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We show that the fixed-point subnet of a strongly additive conformal net
under the action of a compact group is strongly additive. Using the idea of
the proof we define the notion of strong additivity for a pair of conformal
nets and we show that a key fact about induction of pairs, proved earlier
under the assumption of finite index, can be generalized to strongly additive
pairs of conformal nets. These results are used to classify conformal nets of
central charge c = 1 that are not necessarily rational and satisfy a spectrum
condition.

1. Introduction

We use the letters I and J to denote intervals, by which we mean nonempty open
connected subsets of the circle whose complement has nonempty interior. A con-
formal net is a map A : I 7→ A(I ) from the set of intervals to the set of von
Neumann algebras on a fixed separable Hilbert space, subject to certain compat-
ibility conditions spelled out on page 170. It is proved in [Fredenhagen and Jörß
1996] that any conformal net A is additive, in the sense that if In is a sequence of
intervals that cover an interval J , then

∨
nA(In) contains A(J ), where

∨
nA(In)

is the von Neumann algebra generated by the A(In), for n ∈ N. We say that A

is strongly additive if A(I1)∨ A(I2) = A(I ) whenever I, I1, I2 are intervals such
that I1 ∪ I2 is obtained from I by removing an interior point. A conformal net that
violates strong additivity is given in [Buchholz and Schulz-Mirbach 1990]. Strong
additivity seems like a rather technical condition, but it plays an important role in
the study of representations of conformal nets [Kawahigashi et al. 2001; Xu 2001].

In [Xu 2001, Proposition 2.8] we proved that the fixed-point subnet B (see
Section 3) of a strongly additive net A under the action of a finite group is strongly
additive. The proof used the Galois correspondence for the action of the finite
group on von Neumann algebras. This result was generalized in [Longo 2003]
to the case when B ⊂ A has finite Jones index, using the notion of transplanting
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conformal subnets. Both proofs depend on the finite-index condition and it is not
obvious how to generalize them to the case when the finite group is replaced by a
compact but infinite group.

Theorem 2.6 in this article shows that the result cited is still true when instead
of a finite group we use a compact group. We use the results of [Haagerup 1978],
and the idea, as in [Xu 2001], is to show that

(1–1) A(I1)∨ B(I2)= A(I ),

where I1, I2, I are as above and we use a dilation argument similar to the one in
[Xu 2001]. But the method of proof differs from [Xu 2001] and [Longo 2003],
and it leads to a simpler proof of the strong additivity results in those two works
(see Remark 2.7).

In Section 3 we consider a pair B ⊂ A of conformal nets and extend results of
[Böckenhauer and Evans 1998; 1999b; 1999a; Longo and Rehren 1995; Xu 1998]
to the present setting. Proposition 3.1 is essentially found in [Longo and Rehren
1995], except that with additivity we can get stronger properties, as proved in [Xu
1998] for the finite-index case. The next several results are also extensions to the
current case of results proved in [Xu 1998] under the finite-index condition.

It turns out that (1–1) can be used to generalize [Xu 1998, Theorem 3.3], con-
cerning the induction of the pair B ⊂ A, which is of interest since such results have
found many applications [Böckenhauer and Evans 1998; 1999b; 1999a; Fuchs et al.
2002; Petkova and Zuber 2002]. We thus define a pair of nets B ⊂ A to be strongly
additive if it satisfies (1–1); many examples of such pairs arise from Lemma 3.6
and Proposition 3.7. The generalization of [Xu 1998, Theorem 3.3] to strongly
additive pairs is Theorem 3.8, which together with its corollary provide powerful
tools for the study of induced endomorphisms, as shown in [Xu 1998] for the finite-
index case. (Other results in [Xu 1998] also generalize to our current setting and
we plan to return to them in the future.)

In Section 4 we apply these results to classify conformal nets A with central
charge c = 1. The idea is simple and goes roughly as follows. The c = 1 Virasoro
subnet B ⊂ A has a representation — the vector representation — with Jones index
4 (Lemma 4.1), and since B is strongly additive by Theorem 2.6, the induced
endomorphism to A has Jones index 4 by Proposition 3.4 and Lemma 4.1. Hence
the principal graph of this induced endomorphism is one of the A-D-E graphs listed
in [Goodman et al. 1989], and in fact such subfactors are classified in [Popa 1995].
Depending on the nature of the principal graph, we can obtain enough information
to identify A, if we assume a Spectrum Condition (page 191) to the effect that any
degenerate representation of the Virasoro net other than the vacuum representation
must appear in A if A 6= B. This condition is true for all known examples and we
conjecture that it is always true.
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An A-D-E type classification for c < 1 was given in [Kawahigashi and Longo
2004], and there are some similarities between the results in that article and ours.
But there are notable differences, since for c = 1 the Virasoro net is not rational,
and the results of Sections 2 and 3 play a crucial role in our proofs. We have tried
to give different proofs for each case in that discussion, since we expect that the
ideas of these proofs, as well as the general results of Sections 2 and 3, will have
applications beyond those described in Section 4.

After this paper appeared on the web, we were informed by Professor Roberto
Longo that the first two cases of our analysis in the proof of Theorem 4.6 overlap
with unpublished results of S. Carpi; see [Kawahigashi 2003].

2. Strong additivity of subnets

Sectors. Let M be a properly infinite factor and End M the semigroup of unit-
preserving endomorphisms of M . In this paper M will always be of the unique
hyperfinite III1 type. Taking the quotient of End M modulo unitary equivalence in
M we get the semiring Sect M of sectors of M , which is endowed with a natural
involution θ → θ̄ [Longo 1989; 1990].

Given ρ ∈ End M and a normal faithful conditional expectation ε : M → ρ(M),
we define dε ∈ (0,+∞] by

d−2
ε := max{λ ∈ [0,+∞) | ε(m)≥ λm for all m ∈ M+}

[Pimsner and Popa 1986]. We also define dρ = minε{dε} and call this number the
statistical dimension of ρ; its square d2

ρ is called the (minimal) index of ρ. Clearly
dρ depends only on the unitary equivalence class [ρ] of ρ. For the properties of dρ
see [Longo 1989; 1990; 1992].

For λ,µ ∈ End M , let Hom(λ, µ) denote the space of intertwiners from λ to µ,
that is, elements a ∈ M such that aλ(x) = µ(x)a for any x ∈ M . The dimension
of the vector space Hom(λ, µ) is denoted by 〈λ,µ〉; it depends only on [λ] and
[µ]. If ν, λ and µ have finite index, Frobenius duality gives 〈νλ, µ〉 = 〈λ, ν̄µ〉 and
〈νλ, µ〉 = 〈ν, µλ̄〉 [Longo 1994]. If µ is a subsector (direct summand) of λ, we
write µ≺ λ or λ�µ. A sector is said to be irreducible if it has only one subsector.
We will sometimes use 1 to denote the identity sector if no confusion is possible.

If λ is a sector with finite statistical dimension, the principal graph 0 of λ is
a bipartite graph defined as follows. The even vertices of 0, denoted by 00, are
labeled by the irreducible sectors of (λ̄λ)n , n ∈ N, and the odd vertices of 01 of
0 are labeled by the irreducible sectors of (λ̄λ)nλ, n ∈ N. An even vertex x is
connected to an odd vertex y by 〈xλ, y〉 edges. We say that λ has finite depth if 0
is a finite graph. We say that λ is amenable if ‖0‖ = dλ, where 0 is considered a
linear map from l2(00) to l2(01); see [Popa 1994].
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Conformal nets and subnets. We recall from [Guido and Longo 1996] the notion
of an irreducible conformal net (or precosheaf) and representations thereof.

Let G0 ' PSL(2,R) be the group of conformal (hence orientation-preserving)
transformations of the Riemann sphere C ∪ ∞ that take the unit disk onto itself.
Let G be the universal covering group of G0; this is a simple Lie group and acts
on the unit circle S1. By R(ϑ) ∈ G we denote the rotation through an angle ϑ ∈ R.

By an interval we mean a nonempty open connected subset I of S1 whose com-
plement has nonempty interior. We associate with I a one-parameter subgroup
{3I (s) : s ∈ R} ⊂ G and an anticonformal (hence orientation-reversing) map rI

of the Riemann sphere. The latter is uniquely determined by the property that it
fixes each endpoint of I and takes the midpoint of I to the midpoint of the interval
complementary to I . The subgroup {3I (s) : s ∈ R} is the component of the identity
of the subgroup of G consisting of elements that fix each of the two endpoints of I ;
its parametrization is well-defined by the condition that 3I (s) corresponds to the
map x 7→ es x of the positive real axis R+ under conjugation by a conformal map
of the Riemann sphere taking I onto R+ and the unit disk to the upper half-plane.

The involution ι : G0 → G0 given by ι(g)(z) = g(z̄) for g ∈ G0 lifts to an
involution of G, also denoted by ι. Thus (letting Z2 be generated by ι) we can form
the semidirect product G×ιZ2, a double cover of G; by projection to G0 ×ιZ2 (the
group of all conformal and anticonformal maps preserving the unit disk globally),
we classify elements of G×ιZ2 as orientation-preserving or orientation-reversing.
A representation U of this double cover by operators on a Hilbert space H is called
unitary if U (g) is unitary whenever g is orientation-preserving. The representation
is called antiunitary if U (g) is antiunitary whenever g is orientation-reversing.

Let I be the set of intervals of S1. A conformal net A is a family of von Neumann
algebras A(I ), for I ∈ I, on some fixed separable Hilbert space H, together with
a nontrivial unitary representation U of G in H, the whole setup satisfying the
following axioms:

(A) Isotony. If I1, I2 ∈ I and I1 ⊂ I2, then A(I1)⊂ A(I2).

(B) Conformal invariance. U (g)A(I )U (g)∗ = A(gI ) for g ∈ G, I ∈ I.

(C) Positivity of the energy. The one-parameter group {U (R(ϑ)) : θ ∈ R} has a
positive generator.

(D) Locality. If I1 and I2 are disjoint intervals, A(I1) and A(I2) commute.

(E) Existence of the vacuum. There exists a unit vector �, called the vacuum
vector, which is U (G)-invariant and cyclic for

∨
I∈I A(I ), the von Neumann

algebra generated by all the A(I ).

A conformal net A is irreducible if it satisfies the next condition as well:

(F) Irreducibility. The only U (G)-invariant vectors are the scalar multiples of �.
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The name comes from the fact that if A is irreducible,
∨

I∈I A(I ) equals B(H), the
algebra of bounded operators on H. See [Guido and Longo 1996, Proposition 1.2].

Proposition 2.1 [Guido and Longo 1996, Proposition 1.1]. Let A be an irreducible
conformal net with unitary representation U and vacuum vector �.

(a) Reeh–Schlieder theorem: � is cyclic and separating for each von Neumann
algebra A(I ), I ∈ I.

