
Pacific
Journal of
Mathematics

ON THE FUNDAMENTAL GROUPS OF TREES OF MANIFOLDS

HANSPETER FISCHER AND CRAIG R. GUILBAULT

Volume 221 No. 1 September 2005



PACIFIC JOURNAL OF MATHEMATICS
Vol. 221, No. 1, 2005
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We consider limits of inverse sequences of closed manifolds, whose consec-
utive terms are obtained by connect summing with closed manifolds, which
are in turn trivialized by the bonding maps. Such spaces, which we refer to
as trees of manifolds, need not be semilocally simply connected at any point
and can have complicated fundamental groups.

Trees of manifolds occur naturally as visual boundaries of standard non-
positively curved geodesic spaces, which are acted upon by right-angled
Coxeter groups whose nerves are closed PL-manifolds. This includes, for
example, those Coxeter groups that act on Davis’ exotic open contractible
manifolds. Also, all of the homogeneous cohomology manifolds constructed
by Jakobsche are trees of manifolds. In fact, trees of manifolds of this
type, when constructed from PL-homology spheres of common dimension
at least 4, are boundaries of negatively curved geodesic spaces.

We prove that if Z is a tree of manifolds, the natural homomorphism
ϕ : π1(Z)→ π̌1(Z) from its fundamental group to its first shape homotopy
group is injective. If Z = bdy X is the visual boundary of a nonpositively
curved geodesic space X , or more generally, if Z is a Z-set boundary of
any ANR X , then the first shape homotopy group of Z coincides with the
fundamental group at infinity of X: π̌1(Z) = π∞

1 (X). We therefore obtain
an injective homomorphism ψ : π1(Z)→ π∞

1 (X), which allows us to study
the relationship between these groups. In particular, if Z = bdy0 is the
boundary of one of the Coxeter groups 0 mentioned above, we get an injec-
tive homomorphism ψ : π1(bdy0)→ π∞

1 (0).

1. Trees of manifolds

Definition 1.1. We shall call a topological space Z a tree of manifolds if there is
an inverse sequence

M1
f2,1
←− M2

f3,2
←− M3

f4,3
←− · · · ,
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Figure 1. A tree of manifolds.

called a defining sequence for Z , of distinct closed PL-manifolds Mn with collared
disks Dn ⊆ Mn , and continuous functions fn+1,n : Mn+1 → Mn that have the
following properties:

(P1) Z = lim
←−

(
M1

f2,1
←− M2

f3,2
←− M3

f4,3
←− · · ·

)
.

(P2) For each n, the restriction of fn+1,n to the set f −1
n+1,n(Mn \ int Dn), call it

hn+1,n , is a homeomorphism onto Mn \ int Dn , and h−1
n+1,n(∂Dn) is bicollared

in Mn+1.

(P3) For each n, we have limm→∞ diam fm,n(Dm) = 0, where fm,n = fn+1,n ◦

fn+2,n+1 ◦ · · · ◦ fm,m−1 : Mm→ Mn and fn,n = idMn .

(P4) For each pair n < m, the sets fm,n(Dm) and ∂Dn are disjoint.

Remark 1.2. It follows that, for m ≥ n+ 2, the set

Em,n = int Dn ∪ fn+1,n(int Dn+1)∪ fn+2,n(int Dn+2)∪ · · · ∪ fm−1,n(int Dm−1)

can be written as the union of m − n, or fewer, open disks in Mn and that fm,n

restricted to f −1
m,n(Mn \ Em,n) is a homeomorphism onto Mn \ Em,n , which we will

denote by hm,n . Moreover, if for n<m we define the spheres Sm,n = h−1
m,n(∂Dn)⊆

Mm , we see that the collection Sn = {Sn,1, Sn,2, . . . , Sn,n−1} decomposes Mn into
a connected sum

Mn = (Nn,1 # Nn,2 # · · · # Nn,n−1) # Nn,n ≈ Mn−1 # Nn,n.

Hence, Z can be thought of as the limit of a growing tree of connected sums of
closed manifolds. In particular, in dimensions greater than two, we have

π1(Mn)= π1(Nn,1) ∗π1(Nn,2) ∗ · · · ∗π1(Nn,n−1) ∗π1(Nn,n);

and in dimension two, we have

π1(Mn)= Fn,1 ∗π1(Sn,1) Fn,2 ∗π1(Sn,2) · · · ∗π1(Sn,n−2) Fn,n−1 ∗π1(Sn,n−1) Fn,n,

where Fn,i denotes the free fundamental group of the appropriately punctured Nn,i .
Note also that each Sn,i ≈ ∂Di naturally embeds in Z .



ON THE FUNDAMENTAL GROUPS OF TREES OF MANIFOLDS 51

Definition 1.3. We will call a defining sequence M1
f2,1
←−M2

f3,2
←−M3

f4,3
←−· · · well-

balanced if the set
⋃

m≥3 Em,1 either has finitely many components or is dense in
M1, and if for each n ≥ 2, the set h−1

n,n−1(Mn−1 \ Dn−1) ∪
(⋃

m≥n+2 Em,n
)

either
has finitely many components or is dense in Mn .

Remark 1.4. Whether Z has a well-balanced defining sequence or not, will play
a role only in the case when the manifolds Mn are 2-dimensional closed surfaces.

2. The first shape homotopy group

We briefly recall the definition of the first shape homotopy group of a pointed
compact metric space (Z , z0). More details can be found in [Mardešić and Segal
1982].

Definition 2.1. Let (Z , z0) be a pointed compact metric space. Choose an inverse
sequence

(Z1, z1)
f2,1
←− (Z2, z2)

f3,2
←− (Z3, z3)

f4,3
←− · · ·

of pointed compact polyhedra such that

(Z , z0)= lim
←−

(
(Zi , zi ), fi+1,i

)
.

The first shape homotopy group of Z , based at z0, is then given by

π̌1(Z , z0)= lim
←−

(
π1(Z1, z1)

f2,1#
←− π1(Z2, z2)

f3,2#
←− π1(Z3, z3)

f4,3#
←− · · ·

)
.

This definition of π̌1(Z , z0) does not depend on the choice of the inverse sequence.

Remark 2.2. Let pi : (Z , z0)→ (Zi , zi ) denote the projections of the limit (Z , z0)

into its inverse sequence
(
(Zi , zi ), fi+1,i

)
such that pi = fi+1,i ◦ pi+1 for all i .

Since the maps pi induce homomorphisms pi# : π1(Z , z0)→ π1(Zi , zi ) such that
pi#= fi+1,i#◦ pi+1# for all i , we obtain an induced homomorphism ϕ :π1(Z , z0)→

π̌1(Z , z0), which is given by ϕ([α])= ([α1], [α2], [α3], . . .), where αi = pi ◦α.

The following examples illustrate that ϕ : π1(Z , z0)→ π̌1(Z , z0) need not be in-
jective and is typically not surjective.

Example 2.3. Consider the “topologist’s sine curve”

Y =
{
(x, y, z) ∈ R3

| z = 0, 0< x ≤ 1, y = sin 1/x
}
∪

(
{0}× [−1, 1]× {0}

)
.

Define Yi = Y ∪
(
[0, 1/ i]× [−1, 1]× {0}

)
. Let Z and Zi be the subsets of R3 ob-

tained by revolving Y and Yi about the y-axis, respectively, and let fi+1,i : Zi+1 ↪→

Zi be inclusion. Then Z is the limit of the inverse sequence (Zi , fi+1,i ). If we take
z0 = (1, sin 1, 0), then π1(Z , z0) is infinite cyclic, while π̌1(Z , z0) is trivial.
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Example 2.4. We can make the space Z of the previous example path connected,
by taking any arc a ⊆ R3, such that a ∩ Z = ∂a = {z0, (0, 1, 0)}, and then consid-
ering Z+ = Z ∪ a. Notice that both π1(Z+, z0) and π̌1(Z+, z0) are infinite cyclic.
However, the homomorphism ϕ : π1(Z+, z0)→ π̌1(Z+, z0) is trivial.

Example 2.5. Consider the Hawaiian Earring — the union Z =
⋃
∞

k=1 Ck of the
circles Ck =

{
(x, y) ∈R2

| x2
+ (y−1/k)2 = (1/k)2

}
. Put Zi =C1∪C2∪· · ·∪Ci

and let z0 = zi = (0, 0). Define fi+1,i : Zi+1 → Zi by fi+1,i (t) = (0, 0) for
t ∈ Ci+1 and fi+1,i (t) = t for t ∈ Zi+1 \ Ci+1. Then (Z , z0) is the limit of the
inverse sequence

(
(Zi , zi ), fi+1,i

)
. While this time ϕ : π1(Z , z0)→ π̌1(Z , z0) is

injective (see Remark 3.2(i) below), it is not surjective: let li : (S1, ∗)→ (Ci , z0)

be a fixed homeomorphism and, following an idea of Griffiths’, consider for each
i the element

gi = [l1][l1][l1]
−1
[l1]
−1
[l1][l2][l1]

−1
[l2]
−1
[l1][l3][l1]

−1
[l3]
−1. . . [l1][li ][l1]

−1
[li ]
−1

of π1(Zi , zi ). Then the sequence (gi )i is an element of the group π̌1(Z , z0) which
is clearly not in the image of ϕ. (Indeed, combining this observation with the
appendix of [Zdravkovska 1981], where the higher dimensional analogue is being
discussed, we see that the homomorphism ϕ : π1(Z ′)→ π̌1(Z ′) is not surjective
for any metric compactum Z ′ which is shape equivalent to Z .)

Example 2.6. The canonical homomorphism from the fundamental group of a tree
of manifolds to its first shape homotopy group is not surjective if, using the notation
of Remark 1.2, π1(Nn,n) 6= 1 for infinitely many n. Indeed, in Example 2.5 it is
irrelevant, for the nonsurjectivity argument, just how the circles Ck are joined. We
may as well consider the limit (Z , z0) of any inverse sequence

(
(Zi , zi ), fi+1,i

)
,

where Z1 = C1 is a circle, Zi+1 is equal to Zi joined with some circle Ci+1 at
some point pi ∈ Zi , fi+1,i (t)= pi for t ∈ Ci+1 and fi+1,i (t)= t otherwise. If we
change the definition of the loops li to include a possible change of base point, the
argument of Example 2.5 goes through to show that

ϕ : π1(Z , z0)→ π̌1(Z , z0)

is not surjective. Therefore, this homomorphism is also not surjective for trees of
manifolds, provided π1(Nn,n) 6= 1 for infinitely any n. In the case of a tree of
manifolds, we instead run loops ln through the punctured attachments Nn,n , where
they can pick up appropriate nontrivial fundamental group elements, whenever
available, that is, whenever π1(Nn,n) 6= 1. For the corresponding element (gn)n

of the shape group not to be in the image of the homomorphism, it suffices if this
occurs infinitely often. (Moreover, as was the case in Example 2.5, ϕ : π1(Z ′)→
π̌1(Z ′) is not surjective for any metric compactum Z ′ which is shape equivalent to
such Z .)
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Remark 2.7. In contrast to the above examples, it is known that if the compact
metric space Z is connected, locally path connected and semilocally simply con-
nected, then ϕ : π1(Z , z0)→ π̌1(Z , z0) is an isomorphism [Kuperberg 1975].

