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The universal enveloping algebra of a semisimple Lie algebra is FCR. Com-
plete reducibility for finite-dimensional modules is generalized to encom-
pass the representations of reductive Lie algebras. A quantum example is
presented as a nontrivial illustration of these ideas.

Since interest in FCR algebras was rekindled by [Farkas 1987], the literature
has been growing [Kraft and Small 1994; Kraft et al. 1999; Kirkman and Small
2002]. Recall that an algebra R is FCR (“finite-dimensional representations are
completely reducible") if it has enough finite-dimensional representations, in the
sense that every nonzero element of R survives in some finite-dimensional image,
and every finite-dimensional R-module is semisimple. The premier example is the
enveloping algebra of a finite-dimensional semisimple Lie algebra in characteristic
zero. However, classical representation theory of Lie groups frequently requires
the examination of a slightly larger class of Lie algebras — the reductive ones.
Intuitively, a reductive Lie algebra is “semisimple up to a central subalgebra":
finite-dimensional modules on which the central subalgebra acts like a character
will be completely reducible.

For example, if g = sl(3) and θ is the involution of g defined by

θ(e1) = f2, θ(e2) = f1, θ(h1) = −h2

(using the generators presented in [Humphreys 1980]), then gθ
' sl(2) ⊕ C is

reductive. The intent of this paper is to formulate the appropriate definition of
“reductive over a central subalgebra" and exhibit a nontrivial quantum cousin of
this example.

The second author has developed a uniform theory of quantum symmetric pairs.
There is a one-parameter family of quantum analogues to the enveloping algebra
of gθ described in [Letzter 2003]. Both that reference and [Letzter 2002] consider
only nonzero values of the parameter. The algebra B we discuss in this paper is a
degenerate member of the family with parameter set to zero. Dijkhuizen, Noumi,
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and Sugitani [Dijkhuizen 1996; Dijkhuizen and Noumi 1998; Noumi et al. 1997]
study a closely related family of two-sided coideals in type A. In that context,
the degenerate case occurs when the relevant parameter takes on the value 0 after
applying a Hopf algebra automorphism.

We begin by discussing notions related to separability of ring extensions, but
with conditions restricted to finite-dimensional modules. Section 2 is devoted to a
reductive version of Weil’s Lemma, which bounds the number of simple modules
for a fixed dimension. The bulk of the paper studies the particular example B.
We show by a delicate specialization argument that finite-dimensional modules,
on which a distinguished central element acts as a scalar, are completely reducible.
The last section discusses residually finite-dimensional algebras.

The reader may ask whether the quantum symmetric pairs with standard param-
eters produce reductive algebras (in our sense) as well. The status of these quantum
fixed algebras is unclear. They appear to have some misbehaving central characters,
suggesting that complete reducibility will only hold “almost everywhere”.

1. Semisimple extensions

For the purposes of this paper, k will always denote an algebraically closed field.
By the unadorned term algebra, we will mean an algebra over k. From now on,
assume that R and S are algebras. We say that R|S is an extension if there is an
algebra homomorphism from S to R; it is central when S is commutative and it
maps into the center of R. We will look at well known representation-theoretic
conditions on extensions but restrict their reach to finite-dimensional modules. A
traditional treatment of these conditions can be found in [Kadison 1999].

There are two rival definitions to consider for reductivity. The extension R|S is
finitarily semisimple provided that every short exact sequence of finite-dimensional
left R modules which splits as S-modules must also split as R-modules. We say
R|S is finitarily Wedderburn when every finite-dimensional left R-module which is
semisimple as an S-module is also semisimple as an R-module. Clearly, a finitarily
semisimple extension is Wedderburn.

Example 1.1. We now consider a finite-dimensional Wedderburn extension which
is not semisimple. Let R be the C-algebra of block upper triangular 4×4 matrices(

a b
0 c

)
where a, b and c range over all 2×2 complex matrices. Choose any nonzero 2×2
matrix t with t2

= 0 and set

σ =

(
t 0
0 t

)
.
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The span of 1 and σ is a two-dimensional subalgebra S with radical Cσ . Suppose
M is an R-module that is also a semisimple S-module. Then (Rσ R)M = 0. But
Rσ R contains 1 because the ring of all 2 × 2 matrices over C is simple. Hence
M = 0. By default, M is a semisimple R-module. The collection J of all matrices(

0 b
0 0

)
is a left ideal of R. Since the space of all block diagonal matrices is an S-module,
we see that J splits as an S-submodule of R. On the other hand, any left ideal J ′

of R complementary to J must contain a matrix of the form(
u v

0 w

)
with w 6= 0. Thus (

0 w

0 0

)
=

(
0 1
0 0

) (
u v

0 w

)
∈ J ′,

which is a contradiction, and so the extension is not semisimple.

The discrepancy between the two definitions will not be decisive because S will
be central in R for all of our reductive candidates. For the next four lemmas, it
will be convenient to assume that S is a subalgebra of R.

Lemma 1.2. Let R be a finite-dimensional algebra and suppose that e ∈ R is a
central idempotent. If R|S is a finitarily Wedderburn extension then so is eR|eS.

Proof. Let M be a finite-dimensional eR-module which is semisimple as an eS-
module. Certainly M is an R-module, and e Jac(S) ⊆ Jac(eS) so e Jac(S)M = 0.
But (1−e)M = 0, so Jac(S)M = 0, and hence M is a semisimple S-module. The
hypothesis of the lemma now tells us that M is a semisimple R-module, and so M
is a semisimple eR-module. �

Lemma 1.3. Let R be a finite-dimensional algebra and suppose e ∈ R is a central
idempotent. If both eR|eS and (1−e)R|(1−e)S are finitarily semisimple exten-
sions then so is R|S.

Proof. Let
0 → A → B → C → 0

be a short exact sequence of finite-dimensional R-modules that splits in the cate-
gory of S-modules. Patch together back-maps for

0 → eA → eB → eC → 0

and
0 → (1−e)A → (1−e)B → (1−e)C → 0. �
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Lemma 1.4. Let R|S be a finitarily Wedderburn extension and suppose that R is a
finite-dimensional algebra with Wedderburn Principal Decomposition

R = Jac(R) ⊕ 3.

If S is central in R then R = S3.

