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We investigate the relationship between the metric boundary and the Gro-
mov boundary of a hyperbolic metric space. We show that the Gromov
boundary is a quotient of the metric boundary and the quotient map is
continuous, and that therefore a word-hyperbolic group has an amenable
action on the metric boundary of its Cayley graph. Furthermore, if the
space is 0-hyperbolic, the boundaries agree, and as a consequence there are
no non-Busemann points on the boundary of such spaces. These results
have significance for the study of Lip-norms on group C∗-algebras.

1. Introduction

The Gromov boundary of a hyperbolic metric space has been extensively stud-
ied, but the Gromov boundary is not guaranteed to exist for nonhyperbolic metric
spaces. Gromov [1981] introduced another boundary which makes sense for any
metric space, but this was little studied until Marc Rieffel [2002] showed that this
second boundary, called the metric boundary in his papers, is important in the study
of metrics on the state spaces of group C∗-algebras.

If G is a countable discrete group equipped with a length function `, and C∗
r (G)

is its reduced C∗-algebra, there is a seminorm L`( f ) = ‖[M`, f ]‖ defined on a
dense *-subalgebra of C∗

r (G), where M` is multiplication by ` and f operates by
convolution on `2(G). This in turn gives a metric on the state space of C∗

r (G) by

ρL`(ϕ, ψ)= sup
{
|ϕ( f )−ψ( f )| : L`( f )≤ 1

}
,

and a natural question to ask is whether the topology generated by this metric co-
incides with the weak-* topology on the state space, that is, whether the seminorm
is a Lip-norm [Rieffel 1998; 1999; 2004]. Rieffel proves that this is in fact the case
for Zd with certain length functions, and a critical requirement in his proof is that
the action of Zd on its metric boundary is always amenable.

There is some interest, then, in knowing when the action of a group is amenable
on its metric boundary. In the case of word-hyperbolic groups with the standard
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word-length metric, it is known that the action of a word-hyperbolic group on
its Gromov boundary is amenable [Anantharaman-Delaroche and Renault 2000;
Anantharaman-Delaroche 2002], and as Rieffel points out [2002], if there is an
equivariant, continuous surjection from the metric boundary onto the Gromov
boundary, then the action of the group on the metric boundary must be amenable.

We show that this is in fact the case, and more: for 0-hyperbolic spaces, the
Gromov boundary and the metric boundary are in fact identical, with identical
topologies.

We note here that Ozawa and Rieffel [2003] have shown that, for hyperbolic
groups, L` is in fact a Lip-norm using techniques which do not use the notion of
the metric boundary. However these methods do not work for Zd , and we hope that
our result may be part of a unified way of showing that the seminorms for these
groups are in fact Lip-norms.

2. The Gromov boundary

There are many different but equivalent definitions for a hyperbolic metric space,
but for our purposes we are only interested in a couple. We follow [Alonso et al.
1991] in our presentation, and a more complete discussion of hyperbolic spaces
can be found there.

Definition 2.1. A metric space (X, d) is geodesic if given any two points x , y ∈ X ,
there is an isometry γ from the interval [0, d(x, y)] into X .

If (X, d) is a metric space, with a base-point 0, we define an inner product by

(x · y)0 =
1
2

(
d(x, 0)+ d(y, 0)− d(x, y)

)
.

Where the base point is implicit, we will just write (x · y).
The metric space (X, d) is hyperbolic if it is geodesic and there is some δ ≥ 0

such that

(1) (x · y)≥ min {(x · z), (y · z)} − δ

for all z ∈ X .

One can show that although the constant δ may be different for different base-
points, whether the space is hyperbolic does not depend on the choice of base-point.

It is worth noting that not all references do not require hyperbolic spaces to be
geodesic; however we need the space to be geodesic at a key place (Lemma 4.1).

