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We classify, up to contact isotopy, all tight contact structures on a family
of Seifert fibered three-manifolds M

(
−

1
2 , 1

3 ,
β

α

)
satisfying 0 <

β

α
< 1

6 . We
show that, if [r0, r1, . . . , rl ] is the continued fraction expansion of −

α
β

, there
are exactly |r0+5| |r1+1| · · · |rl+1| tight contact structures on such Seifert
fibered three-manifolds M

(
−

1
2 , 1

3 ,
β

α

)
as above, so all the tight contact struc-

tures are holomorphically fillable.

1. Introduction and results

An oriented 2-plane field distribution ξ on an oriented 3-manifold is called a posi-
tive contact structure if ξ =ker η for some global 1-form η satisfying η∧dη>0. In
this paper, a contact structure always means a positive contact structure. All contact
structures in 3-manifolds fall largely into two categories: tight and overtwisted (see
[Honda 2000] for details).

Let M(r1, r2, r3) denote a (small) Seifert fibered 3-manifold over S2 with three
singular fibers. The integer

e0(M(r1, r2, r3)) =

3∑
i=1

[ri ]

is an invariant of the Seifert fibered 3-manifold M(r1, r2, r3), called the truncated
Euler number. H. Wu [2004] has classified tight contact structures on small Seifert
fibered 3-manifolds with e0 6= −2, −1, 0; subsequently P. Ghiggini, P. Lisca, and
A. Stipsicz extended the classification results of Wu to the case e0 = 0 [Ghiggini
et al. 2004].

Here we report the classification of tight contact structures, up to contact isotopy,
on a family of the Seifert fibered 3-manifolds M

(
−

1
2 , 1

3 ,
β

α

)
satisfying 0 <

β

α
< 1

6 .
Note that the Seifert fibered 3-manifolds of the present paper have the truncated
Euler number e0 =−1 which was considered as kind of an exceptional case in [Wu
2004] and [Ghiggini et al. 2004].
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To state the main result, we write −
α
β

as a continued fraction [r0, r1, . . . , rl].

Theorem 1.1. Let M be the Seifert fibered 3-manifold M
(
−

1
2 , 1

3 ,
β

α

)
with 0 <

β

α
<

1
6 . Then there exist exactly |r0 +5| |r1 +1| · · · |rl +1| tight contact structures on M
up to contact isotopy. So all the tight contact structures on M are holomorphically
fillable.

As an immediate consequence, we have the following

Corollary 1.2. On the Seifert fibered 3-manifold M
(
−

1
2 , 1

3 , 2
6k−1

)
with k ≥ 2, there

exist exactly 3k − 5 tight contact structures up to contact isotopy. So all the tight
contact structures on M

(
−

1
2 , 1

3 , 2
6k−1

)
with k ≥ 2 are holomorphically fillable.

This corollary answers a question of P. Ghiggini and S. Schönenberger [2003,
Section 5]. Note also that M

(
−

1
2 , 1

3 , 2
11

)
is just the Brieskorn homology 3-sphere

−6(2, 3, 11) equipped with orientation opposite to the one as a boundary of the
Milnor fiber. The special case of Theorem 1.1 for k = 2 is proved in [Ghiggini
and Schönenberger 2003]. It would also appear to be interesting to classify tight
contact structures on the Brieskorn homology 3-spheres −6(2, 3, 6k − 1) (k > 2)
equipped with orientation opposite to the one as a boundary of the Milnor fiber.
Lisca and Matić [1997] showed that there exist at least k−1 tight contact structures
on −6(2, 3, 6k − 1) which are holomorphically fillable. A preliminary analysis
analogous to the present paper shows that there seem to exist exactly k(k−1)

2 tight
contact structures on the Brieskorn homology 3-sphere −6(2, 3, 6k−1); this work
will appear elsewhere. So the result of Theorem 1.1 seems to be sharp in the sense
that −6(2, 3, 6k − 1) is the Seifert 3-manifold M

(
−

1
2 , 1

3 , k
6k−1

)
in our notation

and that k
6k−1 is greater than 1

6 . We hope to come back to the classification of tight
contact structures on −6(2, 3, 6k − 1) in the future work.

