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Perimeter-minimizing planar double soap bubbles in which regions are al-
lowed to overlap with multiplicities meet in fours, fives, and sixes as well as
threes. We further provide certain generalizations to immiscible fluids and
higher dimensions, and an associated theory of calibrations. We work in the
category of flat chains with coefficients in a normed group.

1. Introduction

Physically, regions of soap bubble clusters or immiscible fluids cannot overlap, but
it can be of theoretical interest and use to consider such overlap, as in the simplest
proof of the planar Double Bubble Theorem [Morgan 2001, §3] or in studies of
planar triple bubbles [Cox et al. 1994/95, §7]. Our Regularity Theorem 5.6 below
considers planar double bubbles which can overlap with multiplicity, and shows
how perimeter minimizers with prescribed boundaries and areas meet:

(a) in threes, at 120 degrees, forming a Y;

(b) in fours, as two arcs tangent or crossing or a Y with stem extended;

(c) in fives, a Y with two arms extended;

(d) in sixes, a Y with all three arms extended.

In classical clusters without multiplicities, only (a) occurs. Similar questions
about clusters of more than two regions remain open.

Immiscible fluids. More generally, Section 3 considers clusters of m immiscible
fluids, in which the cost of an interface depends on the fluids (with multiplici-
ties) it separates, as determined by a norm on Rm . Our fundamental Regularity
Theorem 3.7 shows that for certain “simplicial” norms, a planar minimizer with
finite boundary and prescribed areas consists of finitely many constant-curvature
arcs. The admissible norms include double soap bubbles but not clusters of three
or more soap bubbles. Extensions from R2 to Rn remain conjectural and would
require more sophisticated methods.
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Our results are generalizations of earlier results in [White 1986; White 1996,
Theorem 3; Morgan 1998] that do not allow multiplicities, and are special cases of
more general conjectures of B. White [2001] (see Remark 3.6).

Chains with coefficients. Section 2 describes the technical formulation of clusters
as chains with coefficients in a normed group G representing the various immisci-
ble fluids. It follows [Fleming 1966] and [White 1996].

Calibrations. Section 4 provides an appropriate theory of calibrations for prov-
ing minimization. Classical calibrations [Morgan 2000, §§6.4, 6.5] are closed
differential forms used to prove chains with coefficients in R minimizing. The
Calibration Lemma 4.1 provides an extension from R to any complete normed
group G by defining a calibration as a homomorphism from G into the space of
closed differential forms. This extension includes paired calibrations [Lawlor and
Morgan 1994].

One consequence is Corollary 4.3, which is Choe’s Theorem [1996] that a sta-
tionary polyhedral chain is area minimizing under diffeomorphisms. Another is a
useful characterization (Proposition 4.8) of when two lines through the origin with
coefficients in certain normed groups are minimizing.

Proof of regularity. The main Regularity Lemma 3.5 for proving the Regularity
Theorem 3.7 for certain planar minimizing immiscible fluid clusters shows that if in
a small ball the cluster S is weakly close to a horizontal diameter with coefficient g,
then in a shrunken ball it consists of constant-coefficient arcs. By the simplicial hy-
pothesis on the norm, one may assume as in Propositions 3.2 and 3.3 that it connects
points with coefficients − fi on the left to corresponding points with coefficients
+ fi on the right, where the fi correspond to the (unique) norm decomposition of
g, perhaps occurring with multiplicity. Also, S has a decomposition of the form
S =

∑
fi Si , with some cancellation only when some Si and S j have opposite

orientation, which we must show cannot occur. Each Si consists of curves from a
point with coefficient − fi to a point with coefficient + fi (and cycles which turn
out to be negligible). In comparison, we consider constant-curvature arcs Ci,α with
the same boundaries and area constraint, all nearly horizontal. For the Si ’s to have
opposite orientation, they must stray far from horizontal, which entails too much
extra cost. Hence there is no cancellation and

M(S) ≥

∑
M( fi Si ) ≥

∑
M( fi Ci,α),

with equality only if S =
∑

fi Ci,α consists of constant-curvature arcs as desired.
The stronger Regularity Theorem 5.6 for the special case of double soap bub-

bles follows from the analysis in Section 5 of minimizing tangent cones, using
results from the calibration theory of Section 4. Locally a double bubble can be
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decomposed into three basic parts: the exterior boundary of the first region, the
exterior boundary of the second region, and the interior interface between the two
regions. These parts meet at angles of at least 120 degrees (suitably oriented),
leading eventually to possibilities (a)–(d) above.

2. Clusters with multiplicities as flat chains over a group G

We follow White’s [1996] treatment after Fleming [1966] of soap bubble clusters
or more generally immiscible fluid clusters as chains with coefficients representing
the various regions or fluids fi . To model overlapping clusters with multiplicities,
we allow integer combinations of the fi .

Integral flat chains are generalized curves, surfaces, and regions of geometric
measure theory [Morgan 2000], with integer coefficients to allow for multiplicities.
Fleming’s [1966] development of flat chains as limits of polyhedral chains admits
groups G of coefficients other than the integers. Following White [1996] we use
G =Zm

⊂Rm , with components representing different regions or immiscible fluids,
possibly overlapping with multiplicities. A norm ‖ ‖ on Zm describes the energetic
cost of various interfaces. For example, the unit cost of the exterior boundary of the
first region would be ‖(1, 0, 0, . . . )‖, while the unit cost of an interface between
the first two regions would be ‖(1, −1, 0, 0, . . . )‖. More complicated interfaces
can be decomposed into these two types. For double soap bubbles for example,

‖(1, 0)‖ = ‖(0, 1)‖ = ‖(1, −1)‖ = 1,

and otherwise ‖(a, b)‖ is as large as possible subject to the triangle inequality:

‖(a, b)‖ = inf
{
|λ1| + |λ2| + |λ3| : (a, b) = λ1(1, 0) + λ2(0, 1) + λ3(1, −1)

}
=

1
2(|a| + |b| + |a + b|).

Definitions 2.1. A cluster S with multiplicities of m immiscible fluids fi in Rn

is an (n−1)-dimensional flat chain (of compact support) with coefficients in the
free abelian group G ' Zm with generators fi , contained in R ⊗ G ' Rm . If S
itself as a flat chain has no boundary (∂S = 0), then S is the boundary of some
n-dimensional flat chain (the fluids themselves); but we will consider more general
S with prescribed boundary as well as volume constraints.