We have a particular interest in groups whose Cayley graphs are hyperbolic,
and there is an equivalent definition based on properties of generators and relations
alone. We note that if G is a group with a finite presentation 〈S | R〉, then given a
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reduced word w in the generators, S, with w= e in G, we can write w as a product

w =

n∏
k=1

u−1
k rkuk,

where uk is a word in S ∪ S−1 and rk ∈ R ∪ R−1. For a given w, let nw be the
smallest possible number of terms in such a product, and let l(w) be the length
of w.

Definition 2.2. Let G be a group with a finite presentation 〈S | R〉. We say that
G is word-hyperbolic if it satisfies a linear isoperimetric inequality: there is some
K ≥ 0 such that nw ≤ Kl(w) for all reduced words w with w = e in G.

One can show that the choice of generators and relations does not affect whether
the group is word-hyperbolic and, moreover, a group is word-hyperbolic if and only
if its Cayley graph (regarded as a 1-complex with the graph metric) is hyperbolic.

Perhaps the simplest way to consider the Gromov boundary is as the limit points
of geodesic rays, where two geodesic rays are considered equivalent if they are a
finite distance apart. This definition highlights similarities between the Gromov
boundary and the metric boundary discussed in the next section. However, the
most useful definition of the Gromov boundary for our purposes is in terms of the
inner product.

Definition 2.3. Let (X, d) be a metric space. We say that a sequence xk converges
to infinity (in the Gromov sense) if

lim
n,k→∞

(xn · xk)= ∞.

Given two sequences x = (xn)
∞

n=1 and y = (yn)
∞

n=1 which both converge to infinity,
we define a relation ∼G by

x ∼G y ⇐⇒ lim
n→∞

(xn · yn)= ∞.

If (X, d) is a hyperbolic metric space, then ∼G is in fact an equivalence relation
on sequences which converge to infinity. It is worthwhile noting that if (X, d) is
hyperbolic then

x ∼G y ⇐⇒ lim
n,k→∞

(xn · yk)= ∞.

If (X, d) is not hyperbolic, the relation ∼G will not, in general, be an equivalence
relation.

We define the Gromov boundary ∂G X of a hyperbolic metric space (X, d) to be
the set of equivalence classes of sequences which converge to infinity. We will say
that a sequence in X converges to an equivalence class in ∂G X if it is an element
of the equivalence class.
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We can topologize the boundary by extending the inner product to

X G
= X ∪ ∂G X.

Definition 2.4. Let (X, d) be a hyperbolic metric space, and let x , y ∈ X G . Then
we define

(x · y)= inf{lim inf
n

(xn · yn) : xn → x, yn → y, and xn, yn ∈ X}.

One can show that if this inner product is restricted to X , it is the same as the
original inner product on X . Furthermore, if ω ∈ ∂G X , and y ∈ X , we have

(ω · y)= inf{lim inf
n

(xn · y) : xn → ω, and xn ∈ X}.

It is also the case that if (X, d) is hyperbolic, with

(x · y)≥ min{(x · z), (y · z)} − δ

for all x , y and z ∈ X , then the same identity holds for this extended inner product.
We have

(x · y)≥ min{(x · z), (y · z)} − δ,

for all x , y and z ∈ X G .
We then can say that a sequence xn ∈ X G converges to ω ∈ ∂G X if and only if

(ω · xn)→ ∞.

With this definition, it can be shown that X G is a compactification of X provided
X is locally compact.

3. The metric boundary

We now consider the metric compactification and the metric boundary. The most
succinct definition is that the metric compactification Xd of a locally compact
metric space (X, d) corresponds to the pure states of the commutative, unital,
C∗-algebra G(X, d) generated by the functions which vanish at infinity on X , the
constant functions, and the functions of the form

ϕy(x)= d(x, 0)− d(x, y),

where 0 is some fixed base-point (which does not affect the resulting algebra). The
metric boundary ∂d X is simply Xd

\ X .
More concretely, we can understand the metric boundary as a limit of rays in

much the same way as the simple definition of the Gromov boundary.

Definition 3.1. Let (X, d) be a metric space, and T an unbounded subset of R+

containing 0, and let γ : T → X .
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(1) γ is a geodesic ray if

d(γ (s), γ (t))= |s − t |

for all s, t ∈ T .