3. Statement of the main theorem

Theorem 3.1. Suppose Z is a tree of manifolds, and z0 ∈ Z . In case Z is 2-
dimensional, suppose further that Z admits a well-balanced defining sequence.
Then the canonical homomorphism ϕ : π1(Z , z0)→ π̌1(Z , z0) is injective.

We will prove this theorem in Section 6.

Remark 3.2. Other classes of spaces Z for which ϕ : π1(Z , z0)→ π̌1(Z , z0) has
been shown to be injective, include (i) one-dimensional compacta [Curtis and Fort
1959; Eda and Kawamura 1998; Cannon and Conner 1998] and (ii) subsets of
closed surfaces [Fischer and Zastrow 2005].

Our result can be viewed in the spirit of earlier work [Edwards and Hastings
1976; Ferry 1980; Geoghegan and Krasinkiewicz 1991] regarding the “improv-
ability” of a compactum within its shape class when comparing its homotopy
theory, strong shape theory and shape theory. Specifically, the homomorphism
ϕ : π1(Z , z0)→ π̌1(Z , z0) factors through the first strong shape homotopy group
π s

1(Z , z0):

π1(Z , z0)
ϕ1
→ π s

1(Z , z0)
ϕ2
→ π̌1(Z , z0),

where ϕ2 is always surjective and has kernel

lim
←−

1(π2(Z1, z1)
f2,1#
←− π2(Z2, z2)

f3,2#
←− π2(Z3, z3)

f4,3#
←− · · ·

)
.

(See [Mardešić and Segal 1982, §III.9] for details.) The question of improvability,
in this context, then becomes: Which of the homomorphisms ϕ1, ϕ2, or ϕ can be
made injective, surjective, or bijective upon replacing Z by a metric compactum
Z ′, which is shape equivalent to Z?

Let Z be a tree of manifolds. Then the above π2-system is Mittag-Leffler, so
that its lim1 is trivial. Consequently, ϕ2 : π

s
1(Z , z0) → π̌1(Z , z0) is an isomor-

phism. Example 2.6 then shows that ϕ1 : π1(Z , z0)→ π s
1(Z , z0) can almost never

be surjectively improved, while Theorem 3.1 states that it is already injectively
improved. It follows that these trees of manifolds are all-around “1-improved”.

4. Coxeter group boundaries

We now present an application of Theorem 3.1 to boundaries of certain nonpos-
itively curved geodesic spaces. Recall that a metric space is proper if all of its
closed metric balls are compact. A geodesic space is a metric space in which any
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two points lie in a geodesic, i.e. a subset that is isometric to an interval of the
real line in its usual metric. A proper geodesic space X is said to be nonpositively
curved if any two points on the sides of a geodesic triangle in X are no further apart
than their corresponding points on a reference triangle in Euclidean 2-space. The
visual boundary of a nonpositively curved geodesic space X , denoted by bdy X , is
defined to be the set of all geodesic rays emanating from an arbitrary but fixed point
x0 endowed with the compact open topology. (See [Bridson and Haefliger 1999] for
more details.) Let some geodesic base ray ω : [0,∞)→ X with ω(0)= x0 be given
and let us denote the concentric metric spheres and closed concentric metric balls
by Sx0(i)= {x ∈ X | d(x, x0)= i} and Bx0(i)= {x ∈ X | d(x, x0)≤ i}, respectively.
Under the relatively mild assumption that the pointed concentric metric spheres
(Sx0(i), ω(i)) have the pointed homotopy type of ANRs, it is shown in [Conner
and Fischer 2003] that

π̌1(bdy X, ω)= π∞1 (X, ω).

Here, π∞1 (X, ω) is the fundamental group at infinity of X , that is, the limit of the
sequence

π1
(
X \ Bx0(1), ω(2)

)
← π1

(
X \ Bx0(2), ω(3)

)
← π1

(
X \ Bx0(3), ω(4)

)
← · · · ,

whose bonds are induced by inclusion followed by a base point slide along ω. In
fact, this relationship holds in more generality. (See Remark 4.2 below.)

A class of visual boundaries to which Theorem 3.1 applies, arises from non-
positively curved simplicial complexes, which are acted upon by certain Cox-
eter groups, whose definition we now briefly recall: let V be a finite set and
m : V × V → {∞}∪ {1, 2, 3, . . .} a function with the property that m(u, v)= 1 if
and only if u = v, and m(u, v)= m(v, u) for all u, v ∈ V . Then the group

0 =
〈
V | (uv)m(u,v) = 1 for all u, v ∈ V

〉
defined in terms of generators and relations is called a Coxeter group. If moreover
m(u, v) ∈ {∞, 1, 2} for all u, v ∈ V , then 0 is called right-angled. The abstract
simplicial complex

N (0, V )= {∅ 6= S ⊆ V | S generates a finite subgroup of 0}

is called the nerve of the group 0. For a right-angled Coxeter group, the isomor-
phism type of the nerve N (0, V )= N (0) does not depend on the Coxeter system
(0, V ) but only on the group 0 [Radcliffe 2001].

Conversely, given any finite simplicial complex M , there is exactly one right-
angled Coxeter group 0 whose nerve N (0) is isomorphic to the first barycentric
subdivision M ′ of M ; namely, the Coxeter group 0 which is generated by the vertex
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set of M ′ and whose only relations are of the form (uv)2= 1 whenever {u, v} ∈M ′

[Davis 2002].
For the rest of this section, 0 will be a right-angled Coxeter group whose nerve

N (0) is a closed PL-manifold. This includes, for example, the Coxeter groups
generated by the reflections of any one of Davis’ exotic open contractible manifolds
of dimension 4 and higher, for which the nerves are PL-homology spheres; see
[Davis 1983].

As described, for example, in [Davis 2002], 0 acts properly discontinuously on
a nonpositively curved (and hence contractible) simplicial complex X (0), its so-
called Davis–Vinberg complex, by isometry and with compact quotient. In [Fischer
2003] it is shown that the visual boundary of X (0) is a (well-balanced) tree of
manifolds. (The proof given there also applies to the nonorientable case, by virtue
of [Stallings 1995].) The visual boundary of X (0) is usually referred to as the
boundary of 0 and is denoted by bdy0. Since Coxeter groups are semi-stable
at infinity [Mihalik 1996] and since 0 is one-ended, π∞1 (X (0), ω) = π

∞

1 (0) is
actually an invariant of the group 0 [Geoghegan and Mihalik 1996].

In summary, we obtain:

Corollary 4.1. Let 0 be a right-angled Coxeter group whose nerve N (0) is a
closed PL-manifold. Then the canonical homomorphism ψ : π1(bdy0)→ π∞1 (0)

is injective.

Remark 4.2. The coincidence of π̌1(bdy X, ∗) with π∞1 (X, ∗) holds in a context
larger than that of nonpositively curved geodesic spaces and their boundaries. Iden-
tifying each point x of a nonpositively curved geodesic space X with the unique
geodesic segment from x0 to x , we obtain a natural compactification X̄= X∪bdy X .
Since open metric balls in X are convex and since they can be used to refine any
open cover of X , it follows from [Hu 1965, Theorem IV.4.1] that X is an ANR.
Moreover, geodesic retraction towards the base point x0 gives rise to a homotopy
H : X̄ × [0, 1] → X̄ such that H0 = id, H1(X̄) = {x0} and Ht(X̄) ∩ bdy X = ∅
for all t > 0. In particular, X̄ is contractible and ε-dominated by X for every
ε > 0. Hence, X̄ is an AR [Hanner 1951] and bdy X is a Z -set boundary of X .
(Recall that a closed subset Z of a compact ANR X̄ is called a Z-set in X̄ if there
is a homotopy H : X̄ × [0, 1] → X̄ such that H0 = id and Ht(X̄) ∩ Z = ∅ for
all t > 0. In this situation, X̄ is called a Z-compactification of X = X̄ \ Z and
Z is called a Z-set boundary of X .) We claim that if Z is a Z -set boundary of
any ANR X , then the first shape homotopy group of Z always coincides with the
fundamental group at infinity of X . Indeed, if Z happens to have compact polyhe-
dral neighborhoods N1 ⊇ N2 ⊇ N3 ⊇ · · · in X̄ with Z =

⋂
∞

i=1 Ni , then π̌1(Z , ∗)
coincides with π∞1 (X, ∗) by definition, so long as the base points are chosen con-
sistently. However, even if such polyhedral neighborhoods are not available, we
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can argue via a detour through Hilbert cube manifold theory, the basic facts of
which are reviewed in [van Mill 1989, Chapter 7]: since X̄ is a compact ANR, then
X̄×[−1, 1]N is a compact Hilbert cube manifold [Edwards 1980], or equivalently,
a compact ANR with the disjoint-cells property [Toruńczyk 1980]. Choose a map
f : X̄ → [0, 1] with f −1({0}) = Z and define g : X̄ × [−1, 1]N→ X̄ × [−1, 1]N

by g(s, (ti )i∈N) = (s, ( f (s) · ti )i∈N). Let Y denote the image of g. Then Y is a
retract of X̄ × [−1, 1]N and therefore an ANR. Also, Y is homeomorphic to a Z -
compactification of X × [−1, 1]N by Z , where we identify Z with Z ×{0}. Since
X×[−1, 1]N has the disjoint-cells property, so does Y ≈ (X×[0, 1]N)∪Z . Conse-
quently, Y is a Hilbert cube manifold. (In fact, since g : X̄×[−1, 1]N→Y is a cell-
like map between compact Hilbert cube manifolds, it is a near-homeomorphism.)
Hilbert cube manifolds are triangulable and the fundamental group at infinity of X
is isomorphic to that of X ×[−1, 1]N. Therefore we have recovered our claim.

5. Trees of homology spheres as boundaries of
negatively curved geodesic spaces

In this section we present a general procedure for building trees of manifolds from
sequences of homology spheres (of dimension at least 4) in such a way that the
resulting tree of manifolds becomes the visual boundary of a negatively curved
geodesic space in a natural way. This procedure is flexible enough to match a
variety of given trees of manifolds. For example, at the end of the section, we will
use it to reproduce Jakobsche’s homogeneous cohomology manifolds in this way.
It follows that their fundamental groups are subgroups of the fundamental groups
at infinity of the underlying negatively curved geodesic spaces.

For κ < 0, let Hd(κ) denote the simply connected complete Riemannian mani-
fold of dimension d with constant negative sectional curvature κ . If we change the
comparison space in the definition of nonpositively curved geodesic space from
Euclidean 2-space to H2(κ), we arrive at the concept of a negatively curved geo-
desic space (with curvature bound κ). Since a negatively curved geodesic space X
is, in particular, nonpositively curved, its visual boundary bdy X can be defined as
in Section 4 and the results mentioned there apply.

Consider now a sequence N1, N2, N3, . . . of PL-homology spheres of common
dimension d ≥ 4. Then each Nn bounds a unique (d + 1)-dimensional compact
contractible PL-manifold Ln . In [Ancel and Guilbault 1997] it is shown that, given
any κ < 0, the interior of every compact contractible PL-manifold of dimension at
least 5 admits a geodesic metric of negative curvature with curvature bound κ . If
we equip the interior L̊n of each Ln with this geodesic metric of negative curvature,
using some arbitrary but fixed common curvature bound κ , then the visual boundary
of L̊n is homeomorphic to Nn . Moreover, by the very nature of the construction
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in [Ancel and Guilbault 1997], we can find in each L̊n various geodesic subsets
A, which are isometric to half-spaces of Hd+1(κ) and whose boundaries in L̊n are
isometrically embedded copies of Hd(κ).