As a consequence of Theorem 1.1, each Seifert fibered 3-manifold M
(
−

1
2 , 1

3 ,
β

α

)
has exactly |r0 + 5| |r1 + 1| · · · |rl + 1| nonisotopic tight (in fact, holomorphically
fillable) contact structures satisfying 0 <

β

α
< 1

6 . Hence these same manifolds are
atoroidal (have no incompressible tori); this follows from a recent theorem of Colin,
Giroux, and Honda [Colin et al. 2003, Theorem 0.5], to the effect that a closed,
oriented, irreducible 3-manifold carries infinitely many tight contact structures up
to isotopy if and only if it is toroidal.

We prove Theorem 1.1 by essentially employing the techniques developed in
[Honda 2000; Etnyre and Honda 2001] and later implemented in [Ghiggini and
Schönenberger 2003]. This paper is a result of the author’s attempt to understand
those techniques. We use the same definitions, terminology, and theorems as in the
three references just cited. The reader is expected to be familiar with those papers.

Much of this article is devoted to the classification results of the Seifert fibered
3-manifold M

(
−

1
2 , 1

3 , 2
6k−1

)
for k ≥ 3, in detail; we think that the analysis of
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these special cases will help the reader understand the proof of the general case.
Specifically, in Section 2 we give an upper bound of the number of Corollary 1.2,
and in Section 3 we construct 3k − 5 holomorphically fillable contact structures
using the Legendrian surgery description as in [Gompf 1991; 1998; [Eliashberg
1990]]. Section 4 gives a proof of the general case of a Seifert fibered 3-manifold
M

(
−

1
2 , 1

3 ,
β

α

)
satisfying the property 0 <

β

α
< 1

6 .

2. Proof of Corollary 1.2: upper bound

In this section M denotes the Seifert fibered 3-manifold M
(
−

1
2 , 1

3 , 2
6k−1

)
over S2

with three singular fibers fi with invariants
(
−

1
2 , 1

3 , 2
6k−1

)
. Let Vi (i = 1, 2, 3) be

tubular neighborhoods of the singular fibers fi , and we identify ∂Vi with R2/Z2

by choosing (1, 0)T as the meridional direction and (0, 1)T as a longitudinal di-
rection. Let 6 denote a pair of pants. We identify each component of −∂(S1

×6)

with R2/Z2 in a similar way as above. Then M
(
−

1
2 , 1

3 , 2
6k−1

)
can be obtained by

attaching the solid tori Vi to S1
× 6 via the attaching maps

Ai : ∂Vi → −∂(S1
× 6)

defined by

A1 =

(
2 −1
1 0

)
, A2 =

(
3 1

−1 0

)
, A3 =

(
6k − 1 3k

−2 −1

)
.

Now we recall the definition of the twisting number of a Legendrian curve used
in this paper. A Legendrian knot in the manifold M which is smoothly isotopic to
a regular fiber admits two framings, the fibration framing and the contact framing.
The difference between the contact framing and the fibration framing is called the
twisting number of the Legendrian curve.

Theorem 2.1. On the Seifert fibered 3-manifold M
(
−

1
2 , 1

3 , 2
6k−1

)
with k ≥ 3, there

exist, up to contact isotopy, at most 3k − 5 tight contact structures.

Proof. The proof of the theorem consists of several steps. We first assume with-
out loss of generality that the singular fibers fi are simultaneously isotoped to
Legendrian curves with negative twisting numbers ni for i = 1, 2, 3. Then the
slopes of ∂Vi of a standard neighborhood Vi of fi with convex boundary become
1/ni . Furthermore, we assume that the Legendrian ruling slope on −∂(M \Vi ) is
infinite, due to the flexibility of the Legendrian rulings [Honda 2000, Theorem 3.4;
Ghiggini and Schönenberger 2003, Theorem 3].

Lemma 2.2. We can increase the twisting numbers n1 and n2 up to −2, and the
twisting number n3 up to −1.
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Proof. By assumption, the boundary slopes of −∂(M \Vi ) under Ai are

s(−∂(M \V1)) =
n1

2n1 − 1
, s(−∂(M \V2)) =

−n2

3n2 + 1
,

s(−∂(M \V3)) = −
2n3 + 1

(6k − 1)n3 + 3k
.