(2) γ is an almost geodesic ray if for every ε > 0, there is an integer N such that

|d(γ (t), γ (s))+ d(γ (s), γ (0))− t |< ε

for all t , s ∈ T with t ≥ s ≥ N .

(3) γ is a weakly geodesic ray if for every y ∈ X and every ε > 0, there is an
integer N such that

|d(γ (t), γ (0))− t |< ε

and
|d(γ (t), y)− d(γ (s), y)− (t − s)|< ε

for all t , s ∈ T with t , s ≥ N .

It is immediate that every geodesic ray is an almost geodesic ray. Rieffel showed
that every almost geodesic ray is a weakly geodesic ray. The significance of weakly
geodesic rays is that they give the points on the metric boundary in reasonable
metric spaces.

Theorem 3.2 (Rieffel). Let (X, d) be a complete, locally compact metric space,
and let γ : T → X be a weakly geodesic ray in X . Then

lim
t→∞

f (γ (t))

exists for every f ∈ G(X, d), and defines an element of ∂d X . Conversely, if d is
proper and if (X, d) has a countable base, then every point of ∂d X is determined
as above by a weakly geodesic ray.

This is similar in character to the definition of the Gromov boundary, although
the reliance on weakly geodesic rays is necessary in general. Rieffel defined any
point ∂d X which is the limit of an almost geodesic ray to be a Busemann point, and
it was shown in [Webster and Winchester 2003] that even for simple hyperbolic
spaces the metric boundary may have non-Busemann points. It is an open question
whether this phenomenon can occur with word-hyperbolic groups. We will show
later that if the space is 0-hyperbolic then there are no non-Busemann points.

Unlike the Gromov boundary, the metric boundary is, in general, dependent
upon the choice of metric. For example, different generating sets for an infinite dis-
crete group generally give distinct metric boundaries for the corresponding word-
length metrics.

From a practical viewpoint, the initial definition of the metric boundary means
that a sequence xn ∈ X converges to a point on the metric boundary if and only
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if xn is eventually outside any compact subset of X , and ϕy(xn) converges for all
y ∈ X . Two sequences converge to the same point on the metric boundary if and
only if

lim
n→∞

ϕz(xn)= lim
k→∞

ϕz(yk)

for every z ∈ X . We can extend the functions ϕy to the boundary by letting

ϕy(ω)= lim
n→∞

ϕy(xn)

for any sequence xn → ω ∈ ∂d X . Then a sequence xn ∈ Xd converges to x ∈ ∂d X
if and only if ϕy(xn)→ ϕy(x) for all y ∈ X , and this is sufficient to determine the
topology of the metric compactification.

4. The Gromov boundary as a quotient

We observe that the functions ϕy and the inner product are closely related, since

(x · y)=
1
2

(
ϕy(x)+ d(y, 0)

)
,

and furthermore, that they play similar roles in the definitions of Gromov and
metric boundaries. It is natural, therefore, to ask what relationship there may be
between the two different boundaries.

The key observation is that the triangle inequality implies that for any z ∈ X ,

(x · y)≥
1
2

(
d(x, 0)+ d(y, 0)− d(x, z)− d(y, z)

)
=

1
2

(
ϕz(x)+ϕz(y)

)
,

with equality if and only if z lies on a geodesic path [x, y]. We will want to show
that (x · y) gets large for elements from various sequences, and this implies that all
we need do is find a z so that ϕz(x)+ϕz(y) is large.

The following lemma tells us that as we get close to a metric boundary point,
we can find z such that ϕz is large.

Lemma 4.1. Let (X, d) be a proper geodesic metric space with a distinguished
base-point 0. Then for any ω in the metric boundary of X , and any N , there is a
point z ∈ X such that ϕz(ω) > N .