(b) Bisognano–Wichmann property: U extends to an antiunitary representation
of G ×ι Z2 such that U (3I (2π t))=1i t

I and U (rI )= JI for any I ∈ I, where
1I and JI are the modular operator and the modular conjugation associated
with the algebra A(I ) and the vector�. Moreover, U (g)A(I )U (g)∗ =A(gI )
for any g ∈ G ×ι Z2.

(c) Additivity: if a family of intervals Ii covers I , then A(I )⊂
∨

i A(Ii ).

(d) Haag duality: A(I )′ = A(I ′), where I ′ is the interior of S1
\ I and the ′ on

the left means the commutant as usual.

An irreducible conformal net A is strongly additive if A(I1) ∨ A(I2) = A(I )
whenever I, I1, I2 ∈ I with I = I1 ∪ {x} ∪ I2 for some x . The net A is split if,
whenever I1, I2 ∈ I are closure-disjoint (meaning that Ī1 ∩ Ī2 = ∅), the von Neu-
mann algebras A(I1)∨A(I2) and A(I1)⊗A(I2) are naturally isomorphic. Denote
by I2 the set of unions of two closure-disjoint elements of I, as in [Kawahigashi
et al. 2001]. If E = I1 ∪ I2 ∈ I2 and if I3 ∪ I4 ∈ I2 is the interior of S1

\ E , put
A(E) := A(I1)∨ A(I2) and Â(E) := (A(I3)∨ A(I4))

′. Note that A(E)⊂ Â(E).

Definition 2.2 (Complete rationality). A is completely rational, or µ-rational,
if A is split, strongly additive, and the index [Â(E) : A(E)] is finite for some
E ∈ I2. In this case [Â(E) : A(E)] does not depend on E [Kawahigashi et al.
2001, Proposition 5]; it is called the µ-index of A and denoted by µA.

Unlike nets based on line intervals, our conformal nets are not directed (I is
not directed under inclusion). Hence, when it comes to defining a representation
of a conformal net A, rather than representing a single algebra containing all the
A(I ), we need a whole family of representations, one for each I . More formally,
if A is an irreducible conformal net with associated data H, U , �, a representation
π of A is a family (πI )I∈I, where each πI is a representation of A(I ) on a fixed
separable Hilbert space Hπ , subject to an isotony condition

πI2 |A(I1) = πI1 for I1 ⊂ I2.

A covariant representation π of A is a representation π of A, together with a
unitary representation Uπ of G of positive energy (see (C) above), such that

Ad Uπ (g) ·πI = πgI · Ad U (g).
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A covariant representation π is irreducible if
∨

I∈Iπ(A(I ))= B(Hπ ). Clearly an
irreducible conformal net A can be regarded as an irreducible representation of
itself; we call this the vacuum representation.

By [Guido and Longo 1992], a representation that has finite index is covariant.
Let H be a connected, simply laced compact Lie group. By [Gabbiani and

Fröhlich 1993, Theorem 3.2], the vacuum positive-energy representation of the
loop group LH [Pressley and Segal 1986] at level k gives rise to an irreducible
conformal net, denoted by AHk . By [Gabbiani and Fröhlich 1993, Theorem 3.3],
every irreducible positive-energy representation of the loop group LH at level k
gives rise to an irreducible covariant representation of AHk . The vacuum repre-
sentation of the Virasoro algebra with central charge c0 > 0 also gives rise to a
conformal net, denoted by Ac=c0 [Gabbiani and Fröhlich 1993, §3]. We will see
such examples in Section 4.

Given a fixed ξ ∈ S1, the set of intervals I with Ī ⊂ S1
\ ξ is denoted by Iξ ;

this is a directed set under inclusion. Let UA be the associated quasilocal C∗-
algebra UA =

⋃
I∈Iξ

A(I ) (norm closure). Any representation λ of A localized on
I ∈ Iξ (that is, one whose restriction to A(I ′) is the identity) restricts to a DHR
endomorphism of UA localized on I , also denoted by λ, and vice versa [Longo
2003, Proposition 11]. We will use these two descriptions interchangeably without
further notice.

Fix I ∈ Iξ . Let λ,µ be representations of A. Choose I−, I+ ∈ Iξ disjoint from
I , so that I− lies counterclockwise from I and I+ lies clockwise from I . Choose
covariant representations λ̂+, λ̂− of A unitarily equivalent to λ but localized on
I+, I− respectively and let u+, u− be unitary intertwiners from λ+, λ− to µ. (We
will not distinguish between local and global intertwiners since they are the same
when A is strongly additive.) The braiding operators are defined by

ε(λ, µ) := µ(u∗

+
)u+, ε̃(λ, µ)= µ(u∗

−
)u−.

These are elements of A(I ) and do not depend on the choice of u+, u−, I+, I−.
They satisfy the Yang–Baxter equation (YBE) and the braiding-fusion equation
(BFE). See [Xu 1998; Böckenhauer and Evans 1998] for this and other properties
of the braiding operators.

By a conformal subnet of A [Longo 2003] we mean a map

I ∈ I → B(I )⊂ A(I )

that associates to each I ∈ I a von Neumann subalgebra B(I ) so that isotony and
covariance with respect to U hold (conditions (A) and (B) of page 170, with B

instead of A). When restricted to Iξ , the conformal nets B ⊂ A form a standard
net of inclusions as defined in [Longo and Rehren 1995, §3.1].
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Proposition 2.3 [Kawahigashi et al. 2001; Xu 2001, Proposition 2.4]. Suppose
B ⊂ A is a standard net of inclusions as defined in [Longo and Rehren 1995, 3.1].
Let E ∈ I2. If A ⊂ B has finite index [A : B] and A and B are split, then

[B̂(E) : B(E)] = [A : B]
2
[Â(E) : A(E)].

Orbifolds. Let A be an irreducible conformal net on a Hilbert space H and let G
be a compact group. Let V : G → U (H) be a faithful unitary representation of G
on H. (If V : G → U (H) is not faithful, we can replace G by G/ker V .)

Definition 2.4. We say that G acts properly on A if

(1) αg(a) := V (g)aV (g∗) ∈ A(I ) for every I ∈ I, a ∈ A(I ) and g ∈ G, and

(2) V (g)�=� for every g ∈ G.

Suppose a finite group G acts properly on A. For each interval I , define

B(I ) := {a ∈ A(I ) | V (g)aV (g∗)= a for all g ∈ G}.

Let H0 ={x ∈ H | V (g)x = x for all g ∈ G}. The projection P0 : H → H0 commutes
with every element of B(I ) and with U (g), for all g ∈ G.

Define AG(I ) := B(I )P0 on H0. The unitary representation U of G on H

restricts to a unitary representation (still denoted by U ) of G on H0. By [Xu
2001, Proposition 2.2] the map I ∈ I → AG(I ) on H0 together with the unitary
representation U of G on H0 is an irreducible conformal net, denoted by AG . This
is called the orbifold of A with respect to G.

The net B ⊂ A is a standard net of inclusions when restricted to intervals in Iξ ,
with conditional expectation E defined by

(2–1) E(a) :=

∫
G
αg(a) dg for all a ∈ A(I ),

where dg is the normalized Haar measure on G.

Recall that I ′ denotes the interior of S1
\ I , where I ∈ I.

Lemma 2.5. (1) For any interval I , AG(I )′ ∩ A(I )= C.

(2) Let I, I1, I2 ∈ I with I1 ∪ I2 = I minus a point. Let gn ∈ G be a sequence of
elements such that gn I1 = I1 and gn I2 is an increasing sequence of intervals
containing I2 and exhausting I ′

1. Take x ∈ B(I1)
′
∩ A(I ′

2), and suppose y is a
weak limit of a subsequence of Adgk (x) := gk xg∗

k . Then y = 〈x�,�〉 id.

Proof. The first part is [Carpi 1999, Proposition 2.1] (see also [D’Antoni et al.
2001] for related results). To prove (2), note that Adgk (x) is in B(I1)

′
∩ A(gk I2)

′,
so if y is a weak limit, y lies in B(I1)

′
∩ A(gk I2)

′ for all k, and it follows that y
lies in B(I1)

′
∩ A(I1)

′
= C by (1). Since gk�=�, we have 〈y�,�〉 = 〈x�,�〉,

so y = 〈x�,�〉 id. �
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Theorem 2.6. Let A be an irreducible conformal net and let G be a compact
group acting properly on A. Suppose that A is strongly additive. Then AG is also
strongly additive.

Proof. Let I, I1, I2 ∈ I with I1 ∪ I2 = I minus a point. To show that AG is strongly
additive, it is sufficient to show that B(I1)∨ B(I2)= B(I ).

We now show that B(I1)∨A(I2)= A(I ), which is enough since applying E —
see (2–1) — then yields the desired equality. Since A is strongly additive, our
target equality is equivalent to B(I1)∨ A(I2) = A(I1)∨ A(I2), or yet, by taking
commutants and using Haag duality, to

N := B(I1)
′
∩ A(I ′

2)= A(I ′

1)∩ A(I ′

2)=: M.

Define
N0 := B(I1)

′
⊃ A(I ′

1)=: M0.

By [Izumi et al. 1998, Remark 4.5], N0 can be identified with the cross product of
M0 with G. By [Haagerup 1978, Theorem 3.1](a), for each continuous, positive
definite function φ on G there is a unique σ -weakly continuous linear map Eφ on
N0 such that

Eφ(m0xm′

0)= m0 Eφ(x)m′

0

Eφ(g)= φ(g)g

for all m0,m′

0 ∈ M0,

for all g ∈ G.

Let gn ∈ G be a sequence as in part (2) of Lemma 2.5. Consider (for some k ∈ N)

Fφ(n0) := Adg∗

k
Eφ(Adgk n0) for all n0 ∈ N0.

Note that
Fφ(m0xm′

0)= m0 Fφ(x)m′

0,

Fφ(g)= φ(g)g

for all m0,m′

0 ∈ M0,

for all g ∈ G.

Since M0gM0 is weakly closed in N0, it follows that Eφ = Fφ , i.e.,

Eφ(Adgk n0)= Adgk(Eφ(n0)) for all n0 ∈ N0.

Let x ∈ N . Since A(I2)⊂ A(I ′

1)we have Eφ =φ(1) id on A(I ′

1), hence Eφ(x)∈ N .
Let a, b ∈ M . Then〈

φ(1)−1 Eφ(x)a�, b�
〉
=

〈
φ(1)−1 Eφ(b∗xa)�,�

〉
=

〈
φ(1)−1 Adgk Eφ(b∗xa)�,�

〉
=

〈
φ(1)−1 Eφ(Adgk(b

∗xa))�,�
〉
.