The mass norm M on chains is induced by a given norm on R ⊗ G. For soap
bubble clusters, it is the largest norm such that

‖ fi | = ‖ fi − f j‖ = 1

(exterior boundaries and interfaces between regions with multiplicity one have unit
cost). For immiscible fluids, it is the largest norm such that

‖ fi‖ = ai , ‖ fi − f j‖ = ai j
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(the cost depends on the fluids). We sometimes consider more general norms and
chains of higher codimension.

These spaces are variations on the classical G = Z cases of geometric measure
theory [Morgan 2000] generalized to any complete normed abelian group G by
Fleming [1966], with further recent improvements by White [1996; 1999a; 1999b;
2001]. ([White 1999b] shows for which groups flat chains of finite mass are rec-
tifiable, as is well known to hold for our case of boundaries of regions of finite
perimeter; see [Morgan 2001, Lemma 2.1] or [Federer 1969, 4.5.12, 2.10.6]).

Monotonicity and tangent cones. Alternatively, a rectifiable chain S with variable
coefficient g in G may be viewed as a rectifiable varifold with multiplicity ‖g‖.
If S is mass minimizing, perhaps with volume constraints, then away from ∂S
the varifold has weakly bounded mean curvature by a lemma of Almgren (see
[Morgan 2000, Lemma 13.5]). Assume that ∂S is smooth and compact. Then for
some M > 0, for any point a in S,

M(SbB(a, r))eMr

is a monotonically nondecreasing function of r ; see [Allard 1972, Corollary 5.1(3),
p. 446; Allard 1975, Theorem 3.3(2), p. 426]. It follows that a minimizer has com-
pact support. It also follows that a minimizer has at least one oriented tangent cone
T at a. The truncated cone T bB(0, 1) is minimizing (without volume constraints)
among chains with coefficients in G1 = G ∩ V , where V is the real vector space
spanned by the coefficients occurring in S. The proof, a standard limit argument,
considers S+∂W and requires small adjustments v in

∫
W dV , which by the lemma

of Almgren [Morgan 2000, Lemma 13.5] may be accomplished at cost at most
K‖v‖, provided that v ∈ V .

Existence. For a nice compact domain in Rn , the existence of a mass-minimizing
cluster with prescribed volumes and boundary follows by compactness [Fleming
1966, Corollary 7.5] and the lower semicontinuity of mass [Fleming 1966, Theo-
rem 2.3 and §3]. In R2 (our main concern), the reduction to the case of a compact
subdomain is an easy argument: any cluster of bounded mass is contained in dis-
joint balls of radius ri with

∑
ri bounded, and distant balls may be translated inside

a single ball of bounded radius. In Rn , the existence of a mass-minimizing cluster
requires the arguments of [Morgan 1994, §4]; see [Morgan 2000, Chapter 13].

3. Regularity for planar minimizing flat chains with area constraints

The main Regularity Theorem 3.7 says that planar minimizers for given boundary
and areas among chains with coefficients in Zm with a certain “simplicial” norm
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consist of finitely many circular arcs. The Regularity Lemma 3.5 says that a mini-
mizer weakly close to a horizontal diameter in a small ball consists of nearly hor-
izontal circular arcs in a shrunken ball. It depends on Proposition 3.2, which says
that certain collections of nearly horizontal circular arcs are uniquely minimizing.
We begin with an easy calculus lemma.

Lemma 3.1. Let C be a graph over the unit ball Bn−1(0, 1) with constant mean
curvature (sum of principal curvatures) H . Let S be an (n−1)-dimensional inte-
gral current in Bn−1(0, 1) × R with the same boundary. Almost everywhere on S,
let θ denote the angle between the oriented normal to S and the normal to C at the
point directly below (or above). Then∫

S
cos θ = measure C + (−1)n H

(∫
S

y dx −

∫
C

y dx
)

.

If instead S has no boundary, then∫
S

cos θ = (−1)n H
∫

S
y dx .

Proof. Define a vector field V on {(x, y) ∈ Bn−1(0, 1)× R} by translating the unit
normal to C vertically. Then div V =−H . Let R be the n-current with ∂ R = S−C .
By the theorems of Gauss and Stokes,∫

S
cos θ − measure C =

∫
∂ R

V · n =

∫
R

div V = −H
∫

R
dx dy

= (−1)n H
(∫

S
y dx −

∫
C

y dx
)

.

Similarly, if S has no boundary, S = ∂ R and∫
S

cos θ =

∫
∂ R

V · n = (−1)n H
∫

S
y dx . �

The following proposition is the technical heart of the regularity theory, as de-
scribed in the Introduction.

Proposition 3.2. Let G = Zk with generators f1, . . . , fk and largest norm such
that

‖ fi‖ = ai , ‖ f̂i − f̂ j‖ = ai j > 0.

(Here f̂i = fi/‖ fi‖ and the second equality refers to the equivalent norm on R⊗G.)
Then there is an ε > 0 such that the following holds.

For 1 ≤ i ≤ k, let P±i be a sequence of ki > 0 points in {±1} × (−ε, ε). Let
|Ai | < ε. Let S minimize mass among rectifiable currents in [−1, 1] × R with
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coefficients in G, boundary
∑

fi (Pi − P−i ), and area constraint

(3–1)
∫

S
y dx =

∑
Ai fi ∈ R ⊗ G.

Then S consists of constant-curvature arcs with coefficients fi from points of P−i

to points of Pi .
Moreover, S remains minimizing among flat chains with coefficients in R ⊗ G.

Proof. Choose ε small with respect to the ai j . Any minimizing rectifiable current
is of the form S =

∑k
i=1 fi Si . By the definition of the norm there is cancellation(

M(S) <
∑

M( fi Si )
)

only when some Si and S j have opposite orientation along
some intersection of positive length, which we will show cannot occur.

Let Si,α be the components of Si . We may assume that for 1 ≤ α ≤ ki the
boundary of Si,α is

∂Si,α = pi,α − p−i,α, P±i = {p±i,α},

and that ∂Si,α = 0 for α > ki .
Let Ci,α denote the arc from p−i,α to pi,α, or if Si,α has no boundary from

(−1, 0) to (1, 0), of (small) constant curvature κi , chosen so that the Ci,α preserve
the area constraint:

(3–2)
∑
α

∫
Ci,α

y dx = Ai fi .

Along Si,α, let θi,α denote the angle with Ci,α at the same x-coordinate. Note that
all the unit tangents to all the Ci,α remain close to each other.

