, β) ≈ βλ(β, α) for α, β ∈ X ). We illustrate
the two most difficult cases, namely when {α, β, γ } = {σ1, σ2, x} for some x ∈ S
(Figure 7), and when {α, β, γ } = {σ1, x, y} for some x 6= y ∈ S (Figure 8). In
the latter case note that, if f (x, y) is written a1a2 . . . ak as a product of generators
ai ∈ S then τ( f (x, y)) ≈ τ(a1)τ (a2) . . . τ (ak) and the face containing f (x, y)
and τ( f (x, y)) in Figure 8 decomposes into k faces corresponding to the relations
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Figure 8. Left coherence of λ with respect to triple {σ1, x, y}.
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aiσ1 Dσ1 ≈ σ1 Dσ1τ(ai ). Similarly for f (y, x). The remaining cases are easily
handled since in these cases at least one of α, β, γ satisfies a commuting relation
(explicit in the presentation Mλ

L ) with each of the others.
The proof that δ is coherent on the right is similar.
Finally we show that the word 1 = (Dσ1σ2 . . . σn−1)

n represents a Garside
element of P0. We shall employ condition (C4) of Lemma 5.10. Consider the
Artin monoid presentation

A+(Bn)=
〈
β1, β2, . . . , βn | β1β2β1β2 = β2β1β2β1,

βiβi+1βi = βi+1βiβi+1 for 2 ≤ i ≤ n − 1,
βiβ j = β jβi for |i − j | ≥ 2

〉+
.

This monoid A+(Bn) is well-known as the Artin monoid of type Bn , and has Gar-
side element 1B = (β1β2 . . . βn)

n . Clearly there exists a monoid homomorphism
A+(Bn) → P0 such that β1 7→ D and βi 7→ σi−1 for i = 2, 3, . . . , n. Thus any
relation which is observed in A+(Bn) may be deduced in P0. In particular, the
fact that 1B is a Garside element in A+(Bn) implies that 1 is left divisible by
D, σ1, . . . , σn−1 and hence is left divisible by every element of X . It remains to
verify that there exists an automorphism τP : P0 → P0 such that w1 = 1τP(w)

for all w ∈ P0.
We already know that1B is central in A+(Bn). Thus we have σi1=1σi for all

i = 1, 2, . . . , n −1. We may also check (by performing the calculation in A+(Bn))
that

1≈ D U n−1 where U := σ1 Dσ1σ2σ3 · · · σn−1 .

Recall that τ denotes the automorphism of M such that, at the level of words,
x D ∼ Dτ(x) for all x ∈ S∗. Observe also that xU ≈ Uτ(x) for all x ∈ S∗ (or more
loosely speaking, for all x ∈ M). We now define τP : P0 → P0 such that

τP(σi )= σi

τP(x)= τ n(x)

for i = 1, 2, . . . , n − 1,

for all x ∈ M .

It is easily seen that τP is a monoid isomorphism. Moreover, for all x ∈ M ,

x1 ≈ x DU n−1
≈ Dτ(x)U n−1

≈ DU n−1τ n(x) ≈ 1τP(x),

and σi1≈1σi for all i = 1, 2, . . . , n − 1. Thus condition (C4) of Lemma 5.10 is
satisfied, and 1 is a Garside element. �

Remark. In closing, we remark that both the above proof and the formulation
of Theorem 6.1 were strongly inspired by the example of the Artin group A(Bn)

which, as noted in the introduction, is isomorphic to the semidirect product Fn oBn

associated to Artin’s 1925 representation [Artin 1925; 1947], namely the Artin type
representation associated to (Z, 1) (using additive notation). This is evident in both
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the description of the fundamental element, and the checking of coherence (see
Figures 7 and 8) which follow closely the proof that A(Bn) has a Garside structure.
Note, in particular, that the diagram shown in Figure 7 depicts the Cayley graph
for the Coxeter group of type B3, once the labels D, x, τ (x) and τ 2(x) are replaced
with a single generator.