Let A be a convex annulus whose boundary consists of Legendrian rulings of
−∂(M \V1) and −∂(M \V2). We have three cases to consider:

Case 1. 2n1−1 6= 3n2+1. Assume first that 2n1−1 < 3n2+1 ≤ 0. Then it follows
from the Imbalance Principle [Honda 2000, Proposition 3.17] that there exists a
bypass along a Legendrian ruling on −∂(M \V1). By the Twisting Number Lemma
[Honda 2000, Lemma 4.4] with Legendrian ruling slope r1 = 2, we can increase
the twisting number n1 by 1 as long as n1 ≤ −1. Next, if 3n2 + 1 < 2n1 − 1 ≤ 0,
then similarly with r2 = −

1
3 we can increase the twisting number n2 by 1 as long

as n2 ≤ −2.
To sum up, we can increase the twisting numbers n1 and n2 by one at least as

long as n1 ≤ −1 and n2 ≤ −2.

Case 2. 2n1 −1 = 3n2 +1 and there exists a bypass on the convex annulus. In this
case we apply the Twisting Number Lemma as in Case 1 to increase the twisting
numbers.

Case 3. 2n1 − 1 = 3n2 + 1 and there exists no bypass on the convex annulus. In
this case we cannot apply the Twisting Number Lemma. So we apply the cut-and-
round procedure [Ghiggini and Schönenberger 2003, Proposition 6; Honda 2000,
Lemma 3.11] along a convex annulus A to get a convex torus isotopic to ∂(M \V3)

with boundary slope

n1

2n1 − 1
−

n2

3n2 + 1
−

1
2n1 − 1

=
n2

6n2 + 2
=

p
6p + 1

,

where n2 = 2p for p ≤ −1. Since(
−1 −3k

2 6k − 1

) (
6n2 + 2

−n2

)
=

(
3(k − 2)n2 − 2

−(6k − 13)n2 + 4

)
,

we obtain a boundary slope −2 + n2/(3(k−2)n2 − 2) on ∂V3, which is negative.
We now work with a convex annulus A between −∂(M \V2) and −∂(M \V3).

Since 6n2 +2 < 3n2 +1 ≤ 0, we can apply the Imbalance Principle to A to obtain a
bypass on ∂V3. Then by the Twisting Number Lemma with the Legendrian ruling
slope

r3 =
−(6k − 13)n2 + 4
(3k − 6)n2 − 2
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we can increase the twisting number n3 by 1 as long as n3 ≤ −2. In fact, since

−2 ≤ −1 +
1
r 3

=
(3k − 6)n2 − 2

−(6k − 13)n2 + 4
≤ −

3
2

(
1 +

1
18k − 27

)
< −

3
2
,

we should have

n3 ≤ −1 +
1
r3

as long as n3 ≤ −2. This implies that we can increase the twisting number n3 up
to −1.

Now in order to increase the twisting numbers n1 and n2, notice that as above
the possible boundary slopes on ∂(M \V3) are p/(6p + 1) for p ≤ −1. Since
2/(6k − 1) < 1

6 < p/(6p + 1) for k ≥ 3, inside V3 there must exist a standard
torus T with boundary slope 1

6 . Now, if we compare a Legendrian curve on T
isotopic to the regular fiber with another Legendrian curve isotopic to the regular
fiber on ∂(M \V3), then clearly we obtain a bypass for ∂(M \V3) except when
p/(6p +1) =

1
5 (i.e., p = −1). Thus we can increase the twisting number n2 (and

so n1) up to −2.

From these three cases, we see that the twisting numbers n1, n2, and n3 can be
increased up to −2, −2, and −1, respectively. This completes the proof. �

Remark 2.3. According to the referee, there exists a much simpler argument to
deal with Case 3 in the proof of Lemma 2.2 as follows. Namely, let T ′ be the
convex torus isotopic to ∂(M \V3) obtained by the cut-and-round procedure with
boundary slope p/(6p + 1), and let T be the convex torus with boundary slope 1

6
( < p/(6p + 1)) as above. Then take a vertical annulus from T to T ′ and use the
Imbalance Principle to obtain a bypass for T along a ruling curve of slope ∞. This
then can be used to thicken V1 and V2.

From now on, we assume that the twisting numbers ni are n1 = n2 = −2 and
n3 = −1. Let A denote a convex vertical annulus whose boundary consists of
Legendrian rulings of ∂(M \V1) and ∂(M \V2). Then we divide our proof into two
cases, depending on whether or not A has a boundary-parallel dividing curve.

