
Pacific
Journal of
Mathematics

MASLOV TYPE INDEX THEORY FOR LINEAR HAMILTONIAN
SYSTEMS WITH BOLZA BOUNDARY VALUE CONDITIONS

AND MULTIPLE SOLUTIONS FOR NONLINEAR
HAMILTONIAN SYSTEMS

YUJUN DONG

Volume 221 No. 2 October 2005



PACIFIC JOURNAL OF MATHEMATICS
Vol. 221, No. 2, 2005

MASLOV TYPE INDEX THEORY FOR LINEAR HAMILTONIAN
SYSTEMS WITH BOLZA BOUNDARY VALUE CONDITIONS

AND MULTIPLE SOLUTIONS FOR NONLINEAR
HAMILTONIAN SYSTEMS

YUJUN DONG

In memory of my father

We study the classification of linear Hamiltonian systems satisfying Bolza
boundary conditions and its applications to nonlinear Hamiltonian systems.

1. Introduction

Ivar Ekeland [1990] discussed the classification of convex Hamiltonian systems of
the form

(1–1) ẋ = J B(t)x, x(0)= x(τ ),

where
J =

(
0 −In

In 0

)
,

In being the n × n identity matrix. That is, for any continuous symmetric positive
definite matrix map B : [0, τ ] → GL(2n) with B(0) = B(τ ), he defined a pair of
numbers (i E(B), νE(B)) ∈ {0, 1, 2, . . . }×{0, 1, 2, . . . , 2n} by making use of dual
variational methods. This pair of integers is called the Ekeland index of B.

We define, as usual,

Sp(2n)= {M ∈ GL(2n,R) | MT J M = J },

Pτ (2n)= {γ : C([0, τ ],Sp(2n)) | γ (0)= I2n}.

For any γ ∈ Pτ (2n), the Maslov-type index of γ is defined to be a pair of integers
(i L(γ ), νL(γ )) ∈ Z × {0, 1, 2, . . . , 2n}; see [Conley and Zehnder 1984; Long and
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Zehnder 1990; Long 1990; Long 1997]. Denote by γB(t) the matrizant of (1–1),
that is, the solution of

γ̇B(t)= J B(t)γB(t), γB(0)= I2n.

Then γB ∈ Pτ (2n) and

i L(γB)= i E(B)+ n, νL(γB)= νE(B),

whenever B is positive definite. So the Maslov-type index is more general than the
Ekeland index. These index theories (about the properties of the index) and their
iteration theories have important applications in the study of nonlinear Hamiltonian
systems. See [Fei 1995; Conley and Zehnder 1984; Long and Zehnder 1990; Fei
and Qiu 1997; Chang et al. 1997; Su 1998; Li and Liu 1989] for multiple periodic
solutions of asymptotically linear Hamiltonian systems, [Ekeland and Hofer 1985;
Dong and Long 1997] for Rabinowitz’s minimal periodic problem, and [Ekeland
and Hofer 1987; Long and Zhu 2002; Liu et al. 2002] for multiple closed char-
acteristics on compact convex hyper-surfaces in R2n . For a systematic treatment
and other applications, one can refer to the excellent books [Ekeland 1990; Long
2002].

Let L∞

2n := {B : (0, 1) → GL(2n) | B(t) = (bi j (t))2n×2n, bi j ∈ L∞(0, 1) and
bi j = b j i for all i, j = 1, 2, . . . , 2n}. Throughout this paper, for any two symmetric
matrices A1 and A2, we write A1 ≤ A2 if A2− A1 is positive semidefinite, and write
A1 < A2 if A2 − A1 is positive definite. For any B1, B2 ∈ L∞

2n , we write B1 ≤ B2 if
B1(t)≤ B2(t) for a.e. t ∈ (0, 1); write B1 < B2 if B1 ≤ B2 and B1(t) < B2(t) on a
subset of (0, 1) with positive measure. In this paper we consider the classification
of systems of the form