For this paragraph we consider a typical point of S. The coefficient g has a mass
decomposition

(3–3) g =

∑
i< j

αi j ( f̂i − f̂ j ) +

∑
βi f̂i =

1
2

∑
αi j ( f̂i − f̂ j ) +

∑
βi f̂i

with α j i =−αi j ; all coefficients of f̂i have the same sign. Let ni denote the number
of components Si,α of Si present, necessarily all with the same orientation. The
coefficient of f̂i satisfies

(3–4)
∑

j

αi j +

∑
βi = ±ni‖ fi‖.

If |αi j | > 0, then Si and S j have opposite orientations. Because ε is small, each
θi,α and θ j,β differ by approximately π , so |cos θi,α + cos θ j,β | is small, and we
may assume that

‖ f̂i − f̂ j‖ > |cos θi,α + cos θ j,β |.
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Therefore

‖g‖ ≥
1
2

∑ 1
ni

1
n j

|αi j | (cos θi,α + cos θ j,β) +

∑
i

1
ni

|βi | |cos θi,α|

=

∑
i,α

1
ni

(∑
j

|αi j | cos θi,α + |βi | |cos θi,α|

)

=

∑
i,α

1
ni

(∣∣∑
j

αi j
∣∣ cos θi,α + |βi | |cos θi,α|

)
,

because for fixed i , each αi j has the same sign. Now by the general inequality
|A| C +|B| |C | ≥ |A + B| C (which holds whether C is positive or negative by the
triangle inequality),

‖g‖ ≥

∑
i,α

1
ni

∣∣∣∣∑
j

αi j + βi

∣∣∣∣ cos θi,α =

∑
i,α

‖ fi‖ cos θi,α

by (3–4).
Now by Lemma 3.1 the global mass of S satisfies

M(S) ≥

∑ ∫
Si,α

‖ fi‖ cos θi,α

=

∑
i

( ∑
1≤α≤ki

(
M( fi Ci,α) + κi

∫
Si,α

y dx − κi

∫
Ci,α

y dx
)

+

∑
α>ki

κi

∫
Si,α

y dx
)

=

∑
M( fi Ci,α),

by (3–1) and (3–2). Moreover, equality holds only if there is no cancellation (every
αi j vanishes) and each cos θi,α is almost always 1, i.e., S =

∑
1≤α≤ki

fi Ci,α, as was
to be proved. �

Remark. The proof of Proposition 3.2 does not provide a single, generalized cal-
ibration as described by the Calibration Lemma 4.1. Pieces are indeed calibrated
by vertical translations of the duals to circular arcs, but even in the case k = 1, two
circular arcs with nonparallel chords are not so calibrated simultaneously. Inciden-
tally, although the proof for k > 1 requires the arcs to be small, the calibrations
work on arcs up to π radians individually.

The next result generalizes the hypotheses of Proposition 3.2.

Proposition 3.3. Let G = Zm with a norm. Let F be a simplicial (polyhedral) face
of the unit norm ball in R ⊗ G. Suppose that positive real multiples f1, . . . , fk of
the vertices of F generate G0 = G ∩ spanR F .

There is an ε > 0 such that the following holds. For 1 ≤ i ≤ m, let P±i be
a sequence of ki > 0 points in {±1} × (−ε, ε). Let |Ai | < ε. Let S minimize
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mass among rectifiable currents in [−1, 1] × R with coefficients in G, boundary∑
fi (Pi − P−i ), and perhaps area constraints

(3–5)
∫

S
y dx =

∑
Ai fi ∈ spanR F.

Then S consists of constant-curvature arcs (always straight lines in the case of no
area constraints) with coefficients fi from points of P−i to points of Pi .

Moreover, S remains minimizing among flat chains with coefficients in R ⊗ G.

Proof. Since F is polyhedral, the norm on spanR F = R⊗G0 is greater than a norm
as in Proposition 3.2, with equality on the fi , so that a minimizer S0 over G0 is of
the asserted form and remains minimizing over R ⊗ G0.

There is a (linear) retraction ρ : R ⊗ G → R ⊗ G0 = spanR F which is strictly
norm decreasing off R⊗G0. A minimizer S over R⊗G, with boundary coefficients
in R ⊗ G0, must have coefficients in R ⊗ G0, or

M(S) > M(ρ(S)) ≥ M(S0),

a contradiction. Therefore a minimizer over G has coefficients in G0, as above has
the asserted form, and remains minimizing over R ⊗ G. �

Proposition 3.4. In Proposition 3.3, it is necessary to assume that the f̂i are ver-
tices of a simplicial face F of the unit norm ball, even when k = m.

Proof. If the f̂i do not lie on a common face of the unit norm ball, then for some
positive integers mi , ∥∥∥∥∑

mi fi

∥∥∥∥ <
∑

mi‖ fi‖,

and nearly coincident horizontal lines with coefficients mi fi are not minimizing,
contrary to the first conclusion of Proposition 3.3.

If the face is not simplicial or if the f̂i are not vertices, then some element
of the face is a real linear combination of the f̂i with both positive and negative
coefficients. Moreover, some g1 ∈ G ∩ (R+)F is an integer linear combination of
the fi with both positive and negative coefficients; i.e., we may assume that there
are nonnegative integers mi and 0 < l < k, with mi > 0 for some i ≤ k and for
some i > k, such that

g1 = g3 − g2,

with

g2 =

l∑
i=1

mi fi , g3 =

k∑
i=l+1

mi fi .

Since all the gi lie in (R+)F,

‖g3‖ = ‖g1‖ +‖g2‖.
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−g2

g2g2

g2

g1

g3 = g1+g2

−g3 = −(g1+g2)

2

ε

Figure 1. If ‖g1 + g2‖ = ‖g1‖ + ‖g2‖, the pictured Z has less
mass than an X with coefficients g2, g3.

Hence the Z -shaped network of Figure 1, with mass

λ‖g1‖ + 4‖g2‖,

where λ =
√

4 + ε2 > 2, has less mass than the straight lines with coefficients mi fi

(i.e., an X with coefficients g2, g3) with mass

λ‖g2‖ + λ‖g3‖ = λ‖g1‖ + 2λ‖g2‖.

Both networks satisfy the same area constraint. Thus the first conclusion of Propo-
sition 3.3 fails again. �

Regularity Lemma 3.5. Let g0 ∈ G = Zm with a polyhedral norm. Suppose that
ĝo = g0/‖g0‖ ∈ R ⊗ G lies in a simplicial face F of the unit norm ball. Suppose
that positive real multiples fi , . . . , fk of the vertices of F generate

G0 = G ∩ spanR F.