Proof. The finite-dimensional R-module R/ Jac(S)R is a semisimple S-module.
Hence Jac(R) ⊆ Jac(S)R. But S central implies Jac(S)R ⊆ Jac(R). Thus

Jac(R) = Jac(S)R.

The lemma follows once we improve this equality to Jac(R) = Jac(S)3. We show
by induction on d ≥ 2 that Jac(R) ⊆ Jac(R)d

+ Jac(S)3. To begin,

Jac(R) ⊆ Jac(S)(Jac(R) + 3) ⊆ Jac(R)2
+ Jac(S)3.

Now assume the desired inclusion for d . Then

Jac(R) ⊆ Jac(R)d
+ Jac(S)3

⊆
(
Jac(R)2

+ Jac(S)3
)d

+ Jac(S)3

⊆ Jac(R)d+1
+ Jac(S)3.

Since Jac(R) is nilpotent, we conclude that Jac(R) = Jac(S)3 �

Lemma 1.5. If R|S is a finitarily Wedderburn extension and S is central in R then
R|S is a finitarily semisimple extension.

Proof. Let
0 → A → B → C → 0

be a short exact sequence of finite-dimensional R-modules which splits when all
modules are restricted to be S-modules. To show that the sequence has an R-
module splitting there is no harm in replacing R with its image modulo the anni-
hilator of B. Thus we may assume that R is finite-dimensional in the statement of
the theorem.

By the first two lemmas, we may also assume that R has no nontrivial central
idempotents. Using the notation of Lemma 1.4, we have R = S3 where 3 is the
semisimple portion of R. The lack of central idempotents and the centrality of S
imply that 3 ' Matn(k) for some n. Also, S3 is a homomorphic image of

S ⊗k Matn(k) ' Matn(S).

Hence S3 ' Matn(S/I ) for some ideal I of S. But S is a subalgebra of S3,
so I = 0. In other words, R = Matn(S). Now classical separability theory (see
[DeMeyer and Ingraham 1971]) says that Matn(S)|S is a semisimple extension. �
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This proof also establishes that, if S is a central subalgebra of R and 0 is a
subalgebra of R such that R = S0 and 0|k is a finitarily semisimple extension,
then R|S is a finitarily semisimple extension.

Theorem 1.6. Let R|S be a central extension. Then the following are equivalent:

(1) R|S is finitarily semisimple.

(2) R|S is finitarily Wedderburn.

(3) For each codimension-one maximal ideal M of S, finite-dimensional R/MR-
modules are semisimple.

Proof. We have already established that (1) and (2) are equivalent. It is obvious
that (1) implies (3). So we shall assume that condition (3) holds and prove (2). Let
V be a finite-dimensional R-module which is semisimple as an S-module. Then
V is a direct sum of isotypical components for S. The centrality of S forces each
component to be an R-submodule. Thus it suffices to show that each component is
semisimple over R. But an isotypical component is annihilated by a codimension-
one maximal ideal of S, so (3) applies. �

We can use statement (3) of the theorem to produce a test for finitary semisim-
plicity. Recall the well known criterion for all finite-dimensional R-modules to be
semisimple: there are no finite-dimensional indecomposable R-modules of length
two. Now assume that R|S is a central extension and apply the criterion to R/MR
for a maximal ideal M of S. We see that R|S is finitarily semisimple if and only if
there are no finite-dimensional indecomposable R-modules of length two on which
elements of S act like scalars.

Corollary 1.7. If R|S is a finitarily semisimple central extension and T is a com-
mutative S-algebra then R ⊗S T |T is a finitarily semisimple extension.

Proof. Let N be a codimension-one maximal ideal of T and let W be a nonzero
finite-dimensional R ⊗S T -module annihilated by R ⊗S N. (If there are no such
modules, testing with condition (3) is vacuous.) Consider W as an R-module via
the embedding R → R ⊗ 1. Let M be the annihilator of W in S. Since 1 is
not in the annihilator and elements of T act like scalars on W , the ideal M must
be maximal and of codimension one in S. By hypothesis, W is a semisimple
R-module. Moreover, each simple R-summand of W is also a simple R ⊗S T -
summand, again because elements of T act like scalars. It follows that W is a
semisimple R ⊗S T -module. �

The corollary describes the enveloping algebra of a finite-dimensional reductive
Lie algebra. In this case, the algebra is the tensor product over C of the FCR
enveloping algebra of a semisimple Lie algebra and the enveloping algebra of the
(Lie algebra) center.
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2. Weil’s Lemma

Weil’s Lemma for semisimple representations states that if R is affine and FCR
over k then there are only finitely many isomorphism classes of n-dimensional R-
modules for each positive integer n. The rendition in [Farkas 1987] states that any
affine polynomial identity algebra which is a finitarily semisimple extension of the
scalar field must be finite-dimensional. We now address the analogue for central
extensions.

Theorem 2.1. Let R|S be a central finitarily semisimple extension. Suppose also
that R satisfies a polynomial identity and that both R and S are affine. Then
there is a bound B > 0 such that for all maximal ideals M of S, the number of
nonisomorphic simple R-modules annihilated by M is bounded by B.

(Since R is an affine PI algebra, all simple R-modules are finite-dimensional.)

Proof. We shall assume that S is a subalgebra of R and argue by induction on the
Krull dimension of S. For each maximal ideal N of S, Weil’s Lemma tells us that
there are only finitely many simple R-modules annihilated by N. If S has Krull
dimension 0, it has only finitely many maximal ideals so there is clearly a uniform
bound.

Because we are only interested in counting simple R-modules, we may assume
that R is semiprime. According to a theorem of Procesi [1967] about affine al-
gebras, R satisfies the ascending chain condition on semiprime ideals. It follows
(see, for example, [Rowen 1988, page 213]) that there are finitely many (minimal)
prime ideals P1, . . . , Pt with P1 ∩ P2 ∩· · ·∩ Pt = 0. Every maximal ideal of S lies
above some S ∩ Pj ; thus we may assume that R itself is prime.

Let F be the field of fractions of S. By Corollary 1.7, the extension R⊗S F |F is
finitarily semisimple. Moreover, R⊗S F is affine over F and satisfies a polynomial
identity. By Weil’s Lemma, it is finite-dimensional over F . A standard argument
for affine algebras produces a nonzero c ∈ S such that R[c−1

] is a finitely generated
S[c−1

]-module.
The collection of maximal ideals of S which contain c can be identified with the

maximal ideals of S/cS. Now R/cR | S/cS is finitarily semisimple and the Krull
dimension of S/cS is less than that of S. Thus, by induction, there is a uniform
bound B1 on the number of isomorphism classes of simple R-modules annihilated
by a maximal ideal of S containing c.