Lemma 2.4. Assume that A has a boundary-parallel dividing curve. Then we
can further increase the twisting numbers n1, n2, and n3 up to 0, −1, and −1,
respectively. Furthermore, there exists a regular fiber with twisting number 0.

Proof. By taking the configurations of dividing curves on the annulus A into
account, we see that there must exist a bypass on each side of −∂(M \V1) and
−∂(M \V2). By the Twisting Number Lemma, we can increase n1 and n2 up to −1.
But then there must be one more bypass on −∂(M \V1) by the Imbalance principle,
since t (−∂(M \V1)) = −3 < t (−∂(M \V2)) = −2 < 0. Hence we can increase the
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twisting number n1 up to 0. With these new twisting numbers n1 = 0 and n2 = −1,
we have the boundary slopes s(−∂(M \V1)) = 0 and s(−∂(M \V2)) = −

1
2 .

Now we apply the cut-and-round procedure to the convex annulus A. Then we
obtain a convex torus with boundary slope −

1
2 + 0 +

1
2 = 0 on a torus isotopic to

∂(M \V3). This implies that the slope of ∂V3 can be assumed to be −2. Hence by
Proposition 18 in [Ghiggini and Schönenberger 2003] we can find a convex torus
parallel to the boundary ∂V3 with boundary slope −

6k−1
3k , since −2 < −2 +

1
3k =

−
6k−1

3k < 0. But this slope is equivalent to infinity on −∂(M \V3). Hence we have
a regular fiber with twisting number 0. This completes the proof. �

Proposition 2.5. Under the assumptions of Lemma 2.4, there does not exist, up
to contact isotopy, any tight contact structure on M

(
−

1
2 , 1

3 , 2
6k−1

)
having twisting

numbers n1 = 0, n2 = −1, and n3 = −1.

Proof. We use a slight modification of the proof in [Ghiggini and Schönenberger
2003, Section 4.2.2]. For the reader’s sake, however, we give it here in some detail.

By Lemma 2.4, M \
⋃3

i=1 Vi is diffeomorphic to S1
× 6 with boundary slopes

0, − 1
2 , and −

1
3k−1 , and further there exists another pair of pants 6′ inside 6 so

that S1
×6′ is diffeomorphic to M \

⋃3
i=1 V ′

i with all boundary slopes equal to ∞,
where V ′

i is a neighborhood of the singular fiber fi containing Vi for i = 1, 2, 3.
Hence S1

× (6 − 6′) is diffeomorphic to the union of three thickened tori Ti × I
so that Ti × {0} = −∂(M \Vi ) and Ti × {1} = −∂(M \V ′

i ).
Since T1 × I has boundary slopes 0 and ∞, and 0

1 and 1
0 are consecutive in

the Farey tessellation, T1 × I is a basic slice. Similarly, since −
1
2 , −1, and 1

0
are consecutive, T2 × I is the union of two basic slices T2 × [0, 1

2 ] with boundary
slopes −

1
2 and −1 and T2×

[ 1
2 , 1

]
with boundary slopes −1 and ∞, and T3× I with

boundary slopes −
1

3k−1 and ∞ is the union of 3k −1 basic slices T3 ×
[ i

3k−1 , i+1
3k−1

]
with boundary slopes −1/(3k −1−i) and −1/(3k −2−i) for i = 0, 1, . . . , 3k −2.

Let pi denote the number of positive basic slices in Ti × I . Then we have the
following possibilities; p1 = 0, 1, p2 = 0, 1, 2, and p3 = 0, 1, . . . , 3k − 1. (As the
referee pointed out, we can let p3 be the number of positive basic slices from slope
−

1
6 to ∞. Then p3 = 0, 1, . . . , 6. So we can simplify the argument below. See

also Section 4.) Thus there exist at most 2 × 3 × 3k = 18k possible tight contact
structures on M \

⋃3
i=1 Vi by Lemma 31 in [Ghiggini and Schönenberger 2003].