Let S minimize mass among 1-dimensional rectifiable chains in R2 with coefficients
in G0 of the form S+∂W, with

∫
W d A = 0. Given δ > 0, there is an ε > 0 such that

if , in a small ball B(a, r) away from ∂S, S is ε weakly close to a diameter with
coefficient g0 (meaning that its homothetic expansion to a unit ball is within ε in
the flat norm of a diameter with coefficient g0), then in a shrunken ball B(a, δr),
S consists of constant-curvature arcs with coefficients fi . At all such points, each
arc has the same curvature κi .

White [2001] has conjectured for example that this lemma holds for (n−1)-
chains in Rn whenever g0 has a unique norm decomposition, a hypothesis which
follows from our stronger hypotheses on g0 and F .

Proof. The hypotheses imply that g0 has a unique irreducible norm decomposition,
of the form

(3–6) g0 =

∑
mi fi .

By replacing F by a subface, we may assume that each mi > 0. There is an
c1 > 0 such that any other decomposition g0 =

∑
gi which does not reduce to
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(3–6) satisfies

(3–7) (1 + c1)‖g0‖ ≤

∑
‖gi‖.

Real linear combinations of the coefficients that occur in S away from ∂S constitute
a vector subspace V ⊂ R ⊗ G. By a lemma of Almgren [Morgan 2000, Lemma
13.5], there exist C1 > 0 and 0 < r1 < 1 such that, outside any ball of radius less
than r1, arbitrary small adjustments

∫
W d A contained in V can be made at cost at

most

(3–8) C1

∥∥∥∥∫
W

d A
∥∥∥∥.

By scaling, in λS, outside any ball of radius less than λr1, such adjustments can
be made at cost at most

(3–9) λ−1C1

∥∥∥∥∫
W

d A
∥∥∥∥.

Since F is a face of a polyhedral unit norm ball, there are c2 > 0 and a linear
retraction π1 of R ⊗ G onto R ⊗ G0 such that

(3–10) ‖π1x‖ ≤ ‖x‖ − c2‖π2x‖

where π2x = x − π1x .
Let ε1 be the ε provided by Proposition 3.3. We may assume that ε1 is small

and in particular less than c2/C1.
Choose ε > 0 such that if for 0 < r < r1, inside any B(a, r) away from ∂S, S is

ε weakly close to a diameter with coefficient g0, then inside B(a, δ1/3r), the four
conditions below hold. (For convenience of statement we assume that a = 0 and
that the diameter is the x-axis.)

(i) S projects onto {y = 0, |x | ≤ δ1/2r} with coefficient g0.

(ii) S lies inside {|y| ≤ ε1δr} (possible by monotonicity).

(iii) For some δr ≤ s ≤ δ1/2r , the slices by {r = ±s} are norm decompositions of
±g0 (possible by (3–7) and slicing).

(iv) Area constraints are small relative to ε1.

We now restrict attention to {|x | ≤ s, |y| ≤ ε1δr}. By (3–10),

(3–11) M(π1S) ≤ M(S) − c2 M(π2S)

because |y| ≤ ε1 and ε1 < c2/C1. Since S is minimizing, π2S must be 0. Hence the
area constraints lie in spanR F . It now follows by Proposition 3.3 and conditions
(ii)–(iv) that S consists of constant-curvature arcs with coefficients fi . A simple
variational argument shows that each such arc has the same curvature κi . �
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Remark 3.6. Because the unit norm ball was polyhedral, this proof was able to
use the projection argument of [Morgan 1998, Proposition 4.2] to handle area con-
straints outside spanR F . The more general alternative argument of White [Morgan
1998, p. 446] does not apply, because a minimizer without area constraints close
to a diameter with decomposable coefficient g0 need not be a diameter inside a
shrunken ball: it can be a sum of lines corresponding to a decomposition of g0.

Here is one of the main results of this paper.

Regularity Theorem 3.7. Let G = Zm with a norm. Suppose that every maximal
face F of the unit norm ball in R ⊗ G is simplicial and that real multiples of the
vertices of F generate G.

Let S minimize mass among rectifiable chains in R2 with coefficients in G of the
form S + ∂W , with

∫
W d A = 0. Suppose that S has finite boundary mass. Then S

consists of finitely many constant-curvature arcs with coefficients in G.

Proof. Note that the unit norm ball is polyhedral, that every face F ′ is simplicial,
and that real multiples of the vertices of F ′ generate G ∩ spanR F ′.

Let a be any point in S. Any tangent cone to S at a consists of rays from a
with coefficients in G. By the Regularity Lemma 3.5, in any sufficiently small
annulus B(a, r) − B(a, r/2), S consists of nearly radial constant-curvature arcs.
Coherence implies that at a S consists of finitely many constant-curvature arcs. �

Examples. For m = 2, Regularity Theorem 3.7 applies to any polyhedral norm.
For m = 3, the unit ball could be for example the regular octahedron with vertices
± fi or the polyhedron with vertices ± fi , ± fi ± f j and 32 faces. Unfortunately the
“soap film” unit norm ball, with vertices ± fi , fi − f j , has some rectangular faces,
for example with vertices f1, f2, f1 − f3, f2 − f3, with corresponding nonunique
norm decomposition

f1 + ( f2 − f3) = f2 + ( f1 − f3).

Surfaces. The results of Section 3 generalize locally to a smooth Riemannian sur-
face M .

To extend the preliminary geometric measure theory, including for example
modified monotonicity, one usually uses Nash’s theorem to embed M isometrically
in some Euclidean space; see [Allard 1972, Remark 4.4].

To extend Lemma 3.1 to an arc C of small constant curvature κ , take a geodesic
γ normal to C and foliate the unit disc by arcs of curvature κ normal to γ . For any
curve S, let θ denote the angle with the foliation. Choose a smooth 1-form ϕ with
dϕ = d A (such as y dx in Euclidean space). If ∂S = ∂C so that S − C = ∂ R,∫

S−C
cos θ = κ

∫
R

d A =

∫
S−C

ϕ.
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For another arc C ′ of small constant curvature κ ′ at a small angle to the foliation
of C , the whole foliation is at a small angle to the foliation of C .

To extend Proposition 3.2, Proposition 3.3, and the Regularity Lemma 3.5, use
normal coordinates in a small ball. Proposition 3.2 extends without difficulty, using
the foliations of the extension of Lemma 3.1. Proposition 3.3 extends immediately.
The slicing argument in the proof of the Regularity Lemma 3.5, which has some
leeway, extends because the coordinates are approximately Euclidean.

The Regularity Theorem 3.7 now extends immediately to surfaces.