On the other hand, any remaining maximal ideal M of S does not contain c,
so M′

= MS[c−1
] is a maximal ideal of S[c−1

] and R[c−1
]/M′ R[c−1

] ' R/MR.
Since R[c−1

] is a finitely generated module over S[c−1
], we have

dimk R[c−1
]/M′ R[c−1

] ≤ dimF RF.
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Hence dimk R/MR ≤ dimF RF . Again, R/MR is a semisimple k-algebra, so
the number of nonisomorphic simple R/MR-modules is at most dimF F R. This
dimension may be taken as the bound B2 for all remaining maximal ideals of S. �

Notice that in the proof above, R “became” a finitely generated S-module after
localizing at a single central element. When R|S is module-finite, the extension is
separable by [DeMeyer and Ingraham 1971, Theorem 2.7.1]. It is then known that
S is an S-module direct summand of R.

Corollary 2.2. Assume that R and S are affine algebras and that R|S is a finitar-
ily semisimple central extension. For each non-negative integer n there is a uniform
bound B(n) on the number of n-dimensional simple R-modules that afford a given
character S → k.

Proof. Fix n and let J be the intersection of the annihilators of all simple n-
dimensional R-modules. If we set R = R/J and let S be the image of S in R
then R satisfies the polynomial identities of n×n matrices and each n-dimensional
simple R-module is an R-module. Now apply Theorem 2.1. �

3. A particular algebra

The algebra we describe here is one small example related to the theory of quan-
tum symmetric pairs developed by the second author. It is a degenerate quantum
analogue for the enveloping algebra of the fixed subalgebra of a simple Lie algebra
under an involution. Specialization to a classical object will become clear in the
next section.

Let q be an indeterminate. Then let B be the C(q)-algebra generated by B1, B2,

B3 and K ±1 subject to the relations

(1) K K −1
= 1 = K −1K ,

(2) K B1K −1
= q−1 B1 and K B2K −1

= q B2,

(3) B3 = B1 B2 − q B2 B1,

(4) B1 B3 − q−1 B3 B1 = −(q + q−1)q2 B1K −3,

(5) B2 B3 − q B3 B2 = (q + q−1)B2K −3.

The reader will undoubtedly notice that B3 is an extraneous generator. However,
with its presence, the relations take a nice enough form that the theory of noncom-
mutative Groebner bases (or, equivalently, the Diamond Lemma) easily establishes
that

{Bm
1 Bn

2 Bs
3 K ±t

| m, n, t, s ∈ N}

is a basis for B over C(q).
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Finally, write

Z =

(
q3

+ q
q2 − 1

)
K −2

− B3K .

Notice that B3 can be recovered from B1, B2, K , and Z because K is invertible.
Thus B is generated as an algebra by B1, B2, K , and Z .

The polynomial ring over Z will be our central subalgebra in an eventual demon-
stration of the finitary semisimplicity of B. Hence the first order of business is to
show that Z is central in B. Since K commutes with B3, it suffices to check that Z
commutes with both B1 and B2. We verify the first of these and leave the second
for the reader. For notational simplicity, set ξ = (q3

+ q)/(q2
− 1).

B1 Z = ξ B1K −2
− B1 B3K

= ξq−2K −2 B1 −
(
q−1 B3 B1 − (q + q−1)q2 B1K −3) K

= ξq−2K −2 B1 − B3K B1 + (q + q−1)K −2 B1

=
(
ξq−2

+ (q + q−1)
)

K −2 B1 − B3K B1

Now simply check that ξq−2
+ (q + q−1) = ξ .

Let C(q) denote the algebraic closure of C(q) and write B = C(q) ⊗C(q) B.
The goal is to show that B is a finitarily semisimple extension of C(q)[Z ]. We
begin by examining the structure of a finite-dimensional simple B-module V . The
central element Z acts like some scalar c. Consider any eigenvector w ∈ V for K
with eigenvalue µ. Since K commutes with B3,

K (Bm
1 Bn

2 Bs
3 K ±tw) = q−m+nµ(Bm

1 Bn
2 Bs

3 K ±tw).

In particular, V has a basis of eigenvectors for K , each of which corresponds to
an eigenvalue of the form qeµ with e ∈ Z. Since V is finite-dimensional, there is
a largest e which can actually appear; it corresponds to an eigenvector v.

Write

(3–1) Kv = λv.

By the choice of highest q-power,

(3–2) B2v = 0.

Now Bm
1 v is an eigenvector for K associated to the eigenvalue q−mλ. We claim

that the vector space spanned by these special vectors is all of V . Equivalently, we
show that their span is a B-module and invoke simplicity. The span is obviously
closed under the actions of B1, K , and Z . The formula for Z tells us that it is
stabilized by B3. Finally,

B2 Bm
1 v = q−1(B1 B2 − B3)Bm−1

1 v = q−1 B1(B2 Bm−1
1 v) − q−1 B3(Bm−1

1 v),
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so by induction (beginning with B2v = 0), we see that the span is closed under the
action of B2. We summarize:

• Any eigenvalue for K on V has the form q tλ for t ≤ 0.

• Br
1v, Br−1

1 v, . . . , B1v, v is a C[q]-basis for V and Br+1
1 v = 0.

This is the beginning of an analysis of Verma modules for B; in this direction, one
can ultimately prove that given a nonzero choice c for the central element Z , there
are four simple modules in each dimension. Our purposes here are more modest.
We will be satisfied to say that a finite-dimensional B-module is of type (λ, c) with
highest weight vector v and highest weight λ provided that Z acts like the scalar c
and the two bulleted conditions above hold, together with (3–1) and (3–2) on the
previous page. Occasionally, we will be lazy and just say that we have a highest
weight module.

For the remainder of the paper, we will focus on finite-dimensional B-modules
of length two on which Z acts as a scalar c. Such a module N has a simple
submodule V of type (β1, c) and N/V is simple of type (β2, c). We use a shorthand
for this set-up: N has type (β2, β1, c).