In order to see where such a region A might be located, we recall that the con-
struction of [Ancel and Guilbault 1997] represents each L̊n as the union of three
pieces: two open cones O(Q0) and O(Q1) on PL-manifolds Q0 and Q1, which
are homology d-cells, and the product O(6) × [0, 1] of the open cone on their
common boundary 6 = ∂Q0 ≈ ∂Q1 with the unit interval. Each of the cones
O(Qi ) are equipped with the κ-cone metric, as described in [Bridson and Haefliger
1999, p. 59], and O(6)×[0, 1] is given a metric which can be described as follows:
let Hd

0(κ) be a copy of Hd(κ) in Hd+1(κ) passing through the origin and let Hd
1(κ)

be a parallel copy of Hd
0(κ), translated by one unit along the perpendicular through

the origin. The closure of the region between Hd
0(κ) and Hd

1(κ) is homeomorphic
to Hd(κ) × [0, 1] in a natural way, and we metrize Hd(κ) × [0, 1] by this cor-
respondence. The metric on O(6) × [0, 1] is now obtained by identifying each
O(σ d−1)× [0, 1], where σ d−1 is a top-dimensional simplex of 6, with a natural
copy in Hd(κ)× [0, 1] endowed with this new metric. The three pieces O(Q0),
O(Q1), and O(6) × [0, 1] are then glued together along the strongly geodesic
subsets O(∂Qi ) ≈ O(6) × {i} (i = 0, 1) to form L̊n . Therefore, we can find a
subset A of L̊n , as described above, in any O(σ d) with σ d

∈ Qi (i = 0, 1) as well
as in any O(σ d−1)× [0, 1] with σ d−1

∈ 6. Notice that A determines a disk D at
infinity whose interior can be arranged to include any given interior point at infinity
of either O(σ d) or O(σ d−1)× [0, 1]. We also can arrange for D to be as small at
infinity as we like. See Figure 2.

 O(6)×[0, 1]
O(Q1)O(Q0)

A
A

σ d
σ d+1

Figure 2. L̊n is made up of O(Q0), O(6)×[0, 1] and O(Q1).
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Now, from each of L̊1 and L̊2, remove the interior of such a half-space A and
glue the remainders along the embedded copies of Hd(κ) described above. This
yields a negatively curved geodesic space (with curvature bound κ) whose visual
boundary is the connected sum N1 # N2. Continuing in this fashion, we obtain a
negatively curved geodesic space X (with curvature bound κ) whose visual bound-
ary bdy X is the inverse limit Z of the homology spheres Mn = N1 # N2 # · · ·# Nn ,
which, when regarded as an inverse system under geodesic retraction, satisfies the
definition of a tree of manifolds.

We have a lot of flexibility in how to choose the subsets A of L̊n . In particular,
we are in great control of location and size of D in Nn . We therefore can produce
a variety of trees of manifolds in this way. We could, for example, have the terms
N2, N3, . . . accumulate to exactly one “bad” point of Z . Going the other extreme,
we could distribute the terms so as to make Z non-semilocally simply connected
at every point, assuming that none of the Ni is simply connected. Such is the
case with Jakobsche’s homogeneous cohomology manifolds, for example, whose
definition we now briefly recall.

In [Jakobsche 1991] Jakobsche describes how to construct a d-dimensional ho-
mogeneous cohomology manifold Z from an orientable d-dimensional closed PL-
manifold N and a countable collection N of (distinct) d-dimensional PL-homology
spheres. The construction renders Z as a tree of manifolds, with a defining se-
quence whose first term is M1= N and whose general term Mn is a connected sum
of N and various members of the collection N. Jakobsche imposes an axiom system
on the defining sequence, which ensures that the resulting space Z only depends
on the pair (N ,N). This is achieved by requiring that each of the elements of N is
attached infinitely often and in an increasingly dense fashion.

Combining this discussion with Theorem 3.1 and the remarks of Section 4, we
record:

Proposition 5.1. Let N be a d-dimensional PL-homology sphere with d ≥ 4 and
let N be a countable collection of distinct d-dimensional PL-homology spheres.
Consider the Jakobsche homogeneous cohomology manifold Z based on the pair
(N ,N). Then for any negative real number κ < 0, Z is the visual boundary of some
negatively curved geodesic space X with curvature bound κ . Moreover, for every
ω∈ Z = bdy X , the natural homomorphism ψ :π1(Z , ω)→π∞1 (X, ω) is injective.

6. Proof of the main theorem

Let Z be a tree of manifolds with defining sequence M1
f2,1
←− M2

f3,2
←− · · · . Let Dn ,

hm,n , Em,n , and Sn = {Sn,1, Sn,2, . . . , Sn,n−1} be as in Section 1. Again, we denote
projection by pn : Z→ Mn . Since the result is known for one-dimensional spaces
(Remark 3.2), we may assume that the (common) dimension of the manifolds Mn
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is at least 2. Let α : S1
→ Z be a loop such that αn = pn ◦ α : S1

→ Mn is null-
homotopic for each n. We wish to show that α : S1

→ Z is null-homotopic. We
will do this by constructing a map β : D2

→ Z with β|S1 = α.
By assumption, we may choose maps βn : D2

→ Mn with βn|S1 = αn . The
difficulty of the proof, of course, is that in general βn 6= fn+1,n ◦ βn+1, so that the
sequence (βn)n does not even constitute a function D2

→ Z into the inverse limit,
much less a map extending α.

An outline of our strategy. Although we might not be in a position to move the
maps αn the slightest bit, we can place βn in general position with respect to the
spheres of the collection Sn while having βn|S1 approximate αn with increasing
accuracy as n increases. Indeed, we will arrange for each cancellation pattern
β−1

n (
⋃

Sn), to consist of finitely many pairwise disjoint straight line segments in
D2 having their endpoints in S1. Ideally, we would like to paste together our map β
from appropriate pieces belonging to the maps of the sequence (βn)n , namely those
pieces that cancel the elements of π1(Nn,n). However, these cancellation patterns
will in general not be compatible. For example, in dimensions greater than two,
the cancellation pattern for an element

[αn+1] = h1 ∗ k1 ∗ h2 ∗ k2 ∗ · · · ∗ h5 ∗ k5 = 1 ∈ π1(Mn+1)= π1(Mn)∗π1(Nn+1,n+1)

might be witnessed by βn+1 as

h1(k1(h2(k2)h3)k3(h4)k4)h5(k5)= 1.

The induced cancellation pattern for

[αn] = fn+1,n#([αn+1])= h1 ∗ 1 ∗ h2 ∗ 1 ∗ · · · ∗ 1 ∗ h5 ∗ 1= 1 ∈ π1(Mn) ∗ {1}

as obtained from fn+1,n ◦βn+1 would then be given by

h1((h2h3)(h4))h5 = 1.

On the other hand, the map βn might cancel [αn] as (h1h2)(h3(h4)h5)= 1. This is
illustrated in Figure 3, which depicts the sets β−1

n (∂Dn), ( fn+1,n ◦ βn+1)
−1(∂Dn),

and β−1
n+1(Sn+1,n) (after general position) as dashed lines. If k1 is not trivial and if

k3 does not cancel k4 in π1(Nn+1,n+1), then we cannot use any of the pieces of the
map βn to construct β.

As a remedy, we will repeatedly select subsequences until, at least approxi-
mately, all cancellation patterns are coherent. That is, until the sets β−1

n
(⋃

Sn
)

are approximately nested with increasing n. Once this is achieved, the union of
these cancellation patterns will produce a limiting pattern P of possibly infinitely
many straight line segments in D2 whose interiors are pairwise disjoint and whose
endpoints lie in S1. Each segment of P, at least approximately, will then map under
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Figure 3. Incompatible cancellations.

some βn into some Sn,i . Note that we must accommodate the possibility that the
image of αn meets some Sn,i in infinitely many points. This effect is accounted for
by a possible increase of segments c ⊆ β−1

m
(⋃

Sm
)

for which βm(c)⊆ Sm,i , as m
increases. We will then define the map β : D2

→ Z in two stages.
First, we will extend α : S1

→ Z to a map β : S1
∪ P→ Z . If dim Z = 2,

this can be done so that each segment of P maps to a local geodesic of that simple
closed curve of Z which corresponds to the appropriate ∂Di . If dim Z ≥ 3, any
coherent extension into the spheres of Z corresponding to ∂Di will do, so long
as the extension to a segment does not deviate too much from the image of its
endpoints. All this must be done with sufficient care, so as to make the map β :
S1
∪P→ Z uniformly continuous, which will allow us to extend it to the closure

of its domain.
Next, we will focus on the components of the subset of D2 on which the map β is

not yet defined. We shall call these components holes. The boundary of a hole H ,
denoted by bdy H , is a simple closed curve, which either maps to a singleton under
β, in which case we extend β trivially over the closure cl H , or pn◦β(bdy H)⊆ N ∗n
for some n, where

N ∗1 = M1 \
(⋃

m≥3 Em,1
)

and
N ∗n = Mn \

(
h−1

n,n−1(Mn−1 \ Dn−1)∪
(⋃

m≥n+2 Em,n
))

for n ≥ 2.

The map pn ◦ β : bdy H → N ∗n ⊆ Mn can be extended to a map pn ◦ β : cl H →
Mn so long as the hole H is sufficiently “thin”, because Mn is an ANR. For the
moment, assume that dim Z ≥ 3. The map pn ◦ β : cl H → Mn can then be cut
off at Sn,n−1 = h−1

n,n−1(∂Dn−1) and pushed off
⋃

m≥n+2 Em,n . This allows us to
extend the map pn ◦ β : bdy H → N ∗n to a map pn ◦ β : cl H → N ∗n . Since N ∗n
naturally embeds in Z , we have an extension of β : bdy H → Z to β : cl H → Z .
For each n, there will be finitely many maps pn ◦ β : bdy H → N ∗n ⊆ Mn for
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which the hole H is not thin enough to make this argument. In those cases, some
fm,n ◦ βm : D2

→ Mn , with sufficiently large m, will be witness to the fact that
pn ◦ β : bdy H → Mn is null-homotopic after all. This is due to the approximate
nestedness of the cancellation patterns β−1

n
(⋃

Sn
)
. Since for sufficiently large n

the subset of Z which is homeomorphic to N ∗n is arbitrarily small, this procedure
guarantees continuity of the resulting map β : D2

→ Z .
If dim Z = 2, the above process requires a little bit more care and is helped by

the assumption that the defining tree is well-balanced. Specifically, the sets N ∗n will
either be ANRs or one-dimensional. In the former case, we can adapt the argument
we just made, and in the latter case, we make use of Remark 3.2(i).

The remainder of Section 6 contains the necessary details.

General position and other approximations. We choose subsets S+m,n ⊆ Mm such
that

(1) S+m,n is the image of an embedding of Sm,n × [−1, 1] into Mm \ Dm , under
which Sm,n ×{0} is mapped onto Sm,n;

(2) the collections S+m = {S
+

m,1, S+m,2, . . . , S+m,m−1} consist of pairwise disjoint
sets;

(3) hm+1,m(S+m+1,n)⊆ int S+m,n;

(4)
⋂

m>n hm,n(S+m,n)= ∂Dn .