4. Calibrations over a group G

The next result extends the theory of calibrations from real coefficients to coeffi-
cients over any complete normed group G. as described in the Introduction.

Calibration Lemma 4.1. Let G be a complete normed group. Let S be a rectifiable
m-chain in Rn with coefficients in G. Suppose there is a calibration of S: namely,
a homomorphism

F : G → closed differential m-forms (with comass norm)

satisfying

(4–1) ‖F(g)‖ ≤ ‖g‖

and

(4–2)
〈
ES(x), F(g)(x)

〉
= ‖g‖ for almost all x ∈ S.

Then S is minimizing among flat chains with coefficients in G homologous to S.
Moreover (4–2) holds for any rectifiable minimizer S′.

Proof. For any rectifiable chain T , let

F(T ) =

∫ 〈
ET (x), F(g)

〉
.

For an m-polyhedron P1 with coefficient g1,

F(P1) =

∫
P1

F(g1) and |F(P1)| ≤ M(P1).

For an (m+1)-polyhedron P2 with coefficient g2,

F(∂ P2) =

∫
∂ P2

F(g2) = 0

because F(g2) is a closed form. F extends to polyhedral chains and then by ap-
proximation to all flat chains, with similar properties.
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Let S′ be homologous to S, so that S′
− S = ∂ R and F(S′) = F(S). Then

M(S′) ≥ F(S′) = F(S) = M(S).

Moreover for any rectifiable minimizer M(S′) = F(S′), and hence (4–1) holds. �

Remark. When G is a real vector space, m = 1, and

range F = {constant-coefficient differential 1-forms} ' Rn ,

condition (4–1) just says that |F(g)| ≤ ‖g‖, i.e., that the ellipsoid or elliptical
cylinder

F−1
{|x | ≤ 1} ⊂ G

contains the unit ball {‖g‖ ≤ 1}. If the unit ball is polyhedral, it suffices to check
that its vertices gi satisfy |F(gi )| ≤ 1.

Corollary 4.2. Let P = EP ∧ ‖P‖ be an m-dimensional rectifiable chain with real
coefficients in Rn . Consider EP ⊗ P , an associated flat chain in Rn with coefficients
in 3mRn . Then EP ⊗ P is minimizing.

Proof. Apply the Calibration Lemma 4.1, with F(g) the dual covector. �

Example. Consider 1-dimensional flat chains in Rn (n ≥ 2) with coefficients in
Rn . Every cone of the form

∑
vi ⊗vi is minimizing. In particular, arbitrarily many

curves can meet at a point in a minimizer.

Corollary 4.3 [Choe 1996]. A stationary polyhedral m-chain in Rn with real coef-
ficients is area minimizing under diffeomorphisms of Rn fixing the boundary.

Proof. By Corollary 4.2, the associated P∗
= EP ⊗ P is minimizing. Note that

M(P∗) = M(P). Since P is stationary, P∗ has no interior boundary. For an image
S of P under a diffeomorphism, let S∗ denote the associated flat chain with the
same coefficients as P∗. Since P∗ has no interior boundary, S∗ is homologous to
P∗. Therefore

M(S) = M(S∗) ≥ M(P∗) = M(P),

so that P is area minimizing. �

Variational Lemma 4.4. For unit vectors vi in Rn and coefficients gi in a real
vector space G, consider the 1-dimensional cone C =

∑
fivi ∈Rn with coefficients

in G. If C is minimizing, then the following variational conditions hold: for λi ≥ 0,

(4–3)
∣∣∣∑ λi‖gi‖vi

∣∣∣ ≤

∥∥∥∑
λi gi

∥∥∥.

If C has no boundary at the origin
(
i.e., if

∑
gi = 0

)
, (4–3) holds for all real λi .



136 FRANK MORGAN

Proof. Let λi ≥ 0. We may assume that 0 ≤ λi ≤ 1. Given a vector u, move the
vertex of

∑
λi givi by tu and add

(∑
λi gi

)
tu. The initial derivative of mass is∥∥∥∑

λi gi

∥∥∥|u| −

(∑
λi‖gi‖vi

)
· u.

Choose u =
∑

λi‖gi‖vi (to make the derivative as small as possible). Since by
minimization the derivative must be nonnegative, we get

0 ≤

∥∥∥∑
λi gi

∥∥∥|u| − |u|
2, hence |u| ≤

∥∥∥∑
λi gi

∥∥∥,

which is (4–3).
Now suppose that

∑
gi = 0 and let λi ∈ R. Choose M ≥ 0 such that λ′

i =

λi + M ≥ 0. Using (4–3) and
∑

gi = 0, we get the desired inequality:∣∣∣∑ λi‖gi‖vi

∣∣∣ =

∣∣∣∑ λ′

i‖gi‖vi

∣∣∣ ≤

∥∥∥∑
λ′

i gi

∥∥∥ =

∥∥∥∑
λi gi

∥∥∥. �

Proposition 4.5. Consider a cone C =
∑k

i=1 givi in Rn of unit vectors vi with coef-
ficients in the real vector space G = span {gi }. Suppose the variational conditions
(4–3) — which we repeat for convenience:

(4–4)
∣∣∣∑ λi‖gi‖vi

∣∣∣ ≤

∥∥∥∑
λi gi

∥∥∥
hold for all real λi . Then C is minimizing among flat chains with coefficients in G
(indeed, calibrated by a constant-coefficient calibration). If equality in (4–4) holds
only for multiples of gi , then any rectifiable minimizer consists of multiples of line
segments with tangent vi and coefficient gi .

Proof. We apply the Calibration Lemma 4.1. By (4–4), whenever
∑

λi gi = 0,∑
λi‖gi‖vi = 0. Therefore there is a linear map F from G to Rn (or its dual

space) such that F(gi ) = ‖gi‖vi . Moreover for any g =
∑

λi gi in G, by (4–4)

(4–5)
∣∣F(g)

∣∣ =

∣∣∣∑ λi‖gi‖vi

∣∣∣ ≤ ‖g‖,

with equality for g ∈ {gi }. By the Calibration Lemma 4.1, C is minimizing. More-
over, at almost every point of a rectifiable minimizer S, the image of the coefficient
is a multiple of the tangent covector.