Lemma 3.1. Let N have type (β2, β1, c). If β2/β1 is not an integer power of q then
N splits.

Proof. The eigenvalues for K acting on N all have multiplicity one. Thus there is
some u ∈ N which is an eigenvector for K and which maps to a highest weight
vector for N/N1. The B-module generated by u is spanned by eigenvectors of K ,
none of whose eigenvalues can appear as eigenvalues for K acting on V . Thus N
is the direct sum of V and the submodule generated by u. �

It is useful to recognize the role of u in the previous lemma. If a module N of
length two (with distinguished simple submodule V ) has a highest weight vector
outside V then this vector maps to a highest weight vector for N/V . As observed
in the lemma, with such a vector either N splits or the submodule generated by the
highest weight vector is all of N . Of course, it need not be the case, a priori, that
N has a highest weight vector like this. But sometimes it does.

Lemma 3.2. If N has type (β2, β1, c) and if β1 = qsβ2 for some s < 0 then N splits
or is a highest weight module.

Proof. According to the previous lemma, we may assume that β2/β1 is a power of
q . The eigenvalues for the action of K on the distinguished simple module V all
have the form qdβ2 for d < 0; it must be that β2 is an eigenvalue of multiplicity one
for the action of K on N . Thus there exists an eigenvector x in N for K which has
associated eigenvalue β2. By the “maximality” of β2 we see that B2x = 0. Finally,
N/V has a unique eigenvector corresponding to the eigenvalue β2 up to scalar, so
x maps to it. �
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We can force the condition of the lemma by replacing N with its dual if neces-
sary. There is an antiautomorphism of B that sends

K 7→ K , B1 7→ B2, B2 7→ B1.

One can check that B3 maps to B3, so Z is sent to itself. If M is any left B-module,
write M∗ for its dual regarded as a left module via this antiautomorphism.

Lemma 3.3. Let V be any finite-dimensional simple B-module of type (λ, c), Then
V ∗ is also simple of the same type.

Proof. It is well known that V ∗ is simple. If v is a highest weight vector for V
then v, B1v, . . . , Br

1v is a basis for V . Let v∗

0 , . . . , v∗
r be a dual basis, that is,

〈v∗

i , B j
1 v〉 = δi j .

Since K is fixed by the dualizing antiautomorphism, it follows that

〈Kv∗

i , B j
1 v〉 = 〈v∗

i , K B j
1 v〉 = q− jλδi j .

Thus Kv∗

i =q−iλv∗

i . Consequently, v∗

0 is a highest weight vector for V with weight
λ. Similarly, Z is fixed, so it is forced to act like c on V ∗. �

A module splits as a direct sum of two submodules if and only if its dual does.
So to prove that finite-dimensional modules of length two (on which Z acts like a
scalar) split, there is no harm in replacing a module by its dual. However, dualizing
“flips" the simple submodule to become a simple factor and vice versa. Putting to-
gether the last three lemmas, we are reduced to showing that two kinds of modules
are semisimple: those that are highest weight modules and those of type (β, β, c).
We handle these cases by finding an order in B and a lattice inside the module so
that the “residue” module splits for classical reasons and the splitting lifts.

4. Orders and lattices

In order to prove that B-modules of type (β2, β1, c) split, it suffices to prove
splitting over a finite extension field L of C(q) containing β1, β2, and c. Write
BL = L ⊗C(q) B. Consider the discrete valuation ring C[q](q−1). It extends to a
discrete valuation ring R in L with uniformizing parameter a. (The field of frac-
tions for R is L .) The initial step in specializing to classical reductive extensions
is to find an appropriate R-order inside BL . First we remind the reader of a simple
result about invariants.

Lemma 4.1. Let S[T, T −1
] be the group ring of the infinite cyclic group over the

commutative coefficient ring S. Then S[T, T −1
] is a free S-module on{

((T − 1)(T −1
− 1))m(T − 1)ε | m ∈ N and ε = 0, 1

}
.
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Proof. Let σ be the involution which sends T to T −1. The fixed ring of S[T, T −1
]

under σ is the polynomial ring S[T + T −1
] and the entire ring is a free mod-

ule over the subring with basis {1, T }. Hence S[T, T −1
] is a free module over

S[2 − (T + T −1)] with basis {1, T − 1}. �

Theorem 4.2. Let λ ∈ L be nonzero. Set AR(λ) to be the R-subalgebra of BL

generated by

A1 = B1, A2 = λ3 B2, 1 =
1

q −1
(λ−1K − 1), ∇ =

1
q −1

(λK −1
− 1).

Then AR(λ)/a AR(λ) ' U(sl(2) ⊕ C).

Proof. As might be expected, we set

A3 = A1 A2 − q A2 A1 = λ3 B3.

Then AR(λ) is the R-algebra with generators A1, A2, A3, 1 and ∇, subject to the
additional relations

(1) (q −1)1∇ +1 + ∇ = (q −1)∇1 + 1 + ∇ = 0,

(2) 1A1 − q−1 A11 = −q−1 A1,

(3) 1A2 − q A21 = A2,

(4) A1 A3 − q−1 A3 A1 = −q2(q + q−1)A1((q −1)∇ + 1)3,

(5) A2 A3 − q A3 A2 = (q + q−1)A2((q −1)∇ + 1)3.

Moreover, by applying Lemma 4.1, we see AR(λ) has a basis over R consisting of{
(A1)

r (A2)
s(A3)

t(1∇)u(1)ε | r, s, t, u ∈ N and ε = 0, 1
}
.

Let b1, b2, b3 and d be, respectively, the images of A1, A2, A3 and 1 in the quotient
AR(λ)/a AR(λ). Since q ≡ 1 (mod a), relation (1) tells us that the image of ∇

is −d . Thus the factor ring is a C-algebra on the generators above subject to the
relations

(1) [b1, b2] = b3,

(2) [d, b1] = −b1 and [d, b2] = b2,

(3) [b1, b3] = −2b1 and [b2, b3] = 2b2.