For every n ≥ 2, we then choose finite collections An and Gn of arcs in S1 such
that

(5) the elements of An are pairwise disjoint;

(6) the elements of Gn are pairwise disjoint;

(7) S1
=

(⋃
An

)
∪

(⋃
Gn

)
;

(8)
(⋃

An
)
∩

(⋃
Gn

)
is finite;

(9) αn
(⋃

An
)
⊆

⋃
{int S+ | S+ ∈ S+n };

(10) αn
(⋃

Gn
)
⊆ Mn \ hn+1,n

(⋃
S+n+1 \ {S

+

n+1,n}
)
.

Remark 6.1. The maps αn|Gn and αn|An represent [αn] ∈ π1(Mn) as an element of
the decomposition given in Remark 1.2.

On each Mn we fix a metric dn . Put ε1 = 1. Inductively, we choose εn > 0 so
that dn

(
fm,n(x), fm,n(y)

)
< min

{ 1
m , εn

}
whenever n < m and dm(x, y) < εm .

Notation. Suppose X is a topological space which is connected, locally path con-
nected, and semilocally simply connected. Fix a cover U of X consisting of open
path connected subsets U of X for which the inclusion induced homomorphism
π1(U ) → π1(X) is trivial. Consider the following category ϒ(U). As objects



62 HANSPETER FISCHER AND CRAIG R. GUILBAULT

we take the elements of U. For the set Hom(U, V ) of morphisms U
[τ ]
−→ V we

take equivalence classes [τ ] of paths τ : [0, 1] → X with τ(0) ∈ U and τ(1) ∈ V ,
where τ ∼ µ if and only if there is a homotopy H : [0, 1] × [0, 1] → X such that
H(s, 0)= τ(s), H(s, 1)= µ(s), H(0, t) ∈U and H(1, t) ∈ V for all s, t ∈ [0, 1].
If τ : [a, b]→ X is a path whose domain is an arbitrary compact interval, then [τ ]
will of course denote the equivalence class of the path τ ′ : [0, 1] → X given by
τ ′(t)= τ(a+ t (b− a)). We compose morphisms

U
[τ ]
−→ V and V

[µ]
−→W

of this category as follows. Choose an arbitrary path γ : [0, 1] → V with γ (0) =
τ(1) and γ (1) = µ(0) and put [τ ][µ] = [τ · γ · µ], where τ · γ · µ denotes the
usual concatenation of the three paths. Well-definition and associativity is checked
easily. The equivalence class containing a constant path in U yields an identity
morphism

U
1U
−→U.

Also, for every morphism U
[τ ]
−→ V we have a morphism V

[τ ]
−→ U , given by

τ(t)= τ(1− t), such that [τ ][τ ] = 1U and [τ ][τ ] = 1V . Hence, the category ϒ(U)
is a groupoid. For a fixed U0 ∈U, we obtain a group 51(U,U0)= Hom(U0,U0).

We leave the straightforward proof of the next lemma to the reader.

Lemma 6.2. Let (X, d) be a connected, locally path connected, semilocally simply
connected, and compact metric space. Then there is a finite cover U of X consist-
ing of open path connected subsets such that every loop, which lies in the union of
two elements of U contracts in X . Let ε > 0 be a Lebesgue number for any such
cover U. If

U
[τ ]
−→ V and U

[µ]
−→ V

are morphisms of ϒ(U) such that d(τ (t), µ(t)) < ε for all t ∈ [0, 1], then these
two morphisms [τ ] and [µ] agree. Moreover, for every x0 ∈ U0 ∈ U, the function
ζ : π1(X, x0)→51(U,U0) given by ζ([τ ])= [τ ], is an isomorphism. �

Convention. We want to choose εn sufficiently small so that 3εn is a Lebesgue
number for some covers Un , Vn,i , V+n,i of Mn , Sn,i , S+n,i , respectively, which
are chosen as in Lemma 6.2. Whenever convenient, and without further notice,
we will perform computations in 51(Un, ∗), 51(Vn,i , ∗), 51(V

+

n,i , ∗) instead of
π1(Mn, ∗), π1(Sn,i , ∗), π1(S+n,i , ∗), respectively. That is, we might perform group-
oid computations in ϒ(Un), ϒ(Vn,i ), ϒ(V+n,i ), respectively.

We choose maps β ′n : D2
→ Mn such that β ′1 = β1 and, denoting α′n = β

′
n|S1 ,

such that for n ≥ 2:

(11) β ′n is in general position with respect to Sn = {Sn,1, Sn,2, · · · , Sn,n−1};
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(12) αn and α′n differ only over
⋃ {

int hn+1,n(S+n+1,i ) | i = 1, 2, . . . , n− 1
}
;

(13) dn(αn, α
′
n) < εn .

Hence,

(14) α′n
(⋃

An
)
⊆

⋃
{int S+ | S+ ∈ S+n };

(15) α′n
(⋃

Gn
)
⊆ Mn \ hn+1,n

(⋃
S+n+1 \ {S

+

n+1,n}
)
.

The limiting cancellation pattern. (This procedure was inspired by [Cannon and
Conner 1998].) We may assume that the set

⋃
{β ′n
−1
(S) | S ∈ Sn}, for n ≥ 2,

consists of finitely many disjoint arcs, whose collection we will denote by Bn . (We
can eliminate possible simple closed curves, one innermost circle at a time, because
the image of such a circle lies in some Sn,i , where it must be null-homotopic. This
is also true in dimension 2, because M1,M2, . . . is a sequence of distinct closed
surfaces. Therefore, as usual, we can cut off the map at this circle, cap it within
Sn,i , and move this portion of the map off of Sn,i .) The endpoints of the elements
of Bn lie in S1. In fact, we may arrange that Bn is a finite collection of disjoint
straight line segments in D2, whose endpoints lie in

⋃
An . In the case of surfaces,

we also arrange that for each c∈Bn with β ′n(c)⊆ Sn,i , the map fn,i ◦β
′
n|c : c→ ∂Di

is a local geodesic, as measured by some fixed homeomorphism ρi : ∂Di
∼−→ S1.

Lemma 6.3. Suppose i < n< k≤m. Let l ∈Ak and c∈Bm be such that l∩∂c 6=∅
and β ′m(c)⊆ Sm,i . Then αk(l)⊆ int S+k,i and there is exactly one q ∈An with l ⊆ q
and αn(q)⊆ int S+n,i .

Proof. Since α′m(∂c)= β ′m(∂c)⊆ Sm,i ⊆ int hm+1,m(S+m+1,i ), property (12) implies
that αm(∂c)⊆ int hm+1,m(S+m+1,i ). Applying hm,k to this inclusion and using (3), we
obtain αk(∂c)⊆ int hk+1,k(S+k+1,i )⊆ int S+k,i . Since l ∩ ∂c 6=∅, it follows from (2)
and (9) that αk(l) ⊆ int S+k,i . Applying hk,n , this yields αn(l) ⊆ int hn+1,n(S+n+1,i ).
Consequently, because of (5)–(10), there is q ∈An with l ⊆ q and αn(q)⊆ int S+n,i .

�

Using Lemma 6.3 as a selection principle, we now single out cancellation pat-
terns for each [αn]∈π1(Mn). For every pair m≥n≥2 we select a subset Bm,n⊆Bm

with the following properties:

(16) For every d ∈Bm,n there is exactly one i < n such that β ′m(d)⊆ Sm,i .

(17) If there is a c ∈Bm whose endpoints lie in two distinct elements q1, q2 ∈An ,
then there is exactly one d ∈Bm,n having one endpoint in each of q1 and q2;
moreover, β ′m(d)⊆ Sm,i if and only if αn(q1)⊆ int S+n,i and αn(q2)⊆ int S+n,i .

(18) There is no d ∈Bm,n having both endpoints in the same element of An .

(19) If n ≤ k ≤ m, then Bm,n ⊆Bm,k .
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Remark 6.4. Bm,n is one possible cancellation pattern for [αn] = 1 ∈ π1(Mn) (as
represented by αn|Gn and αn|An ), namely the one induced by the cancellation pattern
Bm,m of [αm] = 1 ∈ π1(Mm) (as represented by αm |Gm and αm |Am ). However, the
cancellation patterns Bm,n and Bk,n for [αn] need not be compatible.

We shall call Bm,n and Bk,n equivalent if one can be obtained from the other by
moving the endpoints of their segments within the arcs of An . Clearly, for every
n≥ 2, infinitely many of (Bm,n)m≥n are equivalent. So, we can select an increasing
sequence (mk)k of natural numbers such that for all n ≥ 2, all of (Bmk ,n)mk≥n are
equivalent. We can go even further, and assume that each sequence (Bmk ,n)mk≥n

converges to a finite collection Pn of straight line segments in D2, whose endpoints
lie on S1 and whose interiors are pairwise disjoint. Finally, we define P=

⋃
n≥2 Pn .

From (19) we get:

Lemma 6.5. If n ≤ k, then Pn ⊆ Pk . In particular, P is a (possibly infinite)
collection of straight line segments, whose endpoints lie on S1 and whose interiors
are pairwise disjoint. �

The limiting pattern P has the following separation property:

Lemma 6.6. If x, y∈ S1 are such that αn(x) and αn(y) are separated by an element
of Sn in Mn , for some n, then there is a c ∈P such that c separates x from y in D2.

Proof. Say, Sn,i (i < n) separates αn(x) from αn(y) in Mn . Then ∂Di separates
αi (x) from αi (y) in Mi . So, by (3) and (4), there is an N > n such that if m ≥ N ,
then hm,i (S+m,i ) separates αi (x) from αi (y) in Mi . Hence, if m ≥ N , then S+m,i
separates αm(x) from αm(y) in Mm , and consequently S+m,i separates α′m(x) from
α′m(y) in Mm , by (3) and (12). Now suppose mk > N . Then Smk ,i separates
α′mk

(x) from α′mk
(y) in Mmk . So, if q is any arc in D2 from x to y, we must have

β ′mk
(q)∩ Smk ,i 6=∅. Consequently, there is a c ∈Bmk such that β ′mk

(c)⊆ Smk ,i and
such that c separates x from y in D2. Let the endpoints of c be in the elements
l1, l2 ∈Amk . By Lemma 6.3, there are q1, q2 ∈AN with l1 ⊆ q1, l2 ⊆ q2, αN (q1)⊆

int S+N ,i , and αN (q2) ⊆ int S+N ,i . Hence, α′N (q1) ⊆ int S+N ,i and α′N (q2) ⊆ int S+N ,i ,
so that x and y are neither in q1 nor in q2, since S+N ,i separates α′N (x) from α′N (y).
In particular, q1 6= q2 and each of the two components of S1

\ (q1 ∪ q2) contains
one of x or y. Therefore, by (17), for every mk > N , there is exactly one segment
d ∈ Bmk ,N having one endpoint in each of q1 and q2, and any such segment must
separate x from y in D2. Now, the sequence (Bmk ,N )mk>N , which consists of
equivalent patterns, converges to PN . We conclude that there is a c ∈ PN ⊆ P,
which separates x from y in D2. �

In order to simplify subscripts later on, we now replace β ′m by fmk+1,m ◦ β
′
mk+1

and Bm,n by Bmk+1,n , respectively, whenever mk < m < mk+1. Consequently, we
may assume that every (Bm,n)m≥n is a sequence of equivalent patterns converging
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to Pn . Clearly, this substitution does not affect Properties (16)–(19), Lemma 6.5,
or Lemma 6.6. Notice also that, because of our choice of εmk+1 on page 61, Prop-
erties (11)–(13) are still valid. Since we will no longer need the collections An and
Gn , we dispose of them at this point. Finally, we verify

Lemma 6.7. For every c ∈ Pn there is exactly one i ∈ {1, 2, . . . , n− 1} such that
for each m ≥ n there is a cm ∈Bm,n such that the following properties hold:

(i) β ′m(cm)⊆ Sm,i .