Proof. Let xν be any net which converges to ω.
Let r > 0 and consider a collection of minimal paths [0, xν] for n large enough

that d(0, xν)>r . Because (X, d) is a geodesic metric space, there must be a unique
point yν in each of these paths in the sphere S(0, r) of radius r , centered at 0. Since
(X, d) is proper the sphere S(0, r) is compact, and hence yν has a convergent subnet
yνλ which converges to some zr ∈ S(0, r). Let xνλ be the corresponding subnet of
xν . Given any ε > 0 we have for r > ε and λ sufficiently large,

d(0, xνλ)= d(0, yνλ)+ d(yνλ, xνλ) > d(0, zr )+ d(zr , xνλ)− ε,
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or, equivalently,

ϕzr (xνλ)= d(0, xνλ)− d(zr , xνλ) > d(0, zr )− ε = r − ε.

Taking limits, we conclude that

ϕzr (ω)≥ r − ε.

Hence, given any N , we can choose r and ε such that r − ε > N , and obtain a
point z such that ϕz(ω) > N . �

We do not know if there is a counterexample for this result if the requirement
that the hyperbolic space be geodesic is dropped. Clearly one does not need the full
force of the geodesic requirement to produce an appropriate collection of elements
zr . For example, it would suffice to have a condition that there is some constant C
and some unbounded subset T ⊆ R such that for every x ∈ X there is a function

f : {t ∈ T : 0 ≤ t ≤ d(x, 0)} → X

such that
d(0, x)+ C ≥ d(0, f (t))+ d( f (t), x).

The proof would proceed as above for r ∈ T , and would give the estimate

ϕzr ≥ r − C − ε.

This condition is satisfied by Cayley graphs of hyperbolic groups, for instance,
when regarded as a set of points with the graph metric rather than as a 1-complex.

Although much of what follows may be applicable in more general settings,
we will assume that our metric space has a countable base so that we may use
sequences instead of nets.

The lemma above has two immediate corollaries:

Corollary 4.2. Let (X, d) be a proper geodesic metric space with a countable
base and a distinguished base-point 0, and let xn → ω ∈ ∂d X . Then xn converges
to infinity in the Gromov sense.

Proof. We know that for all z, ϕz(xn) eventually gets close to ϕz(ω). Hence by
the previous lemma, for any N we can find a z such that ϕz(xn) > N for all n
sufficiently large. It follows that if xn and xm are large enough to make ϕz(xn) and
ϕz(xn) greater than N , we have

(xn · xm)≥
1
2

(
ϕz(xn)+ϕz(xm)

)
> N .

Therefore
lim

n,m→∞
(xn · xm)= ∞,

and so xn goes to infinity in the Gromov sense. �
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Let (xn) and (yk) be two sequences in X which converge to points on the metric
boundary. We will say that (xn) ∼d (yk) if these two sequences converge to the
same metric boundary point.

Corollary 4.3. Let (X, d) be a proper geodesic metric space with a countable
base. Then (xn)∼d (yk) implies (xn)∼G (yk).

Proof. Let xn and yn both converge to ω. Using the lemma, we can find a point z so
that ϕz(ω) is arbitrarily large, and since both ϕz(xn) and ϕz(yn) converge to ϕz(ω),
for any number N we can find z such that both ϕz(xn) and ϕz(yn) are greater then
N for all n sufficiently large.

Hence
(xn · yn)≥

1
2

(
ϕz(xn)+ϕz(yn)

)
> N

for all n sufficiently large, and so

lim
n→∞

(xn · yn)= ∞,

and so (xn)∼G (yk). �

Recall from the preliminary discussion that another way of describing the Gro-
mov boundary is as equivalence classes of sequences which stay a finite distance
from each other. This is an equivalence relation on sequences, which we may
denote by ∼G ′ , and for hyperbolic metric spaces it is equal to ∼G . It is worth
noting, however, that for spaces which are not hyperbolic it is not the case that
(xn) ∼d (yk) implies (xn) ∼G ′ (yk). For example, in Z2 with the graph metric
given by the standard generators (1, 0) and (0, 1), we have that xn = (n, n) and
yk = (k, 2k) both converge to the same point on the metric boundary, but clearly
(xn) 6∼G ′ (yk).