Moreoever, {br
1 bs

2 bt
3 du

|r, s, t, u ∈N} is a vector space basis for the factor ring over
C. Notice that 2d + b3 is central and {b1 , b2 , b3} span a Lie algebra isomorphic
to sl(2) under the identification

b2 7→ e, b1 7→ f, b3 7→ −h.
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It follows that the factor ring is a homomorphic image of the desired enveloping
algebra. But a comparison of the basis for this ring with the PBW basis for the
enveloping algebra forces the identification to induce an isomorphism. �

Notice that AR(λ) is actually independent of λ up to isomorphism because the
parameter never appears in the relations. The scalar is, however, relevant since the
λ indicates a particular imbedding of AR in BL .

We have to modify Z slightly to get it inside AR(λ). Recall that

Z = ξ K −2
− B3K where ξ =

q3
+ q

q2 − 1
.

The difficulty is that q −1 appears as a factor of the denominator in ξ . We show
how to compensate for this. Multiplying Z by λ2,

λ2 Z = ξ(λK −1)2
− (λ3 B3)(λ

−1K )

= (q −1)ξ
1

q −1
(λK −1

− 1)(λK −1
+ 1) + ξ − A3(λ

−1K )

= (q −1)ξ∇(λK −1
+ 1) + ξ − A3(λ

−1K ).

Since λ±1K ∓1
∈ AR(λ), we see that λ2 Z − ξ ∈ AR(λ). Thus we set

Z A = λ2 Z − ξ =
q3

+ q
q + 1

∇((q −1)∇ + 2) − A3((q −1)1 + 1).

We use the notation from the previous theorem to compute Z A modulo a. Since
q −1 ≡ 0 (mod a),

Z A ≡ 2∇ − A3 (mod a).

In particular, Z A is sent to −2d −b3, a nonzero element of the center of sl(2)⊕C.
Let M be a finite-dimensional highest weight BL -module with highest weight

vector v. Then M has a basis over L of the form

v, B1v, B2
1v, . . . , B t

1v.

The full highest weight R-lattice in M generated by v is the free R-module with
this same basis. The next step is to recognize this lattice as a module over some of
our orders.

Theorem 4.3. Assume that λ∈ L is nonzero and m ∈Z. If M is a finite-dimensional
highest weight BL -module of type (qmλ, c) with highest weight vector v then the
full highest weight R-lattice generated by v is an AR(λ)-module.

Proof. Let 0 denote the full highest weight R-lattice in M , as described above.
Then 0 is closed under the action of A1 because A1 = B1. Recall that

K Bs
1v = qm−sλBs

1v



GENERALIZED REDUCTIVE ALGEBRAS AND A QUANTUM EXAMPLE 41

for s = 0, 1, . . . , t and dimM = t + 1. Thus Bs
1v is an eigenvector for λ−1K with

eigenvalue an integral power of q. It follows that 0 is closed under the actions of
1 and ∇.

The central element Z A acts like some scalar ω ∈ L on M . The formula for Z A
allows us to recover information about the action of A3. Indeed,

A3 = (q −1)ξ∇(λK −1
+ 1)(λK −1) − Z AλK −1.

Thus

(4–1) A3(Bs
1v) = qm−s(p − ω)Bs

1v

for some p ∈ C[q](q−1). On the other hand, the relation K B2 = q B2K implies that
B2(Bs

1v) lies in the same eigenspace for K as Bs−1
1 v. Thus we may write

A2(Bs
1v) = µs Bs−1

1 v

for some µs ∈ L . (Note that µ0 = 0 and, by default, µt+1 = 0.) Now A3 =

A1 A2 − q A2 A1 forces

A3(Bs
1v) = (µs − qµs+1)Bs

1v.

Putting together the two descriptions of the action of A3, we obtain

(4–2) µs − qµs+1 = qm−s(p − ω).

There are two cases to consider. First suppose that ω ∈ R. Then one can “back-
solve" equation (4–2) to see that each µs ∈ R. Thus 0 is closed under the action of
A2. This completes the proof that 0 is a AR(λ)-module. So suppose that ω 6∈ R.
We borrow a Weyl algebra trick to reach a contradiction. By the DVR assumption,

ω−1
∈ aR.

It follows from (4–1) that

−ω−1 A3(Bs
1v) = Bs

1v + (qm−s
− 1)(Bs

1v) − ω−1(qm−s p)(Bs
1v).

The essence of the last equality is that

(4–3) −ω−1 A3(Bs
1v) ∈ Bs

1v + a0

for s = 0, 1, . . . , t . Therefore ω−1 A3 stabilizes 0. Solving the linear system (4–2)
as before, we conclude that ω−1 A2 also stabilizes 0.

There is a powerful way to summarize the previous three sentences. The actions
of A1, −ω−1 A2 and −ω−1 A3 on 0 induce actions C1, C2 and C3, respectively, on
0/a0. (One can think of C j as a matrix over C.) Then (4–3) above simply states
that

C3 = I.
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The defining relation for A3 now yields

C1C2 − C2C1 = I.

Such an equality cannot hold for matrices over a field of characteristic zero. �

The next result says that finite-dimensional highest weight BL -modules special-
ize to finite-dimensional simple (sl(2) ⊕ C)-modules via our orders.

Theorem 4.4. Assume that λ ∈ L is nonzero and m ∈ Z. Let M be a finite-
dimensional highest weight BL -module of type (qmλ, c) with highest weight vector
v and set 0 to be the full highest weight R-lattice generated by v. Then 0/a0 is a
finite-dimensional simple AR(λ)/a AR(λ)-module.

Proof. We freely use the identification of AR(λ)/a AR(λ) with sl(2)⊕C presented
in the specialization theorem. In particular, if u is the image of v in 0/a0 then

u, f u, f 2u, . . . , f t u

is a basis for 0/a0 over C for t + 1 = dimM . As indicated in the proof of the
previous theorem, v is an eigenvector for A3; since 0 is a AR(λ)-module, the
corresponding eigenvector lies in R. Thus u is an eigenvector for h. Finally,
A2v =0 implies that eu =0. It follows from classical highest weight considerations
that 0/a0 is a simple sl(2)-module. �

5. Splitting by specialization

We can describe the end-game for decomposability in rather general terms. The
goal is to help the reader navigate through the final argument unencumbered by
all of our notation. Let R denote any discrete valuation ring with uniformizing
element a and field of fractions L . Assume that B is some L-algebra and A is a
finitely generated R-algebra such that B = L · A. We study a finite-dimensional
B-module N with a submodule V having the following additional structure:

(1) There is a vector space decomposition N = V ⊕ W .