(ii) fm,n ◦β
′
m(cm)⊆ Sn,i .

(iii) cm→ c as m→∞.

(iv) αn(∂c)⊆ Sn,i .

(v) αi (∂c)⊆ ∂Di .

Proof. By construction, there is exactly one i <n such that there are cm ∈Bm,n with
β ′m(cm)⊆ Sm,i and cm→ c. Item (ii) follows from (i) and (v) follows from (iv). So,
we only have to prove (v). To this end, write ∂cm = {xm, ym} and ∂c= {x, y} such
that xm→ x and ym→ y. For all m≥n, we have fm,i ◦α

′
m(∂cm)= fm,i ◦β

′
m(∂cm)⊆

∂Di . Let ε > 0 be given. Choose m ≥ n such that di (αi (xm), αi (x)) < ε/2 and
1/m < ε/2. Then, since dm(α

′
m, αm) < εm , we get

di
(

fm,i ◦α
′

m(xm), αi (x)
)

= di
(

fm,i ◦α
′

m(xm), fm,i ◦αm(x)
)

≤ di
(

fm,i ◦α
′

m(xm), fm,i ◦αm(xm)
)
+ di

(
fm,i ◦αm(xm), fm,i ◦αm(x)

)
≤ 1/m+ di

(
αi (xm), αi (x)

)
≤ ε/2+ ε/2= ε.

Hence αi (x) ∈ ∂Di . Similarly, αi (y) ∈ ∂Di . �

Extending the map over the limiting cancellation pattern.

Lemma 6.8. Suppose dim Z ≥ 3. Then for each i ∈N, there is a map γi : D2
→ Z

such that

(a) γi (x)= α(x) for all x ∈ S1 with αi (x) ∈ ∂Di ;

(b) pi ◦ γi (x) ∈ ∂Di for all x ∈ D2;

(c) if (ck)k is a sequence of segments in P converging to a straight line segment
c ⊆ D2 with ∂c = {x, y} ⊆ S1 and αi (x) = αi (y) ∈ ∂Di , then γi (c) is a
singleton, namely γi (c)= α(∂c).

Proof. Fix i ∈ N. Consider the set P∗ of all straight line segments of c ⊆ D2 with
∂c = {x, y} ⊆ S1 such that αi (x)= αi (y) ∈ ∂Di and such that there is a sequence
(ck)k of segments in P with ck → c. Since the interiors of the elements of P are
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pairwise disjoint, the same is true for P∗. The union
⋃

P∗ is compact and α(∂c)
is a singleton for every c ∈ P∗. We only have to show that there is a continuous
extension γi,i : D2

→ ∂Di of the restriction αi |α−1
i (∂Di )

: α−1
i (∂Di )→ ∂Di such

that γi,i (c)= αi (∂c) for all c ∈P∗. Because then we can define γn,i = h−1
n,i ◦ γi,i if

n > i and γn,i = fi,n ◦ γi,i if n < i , so that γi = (γn,i )n is the desired map. We put
γi,i (x)= αi (x) if x ∈ S1 with αi (x) ∈ ∂Di and γi,i (c)= αi (∂c) if c ∈P∗. Clearly,
γi,i : α

−1
i (∂Di )∪

(⋃
P∗

)
→ ∂Di is a continuous map. Since α−1

i (∂Di )∪
(⋃

P∗
)

is a closed subset of D2 and dim D2
= 2≤ dim ∂Di , it follows from the mapping-

into-spheres definition of dimension [van Mill 1989, Theorem 4.6.4] that we can
extend γi,i continuously to all of D2. �

Remark 6.9. If we denote the boundary of an arc I as ∂ I = {x, y} we shall
implicitly assume that the arc is directed from x to y.

Lemma 6.10. Suppose dim Z = 2 and 1≤ i < k ≤m. Let c1 ∈Bk and c2 ∈Bm be
such that β ′k(c1) ⊆ Sk,i and β ′m(c2) ⊆ Sm,i . Denote ∂ci = {xi , yi }. Let Ii ⊆ S1 be
counterclockwise arcs with ∂ Ii = {yi , xi }, respectively. Suppose that I1 ∩ I2 is an
arc, and that each (≤2) component of (I2\I1)∪(I1\I2)maps under αi+1 to a subset
of Mi+1 of diameter less than εi+1. Then [ fk,i ◦β

′

k |c1][ fm,i ◦β ′m |c2] = 1 ∈ π1(∂Di ).

Proof. The following computations are in accordance with the convention on
page 62. In particular, since all relevant paths are within the required tolerance, we
can use Lemma 6.2. We have

[ fk,i+1 ◦β
′

k |c1][αi+1|I1] = [ fk,i+1 ◦β
′

k |c1][ fk,i+1 ◦αk |I1]

= [ fk,i+1 ◦β
′

k |c1][ fk,i+1 ◦α
′

k |I1]

= [ fk,i+1 ◦β
′

k |c1][ fk,i+1 ◦β
′

k |I1]

= [ fk,i+1 ◦β
′

k |c1∪I1]

= 1 ∈ π1(Mi+1),

since fk,i+1 ◦β
′

k(D
2)⊆ Mi+1. Similarly, [ fm,i+1 ◦β

′
m |c2][αi+1|I2] = 1 ∈ π1(Mi+1).

Hence,

[ fk,i+1 ◦β
′

k |c1][ fm,i+1 ◦β ′m |c2] = [ fk,i+1 ◦β
′

k |c1][αi+1|I1][αi+1|I2][ fm,i+1 ◦β ′m |c2]

= 1 ∈ π1(Mi+1).

Therefore, the injective homomorphism incl# : π1(Si+1,i )→ π1(Mi+1) takes

[ fk,i+1 ◦β
′

k |c1][ fm,i+1 ◦β ′m |c2]

to 1. This completes the proof, because fi+1,i |Si+1,i induces an isomorphism

π1(Si+1,i )→ π1(∂Di ). �
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Lemma 6.11. Suppose dim Z = 2. Let c ∈ Pn , i ∈ {1, 2, . . . , n − 1}, cm ∈ Bm,n

(m ≥ n) with β ′m(cm)⊆ Sm,i and cm→ c as m→∞. Then fm,i ◦β
′
m |cm converges

to a local geodesic βc : c → ∂Di (which only depends on c) as m → ∞ with
βc|∂c = αi |∂c.

Proof. Each fm,i◦β
′
m |cm is a local geodesic in ∂Di . Say ∂cm={xm, ym}, ∂c={x, y},

with xm→ x and ym→ y. Then, as in the proof of Lemma 6.7, we get

di ( fm,i ◦β
′

m(xm), αi (x))= di ( fm,i ◦α
′

m(xm), αi (x))→ 0

as m →∞. The same holds when xm is replaced by ym and x is replaced by y,
respectively. So, by Lemma 6.10, fm,i ◦β

′
m |cm converges to a unique local geodesic

βc : c→ ∂Di with βc|∂c = αi |∂c. �

We now begin to define the desired map β : D2
→ Z .

Definition 6.12. We first define a function β : S1
∪

(⋃
P

)
→ Z . For x ∈ S1, we

define β(x)= α(x). For x ∈ c ∈ Pn , say αn(∂c)⊆ Sn,i with i ∈ {1, 2, . . . , n− 1},
we consider two cases:

(A) If dim Z ≥ 3, we define β(x)= γi (x), where γi is the map of Lemma 6.8.

(B) If dim Z = 2, we define β|c via its projections (pk ◦β|c : c→ Mk)k . Specifi-
cally, we define pi ◦β|c to be the local geodesic βc of Lemma 6.11; for k > i
we put pk ◦β|c = h−1

k,i ◦β|c; and for k < i we let pk ◦β|c = fi,k ◦β|c.

In either case, we have pn ◦β(c)⊆ Sn,i and β|∂c = α|∂c.

Remark 6.13. In the 2-dimensional case (B), we make the following observation,
based on Lemma 6.10. For each i ∈N there is a δi > 0 such that if d1, d2 ∈P with
αi (∂d1)⊆ ∂Di and αi (∂d2)⊆ ∂Di and d(d1, d2) < δi , then [pi ◦β|d1][pi ◦β|d2] =

1 ∈ π1(∂Di ).

Lemma 6.14. The function β : S1
∪

(⋃
P

)
→ Z is uniformly continuous.

Proof. We need to show that pn ◦ β : S1
∪ (

⋃
P)→ Mn is uniformly continuous

for every n. Fix n and assume, to the contrary, that there is an ε > 0 and two
sequences (xk)k and (x̃k)k in S1

∪
(⋃

P
)

such that d(xk, x̃k)→ 0 as k→∞ but
dn(pn◦β(xk), pn◦β(x̃k))≥ε for all k. Since pn◦β|S1=αn is uniformly continuous,
and since we always can change to subsequences, we may assume without loss of
generality that, say, xk 6∈ S1 for all k. For each k choose a dk ∈ P with xk ∈ dk .
Say, ∂dk = {yk, zk} ⊆ S1.

(A) First assume that dim Z ≥ 3. Then, by definition, β(t) = γi (t) whenever
t ∈ c ∈ P with αi (∂c) ⊆ ∂Di . Since we may change to subsequences, in order
to arrive at the desired contradiction, we only have to consider two cases: either
x̃k ∈ S1 for all k, or x̃k 6∈ S1 for all k.
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Case 1: x̃k ∈ S1 for all k. Taking subsequences, we may assume that (x̃k)k

converges to some x ∈ S1. Then also xk → x as k →∞. Interchanging yk and
zk so as to arrange for d(zk, x) ≤ d(yk, x) for all k, we may assume that zk → x .
Choose N > n such that

(a) diam fm,n(∂Dm) < ε/2 for all m ≥ N .

Choose δ > 0 such that

(b) dn(pn ◦ γm(s), pn ◦ γm(t)) < ε/2 for all m ∈ {1, 2, . . . , N − 1} and s, t ∈ D2

with d(s, t) < δ; and

(c) dn(αn(s), αn(t)) < ε/2 for all s, t ∈ S1 with d(s, t) < δ.

Choose K ∈N such that for all k ≥ K , we have d(xk, x̃k) < δ/2 and d(zk, x̃k) <

δ/2. Now, fix any k ≥ K . We claim that dn(pn ◦ β(xk), pn ◦ β(zk)) < ε/2. That
will yield our contradiction in Case 1, because then, using (c),

dn
(

pn◦β(xk), pn◦β(x̃k)
)
≤ dn

(
pn◦β(xk), pn◦β(zk)

)
+dn

(
pn◦β(zk), pn◦β(x̃k)

)
= dn

(
pn◦β(xk), pn◦β(zk)

)
+dn

(
αn(zk), αn(x̃k)

)
< ε/2+ε/2= ε.

