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NONLINEAR ELLIPTIC NEUMANN EQUATIONS IN R3

JUNCHENG WEI AND XINGWANG XU

Under some conditions on f (u), we show that for λ small and � ⊂ R3 con-
vex, the only solution to the elliptic equation 1u −λu + f (u) = 0 in �, with
u > 0 in � and ∂u/∂ν = 0 on ∂�, is constant.

1. Introduction

We consider the nonlinear elliptic equation

(1.1)

 1u − λu + f (u)= 0 in �,

u > 0 in �,
∂u
∂ν

= 0 on ∂�,

where � is a smooth and bounded domain in R3, the function f lies in C1+θ for
some 0 < θ < 1, and ν is the unit outer normal vector field at ∂�. We suppose
that f (u) can be written as f (u) = u5(1 + ρ(u)), with ρ ′(u) ≤ 0, 0 ≤ u5ρ(u) ≤

C
∑K

i=1 u pi for some 1< pi ≤
13
3 and some constant C > 0. A typical example for

f (u) is the function

f (u)= u5
+

K∑
i=1

ai u pi , with 1< pi ≤
13
3 and ai ≥ 0 for i = 1, . . . , K .

Our main result is the following.

Theorem 1. Suppose that � ⊂ R3 is convex. Then there exist λ0 > 0 and C > 0
such that for λ < λ0 we have

u ≤ Cλ1/4

for all solutions u of (1.1), where C is independent of λ.
As a consequence, u ≡ Cλ for some constant Cλ.
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Remark. The restriction that u5ρ(u)≤ C
∑K

i=1 u pi for pi ≤
13
3 just reflects a tech-

nical difficulty. We believe that Theorem 1 also holds under the weaker assumption
0 ≤ u5ρ(u)≤ C

∑K
i=1 u pi for 1< pi < 5.

The proof of Theorem 1 is a direct consequence of integration by parts. It also
gives a new and rather simple derivation of the following theorem.

Theorem 2. Suppose that � ⊂ R3 is convex and f (u) = u5. Then for λ small,
u = λ1/4 is the unique solution of (1.1).

Theorem 2 is a special case of Lin and Ni’s conjecture [Lin and Ni 1988]. The
conjecture says that for λ small and f (u) = u p, p > 1, the problem (1.1) admits
only constant solutions. (Problem (1.1) with f (u) = u p arises in the study of
steady-state solutions of the model of Keller and Segel [1970] in chemotaxis and
the Gierer–Meinhardt system [1972] in pattern formation. For more background
on (1.1), see [Ni 1998].)

Lin and Ni proved their conjecture in the case when p is subcritical. Zhu [1999]
proved the conjecture for three-dimensional convex domains (the same class of
domains as Theorem 2) by using a very complicated blow-up analysis. Zhu’s proof
is by contradiction and thus indirect. It is unclear if Zhu’s proof can be generalized
to other functions f (u). Our proof is much simpler and elementary. In fact since
our proof is direct, it can yield an explicit value for the number λ0 in Theorem 1.
We remark that when � = BR(0) and u is radial, similar results were proved by
Adimurthi and Yadava [1993].

In higher dimensions, the Lin–Ni conjecture may be wrong. Counterexamples in
the radial case are given in [Adimurthi and Yadava 1991; 1997]. For the nonradial
case, see [Gui and Wei 2005].

We use an idea developed by Chang, Gursky and Yang in the study of three-
dimensional prescribed scalar curvature problem [Chang et al. 1993]. Our starting
point is to write equation (1.1) as

1u − λu + f (u)=1u + R(u)u5,

where R(u)= 1+ρ(u)−λu−4. Thus if we introduce the conformal transformation
g = u4g0, where g0 is the usual Euclid metric, R becomes the scalar curvature in
the new metric.

We first make some preliminary notes. (Throughout this paper, C will denote
different constants independent of λ.)

From equation (1.1), we see that∫
�

u5
≤

∫
�

f (u)= λ

∫
�

u ≤ Cλ
(∫

�

u5
)1/5

,
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which implies that

(1.2)
∫
�

u5
≤ Cλ5/4,

∫
�

u ≤ λ1/4

and thus

(1.3) umin := min
x∈�̄

u(x)≤ Cλ1/4.