First, we need the following definition:

Definition 2.6. Let Ṽi be thickenings of the Vi so that the boundary slopes are
zero. Their equivalent slopes

s(−∂(M \Ṽ1)) =
1
2 , s(−∂(M \Ṽ2)) = −

1
3 , and s(−∂(M \Ṽ3)) = −

2
6k−1

are called critical.
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In fact, they are slopes for which we can find an overtwisted contact structure on
the 3-manifold M .

In order to prove the proposition, we need to consider following four cases;

Case 1. We first assume that T3 ×
[ 3k−3

3k−1 , 1
]

is contact isomorphic to T2 × [0, 1].
Note that this assumption covers p2 = 0, 1, or 2. Then the manifold M \(V ′

1 ∪

V2 ∪ V3 ∪ T3 × [0, 3k−3
3k−1 ]) has boundary slopes ∞, − 1

2 , and −
1
2 . Then it follows

from Lemma 36 in [Ghiggini and Schönenberger 2003] that we can find a vertical
annulus A between T2 × {0} and T3 × {

3k−3
3k−1} without boundary parallel dividing

arcs. Now apply the cut-and-round procedure to the annulus A so that we get a
slope −

1
2 −

1
2 +

1
2 = −

1
2 on a torus isotopic to ∂(M \V1). But it is equivalent to

the slope 1
2 on a torus isotopic to −∂(M \V1) which is critical. Hence these cases

do not occur. Thus we are left with the following cases p2 = 0 and p3 = 3k −2 or
3k − 1, p2 = 1 and p3 = 0 or 3k − 1, or p2 = 2 and p3 = 0 or 1.

Case 2. Next assume that three basic slices in T3 ×
[ 3k−4

3k−1 , 1
]

have the same sign as
T1×I . Let V ′′

1 be a standard neighborhood whose boundary slope s(−∂(M \V ′′

1 ))=

T1 × {−1} is 1
3 . Then the manifold

M \
(
V ′′

1 ∪ V ′

2 ∪ V3 ∪ T3 ×
[
0, 3k−4

3k−1

])
has boundary slopes 1

3 , −1
3 , and ∞. Then, by [Ghiggini and Schönenberger 2003,

Lemma 37], we can find a vertical annulus A between T1 ×{−1} and T3 ×
{3k−4

3k−1

}
without boundary-parallel arcs. Now apply the cut-and-round procedure along A
to get the boundary slope 1

3 −
1
3 +

1
3 =

1
3 on a torus isotopic to ∂(M \V2). Thus we

have a critical boundary −
1
3 on −∂(M \V2). Thus we are left with the following

cases p1 = 0 and p3 = 3k − 3, 3k − 2, or 3k − 1 or p1 = 1 and p3 = 0, 1, or 2.

Summarizing the two preceding cases, we are left with six possibilities: p1 =

0, p2 =0, and p3 =3k−2 or 3k−1, p1 =0, p2 =1 and p3 =3k−1 or p1 =1, p2 =1
and p3 = 0 or p1 = 1, p2 = 2 and p3 = 0 or 1.

Case 3. This time we assume that the basic slices T2 × I and T1 × I have the same
sign. This covers p1 = 0, p2 = 0 and p1 = 1, p2 = 2. Since we can decrease the
twisting numbers n1 and n2 up to −2, we can take standard neighborhood V ′′

1 and
V ′′

2 for which the boundary slopes are s(−∂(M \V ′′

1 )) =
2
5 and s(−∂(M \V ′′

2 )) =

−
2
5 . Thus the manifold M \(V ′′

1 ∪ V ′′

2 ∪ V ′

3) has boundary slopes 2
5 , −2

5 , ∞. A
similar argument as above yields a convex torus isotopic to −∂(M \V3) with slope
−

1
5 . The thickened torus between −∂(M\V3) and −∂(M\V ′′

3 ) has boundary slopes
−

1
3k−1 and −

1
5 . Since the thickened torus contains a convex torus with infinite

boundary slope by assumption there exists a convex torus with boundary slope
−

2
6k−1 , which is critical. Thus we are left with two cases: p1 = 0, p2 = 1, p3 =

3k − 1, or p1 = 1, p2 = 1, p3 = 0.
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Case 4. We finally assume that the basic slice T2 ×
[1

2 , 1
]

has the same sign as
T3 × I . This covers the last two cases. Using a convex annulus between T2 ×

{1
2

}
and T3 ×

{ 3k−2
3k−1

}
that does not have a boundary parallel curves, we obtain a convex

torus isotopic to −∂(M \V1) with boundary slope 1. By the Twisting Number
Lemma with Legendrian slope r1 = 1, we can increase the twisting number n1 up
to 1. So by decreasing the twisting number n1 we may assume that T1 × I and
T2 ×

[1
2 , 1

]
have the same sign. This assumption reduce this case to the previous

case such as p1 = p2 = 0 or p1 = p2 = 1 which was proved to be overtwisted. �

Now we are in a position to deal with the case where A has no boundary-parallel
dividing curve.