If equality in (4–4) holds only for multiples of gi , then at almost every point of
S, the coefficient is a multiple of some gi ; hence S consists of multiples of lines
with tangent vi and coefficient gi . �

Remarks. (1) Even if equality in (4–4) holds only for multiples of gi , C need
not be unique. For example, consider the cone C =

∑6
i=1 givi in R2

' C with
coefficients in G = R2, with vi the sixth roots of unity and gi = vi . C and another
minimizer are pictured in Figure 2.
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v1g1

v2

g2

v3

g3

v4
g4

v5

g5

v6

g6

g1

g2
g3

g4

g5 g6

(1, 0)

g1

g2

g3

g4

g5

g6

Figure 2. Two calibrated minimizers with the same boundary. In
the boundary, (1, 0) (for example) occurs with coefficient g1 =

g6 − g5.

(2) If C has no boundary at the origin, then condition (4–4) is necessary by the
Variational Lemma 4.4. On the other hand, the cone C1 = e1 + e2 in R2 with
coefficients in R is uniquely minimizing, but (4–4) fails because

|e1 − e2| > 0.

C1 has no constant-coefficient calibration as in the proof of Proposition 4.5, but
it does have a singular variable-coefficient calibration, dr . We conjecture that the
necessary variational condition with λi ≥ 0, (4–3), satisfied of course by C1 for
example, is in general sufficient for minimization.

(3) Even if C has no boundary at the origin, the hypothesis that the gi span G is nec-
essary, or it could save cost to introduce other coefficients uncontrolled by (4–4), as
to introduce a fourth cheap fluid into a junction of three expensive immiscible flu-
ids. For the more general case G ⊃ span {gi }, there is a natural sufficient extension
of (4–4), a “point-placing” condition equivalent to the existence of a constant-
coefficient calibration, probably necessary for a minimizer over G ' Rn (open
question), though not for a minimizer among integer chains without multiplicity
(“immiscible fluids”), by counterexample. These issues are treated in [Futer et al.
2000]. (Lemma 4.7 therein assumes that regions have no overlap or multiplicity.)

Conjecture 4.6. Suppose G = Z2 with generators f1, f2.
The cone C = m1 f1v1 +m2 f2v2, with mi ∈ Z+, is (uniquely) minimizing among

flat chains with coefficients in G if and only if

(4–6)
∣∣λ1‖ f1‖v1 + λ2‖ f2‖v2

∣∣ ≤
∥∥λ1 f1 + λ2 f2

∥∥
for all positive integers λi ≤ mi .

In particular, two lines crossing in directions v1, v2 with coefficients m1 f1 and
m2 f2 are (uniquely) minimizing if and only if

(4–7)
∣∣λ1‖ f1‖v1 + λ2‖ f2‖v2

∣∣ ≤
∥∥λ1 f1 + λ2 f2

∥∥
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for all integers −m ≤ λi ≤ mi .

Remark. One may assume that ‖ f1‖ = ‖ f2‖ = 1. The condition then becomes

|λ1v1 + λ2v2| ≤ ‖λ1 + λ2‖.

Variational Lemma 4.7. Two vectors from the origin at angle θ with coefficients
g1, g2 have negative first variation under moving the vertex and inserting a segment
with coefficient g1 + g2 if

(4–8) 2‖g1‖‖g2‖ cos θ > ‖g1 + g2‖
2
− ‖g1‖

2
− ‖g2‖

2.

If ‖g1‖ = ‖g2‖ = 1, this condition becomes

cos(θ/2) > ‖g1 + g2‖/2.

If furthermore ‖g1 + g2‖ = 1, the condition becomes the familiar θ < 120 degrees.

Remark. For k vectors, positive multiples of unit vectors vi , the condition (4–8)
takes the form

(4–9)
∥∥∥∑

gi

∥∥∥ <

∣∣∣∑ ‖gi‖vi

∣∣∣,
generalizing [Morgan 1998, 4.4].

Proof. Let v1, v2 be unit vectors in the two directions, and insert a vector tu. Then
the initial derivative of mass is

‖g1 + g2‖ |u| −
(
‖g1‖v1 + ‖g2‖v2

)
· u.

Choose u = ‖g1‖v1 + ‖g2‖v2 (to make the derivative as negative as possible).
The derivative is negative if

‖g1 + g2‖
2 < |u|

2
= ‖g1‖

2
+ ‖g2‖

2
+ 2‖g1‖‖g2‖ cos θ

as desired. The equivalent conditions follow trivially. �

Alternatively, the lemma could be derived from the Variational Lemma 4.4.

A special case of the following proposition (Proposition 5.2) will be used in the
regularity theorem for planar double bubbles (Regularity Theorem 5.6).

Proposition 4.8. Let G ' R2 be a real vector space with basis f1, f2, representing
two fluids or regions. For 0 < δi ≤ 1, give G the largest norm such that

‖ f1‖ = ‖ f2‖ = 1, ‖ f1 + f2‖ = 2δ1, ‖ f1 − f2‖ = 2δ2.

Let S consist of two oriented diameters of the unit disc in R2 with coefficients mi fi

(mi > 0) at an angle 0 ≤ θ1 ≤ π with supplementary angle θ2 = π − θ1. If each
cos(θi/2) ≤ δi (so that δ2

1 + δ2
2 ≥ 1), then S is minimizing among rectifiable chains

over G, uniquely if strict inequality holds. In particular, if δ1 = 1 and δ2 = 1/2,
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the lines crossing at angle 0 ≤ θ1 ≤ π/3 are minimizing. Conversely, if either
cos(θi/2) > δi , then S is not minimizing, not even over the subgroup Z2

⊂ G
(assuming that the mi are positive integers).

Proof. If either cos(θi/2) > δi , S is not minimizing by the Variational Lemma 4.7.
Assume that each cos(θi/2) ≤ δi . We apply the Calibration Lemma 4.1. Let

F( f1) be a unit covector along the first line, F( f2) a unit covector along the second.
Then

∣∣F( fi )
∣∣ = 1 = ‖ fi‖,∣∣F( f1 + f2)

∣∣ = 2 cos(θ1/2) ≤ 2δ1 = ‖ f1 + f2‖,∣∣F( f1 − f2)
∣∣ = 2 cos(θ2/2) ≤ 2δ2 = ‖ f1 − f2‖.

Hence, for any unit vector v and coefficient g,〈
g, F(v)

〉
≤ ‖g‖,

with equality precisely when v is ±F( f1), ±F( f2) and g is an appropriately signed
multiple of f1 or f2, respectively. It follows that for fixed boundary, S is uniquely
minimizing. �

Remark. If each cos(θi/2) = δi , then the rectangle with coefficients ± f1 ± f2 is
another minimizer with the same boundary.