In response to a question posed by the referee, we are not aware of any other
general constructions of Garside groups obtained in a similar fashion by studying
other Artin groups of finite type. We note however that the Artin group of type
Dn is isomorphic to the index 2 torsion free subgroup of the semidirect product
(C2)

∗noBn associated to the Artin type representation determined by the nontrivial
element of C2. However, the group C2 of order 2 is clearly not Garside (it has
torsion!) so that while A(Dn) admits a Garside structure, this does not arise by
virtue of Theorem 6.1 just proved. The Artin groups of type Bn , n ≥ 2, would
appear to be the only Artin groups of irreducible finite type which are covered in
this way by Theorem 6.1.

Appendix

We denote by Fn the free group of rank n, and fix a basis x1, . . . , xn for Fn .

Definition. According to Shpilrain’s terminology [2001], a Wada representation of
type (1) is an Artin type representation associated to (Z, h), where h is a nonzero
integer. Such a representation will be denoted by ρ(1)h : Bn → Aut(Fn). It is
determined by

ρ
(1)
h (σk)(xi )=


xi if i 6= k, k + 1,

x−h
k xk+1xh

k if i = k,

xk if i = k + 1.

The Wada representation of type (2) is the representation ρ(2) : Bn → Aut(Fn)

determined by

ρ(2)(σk)(xi )=


xi if i 6= k, k + 1,

xk x−1
k+1xk if i = k,

xk if i = k + 1.

and the Wada representation of type (3) is the representation ρ(3) : Bn → Aut(Fn)

determined by

ρ(3)(σk)(xi )=


xi if i 6= k, k + 1,

x2
k xk+1 if i = k,

x−1
k+1x−1

k xk+1 if i = k + 1.
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Proposition A.1. (1) Let k, l ∈ Z \ {0}. Then ρ(1)k and ρ(1)l are equivalent if and
only if l = ±k.

(2) ρ(2) and ρ(3) are equivalent.

(3) Let k ∈ Z \ {0}. Then ρ(2) and ρ(1)k are not equivalent.

The following lemmas are preliminary to the proof of this proposition.

Lemma A.2. Consider the action of Bn on Fn via the representation ρ(1)h . For all
i = 1, . . . , n − 1, the subgroup of Fn left fixed by 〈σi 〉, and written F 〈σi 〉

n , is freely
generated by the elements

x1, . . . , xi−1, xh
i+1xh

i , xi+2, . . . , xn.

Proof. Write Fn = C ∗ D, where C = 〈xi , xi+1〉, D = 〈x1, . . . , xi−1, xi+2, . . . , xn〉.
Both groups, C and D, are invariant by the action of σi . Moreover, σi is the identity
on D and acts on C by xi 7→ x−h

i xi+1xh
i , xi+1 7→ xi . In particular, F 〈σi 〉

n = C 〈σi 〉∗D.
Let u ∈ C 〈σi 〉. Write

u = xn1
i xm1

i+1 . . . x
nr
i xmr

i+1,

where r ≥ 1, m1, . . . ,mr−1, n2, . . . , nr ∈ Z \ {0}, and mr , n1 ∈ Z. First, suppose
n1 6= 0. Then

σi (u)= x−h
i xn1

i+1xm1
i . . . xnr

i+1xmr +h
i = u.

Thus
−h = n1, n1 = m1, . . . , nr = mr , and mr + h = 0,

hence u = (xh
i+1xh

i )
−r . Now, suppose n1 = 0. Then

σi (u)= xm1−h
i xn2

i+1xm2
i . . . xnr

i+1xmr +h
i .

Thus

m1 − h = 0, m1 = n2, n2 = m2, . . . , nr = mr + h, and mr = 0,

hence u = (xh
i+1xh

i )
r−1. �

Lemma A.3. Consider the action of Bn on Fn via ρ(1)h . Then the fixed subgroup
F Bn

n is the cyclic subgroup of Fn generated by xh
n . . . x

h
2 xh

1 .