Proposition 2.7. If A has no boundary-parallel dividing curve, there exist, up to
contact isotopy, at most 3k − 5 tight contact structures on M

(
−

1
2 , 1

3 , 2
6k−1

)
.

Proof. Recall that the twisting numbers ni are n1 = n2 = −2 and n3 = −1. Thus
the boundary slopes are

s(−∂(M \V1)) =
−2
−5 , s(−∂(M \V2)) =

2
−5 , and s(−∂(M \V3)) =

1
−3k+1 .

Applying the cut-and-round procedure to a convex annulus A between −∂(M \V1)

and −∂(M \V2), we obtain a torus with boundary slope 2
5 −

2
5 +

1
5 =

1
5 on a torus

T isotopic to ∂(M \V3). Since we have(
−1 −3k

2 6k − 1

) (
−5

1

)
=

(
5 − 3k
6k − 11

)
,

the convex torus isotopic to ∂V3 has boundary slope

−
6k − 11
3k − 5

= −2 −
1

−(3k − 5)
.

Thus it follows from the classification of the tight contact structures on a solid
torus [Honda 2000, Theorem 2.3] that there exist, up to contact isotopy, exactly
|(−2 + 1)(3k − 5)| = 3k − 5 tight contact structures on a solid torus V ′′

3 of a
singular fiber f3 with boundary T . Since the boundary slopes of ∂V1 and ∂V2

are all 1
−2 , clearly there exists a unique tight contact structure on each V1 and

V2. Moreover, the thickened torus obtained by the cut-and-round procedure above
should be nonrotative for the manifold M to be tight. �

This completes the proof of Theorem 2.1. �

3. Proof of Corollary 1.2: lower bound

We now construct 3k −5 holomorphically fillable contact structures on the Seifert
fibered 3-manifold M

(
−

1
2 , 1

3 , 2
6k−1

)
.
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0 −1/2

2 −3 −(6k−1)/2

(a)

−3 −(6k−1)/2

(b)

−1
−(6k−5)/2

(c) (d)

(e)

−(3k−6)

−2

−(6k−13)/2

Figure 1. Surgery diagrams for M
(
−

1
2 , 1

3 , 2
6k−1

)
.

We use Kirby calculus to show that the manifold M
(
−

1
2 , 1

3 , 2
6k−1

)
can be rep-

resented as Legendrian surgery on the framed link as follows. Indeed, the surgery
description of the Seifert fibered 3-manifold M

(
−

1
2 , 1

3 , 2
6k−1

)
is given in part (a) of

Figure 1. Then we slam-dunk along the knot with framing coefficient 2 to obtain
part (b). Then we perform the Rolfsen (+2)-twist along the knot with framing
coefficient −

1
2 to obtain (c). Next once more we do the Rolfsen (+1)-twist along

the knot with framing coefficient −1 to obtain (d). Finally we do the inverse slam-
dunk to get (e). The last framed link can be realized as Legendrian links in several
ways as shown in Figure 2 (l downward zig-zags plus one zig on the right and m−l
upward zig-zags on the left).

For any k ≥ 2, we let m = 3k − 6 and denote by X l
k (0 ≤ l ≤ m) the Stein man-

ifolds with boundary constructed by attaching handles along these framed links.
By applying [Lisca and Matić 1997, Theorem 2.1] we have

〈
PD(c1(X l

k)), T
〉
= 0

and
〈
PD(c1(X l

k)), S
〉
= 2l − m. Thus by the same theorem or [Kronheimer and

Mrowka 1997], we have at least m + 1 = 3k − 5 nonisotopic holomorphically
fillable contact structures on the Seifert fibered 3-manifold M

(
−

1
2 , 1

3 , 2
6k−1

)
. This

complete the proof of Theorem 1.1.