(2) There are R-lattices C ⊆ V and D ⊆ W such that L · C = V and L · D = W .

(3) C is an A-module.

(4) A · D ⊆ V + D.

Let π : N → V denote the projection map relative to the vector space direct sum
above. For fixed x ∈ A and d ∈ D there exists 0 6= r ∈ R such that

π(xd) ∈
1
r

C.
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Since D has finite rank as an R-module, we can simultaneously choose r with

π(x D) ⊆
1
r

C.

Suppose y ∈ A and π(y D) ⊆ (1/s) C as well. A straightforward calculation shows
that

π(xy D) ⊆
1
r

C +
1
s

C.

It follows from the finite generation of A that there exists a nonzero t ∈ R with
π(A · D) ⊆ (1/t) C .

Moreover, (1/t) C ' C as A-modules. We refer to the replacement of C with
(1/t) C as the “first modification" of our given decomposition. After the modifica-
tion, we may assume that C +D is an A-submodule of N with C, D full sublattices
in V, W respectively.

We go further. Set

8 = {π(xd) | x ∈ A and d ∈ D}.

If 8 = 0 then D is an A-module. Hence W is a B-module and N = V ⊕W is a B-
module splitting. If 8 6= 0 we shall lay out a strategy for reaching a contradiction
when B is our special algebra. Since⋂

m≥0

amC = 0,

there must be a largest m ≥ 0 such that 8 ⊆ amC . Our “second modification" is to
replace C with amC . Equivalently, we may assume that 8 6⊆ aC . Suppose it turns
out that D/aD is an A/aA-module. (In other words, the induced

C/aC ⊕ D/aD

is actually an A/aA-module splitting.) Then, for all x ∈ A and d ∈ D,

π(xd) ∈ a(C + D) ∩ C.

Thus 8 ⊆ aC , which is impossible.
The splitting hypothesis modulo a will come from the following straightforward

application of the representation theory for sl(2) over C.

Lemma 5.1. Let M be a finite-dimensional U(sl(2))-module. Suppose that x, y ∈

M are linearly independent eigenvectors for h such that ex = ey = 0. Then
U(sl(2))x and U(sl(2))y are simple submodules of M whose intersection is zero.

We are finally ready to prove the main theorem for our special algebra.

Theorem 5.2. B is a finitarily semisimple extension of C(q)[Z ].
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Proof. The goal is to show that if N is a finite-dimensional B-module on which
Z acts like a scalar then N is a sum of simple modules. We briefly review the
reductions made to this point. We may assume that N has length two. The C(q)-
algebra B may be replaced by the L-algebra BL for some finite field extension
L|C(q). Finally, N has one of two types: either it is a highest weight module or
its highest weight “appears twice".

Case 1: N has type (β, qmβ, c) with m < 0.
Assume N is a nonsplit (r+1)-dimensional module. It has a highest weight

vector w with weight β. By Lemma 3.2 and Theorem 4.3, the R-lattice 0 with
basis

Br
1w, Br−1

1 w, . . . , B1w, w

is an AR(β)-module. Recall that N has a simple submodule V with highest weight
qmβ. Since our basis for N consists of eigenvectors of K , we may assume the
highest weight vector for V is Bm

1 w. Consider the R-lattice direct sum

0 = (RBr
1w + · · · + RBm

1 w) ⊕ (RBm−1
1 w + · · · + RB1w + Rw).

It satisfies the set-up described at the beginning of this section, primarily due to
Theorem 4.3. If the right-most of the two direct summands is an AR(β)-module
then we have an AR(β)-module direct sum, a contradiction. Make the second
modification on 0.

The specialization AR(β) → sl(2) ⊕ Cz sends

A1 7→ f, A2 7→ e, A3 7→ −h, 1 7→
1
2(h − z), Z A 7→ z.

Moreover, z acts like a scalar on 0/a0. Since w and Bm
1 w are annihilated by A2,

the images w+a0 and Bm
1 w+a0 are annihilated by e. Similarly, w and Bm

1 w are
eigenvectors for 1 with eigenvalues in R, so their images in 0/a0 are eigenvectors
for h. (Each one is an eigenvector for z.) It follows from the previous lemma that
our lattice splitting becomes a module splitting modulo a. This contradicts the
punchline of the discussion preceding the lemma.

Case 2: N has type (β, β, c).
By assumption, β appears with multiplicity two as an eigenvalue for K . The

generalized eigenspace corresponding to β has a basis {v, w} where

Kv = βv and Kw = βw + εv

for ε either 0 or 1. Thus we may assume that v is the highest weight vector for the
simple submodule V and w + V is the highest weight vector for N/V . We know
B2v = 0. We claim that B2w = 0. Indeed, K B2 = q B2K implies that

K B2w = q B2Kw = q B2(βw + εv) = (qβ)B2w.
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Since all eigenvalues for K acting on N have the form q tβ for t ≤ 0, the claim
follows.

Assume that dimV = l + 1 and dimN/V = m + 1. Consider the R-lattice
decomposition

0 = (RBl
1v + · · · + RB1v + Rv) ⊕ (RBm

1 w + · · · + RB1w + Rw).

By Theorem 4.3, we may assume that the direct summand on the left is an AR(β)-
module and the summand on the right is a module after factoring out V . Thus we
may perform the first modification on 0 so that it, too, becomes an AR(β)-module.

Now mimic the argument of the previous case. The vectors v +a0 and w+a0

in 0/a0 are C-linearly independent and annihilated by e (according to the claim).
As in the first case, v + a0 is an eigenvector for h. It is also true that the span of
v + a0 and w + a0 is stabilized by 1

2(h − z) (which is the image of 1) and has
a multiple eigenvalue. But h − z acts semisimply on 0/a0. Thus w + a0 is an
eigenvector for h as well. The second case is now completed along the lines of
Case 1. �

6. Reductive extensions

A k-algebra A is residually finite-dimensional if the zero ideal is the intersection
of ideals with finite codimension. It is well known that the enveloping algebra of
a finite-dimensional Lie algebra is residually finite-dimensional. The more well-
known parallel notion appears in the theory of infinite groups. Indeed, the group
algebra of a residually finite group is residually finite-dimensional. However, the
concept for algebras has not been explored to the same extent as that for groups;
one of the few general results is Mal’cev’s proof that the Hopf property holds for
such algebras.

