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We provide a construction for new compact surfaces of constant mean cur-
vature of genus 3 and higher, based on tools developed for the understand-
ing of complete noncompact constant mean curvature surfaces and the end-
to-end construction developed by J. Ratskin to connect (and produce) com-
plete noncompact constant mean curvature surfaces along their ends.

1. Introduction

The theory of constant mean curvature surfaces in Euclidean space has been the
object of intensive study in the past years. In the case of complete noncompact
constant mean curvature surfaces, the moduli space of such surfaces is now fairly
well understood (at least in the genus 0 case); see [Kusner et al. 1996; Große-
Brauckmann 2000; 2003]. Many techniques have been developed to produce ex-
amples of such surfaces [Große-Brauckmann 1993; Kapouleas 1990; Mazzeo and
Pacard 2001; Mazzeo et al. 2005].

By contrast, the set of compact constant mean curvature surfaces is not so
well understood. H. Wente [1986] was the first to construct genus 1 constant
mean curvature surfaces. These genus 1 surfaces were then thoughtfully stud-
ied by U. Pinkall and I. Sterling [1989]. Examples of compact constant mean
curvature surfaces of higher genus are due to N. Kapouleas. In the genus 2 case
[Kapouleas 1995], these surfaces are obtained by “fusing” Wente tori, while for
genus greater than 2 they are obtained by connecting together many mutually tan-
gent unit spheres, using small catenoid necks [Kapouleas 1991].

In this paper we propose to explain how current knowledge on the set of complete
noncompact constant mean curvature surfaces can be exploited to produce new
examples of compact constant mean curvature surfaces of genus 3 and higher.

Our construction is based on tools that have been developed for the understand-
ing of complete noncompact constant mean curvature surfaces. It can be described
as follows:
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(1) Since the first construction by N. Kapouleas [1990], many constructions of
complete noncompact constant mean curvature surfaces have been developed;
see the references cited in the first paragraph. These constructions provide an
important source of examples of complete noncompact constant mean curva-
ture surfaces the geometry of whose ends is partially prescribed.

(2) Most of these constructions are flexible and one can arrange it so that the ends
of these surfaces can be plugged together to produce sequences (indexed by a
discrete parameter n ∈N) of compact surfaces having mean curvature 1 except
in finitely many annular regions, where their mean curvature can be estimated
by 1+O(e−γ n) for some γ >0. This is essentially the end-to-end construction
which was developed by J. Ratzkin [2001] to connect (and produce) complete
noncompact constant mean curvature surfaces along their ends.

(3) Next we study the mapping properties of the bounded operator about this
surface of almost constant mean curvature. To perform this analysis, we rely
on the fact that parametrices for the Jacobi operators on each complete non-
compact summand have been obtained in the moduli space theory developed
by R. Kusner, R. Mazzeo and D. Pollack [Kusner et al. 1996]. We explain how
these can be glued together. This construction requires a precise understanding
of the set of Jacobi fields on each summand.

(4) Finally, we use a standard perturbation argument to produce sequences of
compact constant mean curvature surfaces of arbitrary genus ≥ 3.

We believe that the main advantage of our construction over Kapouleas’ is that it
is technically simple (once the results on complete noncompact surfaces mentioned
above are understood!). This parallels the fact that the end-to-end construction
of J. Ratzkin is simpler than the previous constructions of complete noncompact
surfaces. We obtain a very precise description of the surfaces we produce: the
perturbation of the approximate surface is an exponentially decreasing function of
the diameter of the surface constructed. In particular, our construction sheds light
on the structure of the set of compact constant mean curvature surfaces, showing
that these surfaces are isolated. Though this is probably a minor point, the example
of compact constant mean curvature surfaces we obtain are geometrically different
from the one obtained by Kapouleas; roughly speaking, all his surfaces are close
to sequences of unit spheres linked by small catenoids, and hence have small in-
jectivity radius, while our examples need not have small necks, and hence have
injectivity radius uniformly bounded away from below.

A possibly more important issue is that our construction points to interesting
directions toward which the theory of complete noncompact constant mean cur-
vature surfaces should be developed to understand the set of compact constant
mean curvature surfaces. In previous constructions some properties of complete
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noncompact constant mean curvature surfaces have been neglected and they turn
out to be extremely important. This is the case, for example, with the notion of
nondegeneracy and the notion of a regular end (both turn out to be also important
in the construction of J. Ratzkin).

Finally, our construction generalizes to any dimension [Jleli 2004].

Although our method can be applied to produce nonsymmetric surfaces, a com-
plete description of the set of compact surfaces is far beyond our understanding.
This is why we have chosen not to look for the utmost generality but to focus on the
construction of symmetric surfaces, thus keeping notation as simple as possible.
We will therefore explain how to construct constant mean curvature surfaces of
arbitrary genus ≥ 3 having dihedral symmetry. More precisely, we show that there
exists a nonempty open interval O and a smooth bounded function 4 : O → R

such that any solution (ζ, n) ∈ O × N of the relation

(1–1) 4(ζ)+ nζ ∈ N

gives rise to a constant mean curvature surface which has genus k and is invariant
under the action of the group

Gk := {R2π j/k : j ∈ Z},

where Rθ is the rotation of angle θ in the x1, x2 plane, as well as under the action
of the symmetries with respect to the plane x1 = 0 and the plane x3 = 0. Moreover,
distinct solutions of (1–1) give rise to geometrically distinct constant mean curva-
ture surfaces and these surfaces are isolated in the set of constant mean curvature
surfaces that are invariant under these symmetries.

In Sections 2 and 3 we recall facts about the set of Delaunay surfaces and moduli
space theory. Then, in Section 4 we describe families of constant mean curvature
surfaces with finitely many ends. The geometric construction is the content of Sec-
tion 5. In Section 6 we develop the linear analysis; in particular we explain how the
different parametrices on each summand can be glued together. The perturbation
argument and the main result of the paper are explained in Section 7.

2. Delaunay surfaces

In this section we recall some well known facts concerning the family of Delaunay
surfaces Dτ , which are rotationally invariant constant mean curvature surfaces in
R3 [Delaunay 1841]. We refer to [Mazzeo and Pacard 2001] for further details.

Isothermal parametrization. Delaunay surfaces can be parametrized, in isother-
mal coordinates, by

(2–1) Xτ (s, θ)=
1
2

(
τ eσ(s) cos θ, τ eσ(s) sin θ, κ(s)

)
,
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where (s, θ) ∈ R × S1 and where the functions σ and κ are described as follows:
For any τ ∈ (0, 1], the function σ is defined to be the unique smooth nonconstant
solution of the ordinary differential equation

(∂sσ)
2
+ τ 2 cosh2 σ = 1, ∂sσ(0)= 0, σ (0) < 0,

while, for any τ ∈ (−∞, 0), the function σ is defined to be the unique smooth
nonconstant solution of the ordinary differential equation

(∂sσ)
2
+ τ 2 sinh2 σ = 1, ∂sσ(0)= 0, σ (0) < 0.

Again, the definition of κ differs according to the sign of τ . When τ ∈ (0, 1], we
define the function κ by

∂sκ = τ 2 eσ cosh σ, κ(0)= 0,

while when τ < 0, we define the function κ by

∂sκ = τ 2 eσ sinh σ, κ(0)= 0.

Observe that, when τ >0, κ is monotone increasing and hence Xτ is an embedding,
whereas, when τ < 0, this is no longer true and the surface parametrized by Xτ
is only immersed. The embedded and immersed Delaunay surfaces Dτ are called
unduloids and nodoids, respectively. The parameter τ will be referred to as the
Delaunay parameter.

We fix a positively oriented orthonormal basis (Ee1, Ee2, Ee3) of R3.

Definition 2.1. Given a vector Ea, with |Ea| = 1, the surface DEa
τ is defined to be the

image of the surface Dτ by a rotation which sends Ee3 to Ea. We denote by X Ea
τ its

parametrization. The unit normal vector field compatible with the orientation of
DEa
τ will be denoted by EN Ea

τ .

In particular, the axis of DEa
τ is the line directed by Ea passing through the origin

and DEa
τ is invariant under the symmetry with respect to the plane whose normal is

Ea. Granted this notation, the Delaunay surface Dτ described in (2–1) is equal to
DEe3
τ and we will simply write ENτ instead of EN Ee3

τ .