Proof. Let u ∈ F Bn
n . We have u ∈ F 〈σi 〉

n for all i = 1, . . . , n − 1. Thus, by Lemma
A.2, the reduced form of u satisfies the following properties:

• All the exponents are either equal to h or equal to −h.

• If i 6= 1, then xh
i is followed by xh

i−1, and, if i 6= n, then xh
i is preceded by

xh
i+1.

• If i 6= n, then x−h
i is followed by x−h

i+1, and, if i 6= 1, then x−h
i is preceded by

x−h
i−1.
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Clearly, these properties hold if and only if u is of the form u = (xh
n . . . x

h
2 xh

1 )
r ,

with r ∈ Z. �

Proof of Proposition A.1. (1) Let k ∈ Z\{0}. Let φ : Fn → Fn be the automorphism
determined by φ(xi )= x−1

i for all i = 1, . . . , n. One can easily verify that

φ−1
◦ ρ

(1)
k (σi ) ◦φ = ρ

(1)
−k (σi )

for all i = 1, . . . , n − 1; thus ρk and ρ−k are equivalent.
Let k, l > 0. For a group G, we denote by H1(G) the abelianization of G, and,

for a subgroup H of G, we denote by 〈〈H〉〉 the normal subgroup of G generated
by H . By Lemma A.3, we have

Fn/〈〈F
ρ
(1)
k (Bn)

n 〉〉 ' 〈x1, . . . , xn | xk
n . . . x

k
2 xk

1 = 1〉;

hence

H1(Fn/〈〈F
ρ
(1)
k (Bn)

n 〉〉)' (Z/kZ)× Zn−1.

So, if ρ(1)k and ρ(1)l are equivalent, then (Z/kZ)× Zn−1
' (Z/ lZ)× Zn−1; thus

k = l.

(2) Write
yi = x2

1 . . . x
2
i−1xi for i = 1, . . . , n.

One can easily verify that

ρ(3)(σk)(yi )=


yi if i 6= k, k + 1,

yk+1 if i = k,

yk+1 y−1
k yk+1 if i = k + 1.

Let φ : Fn → Fn be the automorphism determined by φ(xi )= yi for i = 1, . . . , n,
and let µ : Bn → Bn be the automorphism determined by µ(σi ) = σ−1

i for i =

1, . . . , n − 1. From the expression of ρ(3)(σk)(yi ) given above, there follows

φ−1
◦ ρ(3)(σi ) ◦φ = ρ(2)(µ(σi ))

for all i = 1, . . . , n − 1; thus ρ(2) and ρ(3) are equivalent.

(3) Let k > 0. For u ∈ Fn , we denote by [u] the element of H1(Fn) ' Zn

represented by u. We have

ρ(2)(σ t
1)[x1] = (t + 1)[x1] − t[x2]

for all t ∈ N. On the other hand, ρ(1)k (β) has finite order as an automorphism of
H1(Fn), for all β ∈ Bn . This shows that ρ(2) and ρ(1)k are not equivalent. �



26 JOHN CRISP AND LUIS PARIS

References

[Artin 1925] E. Artin, “Theorie der Zöpfe”, Abh. Hamb. 4 (1925), 47–72. JFM 51.0450.01

[Artin 1947] E. Artin, “Theory of braids”, Ann. of Math. (2) 48 (1947), 101–126. MR 8,367a
Zbl 0030.17703

[Bessis and Corran 2004] D. Bessis and R. Corran, “Non-crossing partitions of type (e, e, r)”,
preprint, 2004. math.GR/0403400

[Bestvina 1999] M. Bestvina, “Non-positively curved aspects of Artin groups of finite type”, Geom.
Topol. 3 (1999), 269–302. MR 2000h:20079 Zbl 0998.20034