By Lemma 2.5, there is a subsequence of Adgk b∗xa that converges weakly to
〈b∗xa�,�〉. Since Eφ is weakly continuous, we must have〈

φ(1)−1 Eφ(x)a�, b�
〉
= 〈xa�, b�〉.
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Since M� is dense in H , we have Eφ(x)= φ(1)x . Choose x to be a projection in
N . By [Haagerup 1978, Theorem 3.1(b)] we have

T (x)= sup
φ�δ

Eφ(x)

where T is the operator valued weight from N0 to M0, and we write φ � δ if φ is
less than the Dirac measure in the unit element of G with respect to the ordering of
positive definite measures on G. So when G is a finite group, T (x)= x , implying
that x ∈ M0 ∩ N = M . When G is an infinite group, T (x)= x ·∞, in the notation
of [Strătilă 1981, p. 150]. Thus x ∈ M0 ∩ N = M . So we have shown that any
projection in N is a projection in M , and so M = N . �

Remark 2.7. The proof given is different from the one in [Xu 2001]. The same
idea also gives a different proof of the result in [Longo 2003, §3.5.2] under the
assumption that B ⊂ A has finite index but without the assumption that A is split,
if we modify the proof as follows. Instead of using Eφ we use E , the minimal con-
ditional expectation from N0 to M0, which exists by the finite-index assumption.
We check that, just as for Eφ , we have

E(Adgk n0)= Adgk E(n0) for all n0 ∈ N0.

Note that Adg∗

k
Eφ(Adgk · ) is a conditional expectation from N0 to M0, and since

M0 ⊂ N0 is irreducible [Longo 2003, Lemma 14], we must have Adg∗

k
E(Adgk · )=

E( · ). Now using E instead of Eφ , the rest of the proof goes through, and we get
E(x)= x for all x ∈ N , so x ∈ N ∩ M0 = M , i.e., N = M .

We now consider a large class of examples where Theorem 2.6 can be applied.
Let AHk be the conformal net associated with representations of the loop group
LH at level k (page 172). Let G ⊂ H be any closed subgroup. By [Laredo 1997]
AHk is strongly additive, and it is easy to check that G (or its quotient by the kernel
of the representation, see observation just before Definition 2.4) acts properly on
AHk . It follows that the fixed point net AG ′

Hk
is strongly additive by Theorem 2.6.

We will see a special case of such examples in Section 4.

3. Induction and strongly additive pairs

Induction of a pair. Let B ⊂ A be a pair of conformal nets, with B strongly
additive. Fix a point ξ ∈ S1. All the intervals in this section will be in Iξ unless
otherwise stated.

For I ⊂ J ∈ Iξ , we denote by γA the canonical endomorphism A(J )→ B(J ),
which extends the canonical endomorphism A(I ) → B(I ) [Longo and Rehren
1995, Corollary 3.3]. The restriction of γA to B will be denoted simply by γ
(when no confusion arises, we may also denote γA by γ ). Note that γ is a (DHR)
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representation of B which is unitarily equivalent to the defining representation of
B on the vacuum Hilbert space of A, since B is assumed to be strongly additive;
see the proof of [Longo 2003, Proposition 17].

The following is essentially [Longo and Rehren 1995, Proposition 3.9], except
that under our conditions we have further properties.

Proposition 3.1. Let B ⊂ A be a pair of conformal nets with B strongly additive.
Fix I ⊂ Iξ . With every representation λ of B associate

(3–1) αλ := γ−1
A Adε λγA, α̃λ := γ−1

A Adε̃ λγA,

where ε = ε(λ, γ ) and ε̃ := ε̃(λ, γ ) are the braiding operators in B(I ). Then
αλ(A(I )) ⊂ A(I ) and αλ = λ on B(I ). Moreover, αλ is localized on I if and
only if

ε(λ, γ )ε(γ, λ)= id .

Proof. Choose a unitary intertwiner u transporting λ to λ̂ localized on I+, so that
ε(λ, γ )= γ (u∗)u. Then, for any x ∈ A(I ),

Adε λγ (x)= Adγ (u∗) λ̂γ = γ (Adu∗ x).

Let J be an interval in Iξ containing I ∪ I+. Then γ (Adu∗ x)∈ γ (A(J )). The left-
hand side of this relation depends on J only through the braiding operator ε, and
by the invariance property of ε we can choose a decreasing sequence of intervals
Jn ⊃ Ī such that

⋂
n Jn = I . By Proposition 2.1(c) we have

⋂
n A(Jn)= A(I ). It

follows that
⋂

n γ (A(Jn))= γ (A(I )), so we have shown that

Adε λγ (A(I ))⊂ γ (A(I )).

Hence αλ(A(I ))⊂ A(I ) and

(3–2) αλ(x)= u∗xu for all x ∈ A(I )

A similar formula holds for α̃λ if we choose the unitary intertwiner accordingly.
The rest of the proof follows that of [Longo and Rehren 1995, Proposition 3.9]. �

The notation αλ of (3–1) was introduced in [Böckenhauer and Evans 1998]. We
refine it to αB→A

λ when there may be ambiguity as to which pair is meant.
In [Xu 1998], a slightly different induction aλ ∈ End B(I ) was used, motivated

by certain questions in subfactors; the relations between aλ and αλ are given in
[Xu 2005]. We point out one basic relation. Let ρ ∈ End B(I ) be such that

ρ(B(I ))= γ (A(I )) and ρρ̄ = γ.

Then
aλ(γ (a))= ρ−1(γ αλ(a)) for all a ∈ A(I ).

Using this relation one can rewrite all the results of this section in terms of aλ.
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The next lemma is implicitly contained in [Longo and Rehren 1995].

Lemma 3.2. (1) If x ∈ Hom(λ, µ)B, then x ∈ Hom(αλ, αµ)A.

(2) αλµ = αλαµ.

(3) If [δ] = [λ] + [µ], then [αδ] = [αλ] + [αµ].

Proof. Let uλ and uµ be unitary intertwiners from λ and µ localized on I to λ̂
and µ̂ localized on I+. We can choose I+ to share only one boundary point with
I . Since x ∈ Hom(λ, µ), we have uµxu∗

λ ∈ B(I ∪ I+) ∩ B(I )′ = B(I+) by the
strong additivity of B. It follows that uµxu∗

λ commutes with every element of
A(I ), and (1) is proved. (2) and (3) follow from the definitions, YBE and BFE as
in [Böckenhauer and Evans 1998, §3]. �

Lemma 3.3. Let B ⊂ A be a pair of conformal nets with B strongly additive.

(1) If λ is a representation of B localized on I and σ ∈ End A(I ), then

〈αλ, σ 〉A ≤ 〈λ, γ σ 〉B.

(2) Suppose αλ, αµ are localized on I , and denote by ε(αλ, αµ) the braiding op-
erator of αλ, αµ considered as (DHR) representations of A. Then

ε(αλ, αµ)= ε(λ, µ).

(3) For an intermediate net C such that the pairs B⊂C and C⊂A are conformal,
suppose λ1 := αB→C

λ is localized on I . Then

αC→A
λ1

(a)= αB→A
λ (a) for all a ∈ A(I ).

Proof. (1) Let E : A(I ) → B(I ) be the faithful conditional expectation. Let v ∈

Hom(id, γ )B be the isometry such that E( · )= v∗γ ( · )v; see [Longo and Rehren
1995]. For any x ∈ Hom(αλ, σ )A, it is easy to check that γ (x)v ∈ Hom(λ, γ σ )B.
To prove (1), we just have to show that the linear map

x ∈ Hom(αλ, σ )A → γ (x)v ∈ Hom(λ, γ σ )B

is one-to-one. Assume that γ (x)v = 0. Then E(x∗x) = v∗γ (x∗)vγ (x)v = 0. It
follows that x = 0 since E is faithful.

(2), (3) Let uλ be a unitary intertwiner from λ to λ̂. By Lemma 3.2(1), uλ is also
a unitary intertwiner from αλ to αλ̂. So

ε(αλ, αµ)= αµ(uλ)∗uλ = µ(uλ)∗uλ = ε(λ, µ)

and, by (3–2) in the proof of Proposition 3.1,

αC→A
λ1

(a)= u∗

λ(a)uλ = αB→A
λ (a) for all a ∈ A(I ) �
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Note that by Proposition 3.1, αλ ∈ End A(I ).

Proposition 3.4. Let A, B and λ be as before, and suppose λ has finite index.

(1) dλ equals dαλ , the statistical dimension of αλ.

(2) (Commuting squares) If E is the conditional expectation from A(I ) to B(I )
and Fλ the minimal conditional expectation from A(I ) → αλ(A(I )), then
E Fλ = FλE .

Proof. First part of (1): dαλ ≤ dλ. We give two proofs of this inequality.
The first uses additivity in a similar way as in the proof of Proposition 3.1. Let

ε := ε(λ, γ )= γ (u∗)u and ε̄ := ε(λ̄, γ )= γ (ū∗) ū be the braiding operators, where
u, ū ∈ B(J ) (J ⊃ I ) are unitary intertwiners. Set λε := Adε λ and λ̄ε̄ := Adε̄ λ̄,
and let Eλ : B(I )→ λε(B(I )) be the unique minimal conditional expectation. We
will prove that

(3–3) Eλ(γ (A(I ))⊂ λεγ (A(I ));

this suffices, because it implies that the minimal index of λεγ (A(I )) ⊂ γ (A(I ))
(which equals d2

αλ
since λεγ = γ (αλ)) is at most d2

λ ; that is, d2
αλ

≤ d2
λ .

By [Longo 1992], there exists an isometry v ∈ Hom(id, λ̄ε̄λε) such that

Eλ( · )= λε(v
∗)λε λ̄ε̄( · )λε(v).

Then λε(b)= γ (u∗)bγ (u) and λε(b)= γ (ū∗)bγ (ū), so

Eλ(γ (a))= γ (u∗)v∗γ (ū∗aū)vγ (u).

We show that v ∈ γ (A(I )). Since v ∈ Hom(id, λ̄ε̄λε), we have

vb = γ (ū∗u∗)bγ (uū)v for all b ∈ B(I )

and so γ (uū)v∈B(I )′∩B(J )=B(I+), where the equality follows from the strong
additivity of B. Hence v = γ (ū∗u∗)γ (uū)v ∈ γ (B(J )), since γ is localized on I .
As in the proof of Proposition 3.1 we can choose a decreasing sequence Jn such
that

⋂
n Jn = I and we have v ∈

⋂
n γ (B(Jn)) = γ (B(I )). From the expressions

for Eλ(γ (a)) above we have proved that

Eλ(γ (A(I ))) ∈
⋂

n γ (A(Jn))= γ (A(I )).

At the same time, if λε(b) = γ (a), then γ (u∗)bγ (u) = γ (a), and so b =

γ (uau∗) ∈ γ (A(J )); by the same argument as above, b ∈ γ (A(I )). This shows
that

γ (A(I ))∩ λε(B(I ))= λεγ (A(I )).