5. Planar double soap bubbles with multiplicities

The main Regularity Theorem 5.6 deduces the description of planar double bubbles
with multiplicities (see Introduction) from the more general Regularity Theorem
3.7. Propositions 5.2–5.5 provide the requisite characterization of minimizing tan-
gent cones.

Definitions 5.1. A double soap bubble with multiplicities in Rn (or any dimension-n
submanifold of RN ) is a rectifiable (n−1)-chain with coefficients in the free group
G2 on two generators f1, f2. Let R1 be the region with coefficient f1, R2 the
region with coefficient f2. If a region has coefficient m1 f1 +m2 f2, we say that Ri

has multiplicity mi . Interfaces from the exterior to R1 to R2 to the exterior have
coefficients h1 = f1, h2 = f2 − f1, and h3 = − f2, respectively. Any two of the hi

generate G2. Give G2 the largest norm such that

‖h1‖ = ‖h2‖ = ‖h3‖ = 1.

More generally we consider m-chains in Rn with coefficients in G2, without any
interpretation as clusters. We focus on 1-chains in Rn .

Any g ∈ G2, except for multiples of the hi , has a unique maximal norm decom-
position in terms of two of the hi :

g = mi hi − m j h j , ‖g‖ = mi + m j , mi , m j > 0.
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Proposition 5.2. Two crossing lines with coefficients m1h1, m2h2 (mi ≥1) crossing
at an angle θ are minimizing over G2 if and only if θ ≥ 120 degrees.

Proof. This is a special case of Proposition 4.8, when δ1 = 1 and δ1 =
1
2 . �

Proposition 5.3. The standard Y

Y = h1v1 + h2v2 + h3v3

with vi planar unit vectors at 120-degree angles, and multiples mY thereof , are
uniquely minimizing over G2.

More generally, any nonnegative linear combination

C =

∑ {
m±i (±hi )(±vi ) : ±i ∈ ±{1, 2, 3}

}
is minimizing, and uniquely so if and only if some m±i vanishes.

Proof. Apply the Calibration Lemma 4.1 with F(hi ) the covector dual to vi , which
defines a linear map because

∑
vi = 0. Since

∣∣F(hi )
∣∣ = 1, therefore by the defi-

nition of the norm on G2 as the largest norm with ‖hi‖ = 1, for all g ∈ G2,∣∣F(g)
∣∣ ≤ ‖g‖,

with equality only for multiples of some hi . By the Calibration Lemma 4.1, C is
minimizing.

To prove uniqueness for mY , note that by (4–2), any minimizer consists of
collections Si of segments in the direction vi with coefficient a positive multiple
of hi . Let −Si denote the segments of Si with orientations reversed. Let pi denote
the point at the end of vi . Then −S1∪S2 provides m paths from p1 to p2; −S2∪S3

provides m paths from p2 to p3; −S3 ∪ S1 provides m paths from p3 to p1. mY
is the only consistent possibility.

More generally, to prove uniqueness when say m−3 = 0, it suffices to consider
multiples mC5 of

C5 = h1v1 + h2v2 + h3v3 + (−h1)(−v1) + (−h2)(−v2),

since every case is a subset of mC5. Now −S1 ∪ S2 provides m paths from p1

and −p2 to p2 and −p1; −S2 ∪ S3 provides m paths from p2 and 0 to p3 and
−p2; −S1 ∪ S2 provides m paths from p3 and −p1 to p1 and 0. mC5 is the only
consistent possibility.

To prove nonuniqueness when every m±i ≥ 1, it suffices to consider m±i = 1.
Another minimizer with the same boundary is the hexagon of Figure 2. �

Because every g ∈ G2 has a norm decomposition in terms of the hi , every sum
of unit vectors takes the form∑ {∑

k

hivik : i ∈ ±{1, 2, 3}

}
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with the convention h−i = −hi . When vectors vik = v jl coincide, we assume that
‖hi + h j‖ = 2 (no cancellation); e.g., if i = 1, then j ∈ {1, −2, −3}.

Proposition 5.4. Consider a minimizing sum∑ {∑
k

hivik : i ∈ ±{1, 2, 3}

}
(h−i = −hi )

of unit vectors in Rn with coefficients in G2 (without cancellation).

(1) If h1 and h−1 = −h1 both occur, then v−11 = −v11, the v1k are all equal, and
the v−1k are all equal. (Of course a similar statement holds for h2 and for h3.)

(2) The angle between vik and v jl is at least 120 degrees for i j > 0 and i 6= j .

(3) If h1, h2, h3 all occur, then v11, v21, v31 are at 120 degrees and the v1k are all
equal (as are the v2k and the v3k).

Remark. These conditions are probably sufficient as well as necessary.

Proof. Every v−1k must be opposite to every v1k , or the straight line would be
shorter, proving (1). To prove (2), note that hi +h j =−hk has norm 1, so that (2) is
just the well-known fact about classical networks. Finally, (3) follows immediately
from (2). �

Proposition 5.5. Nonlinear 1-dimensional minimizing cones over G2 in Rn with-
out interior boundary are precisely pairs of lines with coefficients mi hi , −m j h j

(mi , m j positive) at an angle of at most 60 degrees and nonnegative linear combi-
nations

(5–1)
∑ {

mi hivi : i ∈ ±{1, 2, 3}
}

(h−i = −hi )

of three vectors vi at 120 degrees with coefficients hi and their opposites v−i =−vi

with coefficients −hi , with

(5–2) m1 − m−1 = m2 − m−2 = m3 − m−3.

In any case, C is planar.

Proof. By Propositions 5.2 and 5.3, all such cones are minimizing.
Recall the well-known classical variational fact that two vectors in equilibrium

meet at 180 degrees and that three vectors in equilibrium meet at 120 degrees (see
the Variational Lemma 4.7). Recall also that every g ∈ G2 has a norm decomposi-
tion of the form g = mi hi − m j h j with mi , m j nonnegative integers.

If C is indecomposable, then the coefficients that occur are either {hi , −hi } or
±{h1, h2, h3}. In the first case, C is a line; in the second, C = ±Y , a standard Y
(possibly with orientation reversed).

A sum Y1 + Y2 of two standard Y’s is minimizing only if Y2 = Y1. Otherwise
the sum can be decomposed into two triples with angles not 120 degrees. A sum



142 FRANK MORGAN

Y1−Y2 is minimizing only if Y2 =Y ′

1, where (
∑

hivi )
′
=

∑
(−hi )(−vi ). Otherwise

vectors hiv, −hiw could be replaced with a straight line. Similarly a minimizing
sum of a Y and a line with coefficient ±hi must be of form (5–1). We conclude
that a C containing a ±Y must be of the asserted form (5–1).