Definition 2.2. Given a vector Eb, the surface DEa
τ + Eb is defined to be the image of

the surface DEa
τ by the translation of vector Eb. It is parametrized by X Ea

τ + Eb.

It is easy to check that the functions σ are periodic and this translates into the fact
that Delaunay surfaces are invariant under the action of a one-parameter discrete
group of (vertical) translations. When τ 6= 1, we define sτ to be equal to half the
least period of σ and the half of the least vertical period of the Delaunay surface
Dτ will be denoted by Tτ . It is given by

Tτ :=
1
4 κ(2sτ ).
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Warning. We emphasize that, with the conventions above, 2sτ is equal to the least
period of the function σ and 2Tτ is the least vertical period of Dτ . Hence we have
the identity

DEa
τ + 2Tτ Ea = DEa

τ .

Lemma 2.3. For all τ ∈ (−∞, 0)∪ (0, 1], we have ∂τTτ > 0.

Proof. Observe that ∂sσ > 0 on (0, sτ ) and ∂sσ < 0 on (sτ , 2sτ ). Hence, for
s ∈ (0, sτ ), we can use σ as a change of variable and express κ as a function of
σ ∈ (−σ∗, σ∗) where σ∗ > 0 satisfies τ 2 cosh2 σ∗ = 1 when τ ∈ (0, 1] and σ∗ > 0
satisfies τ 2 sinh2 σ∗ = 1 when τ < 0.

When τ < 0, we get

2Tτ =

∫ σ∗

−σ∗

τ 2 eσ sinh σ√
1 − τ 2 sinh2 σ

dσ =

∫ σ∗

−σ∗

τ 2 sinh2 σ√
1 − τ 2 sinh2 σ

dσ.

Performing the change of variable τ sinh σ = sin x we conclude that

2Tτ =

∫ π/2

−π/2

sin2 x√
τ 2 + sin2 x

dx,

which clearly implies that ∂τTτ > 0 when τ < 0.
When τ > 0, we have

2Tτ =

∫ σ∗

−σ∗

τ 2 eσ cosh σ√
1 − τ 2 cosh2 σ

dσ =

∫ σ∗

−σ∗

τ 2 cosh2 σ√
1 − τ 2 cosh2 σ

dσ.

Performing the change of variable τ sinh σ =
√

1 − τ 2 sin x we conclude that

2Tτ =

∫ π/2

−π/2

√
1 − (1 − τ 2) cos2 x dx,

which again implies that ∂τTτ > 0. �

The Jacobi operator. Assume that 6 is a constant mean curvature surface. Any
surface which is close enough to 6 may be represented as a normal graph over 6

6w = {x +w(x) EN (x) : x ∈6},

where EN is the unit normal vector field compatible with the orientation of6 and w
is a (small) function. The mean curvature of6w is denoted by H(w). By definition,
the Jacobi operator about 6 is the differential of the mapping w 7→ 2 H(w) at
w = 0. It is given in terms of the geometric data of 6 by

L6 :=16 + |A6|
2
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where 16 is the Laplace–Beltrami operator on 6 and |A6|
2 is the square of the

norm of the second fundamental form on 6. A solution w of the homogeneous
problem L6w = 0 is called a Jacobi field.

In the case where 6 is the Delaunay surface Dτ , the Jacobi operator will be
denoted by Lτ . In terms of the isothermal parametrization given in the previous
paragraph, it is given by

Lτ =
4

τ 2e2σ

(
∂2

s + ∂2
θ + τ 2 cosh(2σ)

)
.

For the sake of simplicity, we shall now assume that τ 6= 1, namely that Dτ is not
a cylinder. There is no loss of generality in doing so since our construction, which
is based on the end-to-end construction, does not work for surfaces which have
ends asymptotic to cylinders. Some Jacobi fields can be easily described since
they correspond to explicit geometric deformations of Delaunay surfaces [Mazzeo
and Pacard 2001]. We briefly describe these now since they will play a key role in
the subsequent analysis.

The Jacobi fields corresponding to infinitesimal translations of Dτ will be de-
noted by 8T,Ee

τ , where |Ee| = 1 (the indices T, Ee should remind the reader that this
Jacobi field is associated to the “translation” of vector Ee). They are obtained by
projecting the constant vector field Ee over the normal vector field ENτ about Dτ .
Hence

8T,Ee
τ := Ee · ENτ .

It is geometrically obvious that there are three linearly independent such Jacobi
fields (this is where we use the fact that τ 6= 1 and hence that Dτ is not a cylinder).
These Jacobi fields are periodic in the s variable, hence they are bounded. Observe
that 8T,Ee3

τ only depends on s while 8T,Ee1
τ and 8T,Ee2

τ depend on both s and θ .

The two Jacobi fields corresponding to infinitesimal rotations of the axis of Dτ

will be denoted by 8R,Ee
τ , where |Ee| = 1 and Ee · Ee3 = 0 (the indices R, Ee should

remind the reader that this Jacobi field is associated to the “rotation” of the axis in
the direction of the vector Ee). They are obtained by projecting the Killing vector
fields

Ex 7→ (Ex · Ee)Ee3 − (Ex · Ee3)Ee

over the normal vector field ENτ ; thus

8R,Ee
τ := (Ex · Ee)Ee3 · ENτ − (Ex · Ee3)Ee · ENτ .

It is geometrically obvious that there are two linearly independent such Jacobi
fields. This time, these Jacobi fields depend on both s and θ and they “grow linearly
in s” as |s| tends to +∞; that is, there exists a constant c > 0 (depending on τ )
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such that
c ≤ lim sup

|s|→+∞

sup
θ∈S1

(
(1 + |s|)−1

|8R,Ee
τ |

)
.

So far all the Jacobi fields we have defined can be explicitly written in terms of
the function σ and its derivatives [Mazzeo and Pacard 2001], even though we will
not need these expressions. There is a last Jacobi field, whose geometric meaning
is obvious but whose analytical expression is more intricate, which corresponds
to the one-parameter family Dτ obtained by varying the Delaunay parameter τ .
This last Jacobi field will be denoted by 8D

τ := ∂τ Xτ · ENτ (the index D should
remind the reader that this Jacobi field is associated to the change of the Delaunay
parameter). Observe that this Jacobi field only depends on s since Dτ are surfaces
of revolution.

That ∂τTτ is nonzero when τ 6= 1 implies that this Jacobi field is again “linearly
growing in s” as |s| tends to +∞ in the sense above. Indeed, we have the identity

Xτ ( · + 2sτ , · )= Xτ + 2Tτ Ee3.

Differentiation with respect to τ yields

2∂τ sτ ∂s Xτ ( · + 2sτ , · )+ ∂τ Xτ ( · + 2sτ , · )= ∂τ Xτ + 2∂τTτ Ee3.

Taking the scalar product with ENτ we find

(2–2) 8D
τ ( · + 2sτ )=8D

τ + 2∂τTτ8T,Ee3
τ ,

which clearly shows that 8D
τ grows “linearly” in s.

The Jacobi operator Lτ being invariant under the action of rotations in S1, we
can perform the eigenfunction decomposition of any function (s, θ) 7→ w(s, θ) in
the θ variable and the analysis of Lτ reduces to the analysis of the sequence of
operators

Lτ, j :=
4

τ 2 e2σ

(
∂2

s + τ 2 cosh(2σ)− j2) ,
for j ∈ N. The potential in Lτ, j being periodic of period sτ (observe that cosh(2σ)
is sτ -periodic since σ is 2sτ -periodic and odd), it follows from Bloch wave theory
[Mazzeo et al. 2005] that either

(i) the homogeneous problem Lτ, jw= 0 has two independent solutions w± (de-
pending on τ and j) such that

w±(s + sτ )= e±ζτ, j sτ w±(s)

for some complex number ζτ, j , with <ζτ, j ≥ 0, or

(ii) the homogeneous problem Lτ, jw= 0 has one periodic solution and one “lin-
early growing” solution; in this case, we set ζτ, j := 0.
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For each τ and j , we define the indicial roots associated to the operator Lτ, j to
be the real numbers ±γτ, j where

γτ, j := Re ζτ, j ≥ 0.

It is proved in [Mazzeo et al. 2005] that:

Proposition 2.4. The indicial roots of Lτ enjoy the following properties:

(1) For any τ ∈ (−∞, 0)∪ (0, 1], γτ,0 = γτ,1 = 0.