Hence Eλ(γ (A(I ))⊂ γ (A(I ))∩ λε(B(I ))= λεγ (A(I )), which is (3–3).
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Now we give a second proof of dαλ ≤ dλ. Let Fλ : B(I ) → λ(B(I )) be the
minimal conditional expectation. By [Longo 1992] (see also [Longo and Rehren
1995, 2.14]), Fλ is induced by an isometry Rλ̄λ ∈ Hom(id, λ̄λ) in the sense that

Fλ( · )= λ(Rλ̄λ)λλ̄( · )λ(R
∗

λ̄λ
).

There is likewise an isometry Rλλ̄ ∈ Hom(id, λλ̄), and these two isometries satisfy

R∗

λλ̄
λ(Rλ̄λ)= R∗

λ̄λ
λ̄(Rλλ̄)=

1
d(λ)

.

Now Lemma 3.2(1) yields Rλ̄λ ∈ Hom(id, αλ̄αλ) and Rλλ̄ ∈ Hom(id, αλαλ̄), and it
follows from the properties of Rλ̄λ, Rλλ̄ [Longo and Rehren 1995] that

Fλ( · )= λ(Rλ̄λ)αλαλ̄( · )λ(R
∗

λ̄λ
)

is a conditional expectation from A(I )→αλ(A(I ))with index d2
λ . Hence dαλ ≤dλ.

Second part of (1): dαλ ≥ dλ.
Let 0 be the principal graph of λ and 00 the set of even vertices. By Lemma 3.2

and the properties of the statistical dimension, V := (dαx )x∈00 is a vector satisfying
00t V = dαλdαλ̄V .

By [Popa 1994, Proposition 1.3.5],

‖0‖
2
= lim

n→∞
((00t)nδ, δ)1/n,

where δ∈ l2(00) is a vector which is 1 at the identity sector and 0 elsewhere. Hence

‖0‖
2
= lim

n→∞
((00t)nδ, δ)1/n

≤ lim
n→∞

((00t)nδ, V )1/n

= lim
n→∞

(δ, (00t)nV )1/n
= lim

n→∞
(δ, (dαλdαλ̄)

nV )1/n
= dαλdαλ̄ .

Since λ is amenable (see [Longo and Roberts 1997, Theorem 5.31 and remarks on
p. 122]), we have d2

λ = ‖0‖
2; thus d2

λ ≤ dαλdαλ̄ and so dλ ≤ dαλ . Together with the
reverse inequality, this concludes the proof of (1).

(2) Since dλ = dαλ , it follows that the Fλ defined at the top of this page is the
minimal conditional expectation from A(I )toαλ(A(I )).

For any a ∈ A(I ), we have

E(αλλ̄(a))= E(u∗au)= u∗E(a)u = αλλ̄(E(a)),

where u is the unitary intertwiner transporting λλ̄ to λ̂λ̄, which is localized on I+.
Then

E(Fλ(a))= E(λ(Rλ̄λ)αλαλ̄(a)λ(R
∗

λ̄λ
))

= λ(Rλ̄λ)E(αλαλ̄(a))λ(R
∗

λ̄λ
))= Fλ(E(a)). �
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Proposition 3.5. Suppose µ, λ are representations of B localized on I .

(1) Let x be any subsector of αµ. Then [αλ][x] = [x][αλ].

(2) Let z and y be subsectors of αλ and α̃µ respectively. Then [z][y] = [y][z].

Proof. (1) Let ε(λ, µ) be the braiding operator. Then

αµαλ = αAdε(λ,µ) λµ = αAdε(λ,µ)αλαµ = Adε(λ,µ) αλαµ.

Now let vx ∈ Hom(x, αµ) be the isometry such that x( · )= v∗
xαµ( · )vx . As in the

proof of [Xu 1998, Theorem 3.6, p. 377], it is sufficient to show that

αλ(vxv
∗

x )= ε(λ, µ)vxv
∗

xε(λ, µ)
∗

Applying γ to the equality above, it is sufficient to show that

γαλ(vxv
∗

x )= γ (ε(λ, µ)vxv
∗

xε(λ, µ)
∗).

This follows from YBE and BFE as on [Xu 1998, p. 377].

(2) We first prove that Adε(λ,µ) αλα̃µ = α̃µαλ. Let uλ+ and uµ− be the intertwiners
as in the definition of αλ and α̃µ in Proposition 3.1. Then the desired equality is
equivalent to

ε(λ, µ)u∗

λ+u∗

µ−
= u∗

µ−
u∗

λ+

Since ε(λ, µ)= µ(u∗

λ+)uλ+, we need to show that

uµ−µ(u∗

λ+)u
∗

µ−
= u∗

λ+,

which follows from the fact that u∗

λ+ ∈ B(I ∪ I+) and µ̂ is localized on I−.
The rest of the proof follows by YBE and BFE as in [Xu 1998, p. 385]. �

Many properties of relative braidings implicitly used in [Xu 1998] and further
studied in [Böckenhauer and Evans 1999a] can also be proved in our current setting,
but we will not use them in this paper.

Strongly additive pairs. Let A be a conformal net and let B ⊂ A be a conformal
subnet as defined in §2.1. Motivated by the proof of Theorem 2.6, we define:

Definition. The pair B ⊂ A is said to be strongly additive if

B(I1)∨ A(I2)= A(I )

for any intervals I, I1, I2 such that I1 ∪ I2 = I minus one point.

This definition can be generalized to nets of algebras without conformal invari-
ance, but conformal nets give most interesting examples of strongly additive pairs,
so here we restrict our attention to them. In this case, by conformal invariance, it
is sufficient to check the condition B(I1)∨A(I2)= A(I ) for a particular I, I1, I2.
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Lemma 3.6. (1) If the pair B ⊂ A is strongly additive, then B and A are strongly
additive, and

B(I1)
′
∩ A(I1)= C for all I1.

(2) If G is a compact group acting properly on A and B is the fixed-point subnet
under the action of G, the pair B ⊂ A is strongly additive if and only if either
A is strongly additive or B is strongly additive.

(3) Let B⊂C⊂A be conformal subnets. Then the pair B⊂A is strongly additive
if and only if the pairs B ⊂ C and C ⊂ A are strongly additive.

Proof. (1) The first statement follows trivially from the definition and the applica-
tion of conditional expectation from A to B. For the second, choose I2 sharing only
one boundary point with I1, and let I be the smallest interval containing I1 ∪ I2.
By the assumption, B(I1)∨ A(I ′)= A(I ′

2). Taking the commutants and applying
Haag duality, we get B(I1)

′
∩ A(I )= A(I2), so

B(I1)
′
∩ A(I1)⊂ A(I2)

for all I2 sharing only one boundary point with I1. Choosing a sequence of I (n)2 so
that

⋂
n I (n)2 is one point, by Proposition 2.1(c) we get

B(I1)
′
∩ A(I1)⊂

⋂
n A(I (n)2 )= C.

(2) By Theorem 2.6 and part (1), it is sufficient to show that if B is strongly additive,
so is the pair B ⊂ A. Let I be an arbitrary interval, and I1, I2 are the connected
components of a set obtained from I by removing an interior point of I . Then

B(I )⊂ B(I1)∨ A(I2)⊂ A(I ),

where the first inclusion follows from the strong additivity of B. By [Izumi et al.
1998], there exists a closed subgroup G1 of G such that B(I1)∨A(I2) is the fixed-
point subalgebra of A(I ) under the action of G1. It follows that there is normal
faithful conditional expectation form A(I ) to B(I1)∨ A(I2) preserving the vector
state ( ·�,�). Since A(I2)� is dense in H by the Reeh–Schlieder theorem in
Proposition 2.1(a), it follows that

B(I1)∨ A(I2)= A(I )

by Takesaki’s theorem; see [Strătilă 1981, §9].

(3) This follows directly from the definitions and applying suitable conditional
expectations. �

As discussed in Section 2, orbifolds are examples of strongly additive pairs.
More will be given later (page 187) as a result of the following proposition:
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Proposition 3.7. Let A be a conformal net and B ⊂ A a conformal subnet. Assume
that B is strongly additive and U (g) ∈

∨
I B(I ) for all g ∈ G where U is the

representation of the conformal group G. Then the pair B ⊂ A is strongly additive.

Proof. Let I, I1, I2 be intervals with I1 ∪ I2 = I minus one point. Let E be the
unique conditional expectation from A(I ) to B(I ) such that ψ(E( · )) = ψ( · ),
where ψ( · ) = ( ·�,�) is the normal faithful state on A(I ) and � is the vacuum
vector. Denote by 1ψ and 1 the modular operator of A(I ) and B(I )∨A(I1) with
respect to�. Notice that Ad1i t

ψ
and Ad1i t , for t ∈R, induce the same automorphism

on B(I ) and B(I ′), so
1i t
ψ1

−i t
∈ B(I )′ ∩ B(I ′)′.

The geometric nature of 1i t
ψ (Proposition 2.1) and our assumption imply 1i t

ψ ∈∨
I B(I ), and by the strong additivity of B we have 1i t

ψ ∈ B(I ) ∨ B(I ′) for all
t ∈ R. So 1i t

ψ1
−i t commutes with 1i t ′

ψ for all t, t ′
∈ R, hence 1i t ′

ψ commutes with
1i t . It follows that for any t ′, Ad1i t is a one-parameter automorphism of

Ad
1i t ′
ψ
(B(I )∨ A(I1))

preserving the vector state ( ·�,�). By the KMS condition [Strătilă 1981, p. 28]
Ad1i t is the modular automorphism of Ad

1i t ′
ψ
(B(I ) ∨ A(I1)) with respect to �.

Also A(I1)� = A(I )� for any I by the Reeh–Schlieder Theorem. It follows by
a theorem of Takesaki [Strătilă 1981, §9] that

Ad
1i t ′
ψ
(B(I )∨ A(I1))= B(I )∨ A(I1) for all t ′

∈ R.

Since
⋃

t ′ 3I (2π t ′)I1 = I , it follows that B(I )∨ A(I1)= A(I ), which proves the
proposition since B is strongly additive. �

Here is the key result of this section, a generalization of [Xu 1998, Theorem 3.3]:

Theorem 3.8. Let B⊂A be a strongly additive pair of conformal nets, and suppose
µ, λ are representations of B localized on I .

(1) x ∈ A(I ) satisfies xλ(b)= µ(b)x for all b ∈ B(I ), then xαλ(a)= αµ(a)x for
all a ∈ A(I ).

(2) If µ, λ have finite index, then 〈αµ, αλ〉 = 〈µλ̄, γ 〉, where γ is a representation
of B unitarily equivalent to the defining representation of B on the vacuum
Hilbert space of A.