118 JINHONG KIM

S

T

tb = 1 − m
r = 2l − m

tb = −1
r = 0

m−l ...

l
...

Figure 2. Legendrian surgery diagrams for M
(
−

1
2 , 1

3 , 2
6k−1

)
.

Remark. By [Lisca and Matić 1997, Proposition 2.2], the 3k − 5 nonisotopic
holomorphically fillable contact structures on the 3-manifold M

(
−

1
2 , 1

3 , 2
6k−1

)
con-

structed in the proof of Theorem 1.1 are not homotopic as fields of 2-planes.

4. Proof of Theorem 1.1

The proof of Theorem 1.1 is closely modeled on that of Corollary 1.2, developed
in Sections 2 and 3. Thus we just highlight the differences between the two proofs.

Throughout this section, M with denote the Seifert 3-manifold M
(
−

1
2 , 1

3 ,
β

α

)
fibered over S2 with three singular fibers fi with invariants

(
−

1
2 , 1

3 ,
β

α

)
satisfying

0 <
β

α
< 1

6 , and we will keep the notations of the preceding two sections, unless
stated otherwise. In this general case, the attaching maps A1 and A2 are the same
as in Section 2, but now the attaching map A3 : ∂V3 → −∂(S1

× 6) is given by

A3 =

(
α α′

−β −β ′

)
,

where α′β−αβ ′
= 1 with 0 <α′ <α and α, β > 0. Note that β ′ > 0 and β−β ′ > 0.

Then the boundary slope of −∂(M \V3) is

(4–1) −
(α − 6β)n2 − 2β

(α′ − 6β ′)n2 − 2β ′
.

Since β

α
=

β ′

α′ +
1

αα′ and 0 <
β

α
< 1

6 , we see that 0 <
β ′

α′ < 1
6 . Hence the number

(4–1) is negative.
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Now, we work on a convex annulus between −∂(M \V2) and −∂(M \V3). Since
6n2+2 < 3n2+1 ≤ 0, we can apply the Imbalance Principle with r3 equal to (4–1).
Indeed, we first claim that we have

(4–2) 0 <
α′

− 6β ′

α − 6β
< 1.

To see this, if the inequality (4–2) does not hold, we easily obtain using the relation
α′β − αβ ′

= 1 that

1 ≥ (α − 6β)(β − β ′),

which implies that α − 6β = 1 and β − β ′
= 1. Thus

1 = α′β − αβ ′
= β(α′

− 6β + 5) + 1,

which implies that β = 0. This is a contradiction. Hence

(4–3) −2 ≤ −1 +
1
r3

≤ −1 −
α′

− 4β ′

α − 4β
.

Note also that the fraction on the right lies between 0 and 1. Thus by the Twisting
Number Lemma as in Lemma 2.2 with Legendrian ruling slope r3 equal to the
equation (4–1), we have

n3 ≤ −1 +
1
r3

< −1

as long as n2 ≤ −2. This implies that we increase the twisting number by one as
long as the twisting number n3 is less than or equal to −2. Now it is easy to see
that the rest of the proof in Lemma 2.2 works without any modifications. Hence
we conclude that we can increase the twisting numbers n1, n2, and n3 up to −2,
−2, and −1, respectively.

Now assume that the convex annulus A as in Lemma 2.4 has a boundary-parallel
dividing curve. Since we do not have any change for the gluing maps A1 and A2,
we can increase the twisting numbers n1 and n2 up to 0 and −1 as in Lemma 2.4.
Furthermore, since the slope of ∂V3 corresponding to the slope 0 (resp. ∞) on
∂(M \V3) is −

β

β ′ (resp. −
α
α′ ) and −

β

β ′ < −
α
α′ < 0 using α′β − αβ ′

= 1, we have a
Legendrian regular fiber with twisting number 0.