These two corollaries mean that we have a well-defined relation ∼ on ∂d X given
by ω1 ∼ω2 if and only if, given any xn →ω1 and yk →ω2, we have (xn)∼G (yk).
Furthermore, if ∼G is an equivalence relation (as it is for hyperbolic spaces), then
∼ is an equivalence relation on ∂d X . As usual, we will denote the equivalence
class of a point ω in the metric boundary by [ω].

Recalling again the simple definition of the Gromov boundary in terms of equiv-
alence classes of geodesic rays, and the fact that every geodesic ray converges to a
point on the metric boundary, we conclude that the quotient map π∼ : ∂d X → ∂G X
is surjective.

In fact we can specify the equivalence relation ∼G directly in terms of the metric
boundary.

Proposition 4.4. If (X, d) is a complete, proper δ-hyperbolic metric space with a
countable base then given ω1 and ω2 ∈ ∂d X , we have ω1 ∼G ω2 if and only if there



BOUNDARIES OF HYPERBOLIC METRIC SPACES 155

is an N such that

|ϕz(ω1)−ϕz(ω2)|< N for all z ∈ X .

Proof. We first note that if ω1 and ω2 ∈ ∂d X and there is an N > 0 such that
|ϕz(ω1)− ϕz(ω2)| < N then it follows immediately that for any M , there exists
z ∈ X such that

ϕz(xn) > M + N ,

for all n sufficiently large, and hence

ϕz(yn) > M

for all n sufficiently large, and hence (xn, yn) > N for all n sufficiently large.
Therefore xn and yn converge to the same point in the Gromov boundary, and
hence ω1 ∼g ω2.

Conversely, if xn → ω1 and yn → ω2 and ω1 ∼G ω2, then for any z ∈ X ,

ϕz(xn)= 2(xn · z)− d(z, 0)≥ 2 min{(xn · yn), (yn · z)} − 2δ− d(z, 0),

and since (xn · yn) is eventually arbitrarily large, we have that ϕz(xn)≥ϕz(yn)−2δ.
The same argument applies with xn and yn reversed, and so we have that, for n
sufficiently large, ϕz(xn) and ϕz(yn) differ by no more than 2δ. Hence, taking
limits,

|ϕz(ω1)−ϕz(ω2)| ≤ 2δ

for all z ∈ X . �

Note that the proof further implies that if such N exists, then N ≤ 2δ. In partic-
ular, this implies that if we are in a 0-hyperbolic space, then ω1 ∼G ω2 if and only
if ω1 ∼d ω2.

Corollary 4.5. If (X, d) is a complete, proper, 0-hyperbolic metric space with a
countable base, then ∂d X has no non-Busemann points.

Proof. Every element of ∂G X is a limit of a geodesic ray, and since ∂d X = ∂G X
for 0-hyperbolic metric spaces, and geodesics converge to the metric boundary, we
have that every element of ∂d X is the limit of a geodesic ray, and hence a Busemann
point. �

We now show that the quotient map from ∂d X to ∂G X is continuous.

Proposition 4.6. Let (X, d) be a proper hyperbolic metric space with a countable
base. If ωn → ω in ∂d X , then [ωn] → [ω] in ∂G X .

Proof. Let δ > 0 be the hyperbolic constant from (1). We know that we can
find z such that ϕz(ω) is arbitrarily large, and since we have ϕz(ωn)→ ϕz(ω), we
can choose z such that ϕz(ωn) is also arbitrarily large, for all n sufficiently large.
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Indeed, as in the previous corollaries, given any N > 0 we can find a number M
such that for any sequences xk → ω and xn,k → ωn , and for all n > M , there is a
number Kn such that

(xn,k · xk)≥
1
2

(
ϕz(xn,k)+ϕz(xk)

)
> N + 2δ for all k > Kn .

Now if yn,k → [ωn] and yn → [ω], we know that we can find a subsequence of
each sequence such that

lim inf
k→∞

(yn,k · yk)= lim
k→∞

(yn,k j · yk j ).