(2) There exists τ∗ < 0 such that, for all j ≥ 2 and τ ∈ (τ∗, 0)∪ (0, 1], γτ, j > 0.

The first property is a consequence of the fact that the Jacobi fields 8D
τ , 8T,Ee

τ

and 8R,Ee
τ are either bounded or linearly growing, hence case (ii) always arises

when j = 0 or j = 1. The second property follows from the maximum principle.
Indeed, the potential j2

− τ 2 cosh(2σ) which appears in Lτ, j can be seen to be
bounded from below by a positive constant, when j ≥ 2 and τ is negative close
enough to 0 or positive (simply use the equation satisfied by σ to obtain an upper
bound for τ 2 cosh(2σ)). Therefore, when j ≥ 2 and τ is not too far away from
0, the maximum principle holds for Lτ, j and the existence of solutions of the
homogeneous problem Lτ, jw = 0 which either blows up exponentially or decays
exponentially at ∞ follows at once from the construction of barrier functions of
the form s 7→ eδs .

3. Moduli space theory

We now briefly describe the moduli space theory for k-ended complete noncompact
constant mean curvature surfaces as developed in [Kusner et al. 1996] and extended
in [Mazzeo et al. 2005]. We define Mτ∗

g,k to be the set of complete, noncompact
constant mean curvature surfaces which have genus g and k ends asymptotic to
Delaunay surfaces whose Delaunay parameter belongs to (τ∗, 0)∪ (0, 1]. Observe
that we do not mod out by the group of rigid motions.

Warning. From now on, we assume that all Delaunay parameters we consider
belong to (τ∗, 0)∪ (0, 1], where τ∗ is the constant defined in Proposition 2.4.

We can decompose each surface 6 ∈ Mτ∗
g,k into overlapping connected pieces:

a compact piece K and the ends E`, for `= 1, . . . , k. In addition, we require that
each K ∩ E` is homeomorphic to an annulus [0, 1] × S1 and that, for each `, the
end E` is parametrized by

(3–1) Y` := X Ea`
τ`

+w` EN Ea`
τ`

+ Eb`,

for (s, θ) ∈ [0,+∞) × S1. Here, we have chosen isothermal coordinates (s, θ)
for the Delaunay surface DEa`

τ`
+ Eb` on which E` is modeled. The fact that we have



CONSTRUCTION FOR COMPACT CONSTANT MEAN CURVATURE SURFACES 89

assumed that the end E` is asymptotic to DEa`
τ`

+Eb` means precisely that the function
w` is exponentially decreasing. To be more specific, we need:

Definition 3.1. Given r ∈ N, α ∈ (0, 1) and µ ∈ R, the space Er,α
µ ([0,+∞)× S1)

is the space of functions v ∈ Cr,α
loc([0,+∞)× S1) for which

‖v‖Er,α
µ ([0,+∞)×S1) := sup

s≥0
e−µs

|v|Cr,α([s,s+1]×S1)

is finite. Here |·|Cr,α(�) denotes the usual Hölder norm in the set �.

Granted this definition, it is known that the function w` defined in (3–1) satisfies

(3–2) w` ∈ E2,α
−γτ`,2

([0,∞)× S1).

In other words the rate of decay of the function w` is dictated by the indicial root
γτ`,2. We refer to [Mazzeo and Pacard 2001] for a proof of this fact. The moduli
space theory is based on the definition of weighted spaces on 6:

Definition 3.2. For r ∈ N, α ∈ (0, 1) and µ ∈ R, let Dr,α
µ (6) be the space of

functions v ∈ Cr,α(6) for which

‖v‖Dr,α
µ

:= ‖ v|K ‖Cr,α +

k∑
`=1

‖ v|E` ◦ Y`‖Er,α
µ ([0,+∞)×S1)

is finite.

Definition 3.3. The surface 6 ∈ Mτ∗
g,k is said to be nondegenerate if

L6 : D2,α
µ (6)→ D0,α

µ (6)

is injective for all µ < 0.

Following the analysis of the Jacobi fields we did above (starting on page 85)
and using the parametrization (3–1) together with (3–2), it is easy to see that, on
each end E` of 6, there exists 5 (globally defined on 6) independent Jacobi fields
8

T,Ee
E` and 8R,Ee ′

E` which satisfy

(3–3)
8

T,Ee
E` ◦ Y` −8T,Ee

τ`
∈ E2,α

−γτ`,2
([0,+∞)× S1)),

8
R,Ee ′

E` ◦ Y` −8R,Ee ′

τ`
∈ E2,α

−γτ`,2
([0,+∞)× S1)),

where |Ee| = 1, |Ee ′
| = 1 and Ee ′

· Ea` = 0.

The existence of a sixth Jacobi field 8D
E` defined on E` and asymptotic to 8D

τ`

is not a trivial fact and follows from a perturbation argument [Mazzeo and Pacard
2001]. Since E` is a graph over a Delaunay surface for some exponentially decay-
ing function, such a Jacobi field can be constructed by perturbing 8D

τ , looking for
a function w for which 8D

E` = 8D
τ`

+w satisfies L68
D
E` = 0 on E`. In general,
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this Jacobi field is only defined on E` (eventually away from a compact set in E`)
and is not globally defined on 6. This motivates the notion of a regular end:

Definition 3.4. The end E` of 6 is said to be regular if there exists a Jacobi field
8D

E` , globally defined on 6, satisfying

(3–4) 8D
E` ◦ Y` −8D

τ`
∈ E2,α

µ0
([0,+∞)× S1)),

for all µ0 ∈ (−γτ`,2, 0).

For example, such a globally defined Jacobi field can be obtained starting from
a one-parameter family of constant mean curvature surfaces 6(ε) ∈ Mτ∗

g,k , for ε ∈

(−ε0, ε0), which are close to 6 (in a suitable sense), satisfy 6(0)=6 and whose
`-th end E`(ε) is asymptotic to a Delaunay surface of parameter τ` + ε. Writing
6(ε) as a normal graph (over an exhaustion of 6 by compact subsets) for some
functions w(ε) and differentiating w(ε) with respect to ε at ε = 0 gives rise to the
desired Jacobi field.

Following [Kusner et al. 1996], we define the 6k-dimensional deficiency space

W(6) :=

k⊕̀
=1

Span
{
χE`8

T,Ee
E` : |Ee| = 1

}
⊕

k⊕̀
=1

Span
{
χE`8

D
E`

}
⊕

k⊕̀
=1

Span
{
χE`8

R,Ee ′

E` : |Ee ′
| = 1, Ee ′

· Ea` = 0
}
,

where χE` is a cutoff function equal to 0 on6−E` and equal to 1 on Y`([1,∞)×S1).
The following proposition is the key result in the study of the structure of Mτ∗

g,k .

Proposition 3.5 ([Kusner et al. 1996]). Assume that 6 ∈ Mτ∗
g,k is nondegenerate

and fix µ ∈ (−inf` γτ`,2, 0). Then the mapping

(3–5) L6 : D2,α
µ (6)⊕ W(6)→ D0,α

µ (6)

is surjective and has a kernel of dimension 3k. In addition, there exists a 3k-
dimensional subspace N(6)⊂ W(6) such that

Ker L6 ⊂ D2,α
µ (6)⊕ N(6).

Finally, given any 3k-dimensional subspace K(6) ⊂ W(6) such that K(6) ⊕

N(6)= W(6), the mapping

(3–6) L6 : D2,α
µ (6)⊕ K(6)→ D0,α

µ (6)

is an isomorphism.

It follows from this result that Mτ∗
g,k is locally a 3k-dimensional smooth manifold

near any nondegenerate element [Kusner et al. 1996] (observe that we have not
taken the quotient by the group of rigid motions of R3).
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4. Building blocks

We describe two families of complete noncompact constant mean curvature sur-
faces which will be used in the construction. The members of the first family are
3-ended surfaces while the members of the second family are k-ended surfaces.
We give a fairly precise description of the elements of each family and explain
how these families can be obtained using already known constructions of complete
noncompact constant mean curvature surfaces. In this paper we do not provide a
proof of the existence of these families but rather to rely on their existence. We
hope that the reader will either be convinced by the explanations below or take the
existence of these families for granted.