Proof. (1) Let u1 (resp. u2) be a unitary intertwiner in B(J ) (J ⊃ I ) transporting
λ (resp. µ) to λ̂ (resp. µ̂) localized on I+. Since xλ(a) = µ(a)x for all a ∈ B(I )
and x ∈ A(I ), it follows by (3–2) in the proof of Proposition 3.1 that u2xu∗

1 ∈

A(J )∩B(I )′. Choose J so that I ∪ I+ = J minus one point. By the strong additive
pair assumption, we have A(J ′)∪ B(I )= A(I ′

+
), and so A(J )∩ B(I )′ = A(I+).

Thus u2xu∗

1 ∈ A(I+), and (1) follows from (3–2) and the locality of the net A.
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(2) Since λ has finite index, one can find two isometries Rλλ̄ ∈ Hom(id, λλ̄) and
Rλ̄λ ∈ Hom(id, λ̄λ) such that

R∗

λλ̄
λ(Rλ̄λ)= R∗

λ̄λ
λ̄(Rλλ̄)=

1
d(λ)

.

Let x ∈ Hom(αλ, αµ). Then x Rλλ̄b = µλ̄(b)x Rλλ̄ for all b ∈ B(I ). Note that
x Rλλ̄ ∈ A(I ). Since B(I ) ⊂ A(I ) is irreducible by Lemma 3.6(1), the vector
space

Hµλ̄ := {y ∈ A(I ) | yb = µλ̄(b)y for all b ∈ B(I )}

has finite dimension, equal to 〈µλ̄, γ 〉; see [Izumi et al. 1998, Theorem 3.3(i)].
Also, the map

x ∈ Hom(αλ, αµ)A 7→ x Rλλ̄ ∈ Hµλ̄
is one-to-one because of the relations satisfied by Rλλ̄, Rλ̄λ. Thus it is sufficient to
show that the image the one-to-one map

y 7→ µ(R∗

λ̄λ
)y, where y ∈ Hµλ̄,

is contained in Hom(αλ, αµ)A. But

µ(R∗

λ̄λ
)yλ(b)= µ(b)µ(R∗

λ̄λ
)y and µ(R∗

λ̄λ
)y ∈ A(I ).

Thus, by part (1), µ(R∗

λ̄λ
)y ∈ Hom(αλ, αµ)A. �

Corollary 3.9. We keep the notation of Theorem 3.8 and assume that λ has finite
index.

(1) [αλ̄] = [ᾱλ].

(2) Let Hλ := {x ∈ A(I )|xb = λ(b)x for all b ∈ B(I )}. Hλ is called the space
of charged intertwiners associated with λ [Longo and Rehren 1995]. Then
Hλ = Hom(id, αλ) and dim Hλ = 〈γ, λ〉 ≤ dλ.

(3) Let A f (I )⊂ A be the subalgebra generated by B(I ) and Hλ, λ ∈ S, where S
is a set of (DHR) irreducible representations of B with finite statistical dimen-
sions, and is closed under fusion and conjugation. Then A f (I ) is invariant as
a set under the modular automorphism Ad U (3I (t)) (Proposition 2.1), and
there exists a unique conformal subnet L ⊂ A such that

B(J )⊂ L f (J )⊂ A(J ) for all J ∈ I

and A f (I ) = L(I ). Moreover, the vacuum representation HL of the confor-
mal net L as a representation of B decomposes as HL '

⊕
λ∈S dim Hλλ.

Proof. (1) Thanks to Lemma 3.2 and Theorem 3.8(2), the proof from [Böckenhauer
and Evans 1998] carries over:

〈αλ, αλ〉 = 〈λλ̄, γ 〉 = 〈αλλ̄, id〉 = 〈αλαλ̄, id〉 = 〈αλ, ᾱλ̄〉.
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Replacing λ by λ̄ we get 〈αλ̄, αλ̄〉 = 〈αλ̄, ᾱλ〉. Thus 〈αλ̄, αλ̄〉 = 〈αλ̄, ᾱλ〉 = 〈ᾱλ, ᾱλ〉.
Since dαλ and dαλ̄ are finite, we get the desired equality using Proposition 3.4.

(2) This follows directly from Theorem 3.8(2) and Proposition 3.4(1).

(3) Let Fλ be the minimal conditional expectation, as on page 3. By [Longo 1992]
we can choose a set of isometries vi ∈ Hom(id, αλ), 1 ≤ i ≤ dim Hλ such that
Fλ(viv

∗

j )= (1/dλ) δi j . Note that E(viv
∗

j )∈ B(I )′ ∩A(I )= C, and by Section 3(3)
we have

E(viv
∗

j )= Fλ(E(viv
∗

j ))= E(Fλ(viv
∗

j ))=
1
dλ
δi j .

It follows that the operator aλ of [Izumi et al. 1998, p. 39] is the identity operator.
(Our λ corresponds to ξ in that reference.) Then the argument in [Izumi et al. 1998,
p. 41] shows that σψE

t (vi )= vi , where ψ is a dominant weight on B(I ) and σψE
t

is the modular automorphisms associated with the weight ψE . By Haagerup’s
Theorem [Strătilă 1981, p. 156],

Ad U (3I (t))( · )= Adut σ
ψE
t ( · )

where ut ∈ B(I ). It follows that A f (I ) is invariant as a set under the modular
automorphism Ad U (3I (t)). Since Hλ is finite-dimensional, the rest of the proof
is the same as the proof in [Longo 2003, p. 18], as follows. 3I (R) is the subgroup
of G leaving I globally fixed. For each J ∈ I, set L(J )= AdU (g)(A f (I )), where
g ∈ G maps I onto J . It is easy to check that L(J ) is independent of the choice
of g as long as gI = J . Note that L(J ) verifies locality since L(J ) ⊂ A(J ).
To show that L is a conformal net we just have to check the isotony property,
namely L(J1) ⊂ L(J2) if J1 ⊂ J2. By conformal invariance we may assume that
J1 = I and that J2 = gI for some g ∈ PSL(2,R), and it is sufficient to show that
AdU (g)(A f (I )) ⊃ A f (I ). Since Hλ is finite-dimensional, by the second part of
[Longo 2003, Corollary 19] we have AdU (g) Hλ = zλ(g)∗Hλ, where zλ(g)∈ B(J2)

is a unitary operator (compare [Longo 2003, (14)]). Hence

AdU (g)(A f (I ))= {AdU (g)(B(I )),AdU (g) Hλ, λ ∈ S}
′′

= {B(J2), zλ(g)∗Hλ, λ ∈ S}
′′

= {B(J2), Hλ, λ ∈ S}
′′
⊃ {B(I ), Hλ, λ ∈ S}

′′
= A f (I ).

Now let � be the vacuum vector for A, since L is a conformal net, the vacuum
representation space of L can be identified as A f (I )� by Reeh–Schlieder theorem
in Proposition 2.1. For each λ ∈ S, we choose isometries vλ,i (1 ≤ i ≤ dim Hλ)
as in the beginning of the proof of (3); we add a subscript λ to emphasize the
dependence on λ. Then the set consisting of

∑
λ∈S v

∗

λ,i xλ,i , xλ,i ∈ B(I ) where the
sum is a finite sum is a dense subalgebra of A f (I ). Note that the space Xλ,i :=
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v∗

λ,i B(I )� is invariant under the action of B, and the restriction of B to this space
is a representation of B unitarily equivalent to λ. Also note that Xλ,i⊥Xλ′,i ′ if
(λ, i) 6= (λ′, i ′) since E(vλ,iv∗

λ′,i ′)= (1/dλ) δλλ′δi i ′ . Hence A f (I )� is a direct sum
of Xλ,i , and this proves the last part of (3). �

The conformal net L constructed in Corollary 3.9(3) will be called the conformal
subnet of A generated by B and the charged intertwiners associated with the set S.

4. Applications

Conformal nets with central charge 1. The irreducible representations of the Vi-
rasoro algebra with central charge 1 are classified as follows. For each n ≥ 0, there
is an irreducible representation with lowest weight n, which we denote by L(1, n)
following [Dong and Griess 1998]. Here 1 is the central charge. When n = m2,
with 2m ∈ Z, the representation L(1, n) is called degenerate due to the degeneracy
of certain Verma modules. The vacuum representation is L(1, 0). All the L(1, n)
can be “exponentiated” to give irreducible projective representations of the group
Diff S1 of smooth diffeomorphisms of S1; see [Goodman and Wallach 1984]. On
the vacuum representation one can define a conformal net Ac=1 as in [Gabbiani
and Fröhlich 1993, §3], the so-called Virasoro net with central charge 1.

Let ASU(2)1 be the conformal net associated with loop group LSU(2) at level 1.
The adjoint action of group SO(3) is proper (Definition 2.4) on ASU(2)1 and the
fixed point is identified as Ac=1, the Virasoro net with central charge c = 1, in
[Rehren 1994].

It follows from Theorem 2.6 that Ac=1 is strongly additive. As pointed out in
[Rehren 1994], the statistical dimension dL(1,m2) of L(1,m2) is 2m + 1 when m is
a nonnegative integer, and the fusion ring generated by L(1,m2) are the same as
representation rings of SO(3). The following lemma generalizes this to the case
when 2m is a nonnegative integer:

Lemma 4.1. Assume that 2m is a nonnegative integer. Then dL(1,m2) = 2m +1 and
the fusion ring generated by L(1,m2) is isomorphic to the representation ring of
SU(2).

Proof. Consider the conformal inclusion

LSU(2)1 × LU(1)2 ⊂ LU(2)1

(compare [Xu 2000, §3.1]). The group SU(2) acts properly on the net AU (2)1
with fixed point net Ac=1 × AU (1)2 . The net AU (2)1 is not local, but satisfies
twisted duality [Wassermann 1998, §15]. So [Doplicher and Roberts 1990, Theo-
rem 3.6] applies in this case, and the fusion of those irreducible representations of
Ac=1×AU (1)2 appearing in AU (2)1 is given by the fusion ring of finite-dimensional
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representations of SU(2). Since irreducible covariant representations of AU (1)2
have statistical dimension equal to 1 and generate an abelian group Z2 under the
fusion, the lemma follows. �

Let A be a conformal net. Following [Kawahigashi and Longo 2004], we say
that A is a diffeomorphism covariant net if there exists a unitary projective repre-
sentation U of Diff S1 on H extending the unitary representation of PSL(2,R) and
such that

U (g)A(I )U (g∗)= A(g I ) for g ∈ Diff S1, I ∈ I.

We say that A is a conformal net with central charge 1 if A is a diffeomorphism
covariant net containing Ac=1 as a conformal subnet, such that

U (Diff I )′′ = (Ac=1)(I ) for all I ∈ I,

where Diff I denotes the group of smooth diffeomorphisms g of S1 satisfying
g(t)= t , t ∈ I ′.