[Birman 1974] J. S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Stud-
ies 82, Princeton University Press, Princeton, NJ, 1974. MR 51 #11477 Zbl 0305.57013

[Brieskorn 1973] E. Brieskorn, “Sur les groupes de tresses (d’après V. I. Arnol’d)”, pp. 21–44,
Exp. 401 in Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Math. 317, Springer,
Berlin, 1973. MR 54 #10660 Zbl 0277.55003

[Brieskorn and Saito 1972] E. Brieskorn and K. Saito, “Artin-Gruppen und Coxeter-Gruppen”, In-
vent. Math. 17 (1972), 245–271. MR 48 #2263 Zbl 0243.20037

[Charney 1992] R. Charney, “Artin groups of finite type are biautomatic”, Math. Ann. 292:4 (1992),
671–683. MR 93c:20067 Zbl 0736.57001

[Charney 1995] R. Charney, “Geodesic automation and growth functions for Artin groups of finite
type”, Math. Ann. 301:2 (1995), 307–324. MR 95k:20055 Zbl 0813.20042

[Charney et al. 2004] R. Charney, J. Meier, and K. Whittlesey, “Bestvina’s normal form complex
and the homology of Garside groups”, Geom. Dedicata 105 (2004), 171–188. MR 2005e:20057
Zbl 02083429

[Crisp 1999] J. Crisp, “Injective maps between Artin groups”, pp. 119–137 in Geometric group
theory down under: proceedings of a special year (Canberra, 1996), edited by J. Cossey et al., de
Gruyter, Berlin, 1999. MR 2001b:20064 Zbl 1001.20034

[Crisp and Paris 2005] J. Crisp and L. Paris, “Artin groups of type B and D”, Advances in geometry
5:4 (2005), 607–636.

[Dehornoy 1994] P. Dehornoy, “Braid groups and left distributive operations”, Trans. Amer. Math.
Soc. 345:1 (1994), 115–150. MR 95a:08003 Zbl 0837.20048

[Dehornoy 1997a] P. Dehornoy, “A fast method for comparing braids”, Adv. Math. 125:2 (1997),
200–235. MR 98b:20060 Zbl 0882.20021

[Dehornoy 1997b] P. Dehornoy, “Groups with a complemented presentation”, J. Pure Appl. Algebra
116:1-3 (1997), 115–137. MR 98a:20064 Zbl 0870.20023

[Dehornoy 1998] P. Dehornoy, “Gaussian groups are torsion free”, J. Algebra 210:1 (1998), 291–
297. MR 2000g:20066 Zbl 0959.20035

[Dehornoy 2002] P. Dehornoy, “Groupes de Garside”, Ann. Sci. École Norm. Sup. (4) 35:2 (2002),
267–306. MR 2003f:20068 Zbl 1017.20031

[Dehornoy and Lafont 2003] P. Dehornoy and Y. Lafont, “Homology of Gaussian groups”, Ann.
Inst. Fourier (Grenoble) 53:2 (2003), 489–540. MR 2004g:20072 Zbl 01940703

[Dehornoy and Paris 1999] P. Dehornoy and L. Paris, “Gaussian groups and Garside groups, two
generalisations of Artin groups”, Proc. London Math. Soc. (3) 79:3 (1999), 569–604. MR 2001f:
20061 Zbl 1030.20021

[Deligne 1972] P. Deligne, “Les immeubles des groupes de tresses généralisés”, Invent. Math. 17
(1972), 273–302. MR 54 #10659 Zbl 0238.20034