Before we proceed with the description these surfaces, we recall the well known
balancing formula [Korevaar et al. 1989]. Given a constant mean curvature sur-
faces 6 ⊂ R3 with finitely many ends E`, for ` = 1, . . . , k, which are asymptotic
to Delaunay surfaces DEa`

τ`
+ Eb`, the balancing formula takes the form:

(4–1)
k∑
`=1

τ` |τ`| Ea` = 0

where Ea` is the direction of the axis of E`, which is normalized by |Ea`| = 1 and
points toward the end of E`.

Type-1 surfaces. The members of the first family are denoted by6τ,α, where τ and
α are parameters. These surfaces are assumed to enjoy the following properties:

(i) Each 6τ,α is a complete noncompact constant mean curvature surface with 3
ends which are denoted by E−1, E0 and E1.

(ii) The surface 6τ,α is invariant under the action of the group

G := {I, S1, S3},

where Si is the symmetry with respect to the plane xi = 0.

(iii) Each 6τ,α is nondegenerate and the parameters (τ, α) are local parameters on
the moduli space of constant mean curvature surfaces with 3 ends, which are
invariant under the action of the group G.

(iv) The end E0 is asymptotic to a Delaunay surface of parameter τ and axis the
x2-axis. The vector −Ee2 is directed toward the end of E0. In particular, there
exists a smooth function (τ, α) 7→ d0(τ, α) such that E0 is a graph (for an
exponentially decaying function) over the Delaunay surface DEe2

τ − d0 Ee2.
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(v) The end E1 is asymptotic to the Delaunay surface of parameter τ̄ and axis
passing through the origin and of direction

Eaα := sinα Ee1 − cosα Ee2.

The vector Eaα is directed toward the end of E1. In particular, there exists a
smooth function (τ, α) 7→ d1(τ, α) such that E1 is a graph (for an exponen-
tially decaying function) over the Delaunay surface DEaα

τ̄ + d1 Eaα.

(vi) The ends of 6τ,α are regular.

Observe that the image of E1 by S1 is E−1 and that E0 remains globally fixed
under the action of S1. Also each end remains globally fixed under the action of S3.
Applying the balancing formula (4–1), we conclude that the Delaunay parameters
τ̄ and τ are related by the formula

(4–2) τ |τ | + 2 cosα τ̄ |τ̄ | = 0.

In particular, if α ∈ (0, π/2), the signs of τ and τ̄ are different and this implies
that the surface 6τ,α has always an end which is not embedded (asymptotic to a
nodoid) in this case.

Observe that (iv) implies that the end E0 can be parametrized by

(4–3) X0
τ,α := X Ee2

τ +w0 EN Ee2
τ − d0 Ee2

with (s, θ)∈ [0,+∞)× S1 and the function w0 ∈ E2,α
−γτ,2

([0,+∞)× S1) depending
on τ and α. (In general the function w0 is only defined on [c,+∞)× S1 for some
c> 0 large enough. However, changing if necessary the value of d0(τ, α) by 2m Tτ
for some m ∈ N, we can assume that w0 is defined on [0,+∞)× S1.)

Similarly (v) implies that the end E1 can be parametrized by

(4–4) X1
τ,α := X Eaα

τ̄ +w1 EN Eaα
τ̄ + d1 Eaα

with (s, θ)∈ [0,+∞)× S1 and the function w1 ∈ E2,α
−γτ̄ ,2

([0,+∞)× S1) depending
on τ and α. We denote by X−1

τ,α := S1 ◦ X1
τ,α, the parametrization of E−1.

Definition 4.1. Given s0, s1 > 0, we define the compact surface with 3 boundaries

6τ,α(s0, s1) :=6τ,α −
(
X0
τ,α((s0,+∞)× S1)∪ X1

τ,α((s1,+∞)× S1)

∪ X−1
τ,α((s1,+∞)× S1)

)
.

This is nothing but the surface 6τ,α whose ends have been truncated.

Under the assumption of Alexandrov embeddedness, the surfaces described
above have been classified in [Große-Brauckmann and Kusner 1999] and in [Ko-
revaar et al. 2004] it is proved that they are nondegenerate. However, no such
results are available in the case where the surfaces are not Alexandrov embedded,
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which is the case we have to consider! This is why we give now two examples of
construction of such a family which rely on connected sum constructions and for
which it is possible to check that the surfaces constructed are both nondegenerate
and have regular ends:

Example 4.2. A first family can be obtained by gluing onto the unit sphere S2
⊂R3,

three half Delaunay surfaces of parameters τ̄ , τ and τ̄ , respectively, at the points
having coordinates

(−sinα,−cosα, 0), (0,−1, 0) and (sinα,−cosα, 0),

using a modified version of the connected sum result of [Mazzeo et al. 2001; 2005]
(see also [Jleli 2004]). The construction works if one demands that the surfaces be
invariant under the action of the group G. Given the symmetries of the surfaces
constructed, there remain only two degrees of freedom: the Delaunay parameter τ
and the angle α between the ends. The construction works for any α ∈ (0, π/2)∪
(π/2, π) and any τ 6= 0 close enough to 0. The fact that the ends are regular
follows from the construction itself since τ can be used to parameterize this family
of surfaces and differentiation with respect to this parameter yields a Jacobi field
whose asymptotic along any end has a nontrivial component on χE`8

D
E` , for ` =

0,±1.

Example 4.3. A second family can be obtained by gluing onto a Delaunay surface
of parameter τ̄ and axis x1 which is translated so that it is invariant under the action
of the symmetry S1 (namely either DEe1

τ̄ or DEe1
τ̄ + Tτ̄ Ee1), a half Delaunay surface

of axis x2 and small Delaunay parameter τ . Again, the construction works if one
demands that the surfaces be invariant under the action of the group G. Given the
symmetries of the surfaces constructed, there remains only two degrees of freedom:
the Delaunay parameters τ̄ and τ . The construction works for any small value of
the parameter τ 6=0 ([Mazzeo et al. 2001; 2005]; see also [Jleli 2004]) and provides
a surface with an angle α close, but not equal, to π/2 which is determined by the
equation τ |τ | + 2 cosα τ̄ |τ̄ | = 0. This shows that (α, τ ) are local parameters on
the corresponding moduli space and, as in the previous example, the ends of the
surfaces are regular.

In both cases, the surfaces can be seen to be nondegenerate, when τ is close
enough to 0, using the strategy developed in [Mazzeo and Pacard 2001].

Type-2 surfaces. We fix k ≥ 3. The members of the second family are denoted
by 6̄τ , where τ is a parameter. These surfaces are assumed to enjoy the following
properties:

(i) Each 6̄τ is a complete noncompact constant mean curvature surface with k
ends which are denoted by Ē0, . . . , Ēk−1.
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(ii) The surface is invariant under the action of the group

Gk := {R2π j/k : j ∈ Z}

where Rθ is the rotation of angle θ in the x1, x2 plane.

(iii) Each 6̄τ is nondegenerate and the parameter τ is a local parameter on the
moduli space of constant mean curvature surfaces with k ends, which are
invariant under the action of the group Gk .

(iv) The end Ē0 is asymptotic to a Delaunay surface having parameter τ and x2-
axis as its axis, the vector Ee2 being directed toward the end of Ē0. In particular,
there exists a smooth function τ 7→ d̄0(τ ) such that Ē0 is a graph (for an
exponentially decaying function) over the Delaunay surface DEe2

τ + d̄0
Ee2.

(v) The ends of 6̄τ are regular.

For `= 1, . . . , k −1, the image of E0 by R2π`/k is the end Ē`. Hence the angle
between two consecutive ends is given by 2π/k, and to check that the ends of 6̄τ
are regular it is enough to check that Ē0 is regular.

As in the case of Type-1 surfaces, statement (iv) implies that the end Ē0
τ can be

parametrized by

(4–5) X̄0
τ := X Ee2

τ + w̄0 EN Ee2
τ + d̄0 Ee2

with (s, θ) ∈ [0,+∞)× S1, for some function w̄0 ∈ E2,α
−γτ,2

([0,+∞)× S1) which
depends on τ . We denote by X̄`

τ := R2π`/k ◦ X̄0
τ,, the parametrization of Ē`.

Definition 4.4. Given s0 > 0, we define the compact surface with k boundaries

6̄τ (s0) := 6̄τ −

k−1⋃̀
=0

X̄`
τ ((s0,+∞)× S1).

This is nothing but 6̄τ with all the ends truncated. We now give two examples of
such a family.