Furthermore, since xn, j → [ωn] we conclude that for any N there is some Jn such
that (yn,k j · xn, j ) > N + 2δ for all j > Jn , and similarly that there is some J such
that (yk j · x j ) > N + δ for all j > J .

Hence, given any N , and fixing some n > M , we have

(yn,k j · x j )≥ min
{
(yn,k j · xn, j ), (xn, j · x j )

}
− δ > N + δ

for all j >max{Jn, Kn}. But then

(yn,k j · yk j )≥ min
{
(yn,k j · x j ), (yk j · x j )

}
− δ > N

for all j >max{Jn, Kn, J }. Thus limk→∞(yn,k j · yk j ) > N for any n > M , and so

lim inf
k→∞

(yn,k · yk) > N for all n > M .

And since M does not depend on the choice of sequences converging to [ωn] and
[ω], we have

([ωn] · [ω])= inf
{
lim inf
k→∞

(yn,k · yk) : yn,k → [ωn], yn → [ω]
}
> N for all n > M .

Therefore limn→∞([ωn] · [ω])= ∞, and so [ωn] → [ω] in ∂G X . �

For 0-hyperbolic spaces, this map is a homeomorphism.

Theorem 4.7. Let (X, d) be a proper, 0-hyperbolic metric space with a countable
base. Then ∂d X and ∂G X are homeomorphic.

Proof. If ωn → ω in ∂G X , then given any subsequence of this sequence, we have
that it in turn has a subsequence which converges in ∂d X by the compactness of
that space, and the limit must be ω. Hence the original sequence converges to ω
in the topology of ∂d X . Hence the identity map ∂G X to ∂d X is continuous, and so
accounting for the previous proposition, the spaces are homeomorphic. �

It is unclear whether the topology on ∂G X is the quotient topology in general.
For some cases, such as the example in [Webster and Winchester 2003] which is
not 0-hyperbolic, it can be affirmed directly that the map is a quotient map. The
authors do not know of any counterexamples.
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5. Boundaries of word-hyperbolic groups

We observe that if G is a hyperbolic group, then the group acts on either boundary
by taking a sequence xk → ω and letting

αg(ω)= lim
k→∞

gxk .

This is a continuous action on either boundary. Clearly the quotient map is equi-
variant for these two actions, since if ω∼ω′, we can easily see that αg(ω)∼αg(ω)

by simply changing the base point of the inner product to g.
An action of a topological group G on a topological space X is amenable if

there is a net of continuous maps(
mλ : X → M+

1 (G)
)
λ∈3

,

where M+

1 (G) is the set of Borel probability measures on G, such that

lim
λ∈3

‖g · mλ(x)− mλ(g · x)‖ → 0

uniformly on compact subsets of G × X . Such a net of maps is called an ap-
proximate invariant continuous mean. It was shown by E. Germain (as discussed
in [Anantharaman-Delaroche and Renault 2000; Anantharaman-Delaroche 2002])
that the action of a word-hyperbolic group G on its Gromov boundary is amenable.
Rieffel pointed out that if there were a continuous, equivariant surjection from ∂d G
to the Gromov boundary, then the action of G on the metric boundary must also
be amenable. This is trivial given the above definition, since if q : ∂d G → ∂G G
is the quotient map of the previous section, and mλ are the maps in an approxi-
mate invariant continuous mean for the action of G on ∂G G, then mλ ◦ q are an
approximate invariant continuous mean for the action of G on ∂d G.

Corollary 5.1. If G is word-hyperbolic group with a finite generating set, and d is
the word-length metric, then the group action on the metric boundary is amenable.

This would seem to open the possibility of replicating Rieffel’s work on the
metric boundary of Zd in the setting of hyperbolic groups. However, Rieffel’s
procedure relied on the fact that the action of Zd on its metric boundary always
has finite orbits, and it seems unlikely that this criterion holds with any frequency
for general hyperbolic groups.
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