In order to prove this claim, choose m∈N such that αm(∂dk)⊆∂Dm . If m≥N , then
the claim follows from (a), since for every t ∈ dk , we have pn ◦β(t)= pn ◦γm(t)=
fm,n(pm ◦ γm(t)) and pm ◦ γm(t) ∈ ∂Dm . If m < N , then the claim follows from
(b), because d(xk, zk) < δ and pn ◦β|dk = pn ◦ γm |dk .

Case 2: x̃k 6∈ S1 for all k. For each k choose d̃k ∈ P such that x̃k ∈ d̃k . Say,
∂ d̃k = {ỹk, z̃k} ⊆ S1. Without loss of generality, we may assume that xk → x ,
x̃k → x , yk → y, ỹk → ỹ, zk → z, and z̃k → z̃ as k→∞, for some x ∈ D2 and
y, ỹ, z, z̃ ∈ S1. There is no loss in generality to assume further that z = z̃. In fact,
if x ∈ S1, we may assume that x = z and if x 6∈ S1, we may assume that y = ỹ.
Say αmk (∂dk)⊆ ∂Dmk and αm̃k (∂ d̃k)⊆ ∂Dm̃k . Switching to further subsequences,
we need to address only three subcases:

(i) mk→∞ and m̃k→∞ as k→∞;

(ii) mk→∞ as k→∞ and (m̃k)k is constant;

(iii) both (mk)k and (m̃k)k are constant.

First we look at subcase (i): Notice that

diam pn ◦β(dk)= diam pn ◦ γmk (dk)

= diam fmk ,n(pmk ◦ γmk (dk)︸ ︷︷ ︸
∈∂Dmk

)≤ diam fmk ,n(∂Dmk ),

which approaches 0 as k→∞.
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Similarly, diam pn ◦β(d̃k)→ 0. Therefore,

dn
(

pn ◦β(xk), pn ◦β(x̃k)
)

≤ dn
(

pn ◦β(xk), pn ◦β(zk)
)
+ dn

(
pn ◦β(zk), pn ◦β(z̃k)

)
+dn

(
pn ◦β(z̃k), pn ◦β(x̃k)

)
= dn

(
pn ◦β(xk), pn ◦β(zk)

)
+dn

(
αn(zk), αn(z̃k)

)
+dn

(
pn ◦β(z̃k), pn ◦β(x̃k)

)
,

which goes to 0 as k→∞. Contradiction.
Next, we turn to subcase (ii): Say m̃k = i for all k. If x = z, the final estimate

of subcase (i) goes through and leads to the same contradiction, because

pn ◦β|d̃k
= pn ◦ γi |d̃k

.

So, we assume that y= ỹ. Let c be the straight line segment in D2 with endpoints y
and z. Then αi (y)= limk→∞ αi (ỹk)∈∂Di and αi (z)= limk→∞ αi (z̃k)∈∂Di . Since
mk→∞, then diamαi (∂dk)= diam pi ◦β(∂dk)≤ diam pi ◦β(dk)→ 0 as k→ 0,
as in Case 1. Hence αi (y)= limk→∞ αi (yk)= limk→∞ αi (zk)= αi (z). Therefore,
applying Lemma 6.8(c) to the sequence d̃k → c, we conclude that γi (c) = α(∂c).
Consequently, pi ◦ β(x̃k) = pi ◦ γi (x̃k)→ pi ◦ γi (x) = αi (y) as k →∞. Since
pi ◦ β(x̃k) ∈ ∂Di for all k, we get that pn ◦ β(x̃k) → αn(y) as k → ∞. But
also, diam pn ◦ β(dk)→ 0, so that dn(pn ◦ β(xk), pn ◦ β(yk))→ 0 as k → ∞.
Since pn ◦β(yk)= αn(yk)→ αn(y) we obtain the contradictory statement that the
sequences (pn ◦β(x̃k))k and (pn ◦β(xk))k have the same limit, namely αn(y).

Now to subcase (iii): Since αmk (zk) ∈ ∂Dmk and αm̃k (z̃k) ∈ ∂Dm̃k for all k, and
limk→∞ α(zk)= limk→∞ α(z̃k)=α(z), then there is an i ∈N such that mk = m̃k = i
for all k. Hence, limk→∞ pi◦β(xk)= limk→∞ pi◦γi (xk)= pi◦γi (x)= limk→∞ pi◦

γi (x̃k)= limk→∞ pi ◦β(x̃k). Yet another contradiction.

(B) Now we consider the case dim Z = 2. We break the analysis into the same
cases.

Case 1: x̃k ∈ S1 for all k. As above we assume that (x̃k)k , (xk)k , and (zk)k

converge to the same point x ∈ S1. We also assume that yk→ y for some y ∈ S1.
If mk→∞, we choose N >n and δ >0 such that (a) and (c) above hold. We can

establish the same claim as before and arrive at the same contradiction, because
pn ◦β(dk)⊆ fmk ,n(∂Dmk ).

Now suppose (mk)k is constant, say mk= i for all k. Since αi (∂dk)=αmk (∂dk)⊆

∂Dmk = ∂Di for all k, then αi ({x, y}) ⊆ ∂Di . By Remark 6.13,
(

pi ◦ β|dk

)
k

converges to a local geodesic of ∂Di with endpoints αi (x) and αi (y). Hence pi ◦

β(xk)→ αi (x) as k →∞. Since αi (x) and all pi ◦ β(xk) are in ∂Di , then pn ◦

β(xk)→αn(x) as k→∞. This is a contradiction, since also pn◦β(x̃k)=αn(x̃k)→

αn(x) as k→∞.
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Case 2: x̃k 6∈ S1 for all k. One handles subcase (i) exactly as above: note that
pn ◦ β(dk) ⊆ fmk ,n(∂Dmk ). Subcases (ii) and (iii) are similar to, but simpler than,
the above: say m̃k = i for all k. Again, by Remark 6.13,

(
pi ◦β|d̃k

)
k converges to

a well-defined local geodesic in ∂Di whose endpoints are αi (y) and αi (z). �

Definition 6.15. Let F denote the closure of S1
∪

(⋃
P

)
in D2.

Corollary 6.16. β : S1
∪

(⋃
P

)
→ Z extends continuously to a map β : F → Z .

�

Extending the map over the remaining holes. We will call a component of D2
\F

a hole and denote the collection of all holes by H. If P = ∅, then H = {D̊2
}.

Without loss of generality we may assume that this is not the case. The closure (in
D2) of each hole H ∈ H is a compact convex subset of the plane with nonempty
interior and hence homeomorphic to a disk whose boundary bdy H is the union of
a countable collection CH of disjoint arcs in S1 and a countable collection LH of
straight line segments in D2 whose endpoints lie in S1. Currently, β is defined on
the boundary of each hole. Definition 6.24 below (for dim Z ≥ 3) and Definition
6.27 (for dim Z = 2) will extend β over the closure of each hole, so that we at last
obtain a function β : D2

→ Z .
It will be convenient to have some measure of the size of a hole:

Definition 6.17. Let H ∈ H. For every segment c ∈ LH we consider the comple-
mentary arc d= cl

(
(bdy H)\c

)
and fix unit-speed homeomorphisms lH,c : [0, 1]→

c and rH,c : [0, 1] → d of opposite orientation in bdy H . Let s ∈ N∪ {1/2} be the
largest s with the property that there is a c ∈ LH with d(lH,c(x), rH,c(x)) < 1/s
for all x ∈ [0, 1]. We will call 1/s the size of H , denoted by size H , and c the base
of H . If there is more than one possible base for a hole, then we fix one of them
arbitrarily.

The proof of the next lemma is an elementary exercise.

Lemma 6.18. Given any δ > 0, there are only finitely many holes H ∈ H with
size H ≥ δ. �

We will now sort our holes according to which parts of the tree their boundary
is mapped.

Definition 6.19. We define the location of a hole H ∈H as follows:

(i) loc H = 1 if there is no n ∈ N with pn ◦β(bdy H)⊆ Dn;

(ii) loc H = n+1 if n is the largest positive integer such that pn ◦β(bdy H)⊆ Dn;

(iii) loc H =∞ if pn ◦β(bdy H)⊆ Dn for infinitely many positive integers n.

Recall the definition of the sets N ∗n from page 60.
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Lemma 6.20. Let H ∈H and n = loc H . If n =∞, then β(bdy H) is a singleton.
If n is finite then pn ◦β(bdy H)⊆ N ∗n .

Proof. Suppose n = ∞. Then there is an increasing sequence (mk)k of positive
integers such that pmk ◦ β(bdy H) ⊆ Dmk for all k. So, for each i ∈ N we have
diam pi ◦β(bdy H)= diam fmk ,i ◦ pmk ◦β(bdy H)≤ diam fmk ,i (Dmk )→ 0 as k→
∞. Therefore pi ◦β(bdy H) is a singleton for every i and hence so is β(bdy H).

Now suppose n is finite. By construction, for each c ∈ LH , either there is an
i ∈ N such that pi ◦ β(c) ⊆ ∂Di , or β(c) is a singleton. Hence, by Lemma 6.6,
for each i ∈ N, either pi ◦ β(bdy H) ⊆ Di or pi ◦ β(bdy H) ⊆ Mi \ D̊i . Since
pi ◦ β(bdy H) 6⊆ Di for all i ≥ n, and pn−1 ◦ β(bdy H) ⊆ Dn−1 if n ≥ 2, then
pn ◦β(bdy H)⊆ N ∗n . �

Lemma 6.21 [van Mill 1989, Theorem 5.1.1]. Let Y be a compact (separable
metric) ANR and k ∈ N. There is a real number ξY,k > 0 such that for every
(separable metric) space X and any two maps f, g : X→ Y with d( f (x), g(x)) <
ξY,k for all x ∈ X , there is a homotopy T : X×[0, 1]→Y such that T (x, 0)= f (x),
T (x, 1)= g(x), and diam T ({x}× [0, 1]) < 1/k for all x ∈ X .

Addendum: Since Y is locally contractible, it can also be arranged that when-
ever X = [0, 1], f (0) = g(0), and f (1) = g(1), that T ({0} × [0, 1]) and T ({1} ×
[0, 1]) be singletons.

Note that each N ∗n is compact and embeds into Z by way of the sequence

ιn = (N ∗n → Mi )i : N ∗n → Z

given by the restrictions of fn,1, fn,2, . . . , fn,n−1, id, h−1
n+1,n, h−1

n+2,n, . . . .

Lemma 6.22. Let H ∈ H and suppose that n = loc H is finite. Then the map
pn ◦β|bdy H : bdy H → N ∗n is null-homotopic.