Example 4.5. A first family can be obtained by gluing onto the unit sphere S2
⊂R3,

k copies of a half Delaunay surface with small Delaunay parameter τ 6= 0 in such
a way that the surface remains invariant under the action of Gk . Again, this is a
byproduct of the end addition result proved in [Mazzeo et al. 2001; 2005] or this is
also a byproduct of [Kapouleas 1990]. These surfaces have also been constructed
and described by K. Große-Brauckmann [1993].

Example 4.6. A second family can be obtained by gluing onto a k-noid (a minimal
surface with k ends of catenoidal type [Jorge and Meeks 1983; Cosín and Ros
2001]) which is invariant under the action of Gk , k copies of a half Delaunay
surface with small Delaunay parameter τ 6= 0 in such a way that the symmetries
are preserved. This construction is the one described in [Mazzeo and Pacard 2001].
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In either case, given the symmetries of the surfaces constructed, there remains
only one degree of freedom which is τ , the Delaunay parameter of the ends. Both
constructions work for any τ 6= 0 close enough to 0. The fact that (v) holds follows
at once from the construction itself since τ can be used to parameterize this family
of surfaces and differentiation with respect to this parameter yields a Jacobi field
whose asymptotic has a nontrivial component on χĒ0

8D
Ē0

. The fact that the surfaces
constructed are nondegenerate follows from [Mazzeo and Pacard 2001].

Jacobi fields. We give a precise description of the Jacobi fields on both 6τ,α and
on 6̄τ . This description induces a description of the spaces K(6τ,α) and K(6̄τ )

which have been introduced in Proposition 3.5.

Jacobi fields on 6̄τ . We start with the analysis of the Jacobi fields on 6̄τ since
this is the simplest. Since the surface 6̄τ is assumed to be nondegenerate, the
deficiency space W(6̄τ ) is 6k-dimensional. However, since we are working in the
space of surfaces which are invariant under the action of the group Gk , this reduces
the dimension of the corresponding moduli space to 1 and the deficiency space is
now spanned by the 2 functions

9̄T
:=

k−1∑
`=0

χĒ`8
T,Ea`
Ē`

and 9̄D
:=

k−1∑
`=0

χĒ`8
D
Ē`

where Ea` := R2π`/k Ee2 is the direction of the end Ē`. Even though these functions do
depend on τ , we have not made this dependence apparent in the notation. Observe
that the symmetries of 6̄τ imply that

8
T,Ea`
Ē`

=8
T,Ee2
Ē0

◦ (R2π`/k)
−1.

Since the end Ē0 is assumed to be regular, there exists a globally defined Jacobi
field 8̄D (invariant under the action of Gk) whose asymptotic on Ē0 has a nontrivial
component on 8D

Ē0
. In fact this Jacobi field is obtained by moving the parameter

τ . Multiplying this Jacobi field by a suitable constant, we can assume that it is
asymptotic to 9̄D

+ c̄9̄T on each Ē`, were the constant c̄ depends smoothly upon
τ . This implies that the space K(6̄τ ) can be chosen to be

K(6̄τ )= Span{9̄T
}.

Jacobi fields on 6τ,α. We now analyze the Jacobi fields on 6τ,α. By assumption,
6τ,α is nondegenerate and has 3 ends, therefore the deficiency space W(6τ,α) is
18-dimensional. Now, recall that we are working in the space of surfaces which
are invariant under the action of the group G and this reduces the dimension of
the corresponding moduli space to 3 and the deficiency space is spanned by the 6
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functions we now describe:

9T
:= χE08

T,Ee2
E0
, 9D

:= χE08
D
E0
,

9 D̄
:= χE18

D
E1

+ (χE18
D
E1
) ◦ S1, 9T,Ea

:= χE18
T,Eaα
E1

+ (χE18
T,Eaα
E1

) ◦ S1,

9T,Ea⊥

:= χE18
T,Ea⊥

α

E1
+ (χE18

T,Ea⊥
α

E1
) ◦ S1, 9R

:= χE18
R,Ea⊥

α

E1
+ (χE18

R,Ea⊥
α

E1
) ◦ S1,

where
Ea := Eaα and Ea⊥

:= Ea⊥

α := cosα Ee1 + sinα Ee2.

Even though these functions clearly depend on α and τ , we have not made this
dependence apparent in the notation. Observe that 9D and 9T are supported on
E0 while 9 D̄ , 9T,Ea , 9T,Ea⊥

and 9R are supported on E1 ∪ E−1.

We now describe the Jacobi fields which are globally defined on6τ,α and which
are obtained by moving the two parameters α, τ and also by translating this sur-
face in the Ee2 direction. These Jacobi fields will give us an explicit description of
N(6τ,α) and hence a description of some choice of K(6τ,α).

(1) Changing the parameter τ (keeping α fixed) changes τ̄ and provides a Jacobi
field which (up to a multiplicative constant) is asymptotic to 9 D̄

+c19
T,Ea on

E1 ∪ E−1 and which is asymptotic to c29
D

+ c39
T on E0.

(2) Changing the α parameter (keeping τ fixed) provides a Jacobi field which (up
to a multiplicative constant) is asymptotic to 9R

+c49
T,Ea

+c59
D

+c69
T,Ea⊥

on E1 ∪ E−1 and which is asymptotic to c79
T on E0.

(3) Translating 6τ,α in the Ee2 direction (keeping τ and α fixed) provides a Jacobi
field

8T,Ee2 := EN6τ,α · Ee2

which is asymptotic to9T on E0 and which is asymptotic to c89
T,Ea

+c99
T,Ea⊥

on E1 ∪ E−1.

Here the constants c1, . . . , c9 are smooth functions of τ and α. Recall that the
space K(6τ,α) is any 3-dimensional subspace of the deficiency space W(6τ,α)

chosen so that
W(6τ,α)= K(6τ,α)⊕ N(6τ,α).

It follows from the above description of the elements of N(6τ,α) that we can choose

K(6τ,α)= Span{9D, 9T,Ea, 9T,Ea⊥

}.

For all t ∈ R, we define

K(6τ,α, t)= Span{9D
+ t8T,Ee2, 9T,Ea, 9T,Ea⊥

}.
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Observe that, 8T,Ee2 being a globally defined Jacobi field, the space K(6τ,α) can be
replaced by K(6τ,α, t) in the statement of Proposition 3.5 corresponding to 6τ,α.

5. The construction

We fix k ≥ 3 and define
αk :=

π

2
−
π

k
.

We assume that, for τ in some closed interval I ⊂ (τ∗, 0)∪ (0, 1) with nonempty
interior, we are given a family of surfaces 6τ,αk of Type 1 and a family of surfaces
6̄τ of Type 2. The parameter τ being chosen in I , we recall that τ̄ is given by

(5–1) τ |τ | + 2 cosαk τ̄ |τ̄ | = 0.

Given n,m ∈ N, we set

δn,τ := d0(τ, αk)+ d̄0(τ )+ 2n Tτ .

We agree on the notation

6n,τ :=6τ,αk + δn,τ Ee2

and denote the ends of this surface by

En
` := E` + δn,τ Ee2.

Also we define the truncated surface (see Definition 4.1)

6n,τ (s0, s1) :=6τ,αk (s0, s1)+ δn,τ Ee2.

With these notations in mind, we consider the union of the surface6n,τ (n sτ ,m sτ̄ )
with the images of this surface by R2`π/k , for ` = 1, . . . , k − 1 and also the trun-
cated surface 6̄τ (nsτ ) (see Definition 4.4). These surfaces with boundaries are now
connected together using appropriate cutoff functions to produce a compact surface
which is invariant under the action of Gk . More precisely, for each `=0, . . . , k−1,
the end Ē` of 6̄τ can be connected with the image of En

0 by R2π`/k since they are
graphs over the same Delaunay surface. And, provided the parameters n,m and τ
are suitably chosen, the image of the end En

1 by R2π`/k can be connected with the
image of En

−1 by R2π(`+1)/k . We now describe this procedure analytically. Given
that the surface we want to construct should be invariant under the action of Gk ,
here is all we need to describe:

Connection of En
0 with Ē0. By construction the ends En

0 and Ē0 are normal graphs
over the same Delaunay surface. Given the parametrizations defined in (4–3) and
(4–5) we can connect the two pieces together by considering the parametrization

Y 0
n,τ (s, θ) := ξ(s) X̄0

τ (s + n sτ , θ)+ (1 − ξ(s))(X0
τ,αk
(n sτ − s, θ)+ δn,τ Ee2)



98 MOHAMED JLELI AND FRANK PACARD

for (s, θ) ∈ (−nsτ , nsτ )× S1. Here ξ is a cutoff function identically equal to 1 for
s ≤ −1 and identically equal to 0 for s ≥ 1 and which satisfies

ξ(−s)= 1 − ξ(s).