We describe the known list of such nets. Let G be a closed group of SO(3).
Such groups are well known to be of A-D-E groups corresponding to affine A-D-E
graphs. Let Ĝ be twofold covering group of G in SU(2). The Perron–Frobenius
eigenvectors given in [Goodman et al. 1989, p. 14] are the dimensions of the ir-
reducible representations of the twofold covering group Ĝ. Since Ac=1 can be
identified with ASO(3)

SU(2)1 , AG
SU(2)1 is a conformal net with central charge c = 1. The

remaining two cases are AU (1)2n and its Z2 orbifold AZ2
U (1)2n

as studied in [Xu 2001],
where n is not the square of an integer. So the known list of conformal nets with
central charge 1 is:

(4–1) AG
SU(2)1, AU (1)2n , AZ2

U (1)2n

where G is a closed subgroup of SO(3) and n is not the square of an integer.
It has been conjectured [Dijkgraaf et al. 1989] that this list exhausts all conformal

theories with central charge 1.
When G is a finite group, AG

SU(2)1 is completely rational by Proposition 2.3.
AU (1)2n and AZ2

U (1)2n
are also completely rational and all irreducible representa-

tions are obtained in [Xu 2001]. The irreducible representations of AU (1)2n will be
denoted by πi , for i ∈ Z2n . They generate a fusion ring isomorphic to Z2n .

When G =U (1), AG
SU(2)1 is the net corresponding to the Heisenberg group H(1),

defined as the set C∞(S1,R)× S1 with the multiplication

(4–2) ( f1, x1) · ( f2, x2)= ( f1+ f2, e
∫

S1 f1 f ′

2 x1x2)

(see [Pressley and Segal 1986, §9.5]). Note that (x, 1), where x ∈ R is regarded
as a constant map, is in the center of H(1). For each real number q , there is
an irreducible representation of H(1) denoted by Fq , where (x, 1) acts on Fq as
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(x, 1) 7→ qx , and these are all the irreducible representations of H(1) [Pressley
and Segal 1986, Proposition 9.5.10]. The net AU (1)

SU(2)1 is related to H(1) as follows.
F0 is the vacuum representation of AU (1)

SU(2)1 , and

AU (1)
SU(2)1(I )= πF0(C

∞

0 (I,R))′′,

where C∞

0 (I,R) is the set of smooth maps from I to R that vanish on the boundary,
and is considered as a subspace of C∞(S1,R). Each Fq is also an irreducible
representation of AU (1)

SU(2)1 . The net AU (1)
SU(2)1 was studied in [Buchholz et al. 1988].

Some decompositions of the vacuum representation of the nets in the list above
when restricting to Ac=1 are also known (see [Dong and Griess 1998, Proposition
2.2, Theorems 2.7 and 2.9], where n corresponds to our 2n). They are:

If n is not the square of an integer, then

HAU (1)2n
=

⊕
p≥0 L(1, p2) ⊕

⊕
m>0 2L(1,m2n),

H
A

Z2
U (1)2n

=
⊕

p≥0 L(1, 4p2) ⊕
⊕

m>0 L(1,m2n).

If n = k2, where k is a nonnegative integer, then

HAU (1)2n
=

⊕
m≥0

⊕
0≤p≤k−1

(2m + 1)L(1, (mk + p)2)

When G = U (1) or G = D∞, the infinite dihedral group, we have

HAU (1)
SU(2)1

=
⊕

p≥0 L(1, p2),

HAD∞

SU(2)1
=

⊕
p≥0 L(1, 4p2).

Recall that Fq is the irreducible representation of AU (1)
SU(2)1 corresponding to an

irreducible representation of H(1) labeled by a real number q . The decompositions
of Fq with respect to Ac=1 is also well known [Dong and Griess 1998]:

If q =
1
4 p2 for some nonnegative integer p, then

Fq =
⊕

−p/2≤m≤p/2,m+p/2∈Z L(1,m2)

If 4q is not the square of an integer, then Fq = L(1,
√

q).
By definition, if A is a conformal net with central charge 1, the pair Ac=1 ⊂ A

satisfies the condition of Proposition 3.7, and hence is a strongly additive pair. By
Lemma 4.1, the principal graph of L(1, 1

4) is A∞, and dL(1,1/4) = 2. It follows
from Proposition 3.4 that αL(1,p2) = dL(1,p2) = 2p + 1 for all nonnegative integer
2p. Since α f := αL(1,1/4) has minimal index 4, its principal graph are determined
in [Goodman et al. 1989; Popa 1994]. We now list some properties of α f :

Lemma 4.2. The possible principal graphs of α f are the A-D-E graphs of [Good-
man et al. 1989, p. 19]. More precisely:
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(1) [α f ] = [ᾱ f ];

(2) If α f is irreducible, its principal graph is one of : the D, E graphs of [Good-
man et al. 1989, p. 19] or A∞ and D∞ in [Goodman et al. 1989, p. 217].

(3) If 〈α f , α f 〉 = 4, its principal graph is A(1)1 .

(4) If 〈α f , α f 〉 = 2, the principal graph is either A∞,∞ or A(1)n .

Proof. (1) follows from Corollary 3.9, and (2)–(4) from [Popa 1995, §4]. �

As a warmup exercise, we work out α f for the list (4–1). We first prove a lemma
that will be used later:

Lemma 4.3. Every covariant representation of AU (1)
SU(2)1 is a direct sum of irre-

ducible representations, and every irreducible covariant representation of AU (1)
SU(2)1

is isomorphic to some Fq .

Proof. Let π be a covariant representation of AU (1)
SU(2)1 . Recall from (4–2) above the

product rule in H(1). We will write ( fi , 1) simply as fi .
Let Ii ∈ I, 1 ≤ i ≤ n, be an open covering of S1, with a partition of unity φi

subordinate to it (so supp(φi )⊂ Ii for each i). If f:S1
→ R, we assume that

f =

∏
k

( f φk, 1)C( f, φ) ∈ H(1),

where C( f, φ)∈ C is a phase coming from the product rules. We have πF0( f φk)∈

AU (1)
SU(2)1(Ik), and we define

π( f ) :=

∏
k

πIk (πF0( f φk))C( f, φ)

It is routine to check that π( f ) is independent of the choices of open covering and
partition of unity (use the product rules in H(1) and isotony), and that it gives a
representation of H(1) with positive energy. The lemma now follows from [Press-
ley and Segal 1986, Proposition 9.5.10] and its proof. �

Lemma 4.4. (1) If A = Ac=1, the principal graph of α f is A∞.

(2) If A = AU (1)2k2 , the principal graph of α f is A(1)2k−1.

(3) If A = AU (1)2n where n is not the square of an integer, or A = AU (1)
SU(2)1 , then

the principal graph of α f is A∞,−∞.

(4) If A = AZ2
U (1)2k2

, the principal graph of α f is D(1)
k .

(5) If A = AU (1)2n where n is not the square of an integer, or A = AD∞

SU(2)1 , then
the principal graph of α f is D∞,−∞.

(6) If A = AEi
SU(2)1 for i = 6, 7, 8, the principal graph of α f is Ei .
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Proof. (1) follows from Lemma 4.1. If A = AU (1)2k2 , it follows from the branching
rules, Lemma 4.1 and Proposition 3.1 that α f is localized on I , and by Theorem
3.8(2) 〈α f , α f 〉 = 4 when k = 1 and 〈α f , α f 〉 = 2 when k > 1. So (2) is proved for
k = 1 by Lemma 4.2. Note that when k = 1, AU (1)2 can be identified with ASU(2)1 ,
and it is easy to check that [α f ] = 2[τ ], where τ is the irreducible representation
of ASU(2)1 which is not the vacuum representation and [τ ]2

= [1].
When k > 1 we have [α f ] = [σ1] + [σ2], where σ1, σ2 are representations of

AU (1)2k2 which have been classified, and by (1) of Lemma 3.3 we must have [α f ]=

[πk]+[π−k] and (2) follows. If A=AU (1)2n , where n is not the square of an integer,
or A=AU (1)

SU(2)1 , it follows from the branching rules, Lemma 4.1 and Theorem 3.8(2)
that 〈αL(1,m2), id〉=1, 〈αL(1,m2), αL(1,m2)〉=2m+1 for all m ∈N, and 〈α f , α f 〉=2.
So [α f ] = [σ1] + [σ2] and dσ1 = dσ2 = 1. By Lemma 4.2, then, [α f ] = [ᾱ f ], so
either [σ̄1] = [σ2] or [σ̄i ] = [σi ] for i = 1, 2. If the latter, then [σ 2

1 ] = [σ 2
2 ] = [1]

and
[αL(1,1)] = [α2

f ] − [1] = [σ1σ2] + [σ1σ2] + [1].

By Proposition 3.5(1),

[σ1α f ] = [σ1σ2] + [1] = [α f σ1] = [σ2σ1] + [1].

Hence [σ1σ2] = [σ2σ1], implying that 〈αL(1,1), αL(1,1)〉 = 5, which contradicts
〈αL(1,1), αL(1,1)〉 = 3. So we have [α f ] = [σ1] + [σ2], [σ̄1] = [σ2], and it follows
that

[αL(1,m2)] =

∑
−m≤k≤m

[σ 2k
1 ].

Since 〈αL(1,m2), 1〉 = 1, it follows that [σ k
1 ] 6= [1] for all k, and the principal graph

of α f is A∞,−∞.
When A = AU (1)2k2 or A = AEi

SU(2)1 for i = 6, 7, 8, α f is irreducible and a
representation of A, denoted by f1. We will call this representation the vector
representation. Since A is completely rational, it follows that the graph of α f

must be finite and hence must be finite D, E type. Consider the inclusions of
conformal nets

Ac=1 ⊂ A ⊂ ASU(2)1,

and denote by α f1 the induction of f1 (as a local representation of A) from A to
ASU(2)1 ; by Lemma 3.3(3),

α f1 = α
Ac=1→ASU(2)1
L(1,1/4) .

This equality and the preceding proof imply that [α f1] = 2[τ ], where τ is the
irreducible representation of ASU(2)1 which is not the vacuum representation and
[τ ]2

= [1].
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For any irreducible representation λ≺ f 2n
1 with n ∈ N, set mλ := 〈αλ, 1〉, Then

mλ = dλ, and by Theorem 3.8(2), mλ is the multiplicity of λ appearing in the vac-
uum representation of ASU(2)1 , and is equal to the dimension of the representation
of the corresponding D-E groups since A is the fixed point net of ASU(2)1 under
the action of such groups. Note that the Perron–Frobenius eigenvectors listed on
[Goodman et al. 1989, p. 14] are the statistical dimensions associated with the
corresponding representations. Hence the graph is uniquely determined by the
corresponding groups to be those of (4) and (6).

(5) follows by inspecting the branching rules and using Theorem 3.8 as we have
done in proving (1)–(3). �

As a byproduct of this proof, we have the following proposition, which contains
the main result of [Rehren and Tuneke 2000]:

Proposition 4.5. Let 2m be a nonnegative integer, and n ≥ 0. Then

[L(1,m2)][L(1, n)] =

∑
−m≤k≤m

k+m∈Z

[
L(1, (k +

√
n)2

]
.