From (1.2), we also obtain that

(1.4)
∫
�

uq
≤ Cλq/4 for all 0< q ≤ 5.

Next we need a well-known fact found in [Lions 1982, Appendix 1, Lemma 5],
for example: if � is convex and ∂u/∂ν = 0 on ∂�, then

(1.5)
∂

∂ν
|∇u|

2
≤ 0 on ∂�.

2. Proof of Theorem 1

Let g0 be the usual Euclidean metric and g = u4g0. In the new metric, we consider
the trace-free Ricci tensor B. In a local coordinate system, we may write

Bi j = −u−2((u2)g,i j −
1
3(1gu2)gi j

)
.

(Here the covariant derivatives are taken with respect to g, not g0.)
We first obtain an integral estimate for

∫
�

|B|
3/2 dVg. (Here dVg denotes inte-

gration with respect to the new metric g. It is easy to see that dVg = u6 dx .) To
this end, we consider∫

�

|B|
2u2 dVg =

∫
�

gik g jl Bi j Bklu2 dVg

= −

∫
�

(u2)g,i j Bkl gik g jl dVg +
1
3

∫
�

(1gu2)gi j gik g jl Bkl dVg,

where the second term vanishes because B is trace-free.
Now using integration by parts, together with the Neumann boundary condition,

we have ∫
�

|B|
2u2 dVg =

∫
�

(u2)g,i Bkl; j gik g jl dVg +

∫
∂�

∂

∂ν
|∇u|

2dσg,

where dσg is the surface element in the new metric g.
Using the contracted second Bianchi identity and (1.5) we obtain
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|B|
2u2 dVg ≤

1
6

∫
�

(u2)g,i R,k gi jk dVg

=
1
6

∫
�

〈∇g(u2),∇g R〉 dVg =
1

12

∫
�

〈∇(u4),∇ R〉 dx

=
1

12

∫
�

∇u4
∇(1 + ρ(u)− λu−4)

≤
4
3λ

∫
�

u−2
|∇u|

2 dx (since ρ ′(u)≤ 0)

=
4
3λ

∫
�

u−11u dx =
4
3λ

∫
�

u−1(λu − f (u))≤ Cλ2.

Thus we obtain the following key estimate (here we need �⊂ R3)

(2.6)
∫
�

|B|
3/2 dVg ≤

(∫
�

|B|
2u2 dVg

)3/4(∫
�

u−6dVg

)1/4

≤ Cλ3/2.

Next we estimate
∫
�

∣∣∇u−2
∣∣6 dx . Let v = 1/u. Recall the Bochner identity:

(2.7) 1g|∇gv|
2
= 2|∇

2
gv|

2
+ 2

〈
∇gv,∇g(1gv)

〉
+ 2 Ricg(∇gv,∇gv).

If � is convex,
∫
�
1g|∇gv|

2 dVg ≤ 0 by (1.5). Integrating both sides of (2.7) and
using the divergence theorem, we get∫

�

|∇
2
gv|

2 dVg ≤

∫
�

(1gv)
2 dVg +

∫
�

|Ric||∇gv|
2dVg.

Recall the Sobolev inequality in R3(∫
�

ψ6 dVg

)1/3

≤ C
∫
�

|∇gψ |
2 dVg + C

∫
�

ψ2 dVg.

Take ψ = |∇gv|. Then we obtain

(2.8)
(∫

�

|∇gv|
6 dVg

)1/3

≤ C
∫
�

∣∣∇g |∇gv|
2∣∣ + C

∫
�

|∇gv|
2

≤ C
∫
�

|∇
2
gv|

2 dVg + C
∫
�

|∇gv|
2 dVg (by Kato’s inequality)

≤ C
∫
�

|1gv|
2 dVg + C

∫
�

|Ric||∇gv|
2 dVg + C

∫
�

|∇gv|
2 dVg

≤ C
∫
�

|1gv|
2 dVg + C

∫
�

|B||∇gv|
2 dVg

+ C
∫
�

|R||∇gv|
2 dVg + C

∫
�

|∇gv|
2 dVg,
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where we have used the fact that | Ric | ≤ |B| +
1
3 |R|.