We will denote by A0
n,τ the image of (−1, 1)× S1 by Y 0

n,τ .

We define, for `= 1, . . . , k − 1

Y `n,τ = R2π`/k ◦ Y 0
n,τ

to be the parametrization which describes the connected sum between the end Ē`
and the image of En

0 by R2π`/k .

Connection of En
1 with the image of En

−1 by R2π/k . We define the plane

5k := {x ∈ R3
: tan(2π/k)x2 = −x1}.

The image of En
1 by the symmetry with respect to 5k is equal to the image of

En
−1 by R2π/k . By definition, the end En

1 is a graph over the Delaunay surface
DEa
τ̄ + d1

Ea + δn,τ Ee2. Therefore the end En
1 and its image by the symmetry with

respect to the plane 5k are normal graphs over the same Delaunay surface if and
only if the Delaunay surface DEa

τ̄ + d1
Ea + δn,τ Ee2 is invariant under the symmetry

with respect to the plane 5k . This condition is translated into the fact that the
integer m ∈ N is chosen so that

(5–2) sin(π/k)
(
d0(τ, αk)+ d̄0(τ )+ 2n Tτ

)
= d1(τ, αk)+ m Tτ̄

where we recall that the parameters τ̄ and τ are related by

(5–3) τ |τ | + 2 sin(π/k)τ̄ |τ̄ | = 0.

If (5–2) is fulfilled we can connect the end En
1 with the image of the end En

−1 by
R2π/k , using the parametrization

Z0
n,τ (s, θ) := ξ(s)X1

τ,αk
(s + m sτ̄ , θ)+(1−ξ(s))R2π/k ◦X−1

τ,αk
(m sτ̄ − s, θ)+δn,τ Ee2

for (s, θ) ∈ (−m sτ̄ ,m sτ̄ )× S1. We will denote by A1
n,τ the image of (−1, 1)× S1

by Z0
n,τ .

We define

Z `n,τ := R2π`/k ◦ Z0
n,τ

for `= 1, . . . , k − 1. This describes the connection of the image of En
1 by R2π`/k

with the image of En
−1 by R2π(`+1)/k .
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Estimate of the mean curvature of the connected surface. The compact surface
which is obtained through these connections will be denoted by Sn,τ . It is an
immersed compact surface of genus k. By construction, the mean curvature of the
surface Sn,τ is equal to 1 except in annular regions A0

n,τ , A1
n,τ and in their images by

the elements of Gk . The following estimates follow at once from the exponential
decay of the functions w0, w̄0 and w1 (see Section 4).

Lemma 5.1. We have

‖HSn,τ − 1‖C0,α(A0
n,τ )

≤ ce−nγτ,2 sτ

and, provided (5–2) is satisfied, we have

‖HSn,τ − 1‖C0,α(A1
n,τ )

≤ ce−mγτ̄ ,2 sτ̄ ,

where the constant c > 0 does not depend on τ ∈ I nor on n ∈ N.

Partition of unity on Sn,τ . We now describe a partition of unity subordinate to the
construction above.

(i) The function χn,τ is a smooth function defined on Sn,τ , equal to 1 on

6n,τ (n sτ − 1,m sτ̄ − 1)⊂ Sn,τ

and equal to 0 on the complement of

6n,τ (n sτ − 1,m sτ̄ − 1)∪ Y 0
n,τ ((−1, 1)× S1)∪ Z0

n,τ ((−1, 1)× S1)

∪ Z k−1
n,τ ((−1, 1)× S1)

in Sn,τ . To be more precise, on the part of Sn,τ parametrized by Y 0
n,τ , the

function χn,τ is equal to 1 for s ≥ 1 and is equal to 0 for s ≤ −1 and on the
part of Sn,τ parametrized by Z0

n,τ , the function χn,τ is equal to 1 for s ≤ −1
and equal to 0 for s ≥ 1. This function is assumed to be invariant under the
action of S1.

(ii) The function χ̄n,τ is a smooth function on Sn,τ , defined by

χ̄n,τ = 1 −

k−1∑
`=0

χn,τ ◦ R2π`/k .

This function is equal to 1 on

6̄τ (n sτ − 1)⊂ Sn,τ

and equal to 0 on the complement of

6̄τ (n sτ − 1)∪
k−1⋃̀
=0

Y `n,τ ((−1, 1)× S1)
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in Sn,τ . To be more precise, on the part of Sn,τ parametrized by Y 0
n,τ , the

function χ̄n,τ is equal to 1 for s ≤ −1 and equal to 0 for s ≥ 1. This function
is assumed to be invariant under the action of Gk .

We will also need another set of cutoff functions, as follows:

(i) The function χ e
n,τ is a smooth function defined on Sn,τ , equal to 1 on

6n,τ (n sτ − 1,m sτ̄ − 1)∪ Y 0
n,τ ((−n sτ + 2, 1)× S1)

∪ Z0
n,τ ((−1,m sτ̄ − 2)× S1)∪ Z k−1

n,τ ((−1,m sτ̄ − 2)× S1)

and equal to 0 on the complement of

6n,τ (n sτ − 1,m sτ̄ − 1)∪ Y 0
n,τ ((−n sτ + 1, 1)× S1)

∪ Z0
n,τ ((−1,m sτ̄ − 1)× S1)∪ Z k−1

n,τ ((−1,m sτ̄ − 1)× S1).

To be more precise, on the part of Sn,τ parametrized by Y 0
n,τ , the function χ e

n,τ
is equal to 1 for s ≥ −nsτ +2 and equal to 0 for s ≤ −nsτ +1 and on the part
of Sn,τ parametrized by Z0

n,τ , the function χ e
n,τ is equal to 1 for s ≤ m sτ̄ − 2

and equal to 0 for s ≥ m sτ̄ −1. This function is assumed to be invariant under
the action of S1.

(ii) The function χ̄ e
n,τ is a smooth function defined on Sn,τ , equal to 1 on

6̄τ (n sτ − 1)∪
k−1⋃̀
=0

Y `n,τ ((0, n sτ − 2)× S1)

and equal to 0 on the complement of

6̄τ (n sτ − 1)∪
k−1⋃̀
=0

Y `n,τ ((0, n sτ − 1)× S1).

To be precise, on the part of Sn,τ parametrized by Y 0
n,τ , the function χ̄ e

n,τ is
equal to 1 for s ≤ n sτ − 2 and equal to 0 for s ≥ n sτ − 1. This function is
assumed to be invariant under the action of Gk .

6. Linear analysis

Extension of the elements of K(6n,τ , t) and K(6̄τ ). Building on our analysis
of Jacobi fields (page 95 and following), we explain how the restriction of the
elements of K(6n,τ , t) to 6n,τ (n sτ − 1,m sτ − 1)⊂ Sn,τ and the restriction of the
elements of K(6̄τ ) to 6̄τ (n sτ − 1)⊂ Sn,τ can be extended to functions which are
defined on Sn,τ , using the restrictions of the elements of the nullspace of L6n,τ to
6n,τ (nsτ −1,m sτ −1) and the restriction of the elements of the nullspace of L6̄τ

to 6̄τ (n sτ − 1) and also using the action of Gk . The fact that these extensions are
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meaningful (see Lemma 6.1) relies on the fact that we have chosen m satisfying
(5–2).

Warning. We will keep using the same notations for the elements of K(6n,τ , t)
and K(6τ,αk , t).

We now reason as follows.

(i) The restriction of the elements 9T,Ea, 9T,Ea⊥

∈ K(6n,τ , t) to 6n,τ (n sτ ,m sτ̄ )
can be easily extended to Sn,τ using the fact that the ends En

1 and R2π/k En
−1

are symmetric with respect to 5k . For example, for Eb = Ea, Ea⊥, we can first
define a function 9T,Eb

n on the part of Sn,τ which is parametrized by Z1
n,τ ,

9T,Eb
n = χn,τ9

T,Eb
+ (1 −χn,τ )9

T,Eb
◦ (R2π/k)

−1

and then use the action of Gk to extend this function to the other components
of Sn,τ .