Theorem 6.1 [Malcev 1943]. Suppose that R is an affine, residually finite-dimen-
sional algebra. Then a surjective algebra endomorphism of R is an automorphism.

It is much easier to verify that a subalgebra of (or a full matrix ring over) a
residually finite-dimensional algebra is residually finite-dimensional. In particular,
if R|S is a ring extension such that R is a finitely generated free S-module and S
is residually finite-dimensional then so is R.

Theorem 6.2. B is a residually finite-dimensional C(q)-algebra.

Proof. The short demonstration for experts is that B imbeds in the simply con-
nected quantized enveloping algebra for sl(3) and the larger algebra is residually
finite-dimensional. However, detailed proofs of these two assertions are not easily
accessible. For that reason, we outline an argument.
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Let U denote the quantized enveloping algebra for the Lie algebra sl(3). As an
algebra over C(q) it is generated by the symbols xi , yi , t±1

i (for i = 1, 2) subject
to the relations

xi y j − y j xi = δi j (ti − t−1
i )/(q − q−1),

ti xi = q2xi ti and ti yi = q−2 yi ti ,

ti x3−i = q−1x3−i ti and ti y3−i = qy3−i ti ,

x2
i x3−i − (q + q−1)xi x3−i xi + x3−i x2

i = 0,

y2
i y3−i − (q + q−1)yi y3−i yi + y3−i y2

i = 0,

together with the added assumption that t1 and t2 generate a free abelian group.
Next, set

p1 = y1t1, p2 = y2t2 + t−1
1 x1t1, κ = t1t−1

2

and write p3 = p1 p2 − qp2 p1. One can check directly that

κp1κ
−1

= q−3 p1 and κp2κ
−1

= q3 p2,

p1 p3 − q−1 p3 p1 = −(q + q−1)q2 p1κ
−1,

p2 p3 − qp3 p2 = (q + q−1)p2κ
−1.

(Alternatively, the relations are derived more generally in [Letzter 2003, Theo-
rem 7.1].) If we let B̃ denote the subalgebra of B generated by B1, B2, B3, and
K ±3 then B is a finitely generated free right B̃-module and the algebra generated
by p1, p2, p3, and κ±1 is a homomorphic image of B̃. If the two algebras are
isomorphic then the theorem is a consequence of the remarks preceding the proof
and the fact that quantized enveloping algebras are residually finite dimensional
(see [Joseph 1995, 7.19]).

Isomorphism will be an obvious corollary of the observation that the subalge-
bra of U generated by p1, p2, and κ±1 has a basis consisting of all pm

1 pn
2 ps

3κ
±t

as m, n, s, t run over all natural numbers. Of course, this list clearly spans the
subalgebra, so we need only examine linear independence. Temporarily set

y3 = y1 y2 − qy2 y1.

It is known that {ym
1 yn

2 ys
3 | m, n, s ∈ N} is a basis for U− (see, for example, [Klimyk

and Schmüdgen 1997, pages 175–176]). By [Joseph 1995, 3.2.8], there is an in-
jective algebra map from U− into U that sends yi to y′

i = yi ti . If we write y′

3 for
the image of y3 then we see that

{(y′

1)
m(y′

2)
n(y′

3)
sκ±t

| m, n, s, t ∈ N}

is linearly independent.
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The technical tool we need is an algebra grading of U by the root lattice Zα1 +

Zα2 of sl(3) (see [Jantzen 1996, 4.7]). In brief, U is spanned by weight vectors in
such a way that y′

1 has weight −α1, y′

2 has weight −α2, y′

3 has weight −(α1 +α2),
and x1 has weight α1. If we regard the weight as a kind of degree under the point-
wise order, then

p1 = y′

1,

p2 = y′

2 + higher degree terms,

p3 = y′

3 + higher degree terms.

It follows that

pm
1 pn

2 ps
3κ

±t
= (y′

1)
m(y′

2)
n(y′

3)
sκ±t

+ higher degree terms.

Therefore linear independence of the p-monomials is a consequence of linear in-
dependence of the y′-monomials. �

We close with the proposed definition of a reductive pair of algebras. Let R|S
be a central extension of algebras. It is a reductive extension provided it is finitarily
semisimple and R is residually finite-dimensional.

Theorem 6.3. B is a reductive extension of C(q)[Z ] .

Acknowledgements

We thank Stefan Kolb, Bob Guralnick, and Jacques Alev for their illuminating
comments and encouragement.

References

[DeMeyer and Ingraham 1971] F. DeMeyer and E. Ingraham, Separable algebras over commutative
rings, Lecture Notes in Mathematics 181, Springer, Berlin, 1971. MR 43 #6199 Zbl 0215.36602

[Dijkhuizen 1996] M. S. Dijkhuizen, “Some remarks on the construction of quantum symmetric
spaces”, Acta Appl. Math. 44:1-2 (1996), 59–80. MR 98c:33020 Zbl 0892.17014

[Dijkhuizen and Noumi 1998] M. S. Dijkhuizen and M. Noumi, “A family of quantum projec-
tive spaces and related q-hypergeometric orthogonal polynomials”, Trans. Amer. Math. Soc. 350:8
(1998), 3269–3296. MR 2000m:33023 Zbl 0906.33011

[Farkas 1987] D. R. Farkas, “Semisimple representations and affine rings”, Proc. Amer. Math. Soc.
101:2 (1987), 237–238. MR 88h:16027 Zbl 0626.16004

[Humphreys 1980] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad-
uate Texts in Mathematics 9, Springer, New York, 1980. MR 81b:17007 Zbl 0447.17002

[Jantzen 1996] J. C. Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics 6,
American Mathematical Society, Providence, RI, 1996. MR 96m:17029 Zbl 0842.17012

[Joseph 1995] A. Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathem. (3)