http://www.emis.de/cgi-bin/JFM-item?51.0450.01
http://links.jstor.org/sici?sici=0003-486X(194701)2:48:1%3C101:TOB%3E2.0.CO%3B2-A
http://www.ams.org/mathscinet-getitem?mr=8,367a
http://www.emis.de/cgi-bin/MATH-item?0030.17703
http://arxiv.org/abs/math.GR/0403400
http://dx.doi.org/10.2140/gt.1999.3.269
http://www.ams.org/mathscinet-getitem?mr=2000h:20079
http://www.emis.de/cgi-bin/MATH-item?0998.20034
http://www.ams.org/mathscinet-getitem?mr=51:11477
http://www.emis.de/cgi-bin/MATH-item?0305.57013
http://www.ams.org/mathscinet-getitem?mr=54:10660
http://www.emis.de/cgi-bin/MATH-item?0277.55003
http://www.ams.org/mathscinet-getitem?mr=48:2263
http://www.emis.de/cgi-bin/MATH-item?0243.20037
http://dx.doi.org/10.1007/BF01444642
http://www.ams.org/mathscinet-getitem?mr=93c:20067
http://www.emis.de/cgi-bin/MATH-item?0736.57001
http://dx.doi.org/10.1007/BF01446631
http://dx.doi.org/10.1007/BF01446631
http://www.ams.org/mathscinet-getitem?mr=95k:20055
http://www.emis.de/cgi-bin/MATH-item?0813.20042
http://dx.doi.org/10.1023/B:GEOM.0000024696.69357.73
http://dx.doi.org/10.1023/B:GEOM.0000024696.69357.73
http://www.ams.org/mathscinet-getitem?mr=2005e:20057
http://www.emis.de/cgi-bin/MATH-item?02083429
http://www.ams.org/mathscinet-getitem?mr=2001b:20064
http://www.emis.de/cgi-bin/MATH-item?1001.20034
http://links.jstor.org/sici?sici=0002-9947(199409)345:1%3C115:BGALDO%3E2.0.CO%3B2-2
http://www.ams.org/mathscinet-getitem?mr=95a:08003
http://www.emis.de/cgi-bin/MATH-item?0837.20048
http://dx.doi.org/10.1006/aima.1997.1605
http://www.ams.org/mathscinet-getitem?mr=98b:20060
http://www.emis.de/cgi-bin/MATH-item?0882.20021
http://dx.doi.org/10.1016/S0022-4049(96)00074-6
http://www.ams.org/mathscinet-getitem?mr=98a:20064
http://www.emis.de/cgi-bin/MATH-item?0870.20023
http://dx.doi.org/10.1006/jabr.1998.7540
http://www.ams.org/mathscinet-getitem?mr=2000g:20066
http://www.emis.de/cgi-bin/MATH-item?0959.20035
http://dx.doi.org/10.1016/S0012-9593(02)01090-X
http://www.ams.org/mathscinet-getitem?mr=2003f:20068
http://www.emis.de/cgi-bin/MATH-item?1017.20031
http://www.ams.org/mathscinet-getitem?mr=2004g:20072
http://www.emis.de/cgi-bin/MATH-item?01940703
http://dx.doi.org/10.1112/S0024611599012071
http://dx.doi.org/10.1112/S0024611599012071
http://www.ams.org/mathscinet-getitem?mr=2001f:20061
http://www.ams.org/mathscinet-getitem?mr=2001f:20061
http://www.emis.de/cgi-bin/MATH-item?1030.20021
http://www.ams.org/mathscinet-getitem?mr=54:10659
http://www.emis.de/cgi-bin/MATH-item?0238.20034


REPRESENTATIONS OF THE BRAID GROUP AND GARSIDE GROUPS 27

[Franco and González-Meneses 2003] N. Franco and J. González-Meneses, “Conjugacy problem
for braid groups and Garside groups”, J. Algebra 266:1 (2003), 112–132. MR 2004g:20050 Zbl
1043.20019

[Garside 1969] F. A. Garside, “The braid group and other groups”, Quart. J. Math. Oxford Ser. (2)
20 (1969), 235–254. MR 40 #2051 Zbl 0194.03303

[Lambropoulou 1994] S. S. F. Lambropoulou, “Solid torus links and Hecke algebras of B-type”, pp.
225–245 in Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993), edited
by D. N. Yetter, World Sci. Publishing, River Edge, NJ, 1994. MR 96a:57020 Zbl 0884.57004