(ii) The restriction of the element 9̄T
∈ K(6̄τ ) to 6̄τ (nsτ −1) can be extended to

Sn,τ using the restriction to 6n,τ (n, sτ − 1,m, sτ̄ − 1) of 8T,Ee2 , the (unique)
Jacobi field defined on 6n,τ which is asymptotic to 8T,Ee2

En
0

on En
0 (i.e. the

globally defined Jacobi field which corresponds to translation of 6n,τ along
the x2 axis). We define a function 9̄T

n first by writing

9̄T
n = χ̄n,τ 9̄

T
+ (1 − χ̄n,τ )8

T,Ee2

on the part of Sn,τ which is parametrized by Y 0
n,τ . Observe that 8T,Ee2 is as-

ymptotic to a linear combination of 9T,Ea and 9T,Ea⊥

on the other ends of 6n,τ

and we can use the type of extension described in (i) to extend the function to
Sn,τ . For example,

9̄T
n = χn,τ8

T,Ee2 + (1 −χn,τ )8
T,Ee2 ◦ (R2π/k)

−1

on the part of Sn,τ which is parametrized by Z0
n,τ , and then we use the action

of Gk to extend this function to the other components of Sn,τ .

(iii) Finally, it remains to explain how to choose the parameter t (defined in the
construction of K(6n,τ , t)) in such a way that the element

9D
+ t8T,Ee2 ∈ K(6n,τ , t)

is asymptotic to 8̄D , the (unique) Jacobi field defined on 6̄τ which is as-
ymptotic to 8D

Ē0
on Ē0 (i.e. the globally defined Jacobi field which cor-

responds to changes of Delaunay parameters of 6̄τ ). To be more specific,
(9D

+ t8T,Ee2) ◦ Y 0
n,τ is asymptotic to

8D
Dτ
( · − n sτ , · )+ t8T,Ee2

Dτ
( · − n sτ , · )
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and 8D
Ē0
τ

◦ Ȳ 0
n,τ is asymptotic to

8D
Dτ
( · + n sτ , · ).

Granted (2–2), it is enough to choose

t = 2n∂τTτ .

These two functions are then connected, as in (i) or (ii), to define the function
9D

n . For example, we define

9D
n = χ̄n,τ8

D
Ē0
τ
+ (1 − χ̄n,τ )(ψ

D
E0 + n∂τ Tτ8

T,Ee2
6n,τ

)

on the part of Sn,τ which is parametrized by Y 0
n,τ and then we extend this

function to all Sn,τ using the action of Gk .

We define LSn,τ to be the Jacobi operator about the surface Sn,τ . The following
result again follows from the fact that the functionsw0,w1 and w̄0 defined in (4–3),
(4–4) and (4–5) are exponentially decaying.

Lemma 6.1. There exists a constant c > 0, not depending on τ ∈ I or on n and
satisfying

‖LSn,τ9
T,Ea
n ‖C0,α(A1

n,τ )
≤ ce−γτ̄ ,2 m sτ̄ , ‖LSn,τ9

T,Ea⊥

n ‖C0,α(A1
n,τ )

≤ ce−γτ̄ ,2 m sτ̄ ,

‖LSn,τ 9̄
T
n ‖C0,α(A0

n,τ )
≤ ce−γτ,2 n sτ , ‖LSn,τ 9̄

T
n ‖C0,α(A1

n,τ )
≤ ce−γτ̄ ,2 m sτ̄ ,

‖LSn,τ9
D
n ‖C0,α(A0

n,τ )
≤ cn e−γτ,2 n sτ , ‖LSn,τ9

D
n ‖C0,α(A1

n,τ )
≤ cm e−γτ̄ ,2 m sτ̄ .

All these estimates are easy to obtain, except maybe the last two, where one has
to take into account that the functions under consideration grow “linearly” along
the pieces parametrized by Y 0

n,τ and Z0
n,τ and hence are not bounded independently

of n but rather by a constant times n in A0
n,τ and A1

n,τ .

Mapping properties. We define weighted spaces on Sn,τ . Roughly speaking, to
evaluate the norm in this space, we restrict a function to each summand constituting
Sn,τ and then evaluate each term using the norm defined in Definition 3.2.

Definition 6.2. Given r ∈ N, α ∈ (0, 1) and µ ∈ R, we define Cr,α
µ (Sn,τ ) to be the

space of functions w ∈ Cr,α(Sn,τ ) which are invariant under the action of Gk . This
space is endowed with the norm

‖w‖Cr,α
µ (Sn,τ )

:= ‖χn,τw‖Dr,α
µ (6n,τ )

+ ‖χ̄n,τw‖Dr,α
µ (6̄τ )

.

We also define the 4-dimensional space

K(Sn,τ ) := Span{9̄T
n , 9

D
n , 9

T,Ea
n , 9T,Ea⊥

n }.
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In the next result we glue together the parametrices for L6n,τ and L6̄τ
to obtain a

parametrix for LSn,τ :

Proposition 6.3. Assume that µ ∈ (− inf(γτ,2, γτ̄ ,2), 0) is fixed. There exist n0 > 0
and c> 0 and, for all n ≥ n0, m ∈ N and τ ∈ I for which (5–2) holds, one can find
an operator

Gn,τ : C0,α
µ (Sn,τ )→ C2,α

µ (Sn,τ )× K(Sn,τ ),

such that w := (w1, w2)= Gn,τ ( f ), then w̃ =w1
+w2 solves LSn,τ w̃ = f on Sn,τ

and
‖w‖C2,α

µ (Sn,τ )×K(Sn,τ )
≤ c‖ f ‖C0,α

µ (Sn,τ )
,

for some constant which does not depend on τ ∈ I nor on n ≥ n0.

It will be convenient to agree that, given g = (g1, g2) ∈ C2,α
µ (Sn,τ )× K(Sn,τ , g̃

denotes the function defined by g̃ = g1
+w2.

Proof. Given a function g defined on Sn,τ , it will be convenient to identify the
function χn,τ g (resp. χ̄n,τ g) with a function which is defined on 6n,τ (resp. 6̄τ ).
This identification is done in the natural way on the common parts of the surfaces;
on the ends of the corresponding surfaces it is done by identifying (χn,τ g) ◦ Z0

n,τ
with (χn,τ g)◦ X1

n,τ ( ·+m sτ̄ , · ), (χn,τ g)◦Y 0
n,τ with (χn,τ g)◦ X0

n,τ (nsτ̄ −· , · ), and
so on. Conversely, given a function g defined in 6n,τ or 6̄τ we will identify the
function χ e

n,τ g or χ̄ e
n,τ g, respectively, with a function defined on Sn,τ .

Given f ∈ C0,α
µ (Sn,τ ) we want to solve the equation

LSn,τ w̃ = f

on Sn,τ . We solve
L6n,τ u1 = χn,τ f

on 6n,τ and
L6̄τ

u2 = χ̄n,τ f

on 6̄τ .
The existence of ui follows at once from the analysis made in Section 3 and we

have the estimate

(6–1) ‖u1‖D2,α
µ (6n,τ )×K(6n,τ ,n∂τ Tτ )

+ ‖u2‖D2,α
µ (6̄τ )×K(6̄τ )

≤ c‖ f ‖C0,α
µ (Sn,τ )

where the constant c > 0 does not depend on n nor on τ ∈ I . Observe that the
function u1 can be decomposed as

u1 := v1 + a1 (9
D

+ n∂τTτ8T,Ee2)+ b1ψ
T,Ea

+ c1ψ
T,Ea⊥

,

and the function u2 can be decomposed as

u2 := v2 + a2 9̄
T .
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This being understood, we define the function u = (u1, u2) by

u = (χ e
τ,n v1 +χ e

τ,n v2 , a19
D
n + b19

T,Ea
n + c19

T,Ea⊥

n + a29̄T
n ).

Observe that
‖u‖C2,α

µ (Sn,τ )×K(Sn,τ )
≤ c‖ f ‖C0,α

µ (Sn,τ )

for some constant which does not depend on n nor on τ ∈ I . We claim that

‖LSn,τ ũ − f ‖C0,α
µ (Sn,τ )

≤ c(ne−γτ,2 n sτ + e2µn sτ +ne−γτ̄ ,2 m sτ̄ + e2µm sτ̄ )‖ f ‖C0,α
δ (Sn,τ )

.