A sum of two distinct lines, oriented to have coefficients in {h1, h2, h3}, must
have distinct coefficients and meet at an angle of at least 120 degrees (Proposition
5.2). With one of them reoriented, they have coefficients hi , −h j and meet at an
angle of at most 60 degrees, as asserted.

Finally consider a sum of three distinct lines, oriented to have coefficients in
{h1, h2, h3}. As before, they meet pairwise at angles of at least 120 degrees.
Since there are three of them, they meet at exactly 120 degrees. Thus C has a
Y component, a case already established.

The final condition m1 − m−1 = m2 − m−2 = m3 − m−3 just says that there is
no interior boundary. �

The next theorem is one of the main results of this paper (see the Introduction).

Regularity Theorem 5.6 (for double soap bubbles with multiplicity). Let S mini-
mize mass among rectifiable chains with coefficients in G2 in a smooth Riemannian
surface of the form S +∂W with

∫
W d A = 0 (i.e., prescribed boundary and areas).

Suppose that S has finite boundary mass. Then S consists of finitely many constant-
coefficient arcs with coefficients in G2. Away from the boundary, the arcs meet in
threes at 120 degrees (a Y), fours (two arcs tangent or crossing at angle at most
60 degrees or a Y with stem extended), fives (a Y with two arms extended), or sixes
(a Y with all three arms extended), as described by Proposition 5.5. By the same
proposition, all such singularities can occur.

Proof. This follows immediately from the Regularity Theorem 3.7 and the discus-
sion at the end of Section 3 (page 133), except for the characterization of how arcs
meet, which we will deduce with the help of Proposition 5.5.

At a point p where the tangent cone is linear, we may assume that its coefficient
is m1h1 − m2h2, with m1 > 0, m2 ≥ 0. S consists of m1 arcs with coefficient h1

and m2 arcs with coefficient h2. The arcs with coefficient h1 must have the same
curvature and hence coincide. Similarly the arcs with coefficient h2 must coincide.
Hence S is either two arcs tangent at p or (if they coincide or if m2 = 0) one arc
through p.

At a point p where the tangent cone is nonlinear, we will use Proposition 5.5.
As described by Proposition 5.3, a Y is (a multiple of)

∑
hivi or

∑
(−hi )(−vi ).

The extended Y’s come from adding a line hi li in the direction vi . Every possible
cone from Proposition 5.5, other than lines and pairs of lines, so arises. Indeed, by
subtracting a multiple of a Y, condition (2) of Proposition 5.5 becomes mi = m−i ,
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representing a sum
∑

mi hi li . Finally, since tangent arcs have positive multiples of
the same hi as coefficients and hence the same curvature, they must coincide. �

Conjecture 5.7 (Double bubble conjecture for bubbles with multiplicity). A mass-
minimizing double bubble with multiplicities (rectifiable chain with coefficients in
G2) in R2 with prescribed areas (S = ∂W with

∫
W d A prescribed) is standard

(multiplicity one).

Remark. The proofs for bubbles without multiplicity [Foisy et al. 1993; Morgan
2001, §3] do not eliminate possibilities as in Figure 3.

f1

f1

f2

f2

f2 + f1

Figure 3. A sample challenger with multiplicities to the standard
planar double bubble.

In a Riemannian surface, even single bubbles sometimes prefer multiplicity.
For example, in R2 with a long skinny tentacle of area A/2 as in Figure 4, left,
the tentacle with multiplicity 2 has less perimeter than any region of area A of
multiplicity 1.

In a Riemannian surface, mass-minimizing double bubbles with multiplicity
can apparently have interesting new singularities. For example, in a surface as
in Figure 4, right, the minimizer for certain areas consists of two partially overlap-
ping regions, redrawn in different coordinates in the top left diagram of Figure 5.
The rest of Figure 5 suggests that all types of singularities allowed by Regularity
Theorem 5.6 may well occur in minimizing double bubbles (without boundary) in
Riemannian surfaces.

Clusters of k bubbles. To generalize from 2 bubbles to k bubbles, one replaces the
coefficient group G2 by the free group Gk on k generators f1, . . . , fk with largest
norm such that

‖ fi‖ = ‖ fi − f j‖ = 1.
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A
2

f1 f2

f1+ f2

Figure 4. Left: A tentacle of multiplicity two can have less
perimeter than any region of multiplicity one of the same area.
Right: In a surface, a minimizing double bubble may consist of
regions which partially overlap.

f1 f2f1+ f2 f1 f22 f1 2 f2

2 2

2 f1

+ f2

f1+

2 f2
2 f1 2 f2

2 f1

+ f2

f1+

2 f2
f1 f22 f1 2 f2

Figure 5. All types of singularities allowed by Regularity Theo-
rem 5.6 may well occur in minimizing double bubbles under some
Riemannian metric.
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− f2

f1− f1 + f3

f2 − f3

θθ

Figure 6. A minimizing cone over G3 (with 0 < θ ≤ 60 degrees).
Rotating the left-point vectors about the x-axis in R3 yields non-
planar minimizing cones.

Over G3, minimizing cones (without boundary at the vertex) are already more
complicated and interesting, largely due to the rectangular face of the unit norm
ball with vertices f1, f2, f1− f3, f2− f3. One family of planar examples is the
cones of Figure 6 with 0 < θ ≤ 60 degrees. Rotating the two vectors on the left
by any amount about the x-axis in R3 yields nonplanar minimizing cones. All of
these cones are minimizing (and calibrated) by Proposition 4.5.

Networks in higher dimensions. Without area constraints, the Regularity Theorem
5.6 holds in a smooth n-dimensional Riemannian manifold. A mass-minimizing
rectifiable chain with coefficients in G2 with given boundary of finite mass consists
of finitely many geodesic arcs with coefficients meeting on the interior at most six
at a time as described by Theorem 5.6. In particular, the interior tangent cones are
planar.

Double bubbles in R3. For two-dimensional bubble clusters in R3 without mul-
tiplicities, there are ten candidate minimizing cones; see [Morgan 2000, Figure
13.9.1]. Of these, only three correspond to double bubbles — plane, triple junction,
cone over cube — and only the first two are minimizing. It would be interesting to
classify the candidate cones for double bubbles with multiplicity, i.e., cones over
geodesic nets satisfying the Regularity Theorem 5.6, and to identify the minimizers.
One new candidate consists of two triple junctions meeting at right angles.
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