We estimate each term on the last two lines of (2.8).
Recall that g0 = u−4g = v4g. The scalar curvature R0 with respect to g0 is 0.

So
1gv = (1g +

1
8 R)v−

1
8 Rv = −

1
8 R0v

5
−

1
8 Rv

= −
1
8 Rv = −

1
8

(
1 + ρ(u)− λu−4)u−1.

Therefore

(1gv)
2
≤ C

(
u−2

+ u−2ρ2(u)+ λ2u−10)
≤ C

(
u−2

+

K∑
i=1

u2pi −12
+ λ2u−10

)
and∫
�

(1gv)
2 dVg ≤C+C

K∑
i=1

∫
�

u2pi −6 dx+Cλ2
∫
�

u−4 dx ≤C
(
1+u−2τ

min +λ2u−4
min

)
,

where τ = min(3−p1, . . . , 3−pK , 0) < 2 since 1< pi < 5.
For the second term in the right-hand side of (2.8), we have, by (2.6),∫

�

|B||∇gv|
2 dVg ≤ C

(∫
�

|B|
3/2 dVg

)2/3(∫
�

|∇gv|
6 dVg

)1/3

≤ Cλ
(∫

�

|∇gv|
6 dVg

)1/3

.

The terms on the last line of (2.8) can be estimated as follows:∫
�

|∇gv|
2 dVg =

∫
�

|∇0u|
2u−2 dx ≤ Cλ,∫

�

|R||∇gv|
2 dVg ≤

∫
�

C (1 + ρ(u)+ λu−4)|∇gv|
2 dVg

≤ Cλ+

(∫
�

∣∣ρ(u)+ λu−4∣∣3/2 dVg

)2/3(∫
�

|∇gv|
6 dVg

)1/3

≤ Cλ+ C
(∫

�

( K∑
i=1

u(3/2)(pi −5)+6
+ λ3/2

)
dx

)2/3

×

(∫
�

|∇gv|
6 dVg

)1/3

≤ Cλ+ C
K∑

i=1

λ(1/4)(pi −5)+1
(∫

�

|∇gv|
6 dVg

)1/3

by (1.4), since 0 < 3
2(pi − 5)+ 6 ≤ 5. (This is where we need the assumption

pi ≤
13
3 .)
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Combining all the previous estimates, we have(∫
�

|∇gv|
6 dVg

)1/3

≤ C
(
1 + u−2τ

min + λ2u−4
min

)
.

Note that ∫
�

|∇gv|
6 dVg =

∫
�

|∇0u|
6u−18 dx .

So ( ∫
�

|∇gu−2
|
6 dx

)1/3

≤ C
(
1 + u−2τ

min + λ2u−4
min

)
.

By the Sobolev embedding theorem, for any P, Q ∈ �̄, we have∣∣u−2(P)− u−2(Q)
∣∣ ≤ C

∥∥∇(u−2)
∥∥

L6(�)
|P − Q|

1/2

≤ C
∥∥∇(u−2)

∥∥
L6(�)

≤ C
(
1 + u−τ

min + λu−2
min

)
.

Therefore, for any P, Q ∈ �̄,

u−2(P)≥ u−2(Q)− C
(
1 + u−τ

min + λu−2
min

)
.

Choose Q so that u(Q) = umin = min�̄ u. Since umin ≤ Cλ1/4 (by (1.3)) and
τ < 2, we see that

u−2(Q)− C
(
1 + u−τ

min + λu−2
min

)
≥

1
2 u−2

min,

which implies that

u(P)≤ Cumin ≤ Cλ1/4 for all P ∈ �̄.

Now let w = u − ū, where ū = (1/|�|)
∫
�

u. Then w satisfies

1w− λw+ f (w+ ū)− f (ū)− λū + f (ū)= 0

Multiplying by w and integrating by parts, we get

(2.9)
∫
�

(
|∇w|

2
+ λw2

+ c(w)w2)
= 0,

where

c(w)= −
f (w+ ū)− f (ū)

w
→ 0 as λ→ 0.

Since
∫
�
w = 0, (2.9) implies that w ≡ 0 and hence u ≡ ū. Theorem 1 is thus

proved.
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