Proof. First assume that dim Z ≥ 3. Since incl# : π1(N ∗n )→ π1(Mn) is injective,
we only need to show that the loop pn ◦ β|bdy H : bdy H → N ∗n contracts in Mn .
For each c ∈ LH let c′ be the arc of S1 with ∂c′ ∩ (bdy H) = ∂c and let κc :

c→ c′ be the unit-speed homeomorphism with κc|∂c = id |∂c. List the elements
of LH = {c1, c2, c3, . . .}. For each j ∈ N choose ζn, j > 0 such that if x, y ∈ F
with d(x, y) < ζn, j , then dn

(
pn ◦ β(x), pn ◦ β(y)

)
< ξMn, j . Choose s1 ∈ N such

that d(x, κci (x)) < ζn,1 for all i > s1 and all x ∈ ci . Inductively, choose s j > s j−1

such that d(x, κci (x)) < ζn, j for all i > s j and all x ∈ ci . Put s = s1 and let
L′H = {c1, c2, . . . , cs}. Put

bdy′ H =
(⋃

CH
)
∪

(⋃
{c′ | c ∈ LH \L′H }

)
∪

(⋃
L′H

)
.

By Lemma 6.21 it suffices to show that pn ◦ β|bdy′H : bdy ′H → Mn is null-
homotopic, because of the way we chose our ζn, j . Moreover, since each ci can be
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approximated arbitrarily closely by some element of P, we will assume, without
loss of generality, that c1, c2, . . . , cs ∈ P.

Choose k > n such that c1, c2, . . . , cs ∈ Pk . Choose δ > 0 so that for every
x, y ∈ S1 with d(x, y) < δ we have dn(αn(x), αn(y)) < εn and, moreover, αn(x)
and αn(y) are in the same element of S+n provided either of αn(x) or αn(y) is in
an element of Sn . By Lemma 6.7, there is an m > k and c′1, c′2, . . . , c′s ∈ Bm,k

whose endpoints lie within δ of the endpoints of c1, c2, . . . , cs and are such that
fm,k ◦β

′
m(c
′

i ) and αk(∂ci ), and hence also pk ◦β(ci ), lie in the same element of Sk .
Applying fk,n , we see that fm,n ◦β

′
m(c
′

i ) and pn ◦β(ci ) lie in the same element of
Sn . Also, each element of S+n is simply connected. The map fm,n ◦β

′
m : D

2
→ Mn

is now witness to the fact that pn ◦ β : bdy′H → Mn is null-homotopic, upon
verification that dn( fm,n ◦ β

′
m(x), pn ◦ β(y)) < 2εn whenever x is an endpoint of

some c′i and y the corresponding endpoint of ci , which is within δ. (Recall Lemma
6.2 and our convention on page 62.) We estimate:

dn( fm,n ◦β
′

m(x), pn ◦β(y))

= dn( fm,n ◦α
′

m(x), αn(y))

≤ dn( fm,n ◦α
′

m(x), fm,n ◦αm(x))+ dn( fm,n ◦αm(x), αn(y))

≤ dn( fm,n ◦α
′

m(x), fm,n ◦αm(x))+ dn(αn(x), αn(y))

≤ εn + εn,

because dm(α
′
m, αm) < εm .

Now suppose dim Z = 2. Then incl# : π1(N ∗n )→ π1(Mn) may not be injective.
However, since the defining sequence is assumed to be well-balanced we know that
the natural homomorphism π1(N ∗n )→ π̌1(N ∗n ) is injective, because N ∗n is either
an ANR (see Remark 2.7) or one-dimensional (see Remark 3.2(i)). To exploit this
fact, we put N 0

1 = M1 and for i ≥ 1 we set N i
1 = M1 \

⋃
{ fm,1(D̊m) | 1 ≤ m ≤ i}.

Similarly, if n ≥ 2, we put N n−1
n = Mn \ h−1

n,n−1(Mn−1 \ Dn−1) and for i ≥ n,
we define N i

n = Mn \
(
h−1

n,n−1(Mn−1 \ Dn−1)∪
(⋃
{ fm,n(D̊m) | n ≤ m ≤ i}

))
. The

intersection N ∗n =
⋂
∞

i=n−1 N i
n can be interpreted as the limit of the inverse sequence

N n−1
n ←↩ N n

n ←↩ N n+1
n ←↩ N n+2

n ←↩ · · · ,

whose bonding maps consist of inclusions. (The terms are not necessarily all dis-
tinct.) Hence, it suffices to show that pn ◦ β|bdy H contracts in each N i

n . How-
ever, the homomorphism (h−1

i+1,n)# : π1(N i
n)→ π1(Mi+1) is injective, so that we

only need to show that pi+1 ◦ β|bdy H contracts in Mi+1. This is done exactly
as above. The only necessary adjustment is to choose m sufficiently large so that
[ fm,n◦β

′
m |ci ][pn ◦β|ci ]=1 in the fundamental group of the element of Sn in which

they lie. �
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While the spaces N ∗n may not be ANRs, we still have:

Corollary 6.23. Let n, k ∈ N. There is a real number ηn,k > 0 such that for every
polyhedron K with dim K ≤ dim Z − 2 and any two maps f, g : K → N ∗n with
d( f (x), g(x)) < ηn,k for all x ∈ K , there is a homotopy T : K ×[0, 1]→ N ∗n such
that T (x, 0)= f (x), T (x, 1)= g(x), and diam T ({x}×[0, 1])< 1/k for all x ∈ K .
Moreover, if K = [0, 1], f (0) = g(0), and f (1) = g(1), then T ({0} × [0, 1]) and
T ({1}× [0, 1]) are singletons.

Proof. Choose m> n+1 such that diam f j,n(D j )< 1/(2k) for all j ≥m. Consider
the ANR Y = Mn \

(
h−1

n,n−1(Mn−1 \ Dn−1) ∪ Em,n
)
. (If n = 1, consider instead

Y = M1 \ Em,1.) Put ηn,k = ξY,2k and let T : K × [0, 1] → Y be the homotopy of
Lemma 6.21 from f to g with diam T ({x}× [0, 1])≤ 1/(2k) for all x ∈ K . Since
dim (K×[0, 1])≤ dim Z−1, we can swipe this homotopy into N ∗n , moving points
less than 1/(2k). �

For each n, k ∈ N choose a δn,k > 0 such that if x, y ∈ F with d(x, y) < δn,k ,
then dn(pn ◦β(x), pn ◦β(y)) < ηn,k . We want to arrange that for every n ∈N, both
sequences (ηn,k)k and (δn,k)k are decreasing and have their limit equal to zero.

We now extend β : F→ Z to a function β : D2
→ Z . We start with dimension 3

and higher:

Definition 6.24. Suppose dim Z ≥ 3. We wish to extend β to the holes H. Let
H ∈H, n = loc H and let 1/s be the size of H . Currently, β is defined on bdy H .
We will now extend β over cl H . In doing so, we consider three cases:

(i) If n =∞, we define β(cl H) to be the singleton β(bdy H).

(ii) Suppose n is finite and that there is a k ∈N such that δn,k−1 ≤ 1/s < δn,k . Let
c ∈LH be the base of H . Then dn(pn ◦β ◦lH,c(x), pn ◦β ◦rH,c(x)) < ηn,k for
all x in [0, 1]. Also, pn◦β◦lH,c : [0, 1]→ N ∗n and pn◦β◦rH,c : [0, 1]→ N ∗n , by
Lemma 6.20. By Corollary 6.23 there is a homotopy T : [0, 1]× [0, 1]→ N ∗n
with

T (x, 0)= pn ◦β ◦ lH,c(x), T (x, 1)= pn ◦β ◦ rH,c(x),

and diam T ({x}×[0, 1]) < 1/k for all x ∈ [0, 1]. We also arrange for T ({0}×
[0, 1]) and T ({1} × [0, 1]) to be singletons. Define the quotient map ϕH,c :

[0, 1]× [0, 1] → cl H by ϕH,c(x, t)= t · rH,c(x)+ (1− t) · lH,c(x). The only
nontrivial fibers of ϕH,c are {0} × [0, 1] and {1} × [0, 1]. Hence, there is a
unique map T ′ : cl H → N ∗n with T ′ ◦ϕH,c = T . We define β|cl H = ιn ◦ T ′.

(iii) Finally, suppose n is finite and δn,1 ≤ 1/s. In this case we extend the map
pn ◦ β|bdy H : bdy H → N ∗n to any map pn ◦ β|cl H : cl H → N ∗n ; it will not
matter how. By Lemma 6.22 we may extend pn ◦ β|bdy H : bdy H → N ∗n to
some map T ′ : cl H → N ∗n . As before, we put β|cl H = ιn ◦ T ′.
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Doing this for every hole H , completes the definition of a function β : D2
→ Z ,

which extends the map β : F→ Z , in case dim Z ≥ 3.

If dim Z = 2 and if N ∗n is not an ANR, then we might not be able to carry out
part (ii) of Definition 6.24. We therefore need one more result.

Lemma 6.25 [Cannon and Conner 1998]. Let Y be a compact one-dimensional
connected metric space and f : S1

→ Y a null-homotopic map. Then there is a
collection ℵ of straight line segments in D2 whose endpoints lie in S1 and with
disjoint interiors, and a map g : D2

→ Y with g|S1 = f such that g is constant
on every element of ℵ and on every component of the complement of the closure of⋃
ℵ in D2.

Corollary 6.26. Suppose dim Z=2. Let n∈N and suppose N ∗n is one-dimensional.
Then for each H ∈ H with loc H = n there is a map χH : cl H → N ∗n such that
χH |bdy H = pn ◦ β|bdy H and such that the following holds: for every δ > 0 and
every ε > 0, there is a finite subset H′ ⊆ H such that for every H ∈ H \H′ with
loc H = n and every x ∈ cl H , there is an x ′ ∈ bdy H with d(x, x ′) < δ and
dn(χH (x), χH (x ′)) < ε.

Proof. Let an H ∈ H with loc H = n be given. Using Lemmas 6.22 and 6.25, we
can construct a collection ℵH of straight line segments in cl H whose endpoints lie
in bdy H and whose interiors are pairwise disjoint and disjoint from bdy H , and
a map χH : cl H → N ∗n such that χH |bdy H = pn ◦ β|bdy H and χH is constant on
every element of ℵH and on every component of the complement of the closure
of

⋃
ℵH in cl H . This works, because we can arrange that the line segments of

Lemma 6.25 do not have both endpoints in one and the same c ∈LH . (Recall that
for each c ∈ LH either there is an i ∈ N such that pi ◦ β|c : c→ ∂Di is a local
geodesic or β(c) is a singleton.)