Proof. By Lemma 4.1 it is sufficient to consider the case when L(1, n) is generic,
i.e., when 4n is not the square of an integer. Now, the inclusion Ac=1 ⊂ AU (1)

SU(2)1
is a strongly additive pair. As in the proof of Lemma 4.4(3), by the branching
rules, Lemma 4.1 and Proposition 3.1, α f is a (DHR) representation of AU (1)

SU(2)1 ,
and [α f ] = [σ1] + [σ2], [σ̄1] = [σ2]. By Lemma 4.3, [σ1] = [Fq ] for some real q,
and since by Lemma 3.3(1)

〈α f , Fq〉 ≤ 〈L(1, 1/4), γ Fq〉,

inspecting the branching rules we conclude that [αL(1,1/4)] = [F1/2] + [F−1/2]. It
follows by Lemma 4.1 that

[αL(1,m2)] =

∑
−m≤k≤m

k+m∈Z

[Fk]

Note that [γ (F√
n)] = [L(1, n)] by the branching rules and [Longo and Rehren

1995, Proposition 3.1]. We have:

[L(1,m2)][L(1, n)] = [L(1,m2)]
[
γ F√

n
]
=

[
γαL(1,m2)F√

n
]

= [γ ]

∑
−m≤k≤m

k+m∈Z

[
Fk F√

n
]

= [γ ]

∑
−m≤k≤m

k+m∈Z

[
Fk+

√
n
]
=

∑
−m≤k≤m

k+m∈Z

[
L(k+

√
n)2

]
. �
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Classifications. As in [Kawahigashi and Longo 2004], two conformal nets A and
B are said to be isomorphic, denoted by A ' B, if there is a unitary operator
U : HA → HB such that U∗B(J )U = A(J ) for all J ∈ I and that U�A = �B,
where �A and �B are the vacuum vectors.

By the proof of Lemma 4.4, we can infer the type of principal graphs for α f

from branching rules and γ from Theorem 3.8. Also thanks to Theorem 3.8, we
can deduce information about γ from the type of principal graph of α f . This is the
basic strategy that we follow to classify conformal nets with central charge c = 1.
This will work out under the following spectrum condition:

Spectrum Condition. A conformal net with central charge c = 1 satisfies the
spectrum condition if a degenerate representation of the Virasoro net other than the
vacuum representation must appear in the vacuum representation of A if A 6=Ac=1.

Theorem 4.6. If a conformal net A with central charge c = 1 satisfies the spectrum
condition, then A is isomorphic to one of the nets on the list (4–1).

The proof is divided into the following steps:

4.6.1. Discrete case: Full spectrum. In this section we assume that

γ =
⊕

0≤m(2m + 1)L(1,m2).

We’d like to show that A ' ASU(2)1 . This is essentially an application of recon-
struction theorem of Doplicher and Roberts [1989; 1990]. We give a sketch of the
proof and refer to those papers for details. First by our assumption we can assume
that A and ASU(2)1 acting on the same Hilbert space, and Ac=1 is a common con-
formal subnet. Let 1 := {L(1, p2), p ∈ Z}. We note that L(1, 1) has permutation
symmetry and satisfies special conjugate property, and 1 is generated by L(1, 1),
and is specially directed as defined on [Doplicher and Roberts 1989, p. 98]. Fix
an interval I . Choose charged intertwiners ψA

∈ A(I ), ψ ∈ ASU(2)1(I ) for the set
1 (it is enough to choose charged intertwiners for L(1, 1)). Denote by UA the C∗

algebra generated by UAc=1 and ψA, and by U the one generated by UAc=1 and ψ .
Note that UA∩U′

Ac=1
= C. By [Doplicher and Roberts 1989, p. 93–94] there exists

an epimorphism φ : U → UA such that φ= id on UAc=1 . Using φ one can define an
action of SO(3) which commutes with UAc=1 . One checks that φ commutes with
the adjoint action of SO(3), and so kerφ is SO(3) invariant. Then the argument on
p. 95 of the same reference shows that kerφ = {0}, and so φ is an isomorphism.
Now define a unitary operator U on H by Um�= φ(m)� where � is the vacuum
vector. Then

UUU∗
= UA

and U commutes with UAc=1 . Passing to the von Neumann algebra generated by
U and UA, we have UA(I )U∗

= ASU(2)1(I ),U� = �. Since U commutes with
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UAc=1 , U commutes with PSL(2,R) by the strong additivity of Ac=1, and it follows
that

UA(J )U∗
= ASU(2)1(J ) for all J ∈ I, U�=�.

4.6.2. General discrete case. In this section we assume that

γ =
⊕

p≥0 m p L(1, p2).

Here m p ≤2p + 1 by Corollary 3.9(2). By Lemma 4.1 and Proposition 3.1, αL(1,p2)

is localized. Consider the set of representations 1 : {λ ≺ αn
L(1,1), n ∈ N} of A.

Since ε(αL(1,1), αL(1,1)) = ε(L(1, 1), L(1, 1)) by Lemma 3.3(2), the set 1 has
permutation symmetry, and A is strongly additive, we can apply Doplicher–Roberts
reconstruction as in [Müger 1999, Proposition 3.9] to obtain conformal net C such
that Ac=1 ⊂ A ⊂ C. Consider the conformal nets Ac=1 ⊂ C. We claim that
mC

p = 2p + 1 in this case, where mC
p is the multiplicity of L(1, p2) which appears

in the vacuum representation of C. We have mC
p ≥

∑
λ〈αL(1,p2), λ〉, where the

sum is over those irreducible representations λ of A which appears in the vacuum
representation of C. We note that

∑
λ〈αL(1,p2), λ〉 is completely determined by

the principal graph of α f , which corresponds to A-D-E groups. So the number∑
λ〈αL(1,p2), λ〉 depends only the type of A-D-E graph associated with α f . Since

all types of such graphs have appeared in Lemma 4.4, and in each case, it is easy
to check the number

∑
λ〈αL(1,p2), λ〉 is 2p+1, since for Ac=1 ⊂ AG

SU(2)1 , where G
is a closed subgroup of SO(3), the above reconstruction give us ASU(2)1 . It follows
that mC

p ≥ 2p + 1, and then that mC
p = 2p + 1 by Corollary 3.9(2). Now consider

the conformal subnet D ⊂ C generated by Ac=1 and the charged intertwiners for
{L(1, p2) : p ≥ 0} whose existence is guaranteed by the same corollary. Now D

has full spectrum as in §4.6.1, and so Ac=1 ⊂ A ⊂ D ' ASU(2)1 .
Since Ac=1 is the fixed point net of ASU(2)1 under the action of SO(3), by [Izumi

et al. 1998] there exists a closed subgroup G1 of SO(3) such that A(I ) is the fixed-
point subalgebra of ASU(2)1(I ) under the action of G1. Since G1 commutes with
PSL(2,R), A is the fixed point net of ASU(2)1 under the action of G1. Since G1 is
classified as one of the A-D-E groups, it follows that A is in the list (4–1).

4.6.3. The cases Ac=1 ⊂ AU (1)2n ⊂ A and Ac=1 ⊂ AU (1)
SU(2)1 ⊂ A. We first consider

the case Ac=1 ⊂ AU (1)2n ⊂ A.
Recall that AU (1)2n is completely rational and that its representations are labeled

by πi , for 0 ≤ i ≤ 2n −1; they have conformal dimensions i2/(4n2)+N (these are
the eigenvalues of the action of rotations) and statistical dimension 1. The fusion
ring generated by πi is Z2n . Since AU (1)2n ⊂A is a strongly additive pair by Lemma
3.6(3), the vacuum representation HA decomposes into a representation of AU (1)2n

as HA = ⊕i miπi with mi ≤ 1 by Corollary 3.9(2). Also if mi = 1, again by the
same corollary we have mi = 1 = 〈1, αi 〉, hence [αi ] = [1] since dαi = di = 1. So
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the set of Hi appearing in the decompositions of HA is an abelian subgroup of Z2n .
Let i0 > 0 be the generator of this abelian subgroup. There is a positive integer k
such that ki0 = 2n. On the other hand, we must have i2

0/(4n2) ∈ Z, and we assume
that k0 is a positive integer such that i2

0 = 4nk0. It follows that n = k2k0. Now we
compare the inclusions

AU (1)2k2k0
⊂ A and AU (1)2k2k0

⊂ AU (1)2k0
.

Since the vacuum representations HA and HAU (1)2k0
have the same decompositions

with respect to AU (1)2k2k0
, we can identify HA and HAU (1)2k0

and so assume that
AU (1)2k2k0

is a common conformal subnet of A and AU (1)2k0
on the same Hilbert

space. Now choose unitary charged intertwiners φi0 ∈ A(I ) and ψi0 ∈ AU (1)2k0
(I )

such that Adφi0
and Adψi0

induce the same representation πi0 of AU (1)2k2k0
. Define

a unitary operator U commuting with A such that Uφm
i0
�=ψm

i0
� for all m ∈ Z,

where � is the vacuum vector. One checks easily that UA(I )U∗
= AU (1)2k0

(I ),
U� = �. Since U commutes with A, and so it commutes with the action of
PSL(2,R), we have UA(J )U∗

= AU (1)2k0
(J ) for all J ∈ I,U�=�, thus prov-

ing that A ' AU (1)2k0
.

The situation when Ac=1 ⊂ AU (1)
SU(2)1 ⊂ A is similar. AU (1)

SU(2)1 has a continuous
series of irreducible representations labeled by a real number q , which generate
a fusion ring isomorphic to R. By Lemma 4.3 and Corollary 3.9 we have HA =⊕

q∈S Hq where S ⊂ R is an abelian subgroup, and q2
∈ 2Z for all q ∈ S. If

S = {0}, then A = AU (1)
SU(2)1 . Assume that S 6= {0}, and let q0 > 0 be the least

positive number in the discrete set S. Then S = Zq0. Let n be the positive integer
such that q0 =

√
2n; we have the decompositions HA =

⊕
k∈Z F√

2nk . Compare this
with AU (1)

SU(2)1 ⊂ AU (1)2n , and an argument similar to the one above, using unitary
charged intertwiners, shows that A ' AU (1)2n .

4.6.4. The case Ac=1 ⊂ AD∞

SU(2)1 ⊂ A. Let O be the nontrivial one-dimensional
representation of D∞ (the infinite Dihedral group). We will also use O to denote
the corresponding irreducible representation of AD∞

SU(2)1 . We note that the conformal
dimensions of O are integers , and by [Rehren 1990], we can choose a representa-
tive of [O] such that O2

= id. Also the braiding operator ε(O, O) is a scalar with
property ε(O, O)2 = 1.