29, Springer, Berlin, 1995. MR 96d:17015 Zbl 0808.17004

[Kadison 1999] L. Kadison, New examples of Frobenius extensions, University Lecture Series 14,
American Mathematical Society, Providence, RI, 1999. MR 2001j:16024 Zbl 0929.16036

http://www.ams.org/mathscinet-getitem?mr=43:6199
http://www.emis.de/cgi-bin/MATH-item?0215.36602
http://www.ams.org/mathscinet-getitem?mr=98c:33020
http://www.emis.de/cgi-bin/MATH-item?0892.17014
http://www.ams.org/jourcgi/jour-getitem?pii=S0002994798019710
http://www.ams.org/jourcgi/jour-getitem?pii=S0002994798019710
http://www.ams.org/mathscinet-getitem?mr=2000m:33023
http://www.emis.de/cgi-bin/MATH-item?0906.33011
http://links.jstor.org/sici?sici=0002-9939(198710)101:2%3C237:SRAAR%3E2.0.CO%3B2-1
http://www.ams.org/mathscinet-getitem?mr=88h:16027
http://www.emis.de/cgi-bin/MATH-item?0626.16004
http://www.ams.org/mathscinet-getitem?mr=81b:17007
http://www.emis.de/cgi-bin/MATH-item?0447.17002
http://www.ams.org/mathscinet-getitem?mr=96m:17029
http://www.emis.de/cgi-bin/MATH-item?0842.17012
http://www.ams.org/mathscinet-getitem?mr=96d:17015
http://www.emis.de/cgi-bin/MATH-item?0808.17004
http://www.ams.org/mathscinet-getitem?mr=2001j:16024
http://www.emis.de/cgi-bin/MATH-item?0929.16036


48 DANIEL R. FARKAS, GAIL LETZTER AND LANCE W. SMALL

[Kirkman and Small 2002] E. E. Kirkman and L. W. Small, “Examples of FCR-algebras”, Comm.
Algebra 30:7 (2002), 3311–3326. MR 2003j:16031 Zbl 1029.16016

[Klimyk and Schmüdgen 1997] A. Klimyk and K. Schmüdgen, Quantum groups and their repre-
sentations, Springer, Berlin, 1997. MR 99f:17017 Zbl 0891.17010

[Kraft and Small 1994] H. Kraft and L. W. Small, “Invariant algebras and completely reducible
representations”, Math. Res. Lett. 1:3 (1994), 297–307. MR 95h:16047 Zbl 0849.16036

[Kraft et al. 1999] H. Kraft, L. W. Small, and N. R. Wallach, “Hereditary properties of direct sum-
mands of algebras”, Math. Res. Lett. 6:3-4 (1999), 371–375. MR 2000g:16006 Zbl 0952.16005

[Letzter 2002] G. Letzter, “Coideal subalgebras and quantum symmetric pairs”, pp. 117–165 in New
directions in Hopf algebras, edited by S. Montgomery and H.-J. Schneider, Math. Sci. Res. Inst.
Publ. 43, Cambridge Univ. Press, Cambridge, 2002. MR 2003g:17025 Zbl 1025.17005

[Letzter 2003] G. Letzter, “Quantum symmetric pairs and their zonal spherical functions”, Trans-
form. Groups 8:3 (2003), 261–292. MR 2004h:17017 Zbl 02005216

[Malcev 1943] A. Malcev, “On the representations of infinite algebras”, Mat. Sbornik N.S. 13 (1943),
263–286. MR 6,116c

[Noumi et al. 1997] M. Noumi, M. S. Dijkhuizen, and T. Sugitani, “Multivariable Askey–Wilson
polynomials and quantum complex Grassmannians”, pp. 167–177 in Special functions, q-series
and related topics (Toronto, 1995), edited by M. E. H. Ismail et al., Fields Inst. Commun. 14,
Amer. Math. Soc., Providence, RI, 1997. MR 98b:33040 Zbl 0877.33012

[Procesi 1967] C. Procesi, “Non-commutative affine rings”, Atti Accad. Naz. Lincei Mem. Cl. Sci.
Fis. Mat. Natur. Sez. I (8) 8 (1967), 237–255. MR 37 #256 Zbl 0204.04802

[Rowen 1988] L. H. Rowen, Ring Theory, Pure and Applied Mathematics 128, Academic Press,
Boston York, 1988. MR 89h:16002 Zbl 0651.16002

Received March 25, 2003. Revised November 25, 2003.

DANIEL R. FARKAS

DEPARTMENT OF MATHEMATICS

VIRGINIA TECH

BLACKSBURG, VA 24061

farkas@math.vt.edu
http://www.math.vt.edu/people/farkas/index.html

GAIL LETZTER

DEPARTMENT OF MATHEMATICS

VIRGINIA TECH

BLACKSBURG, VA 24061

letzter@math.vt.edu
http://www.math.vt.edu/people/letzter/index.html

LANCE W. SMALL

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA SAN DIEGO

LA JOLLA, CA 92093-0112

lwsmall@math.ucsd.edu

http://dx.doi.org/10.1081/AGB-120004489
http://www.ams.org/mathscinet-getitem?mr=2003j:16031
http://www.emis.de/cgi-bin/MATH-item?1029.16016
http://www.ams.org/mathscinet-getitem?mr=99f:17017
http://www.emis.de/cgi-bin/MATH-item?0891.17010
http://www.ams.org/mathscinet-getitem?mr=95h:16047
http://www.emis.de/cgi-bin/MATH-item?0849.16036
http://www.ams.org/mathscinet-getitem?mr=2000g:16006
http://www.emis.de/cgi-bin/MATH-item?0952.16005
http://www.ams.org/mathscinet-getitem?mr=2003g:17025
http://www.emis.de/cgi-bin/MATH-item?1025.17005
http://www.ams.org/mathscinet-getitem?mr=2004h:17017
http://www.emis.de/cgi-bin/MATH-item?02005216
http://www.ams.org/mathscinet-getitem?mr=6,116c
http://www.ams.org/mathscinet-getitem?mr=98b:33040
http://www.emis.de/cgi-bin/MATH-item?0877.33012
http://www.ams.org/mathscinet-getitem?mr=37:256
http://www.emis.de/cgi-bin/MATH-item?0204.04802
http://www.ams.org/mathscinet-getitem?mr=89h:16002
http://www.emis.de/cgi-bin/MATH-item?0651.16002
mailto:farkas@math.vt.edu
http://www.math.vt.edu/people/farkas/index.html
mailto:letzter@math.vt.edu
http://www.math.vt.edu/people/letzter/index.html
mailto:lwsmall@math.ucsd.edu

	1. Semisimple extensions
	2. Weil's Lemma
	3. A particular algebra
	4. Orders and lattices
	5. Splitting by specialization
	6. Reductive extensions
	Acknowledgements
	References