Now let all (χH )H∈H,loc H=n be defined and δ, ε > 0 be given. Choose δ1 ∈

(0, δ/4) such that if x, y ∈ F and d(x, y)< δ1, then dn(pn ◦β(x), pn ◦β(y))< ε/2.
Let C1,C2, . . . be the distinct nonseparating simple closed curves of N ∗n . Since for
each i there is a unique mi ≥ n with Ci = hmi ,n(∂Dmi ), there is an N such that
diam Ci < ε/2 for all i > N . Choose pairwise disjoint regular neighborhoods
V (C1,Mn), V (C2,Mn), . . . , V (CN ,Mn) of C1,C2, . . . ,CN in Mn , respectively.
For each i ∈ {1, 2, . . . , N }, choose a finite cover Wi of V (Ci ,Mn) as in Lemma
6.2 and choose 31 > 0 sufficiently small so that it is a Lebesgue number for each
of the covers Wi , with respect to the metric dn . This allows us to perform com-
putations in 51(Wi , ∗) rather than π1(V (Ci ,Mn), ∗). We also want to choose 31

sufficiently small so that arcs in any C1,C2, . . . ,CN of arclength less than 31, as
measured in S1 after applying ρmi ◦ h−1

mi ,n , have dn-diameters that are less than a
Lebesgue number for the respective cover Wi ; where ρmi is as defined on page 63.
Choose δ2 ∈ (0, 1631/δ) such that if τ is an arc in Ci with i ∈ {1, 2, . . . , N }
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whose arclength, as measured in S1 after applying ρmi ◦h−1
mi ,n , is less than δ2, then

the diameter of τ , as measured in the metric dn of Mn , is less than ε/2. Choose
32 > 0 such that if a, b ∈Ci with i ∈ {1, 2, . . . , N } and 0< dn(a, b) <32 then the
closure of one the of components of Ci \ {a, b} has arclength less than δ · δ2/16,
as measured in S1 after applying ρmi ◦ h−1

mi ,n . Choose δ3 ∈ (0, δ1) such that if
x, y ∈ F and d(x, y) < δ3, then dn(pn ◦β(x), pn ◦β(y)) <32. Choose δ4 ∈ (0, δ3)

such that if H ∈ H whose base c has length at least δ1 and whose size H < δ4,
then the arclength of rH,c is less than twice the length of c; where we use the
notation rH,c and lH,c of Definition 6.17. Choose δ5 ∈ (0, δ4) such that if x, y ∈ F
with d(x, y) < δ5, then dn(pn ◦ β(x), pn ◦ β(y)) < 31; and such that if moreover
pn ◦β(x) ∈ Ci for some i ∈ {1, 2, . . . , N }, then pn ◦β(y) ∈ V (Ci ,Mn).

Now let H′ be the set of all H ∈H such that size H ≥ δ5. By Lemma 6.18, this
is a finite set. Let H ∈H \H′ with loc H = n and x ∈ cl H . We may assume that
x ∈ H . Let c be the base of H .

First suppose that diam pn ◦ β(c) < ε/2. Choose y ∈ bdy H ⊆ F such that
χH (x) = χH (y). Choose x ′, y′ ∈ c such that each of d(x, x ′) and d(y, y′) is less
than size H < δ5 < δ1 < δ. Then

dn(χH (x), χH (x ′))= dn(χH (y), χH (x ′))

= dn(pn ◦β(y), pn ◦β(x ′))

≤ dn(pn ◦β(y), pn ◦β(y′))+ dn(pn ◦β(y′), pn ◦β(x ′))

< ε/2+ ε/2= ε,

and we are done.
Now suppose diam pn ◦ β(c) ≥ ε/2. Since β(c) is not a singleton, we can

choose i ∈ N such that pn ◦ β(c) ⊆ Ci . Then i ∈ {1, 2, . . . , N }, by choice of N ,
and pn ◦ β(bdy H) ⊆ V (Ci ,Mn), by choice of δ5. Also, the length of pn ◦ β(c),
as measured in S1 after applying ρmi ◦h−1

mi ,n , is at least δ2, and the length of c is at
least δ1.

Claim: Suppose d ∈ ℵH with ∂d = {a, b} and a ∈ c. Say a = lH,c(t1) and
b = rH,c(t2). Put a′ = rH,c(t1) and b′ = lH,c(t2). We claim that the arc σ in the
image of rH,c from a′ to b has length less than δ/4.

Reason: Suppose, to the contrary, that σ has length at least δ/4. We have
d(a, a′) < size H < δ5 < δ4 < δ1. Also, d(b, b′) < size H < δ5 < δ3. Since
the arclength of rH,c is less than twice the length of c, the corresponding segment
τ on c with endpoints a and b′ has length at least δ/8. Since the length of c is not
more than 2, τ covers at least (δ/8)/2= δ/16 of the length of c. Since the length
of pn ◦ β(c) is at least δ2, then pn ◦ β(τ) has arclength at least (δ/16) · δ2 and so
does µ= cl[Ci \ pn ◦β(τ)]. (Notice that if µ had arclength less than δδ2/16<31,
then [χH |τ ] = [pn ◦ β|τ ] 6= 1 ∈ 51(Wi , ∗). However, if l is the simple closed
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curve formed by concatenating τ , d and the remaining portion of bdy H , then
[χH |l] = 1 ∈51(Wi , ∗). This is a contradiction, because χH is constant on d and
pn ◦ β ◦ lH,c is within 31 of pn ◦ β ◦ rH,c.) Hence the endpoints χH (a) = χH (b)
and χH (b′) of pn ◦ β(τ) are at least 32 apart. However, d(b, b′) < δ3, so that
dn(χH (b), χH (b′))=dn(pn◦β(b), pn◦β(b′))<32. This contradiction establishes
the claim.

There are two cases. Case (i): Suppose there are d1, d2∈ℵH with ∂d1={a1, b1},
∂d2= {a2, b2}, a1= a2 ∈ c and such that x is between d1 and d2. (We allow for the
possibilities that x is on either d1 or d2, or that d1= d2.) Let σ1, σ2, and a′1= a′2 be
as in the claim. Let ν be the arc on rH,c between b1 and b2. Since each of σ1 and σ2

has arclength less than δ/4, then ν has arclength less than δ/2. Also, d(a′i , ai ) <

size H < δ/4. Therefore, each of d1 and d2 have length less than δ/2. Choose
x ′ ∈ ν such that χH (x ′)= χH (x). Then d(x, x ′) < δ and the proof of the corollary
is complete in this case. Case (ii): The alternative is that x is not between those
two d1, d2 ∈ ℵH with ∂d1 = {a1, b1}, ∂d2 = {a2, b2} for which {a1, a2} = ∂c. This
case also follows from above claim, since a1 = a′1 and a2 = a′2. The argument now
is similar to, but simpler than, that of Case (i). �

We now complete our definition of β : D2
→ Z by addressing the case when

dim Z =2. In dimension two, we have assumed a well-balanced defining sequence.
Therefore, N ∗n is either one-dimensional or it is an ANR. Accordingly, our final
definition splits into two cases:

Definition 6.27. Suppose dim Z = 2. Let H ∈H and n = loc H .

(i) If n =∞, we define, as before, β(cl H) to be the singleton β(bdy H).

(ii) If n is finite, then pn ◦β(bdy H)⊆ N ∗n by Lemma 6.20; moreover,

– if N ∗n is one-dimensional, we set pn ◦β|cl H = χH ;
– if N ∗n is an ANR, we define pn ◦ β|cl H as in Definition 6.24(ii,iii), upon

replacing δn,k by some ζ ′n,k which are chosen to have the following prop-
erty: if x, y ∈ F with d(x, y)<ζ ′n,k , then dn

(
pn◦β(x), pn◦β(y)

)
<ξN∗n ,k .

Then use Lemma 6.21 instead of Corollary 6.23. Also make the sequence(
ζ ′n,k

)
k decrease to zero.

By construction we have:

Lemma 6.28. Let H ∈H and n = loc H . If n =∞, then β(cl H) is a singleton. If
n is finite then pn ◦β(cl H)⊆ N ∗n . �

Verifying continuity. The next result will conclude the proof of Theorem 3.1:

Lemma 6.29. The map β : D2
→ Z is continuous.
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Proof. (A) First we assume that dim Z ≥ 3. Let x0 ∈ D2 and ε > 0 be given.
Fix n ∈ N. We will find a δ > 0 such that if x ∈ D2 with d(x, x0) < δ, then
dn

(
pn ◦ β(x), pn ◦ β(x0)

)
< ε. Since pn ◦ β|H : H → Mn is continuous for every

H ∈H, and since H is open in D2, we may assume that x0 ∈ F . Since pn ◦ β|F :

F→Mn is continuous, there is a δ1 > 0 such that if x ∈ F with d(x, x0) < δ1, then
dn

(
pn ◦ β(x), pn ◦ β(x0)

)
< ε/2. Choose N > n such that diam fm,n(Dm) < ε/2

for all m ≥ N . Choose j ∈ N such that if m ∈ {1, 2, . . . , N } and u, v ∈ N ∗m with
dm(u, v) < 1/j , then dn

(
pn ◦ ιm(u), pn ◦ ιm(v)

)
< ε/2. By Lemma 6.18, we may

choose a finite subset H′ ⊆ H such that the size of every H ∈ H \H′ is less than
min{δ1, j , δ2, j , . . . , δN , j , δ1/2}. Since the map β is continuous when restricted to
F ∪

(⋃
{cl H | H ∈ H′}

)
, there is δ2 > 0 such that if x ∈

⋃
{cl H | H ∈ H′} and

d(x, x0)< δ2, then dn
(

pn◦β(x), pn◦β(x0)
)
<ε. Put δ=min{δ1/2, δ2}. Now, take

x ∈D2 with d(x, x0)<δ. If x ∈ F , then dn
(

pn◦β(x), pn◦β(x0)
)
<ε/2<ε, because

d(x, x0) < δ1. We therefore may assume that x ∈ H for some H ∈H. If H ∈H′,
then dn

(
pn ◦β(x), pn ◦β(x0)

)
< ε, because d(x, x0) < δ2. So, we will assume that

x ∈H ∈H\H′. Let m= loc H and let 1/s be the size of H . Choose x ′ in the base of
H such that ϕH,c(x ′, t)= x for some t . Then x ′ ∈ bdy H ⊆ F and d(x ′, x) < 1/s.
Hence, d(x ′, x0) ≤ d(x ′, x) + d(x, x0) < 1/s + δ < δ1/2 + δ1/2 = δ1, so that
dn

(
pn ◦β(x ′), pn ◦β(x0)

)
<ε/2. If m =∞, then β(x)= β(x ′) by Lemma 6.28, so

that dn
(

pn◦β(x), pn◦β(x0)
)
=dn

(
pn◦β(x ′), pn◦β(x0)

)
<ε/2<ε. If N <m<∞,

then diam pn ◦ β(cl H) < ε/2, because pm ◦ β(cl H) ⊆ N ∗m by Lemma 6.28 and
fm,m−1(N ∗m) ⊆ Dm−1. Hence, dn

(
pn ◦ β(x), pn ◦ β(x0)

)
≤ dn

(
pn ◦ β(x), pn ◦

β(x ′)
)
+dn

(
pn ◦β(x ′), pn ◦β(x0)

)
≤ ε/2+ε/2= ε. Finally assume m ≤ N . Since

1/s < δm, j , then the homotopy T in the definition of β|cl H has tracks of diameter
less than 1/j , so that, by choice of j , we have dn

(
pn ◦ β(x), pn ◦ β(x ′)

)
< ε/2.

Therefore, as above, dn
(

pn ◦β(x), pn ◦β(x0)
)
< ε.

(B) Now suppose dim Z=2. We follow the proof of (A) until we have to choose H′.
At this point we use Corollary 6.26 to find a finite subset H′⊆H such that for every
H ∈H\H′ with m= loc H ∈ {1, 2, . . . , N } the following is true: (i) size H <δ1/2;
(ii) if N ∗m is an ANR, then size H < ζ ′m, j ; (iii) if N ∗m is one-dimensional, then for
every x ∈ cl H there is an x ′′ ∈ bdy H with d(x, x ′′) < δ1/2 and dn

(
pn ◦ β(x),

pn ◦ β(x ′′)
)
= dn

(
χH (x), χH (x ′′)

)
< ε/2. The proof is now the same, including

the selection of the point x ′. However, in the case where m ≤ N we use the point
x ′′ instead of the point x ′ in the event that N ∗m is one-dimensional. �
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