First consider the case when αO is localized on I , i.e., αO is a DHR repre-
sentation of A. Applying Doplicher–Roberts reconstruction to A and αO as in
[Müger 1999, Proposition 3.8], we get a conformal net A1 such that A ⊂ A1 and
AU (1)

SU(2)1 ⊂ A1. By §4.6.3 we can identify A1 as AU (1)
SU(2)1 or AU (1)2n , n ∈ N. If

A1 = AU (1)
SU(2)1 , we have AD∞

SU(2)1 ⊂ A ⊂ AU (1)
SU(2)1 and it follows that

A ' AD∞

SU(2)1 or A ' AU (1)
SU(2)1,
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since AD∞

SU(2)1 is the fixed-point subnet under the Z2 action. If A1 = AU (1)2n , again
AD∞

SU(2)1 is the fixed-point subnet of AU (1)2n under the action of D∞, so A is the
fixed-point net under the action of a closed subgroup of D∞ as in §4.6.2. It follows
that A is isomorphic to either AD∞

SU(2)1 , AU (1)
SU(2)1 or AU (1)2m for some m ∈ N.

We now return to the general case. Consider the inclusions

AD∞

SU(2)1(I )⊂ A(I )⊂ AD∞

SU(2)1(I
′)′

on HA. Let γ1 : AD∞

SU(2)1(I
′)′ → A(I ) be the canonical endomorphism whose re-

striction to A(I ) is the canonical endomorphism from A(I ) to AD∞

SU(2)1(I ); see
[Longo and Rehren 1995]. Let v1 ∈ Hom(id, Oε̃Oε)AD∞

SU(2)1
(I ) be a unitary operator,

and let vO ∈ AD∞

SU(2)1(I
′)′ be the unique unitary operator such that γ1(vO) = v1.

Notice that γ (α̃OαO)= Oε̃Oεγ , so vOa = α̃OαO(a)vO for all a ∈ A(I ). Restrict
to AD∞

SU(2)1(I ) and recall that O2
= id. Then vO ∈ AD∞

SU(2)1(I )
′
∩AD∞

SU(2)1(I
′)′, so vO

commutes with PSL(2,R) by the strong additivity of AD∞

SU(2)1 . On the other hand,
Proposition 3.5(2) shows that α̃OαO = αO α̃O since ε(O, O) is a scalar, and so
v2

O ∈ AD∞

SU(2)1(I )
′
∩A(I )= C. Multiplying by a scalar if necessary, we can assume

that v2
O = id and v∗

O = vO . Hence the subnet defined by Â(J ) := A(J )∩{vO}
′ is a

conformal subnet of A and AU (1)
SU(2)1 ⊂ Â is also a conformal subnet. Now consider

βO := α̃AU (1)
SU(2)1

→Â
O αAU (1)

SU(2)1
→Â

O .

By definition we have vOa = βO(a)vO for all a ∈ Â(I ), and by the definition of
Â we get vOa = avO = βO(a)vO for all a ∈ Â(I ), so βO = id. It follows that[

α̃AU (1)
SU(2)1

→Â
O

]
=

[
αAU (1)

SU(2)1
→Â

O
]
,

so αAU (1)
SU(2)1

→Â
O is localized on I . Therefore we can apply the first part of this sec-

tion to identify Â as either AD∞

SU(2)1 , AU (1)
SU(2)1 , AZ2

U (1)2m
or AU (1)2m for some positive

integer m. Since Â ⊂ A, to identify A it is enough to consider the case when
Â ' AD∞

SU(2)1 or Â ' AZ2
U (1)2m

since the other cases have been treated in §4.6.3. We
show that in this case Â = A. Note that by definition the index of Â(I ) ⊂ A is
at most 2. So we just have to show that the index is not 2. Consider the inclusion
Â(I ) ⊂ A. If the index is 2, one checks easily that αO is not localized on I and
[γA] = [1 + α̃OαO ]

Let f be the vector representation of Â(I ). Note that [O f ] = [ f ]. It is now
easy to check that

〈α f , α f 〉 = 1, 〈α̃ f α f , 1〉 ≥ 1.

It follows that α f is localized on I , and so αO ≺ α2
f is also localized on I , a

contradiction.
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4.6.5. The case Ac=1 ⊂ AG
SU(2)1 ⊂ A for G = E6, E7, E8. Since AG

SU(2)1 is com-
pletely rational, so is A, by [Kawahigashi and Longo 2004, Proposition 2.3]. If A⊂

A1 is a conformal subnet of A1 and is irreducible, meaning that A(I )′∩A1(I )= C,
then by the same result A1 is also completely rational, and µA1 ≤µA, with equality
if and only if A = A1 by Proposition 2.3. If A ⊂ A1 ⊂ A2 are conformal subnets
with A ⊂ A1 and A ⊂ A2 irreducible, we see, again by [Kawahigashi and Longo
2004, Proposition 2.3], that A ⊂ A2 has finite index, so A ⊂ A2 is also irreducible
[Longo 2003, Lemma 14].

We claim that among the irreducible conformal extensions of A there is an Amax

that cannot be enlarged (that is, if Amax ⊂ B is an irreducible conformal subnet,
then Amax =B). Otherwise there would be an infinite sequence A⊂A1 ⊂A2 ⊂· · ·

with distinct members and each pair Ai ⊂ Ai+1 irreducible. By Jones’s theorem
[1983] the index [Ai+1,Ai ] is at least 2, and it follows from Proposition 2.3 that
1 ≤ µAi ≤ 4−iµA for all i , contradicting the fact that µA <∞.

Let Amax be a maximal conformal extension of A, so AG
SU(2)1 ⊂ A ⊂ Amax. Let

B be the conformal subnet of Amax generated by Ac=1 and the charged intertwiners
associated with the set {L(1, p2) | p ∈ Z}. Note that AG

SU(2)1 ⊂ B. By §4.6.2, we
can identify B with AG ′

SU(2)1 , where G ′ a closed A-D-E subgroup of SO(3). If G ′

is of type D, using §4.6.4 to identify all possible Amax, we see that Amax can be
further extended, contradicting the maximality of Amax.

If G ′ is of type E , let Ĝ ′ be the twofold covering group of G ′ in SU(2). For
any irreducible representation λ of Ĝ ′, we use the same λ to label the covariant
representation of AG ′

SU(2)1 . The statistical dimensions of λ are given by the Perron–
Frobenius eigenvectors labeled in [Goodman et al. 1989]. Consider the induction
for the pair B = AG ′

SU(2)1 ⊂ Amax. By Lemma 3.3(3) and the definition of B,
each αλ is irreducible. Define the index sets S := {λ | λ ∈ Irrep G ′, [αλ] = [α̃λ]}

and Ŝ := {λ | λ ∈ Irrep Ĝ ′, [αλ] = [α̃λ]}. The set S consists of representations of
Amax which have permutation symmetry. By Doplicher–Roberts reconstruction, as
in [Müger 1999, Proposition 3.9], we conclude there is an irreducible conformal
extension of Amax and it follows by the maximality of Amax that S = 1, where 1
is the trivial representation. Since Ŝ2

⊂ S, there is at most one λ ∈ Ŝ − Irrep G ′

such that λ2
= 1. By inspecting the E graph in [Goodman et al. 1989, p. 14], we

conclude that Ŝ = {1}, and so

〈αλα̃λ, αµα̃µ〉 = 〈αλαµ̄, α̃µα̃λ̄〉 =

〈 ∑
δ∈Irrep Ĝ ′

N δ
λµ̄αδ,

∑
δ′∈Irrep Ĝ ′

N δ′

µλ̄
α̃δ′

〉
= δλµ.

On the other hand, 〈γA, αλα̃λ〉 ≥ 1 by Frobenius reciprocity and definitions, and
we have γA �

∑
λ∈Irrep Ĝ ′[αλα̃λ]. This implies [Amax : AG ′

SU(2)1]
2
≥ |Ĝ ′

|
2
= 4|G|

2,
and by Proposition 2.3 we get a contradiction, namely
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1 ≤ µAmax =
2|G ′

|
2

[Amax : AG ′

SU(2)1]
2 ≤

1
2 .

It follows that G ′ must be of type A, so Amax can be identified with AU (1)2m for
some positive integer, by §4.6.3. By the maximality of Amax, either m = 1 or m is
square free, i.e., not divisible by k2 for any k > 1. In the later case the principal
graph of αA→Amax

L(1,1/4) is A∞,−∞ by Lemma 4.4(3). But by Lemma 3.3(3), αA→Amax
L(1,1/4)

is also the induced endomorphism of the vector representation f from AG
SU(2)1 to

Amax, and it has finite depth since AG
SU(2)1 is completely rational. This contraction

shows that Amax must be identified with AU (1)2 =ASU(2)1 . Now we have inclusions

Ac=1 ⊂ A ⊂ ASU(2)1

Since Ac=1 is the fixed-point subnet of ASU(2)1 under the action of SO(3), it follows
that A is the fixed point subnet of ASU(2)1 under the action of a closed subgroup
of SO(3) as in the end of §4.6.2.

Proof of Theorem 4.6. If Ac=1 = A there is nothing to prove. Assume that
Ac=1 6= A. Let A f ⊂ A be the conformal subnet generated by charged inter-
twiners associated with the set {L(1, p2) : p ∈ Z}, as in Corollary 3.9(3). By the
spectrum condition the conformal subnet A f is larger than Ac=1, i.e., Ac=1 ⊂ A f

but Ac=1 6= A f . By Corollary 3.9(3) Ac=1 ⊂ A f is discrete, and by §4.6.2
A f can be identified as conformal net containing AU (1)

SU(2)1 AD∞

SU(2)1 or AG
SU(2)1 , for

G = E6, E7, E8, and the theorem follows from §4.6.3–4.6.5. �

If the spectrum condition is violated, the canonical endomorphism γ has strange
properties, and we have been able to rule out some cases. In general it is still an
open question whether the spectrum condition is always satisfied.

We point out one application of Theorem 4.6. By a result from [Xu 1999],
the net associated with the coset SU(2)4 ⊂ SU(2)2 × SU(2)2 has 13 irreducible
representations, and this net has central charge c = 1. Using the known character
formulas one can verify that the spectrum condition is satisfied in this case, so this
net must be identified with an element in the list (4–1) by Theorem 4.6. From the
coset fusion rules in [Xu 1999] one immediately identifies the coset with AZ2

U (1)12
.

This was first pointed out to me by C. Dong during our discussions on the “fixed
point resolution” problem about the cosets, of which SU(2)4 ⊂ SU(2)2 × SU(2)2
is the first nontrivial example [Xu 1999].

Acknowledgment. I thank Professors Chongying Dong, Jürgen Fuchs, Christoph
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Roberto Longo for pointing out the article [Longo and Roberts 1997], which helps
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