[Picantin 2001a] M. Picantin, “The center of thin Gaussian groups”, J. Algebra 245:1 (2001), 92–
122. MR 2002h:20053 Zbl 1002.20022

[Picantin 2001b] M. Picantin, “The conjugacy problem in small Gaussian groups”, Comm. Algebra
29:3 (2001), 1021–1039. MR 2002g:20062 Zbl 0988.20024

[Picantin 2003] M. Picantin, “Automatic structures for torus link groups”, J. Knot Theory Ramifica-
tions 12:6 (2003), 833–866. MR 2004i:20077 Zbl 02078674

[Rolfsen 1990] D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Hous-
ton, TX, 1990. Corrected reprint of the 1976 original. MR 95c:57018 Zbl 0854.57002

[Shpilrain 2001] V. Shpilrain, “Representing braids by automorphisms”, Internat. J. Algebra Com-
put. 11:6 (2001), 773–777. MR 2003a:20061 Zbl 1024.20036

[Wada 1992] M. Wada, “Group invariants of links”, Topology 31:2 (1992), 399–406. MR 94e:57014
Zbl 0758.57008

Received January 9, 2003. Revised January 21, 2004.

JOHN CRISP

INSTITUT DE MATHÉMATIQUES DE BOURGOGNE

UNIVERSITÉ DE BOURGOGNE

UMR 5584 DU CNRS, BP 47870
21078 DIJON CEDEX

FRANCE

jcrisp@u-bourgogne.fr

LUIS PARIS

INSTITUT DE MATHÉMATIQUES DE BOURGOGNE

UNIVERSITÉ DE BOURGOGNE

UMR 5584 DU CNRS, BP 47870
21078 DIJON CEDEX

FRANCE

lparis@u-bourgogne.fr

http://dx.doi.org/10.1016/S0021-8693(03)00292-8
http://dx.doi.org/10.1016/S0021-8693(03)00292-8
http://www.ams.org/mathscinet-getitem?mr=2004g:20050
http://www.emis.de/cgi-bin/MATH-item?1043.20019
http://www.emis.de/cgi-bin/MATH-item?1043.20019
http://www.ams.org/mathscinet-getitem?mr=40:2051
http://www.emis.de/cgi-bin/MATH-item?0194.03303
http://www.ams.org/mathscinet-getitem?mr=96a:57020
http://www.emis.de/cgi-bin/MATH-item?0884.57004
http://dx.doi.org/10.1006/jabr.2001.8894
http://www.ams.org/mathscinet-getitem?mr=2002h:20053
http://www.emis.de/cgi-bin/MATH-item?1002.20022
http://dx.doi.org/10.1081/AGB-100001665
http://www.ams.org/mathscinet-getitem?mr=2002g:20062
http://www.emis.de/cgi-bin/MATH-item?0988.20024
http://dx.doi.org/10.1142/S0218216503002627
http://www.ams.org/mathscinet-getitem?mr=2004i:20077
http://www.emis.de/cgi-bin/MATH-item?02078674
http://www.ams.org/mathscinet-getitem?mr=95c:57018
http://www.emis.de/cgi-bin/MATH-item?0854.57002
http://dx.doi.org/10.1142/S0218196701000760
http://www.ams.org/mathscinet-getitem?mr=2003a:20061
http://www.emis.de/cgi-bin/MATH-item?1024.20036
http://dx.doi.org/10.1016/0040-9383(92)90029-H
http://www.ams.org/mathscinet-getitem?mr=94e:57014
http://www.emis.de/cgi-bin/MATH-item?0758.57008
mailto:jcrisp@u-bourgogne.fr
mailto:lparis@u-bourgogne.fr

	1. Introduction
	2. Link invariants
	3. Topological construction of the link invariants
	4. Faithfulness
	5. Garside groups
	6. Semidirect products
	Appendix
	References