Since our problem is invariant under the action of Gk , it is enough to evaluate this
quantity on Y 0

n,τ ((−nsτ , nsτ )×S1) and on Z0
n,τ ((−m sτ̄ ,m sτ̄ )×S1). We focus our

attention on the estimate of LSn,τ ũ− f on Y 0
n,τ ((−nsτ , 0)×S1), since the estimates

on the other parts can be obtained similarly.
In Y 0

n,τ ((−n sτ + 2,−1)× S1), all the elements of K(Sn,τ ) are pieces of Jacobi
fields in the sense that, for all U ∈ K(Sn,τ ),

LSn,τU = 0

in this set. Therefore, LSn,τ ũ − f = LSn,τ (v1 + v2)− f = LSn,τ v1 in this set. We
now use the fact that Y 0

n,τ ((−n sτ + 2,−1)× S1) can be considered as a normal
graph over E0

n for some function bounded and whose derivatives are bounded by
a constant times e−γτ,2(s+n sτ ) in (−n sτ , 0)× S1. In particular, this implies that

LSn,τ − L6n,τ

is a second order partial differential operator whose coefficients as well as their
derivatives are bounded by a constant times e−γτ,2(s+n sτ ) in (−n sτ , 0)× S1. Since
L6n,τ v1 = 0 in this set, we conclude that

‖e−µ(s+n sτ )(LSn,τ ũ − f )‖C0,α(Y 0
n,τ ((−n sτ+1,−1)×S1))

≤ c(e2nµsτ + e−γτ,2 n sτ )‖ f ‖C0,α
δ (Sn,τ )

.

In Y 0
n,τ ((−n sτ + 1,−n sτ + 2)× S1), we obtain, using similar arguments and

taking into account the influence of the cutoff function χ e
n,τ , we have

‖LSn,τ ũ − f ‖C0,α(Y 0
n,τ ((−n sτ+1,−n sτ+2)×S1)) ≤ ce2nµsτ ‖ f ‖C0,α

δ (Sn,τ )
,

and in Y 0
n,τ ((−1, 0) × S1) we obtain, using similar arguments together with the

result of Lemma 6.1,

‖e−µn sτ (LSn,τ ũ − f )‖C0,α(Y 0
n,τ (−1,0)×S1)) ≤ cn e−γτ,2 n sτ ‖ f ‖C0,α

δ (Sn,τ )
.

So far, we have produced a linear operator

G0
n,τ : C0,α

µ (Sn,τ )→ C2,α
µ (Sn,τ )⊕ K(Sn,τ ),



CONSTRUCTION FOR COMPACT CONSTANT MEAN CURVATURE SURFACES 105

defined by G0
n,τ ( f ) := u, which is uniformly bounded (with respect to n ∈ N and

τ ∈ I ) and which satisfies

‖LSn,τ ◦ G̃0
n,τ − I‖ ≤ c(n e−γτ,2 n sτ + e2µn sτ + n e−γτ̄ ,2 m sτ̄ + e2µm sτ̄ )

for some constant independent of n ∈ N and τ ∈ I , where G̃0
n,τ ( f ) is the function

associated to G0
n,τ . The result then follows from a simple perturbation argument,

provided n is chosen large enough. �

7. Perturbation of Sn,τ

We define the functions

3(τ) :=
1
Tτ̄

(
sin(π/k)(d0(τ, αk)+ d̄0(τ ))− d1(τ, αk)

)
and

0(τ) := 2 sin(π/k)
Tτ
Tτ̄
.

Recall that τ and τ̄ are related through (5–1). We now prove the main result of the
paper:

Theorem 7.1. There exists n0 > 0 such that, for all n ≥ n0 and all τ ∈ I satisfying

(7–1) 3(τ)+ n0(τ) ∈ N,

the surface Sn,τ can be perturbed into a constant mean curvature 1 surface.

Proof. We consider surfaces that can be written as a normal graph over Sn,τ , for
some function w ∈ C2,α

µ (Sn,τ )× K(Sn,τ ). The equation which guarantees that this
surface has constant mean curvature equal to 1 can be written as

(7–2) LSn,τ w̃+ Qn,τ (w̃)= 1 − HSn,τ ,

where w̃ is the function associated to w, where LSn,τ is the Jacobi operator about
Sn,τ , HSn,τ is the mean curvature of Sn,τ and Qn,τ collects all the nonlinear terms.
It should be clear from the construction of Sn,τ that, given r ∈ N, there exists cr > 0
(independent of τ ∈ I and of n ∈ N) such that the pointwise bound

(7–3) |Qn,τ (w2)− Qn,τ (w1)|Cr ≤ cr (|w2|Cr+2 + |w1|Cr+2)|w2 −w1|Cr+2

holds provided |w1|C1 + |w2|C1 ≤ 1, where

|w|Cr =

r∑
j=0

|∇
jw|

and partial derivatives are computed using the vector fields ∂s and ∂θ along the
pieces of Sn,τ parametrized by Y `n,τ and Z `n,τ and using a fixed set of vector fields
(independent of n) away from these pieces.
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We fixµ∈ (− inf(γτ,2, γτ̄ ,2), 0). Using the result of Proposition 6.3, our problem
reduces to finding a fixed point for:

(7–4) Fn,τ (w)= Gn,τ
(
1 − HSn,r − Qn,τ (w̃)

)
.

which belongs to C2,α
µ (Sn,τ )× KSn,τ . It follows from the result of Lemma 5.1 that

‖1 − HSn,τ ‖C0,α
µ (Sn,τ )

≤ c(e−(γτ,2+µ)n sτ + e−(γτ̄ ,2+µ)m sτ̄ ).

We set
ρn,τ := (e−(γτ,2+µ)n sτ + e−(γτ̄ ,2+µ)m sτ̄ ).

Applying the result of Proposition 6.3, we conclude that

(7–5) ‖Gn,τ (1 − HSn,τ )‖C2,α
µ (Sn,τ )×K(Sn,τ )

≤ c̄ρn,τ

for some constant c̄ > 0 which does not depend on τ ∈ I nor on n ∈ N, for which
(7–1) holds.

Now, it follows from (7–3) that there exists a constant c > 0, not depending on
τ ∈ I or on n ∈ N, such that

(7–6) ‖Qn,τ (w̃2)− Qn,τ (w̃1)‖C0,α
µ (Sn,τ )

≤ cn2 (e−µn sτ + e−µm sτ̄ )ρn,τ ‖w2 −w1‖C2,α
µ (Sn,τ )⊗K(Sn,τ )

,

provided ‖w2‖C2,α
µ (Sn,τ )×K(Sn,τ )

+ ‖w1‖C2,α
µ (Sn,τ )×K(Sn,τ )

≤ 2 c̄ρn,τ . The n2 which ap-

pears in this estimate arises from the fact that the element 9D
n,τ of K(Sn,τ ) is not

bounded uniformly in n, but is bounded, as well as its derivatives, by a constant
(independent of τ and n) times n.

We choose µ < 0 close enough to 0 so that

lim
n→+∞

n2 (e−µn sτ + e−µm sτ̄ )ρn,τ = 0

uniformly for τ ∈ I . (Recall that n and m are related by (7–1); hence they are
commensurable, and in particular there exists c > 0, independent of τ ∈ I , such
that n ≤ cm and m ≤ cn.)

That Fn,τ , for n large enough, has a fixed point in the ball of radius 2 c̄ρn,τ in
C2,α
µ (Sn,τ )⊕ K(Sn,τ ) follows directly from (7–5) and (7–6). �

The surfaces we have obtained are immersed, compact surfaces with genus k
(these surfaces are not embedded since the Type-1 elements which have been used
for their construction are never embedded). The surfaces obtained for different val-
ues of τ and n satisfying (7–1) are geometrically different (noncongruent) provided
n0 is chosen large enough. Hence, the set of solutions of (7–1) give a local picture
of the set of compact constant mean curvature surfaces of genus k with symmetry
group Gk .
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Finally, observe that Lemma 2.3, together with relation (5–1) between τ and τ̄ ,
implies that ∂τ (Tτ/Tτ̄ ) > 0. In particular, one can define the change of variable

ζ := 0(τ)

and the function 4(ζ)=3 ◦0−1(ζ ) so that constant mean curvature surfaces can
be constructed provided ζ ∈ O := 0(I ) and n ≥ n0 satisfy

4(ζ)+ ζ n ∈ N.
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