Next as in Proposition 2.5, we show that there does not exist any tight contact
structures on M , up to isotopy, which have the twisting numbers n1 = 0, n2 = −1,
and n3 = −1. But this can be shown in the similar way as in Section 2, since
M \

⋃3
i=1 Vi is diffeomorphic to S1

× 6 with boundary slope 0, −
1
2 , and

(4–4) −
1
3

< −
β − β ′

α − α′
= −

(
β

α
+

1
α(α − α′)

)
< 0
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To be precise, it follows from the inequality (4–4) that there exists a convex stan-
dard neighborhood V ′′

3 of the singular fiber f3 containing V3 inside V ′

3 whose
boundary slope s(−∂(M \V ′′

3 )) is −
1
3 . Let T ′′

3 denote the convex torus bounding
V ′′

3 . Thus we have a thickened torus T ′′

3 × I with T ′′

3 × {0} = −∂(M \V ′′

3 ) and
T ′′

3 × {1} = −∂(M \V ′

3) whose boundary slopes are −
1
3 and ∞. Note also that

the thickened torus T ′′

3 × I is the union of three basic slices T ′′

3 ×
[ i

3 , i+1
3

]
with

boundary slopes −
1

3−i and −
1

2−i for i = 0, 1, 2 which is a continued fraction block.
As before, let pi denote the number of positive basic slices in Ti × I (i = 1, 2)

and let p3 be the number of positive basic slices in T ′′

3 × I . Then there exist at
least 2 × 3 × 3 = 18 possible tight contact structures on M \(V1 ∪ V2 ∪ V ′′

3 ). But
we will show that these cases do not occur under the assumption that there exists a
Legendrian regular fiber with twisting number 0. This will clearly finish the proof
that there does not exist any tight contact structures on M , up to isotopy, which
have the twisting numbers n1 = 0, n2 = −1, and n3 = −1. The proof is just a
repetition of the arguments in Section 2. But in our case the critical slopes are
respectively

s(−∂(M \Ṽ1)) =
1
2 , s(−∂(M \Ṽ2)) = −

1
3 , and s(−∂(M \Ṽ3)) = −

β

α
> −

1
6 .

Using an argument similar to that of Case 1 of Proposition 2.5, we are left with the
cases p2 = 0 and p3 = 2 or 3, p1 = 1 and p3 = 0 or 3, and p2 = 1 and p3 = 0 or 1.
Next as in Case 2 we are left with the following six cases p1 = 0 = p2 and p3 = 1,
p1 = 0, p2 = 1 and p3 = 3, p1 = 1, p2 = 0 and p3 = 2, p1 = p2 = 1 and p3 = 0,
and p1 = 1, p2 = 2, and p3 = 0 or 1. Applying the argument in Case 3, we can
reduce the above six cases to three cases p0 = 0,p2 = 1 and p3 = 3, p1 = 1, p2 = 1
and p3 = 0, and p1 = 1, p2 = 0 and p3 = 2. This is possible, since −

1
5 < −

β

α
and

the thickened torus obtained by cut-and-round procedure along the convex annulus
between −∂(M \V ′′

1 ) and −∂(M \V ′′

2 ) as in Case 3 in the proof of Proposition 2.5
contains a convex torus with infinite boundary slope. Finally, an argument as in
Case 4 concludes that there does not exist any tight contact structures on M , up to
isotopy, which have the twisting numbers n1 = 0, n2 = −1, and n3 = −1.

We are thus left with the case that A has no boundary-parallel dividing curve.
In this case, it follows as in Proposition 2.7 that we have the convex torus isotopic
to ∂V3 with boundary slope −(α − 5β)/(α′

− 5β ′) which is equal to

[rl, rl−1, . . . , r0 + 5].

In fact, we can see this as follows. Since (α′
−5β ′)β−(α−5β)β ′

= 1, the fraction
−(α − 5β)/β is written as [5 + r0, r1, . . . , rl]. Thus the fraction

−
α − 5β

α′ − 5β ′
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is equal to [rl, rl−1, . . . , r0+5]; see [Ghiggini et al. 2004, Lemma 2.5], for example.
Hence we conclude that there exist at most |r0 +5| |r1 +1| · · · |rl +1| tight contact
structures on M up to isotopy by the classification of Honda.

Finally we need to construct |r0 + 5| |r1 + 1| · · · |rl + 1| tight contact structures
on M by the Legendrian surgery argument. But M is the result of a surgery on
the right-handed trefoil knot with surgery coefficient −

α
β

+ 6 < 0. Hence, as in
Section 3 or as in [Gompf 1991], we can show that there exist at least

|r0 + 5| |r1 + 1| · · · |rl + 1|

tight contact structures on M . This completes the proof of Theorem 1.1.
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