(1–2) ẋ = J B(t)x, Px(0)= 0 = Px(1),

where B ∈ L∞

2n and Px = (x1, . . . , xn)
T

∈ Rn for any x = (x1, . . . , x2n)
T

∈ R2n .
Specifically, to any B ∈ L∞

2n we associate a pair of numbers (i(B), ν(B)) ∈ Z ×

{0, 1, · · · , n}. The nullity ν(B) is the dimension of the solution space of (1–2).
To define the index i(B) we proceed in two steps. At first, we give the definition
of i(λI2n) for any λ ∈ R. Second, for any two B1, B2 ∈ L∞

2n with B1 < B2 we
consider the nullity ν((1−λ)B1+λB2). We prove that the number of λ∈[0, 1)with
ν((1−λ)B1 +λB2) 6= 0 is finite and define the relative Morse index as I (B1, B2)=∑

λ∈[0,1) ν((1−λ)B1 +λB2). We prove the relative Morse index satisfies additivity
properties and that i(λI2n)− I (B, λI2n) is independent of λ ∈ R with λI2n > B;
we define i(B) to be this number. We define an Ekeland type index iµ(B), called
the µ-index of B and satisfying I (B1, B2)= iµ(B2)− iµ(B1). In this way we can
prove additivity for the relative Morse index. This is the content of Section 2. In
the process we only use the spectral theory of self-adjoint compact operators.
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In [Dong 2005] we discussed the classification of the second-order Hamiltonian
system

(1–3) x ′′
+ A(t)x = 0, x(0)= 0 = x(1).

Namely, to every A ∈ L∞
n we associated a pair of numbers (m0(A),m−(A)). By

making the change z1 = x , z2 = ẋ , z = (z1, z2), we see that (1–3) is a special case
of (1–2) with B the block-diagonal matrix diag{A, In}. At the end of Section 2,
we prove that m0(A)= ν(diag{A, In}) and that m−(A)= i(diag{A, In}).

In Section 3 we discuss multiple solutions for the system

(1–4) ẋ = J H ′(t, x), Px(0)= 0 = Px(1).

We first use the Leray–Schauder degree theory to obtain the existence of solutions
and of nontrivial solutions. Then we use the dual variational method and Morse
theory to discuss the multiple solutions of (1–4). The index and µ-index play an
important role in the discussion. We stress that by making use of the µ-index,
dual variational methods can be used instead of the saddle point reduction method
whenever H ′′(t, x) is bounded. Ekeland [1990] discussed the problem (1–4) and
called it the Bolza problem. The method used here is also suitable for Hamiltonian
systems with periodic boundary value conditions, for which we will write another
paper.

2. Maslov type index theory for linear Hamiltonian systems
satisfying Bolza boundary value conditions

As in the introduction we set Px = (x1, . . . , xn)
T

∈Rn for any x = (x1, . . . , x2n)
T

∈

R2n . We shall give a classification for the system

(2–1) ẋ = J B(t)x for t ∈ (0, 1), Px(0)= 0 = Px(1);

that is, for any B ∈ L∞

2n , we shall define i(B) ∈ Z and ν(B) ∈ {0, 1, . . . , n}, called
the index and nullity of B respectively. We begin with the nullity. Set

W := {x : [0, 1] → R2n
| x continuous on [0, 1], Px(0)= 0 = Px(1), ẋ ∈ L2

},

(where L2
:= L2((0, 1); R2n)), with the norm

‖x‖W :=

(∫ 1

0
(|ẋ(t)|2 + |x(t)|2) dt

)1/2

,

where |x | =
(∑2n

i=1 |xi |
)1/2 for x = (x1, . . . , x2n)

T
∈ R2n . Also define 31 : W ⊂

L2
→ L2 by (31x)(t) := J ẋ(t) and B̄ : L2

→ L2 by (B̄x)(t) = B(t)x(t). Then
31 and B̄ are self-adjoint operators and B̄ is bounded.
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Definition 2.1. For any B ∈ L∞

2n , the nullity of B is defined as

ν(B)= dim ker(31 + B̄).

By definition, ν(B)≥ 0. Moreover, ν(B)= 0 if and only if ker(31 + B̄)= {θ},
and if and only if the problem (2–1) has no nontrivial solutions x 6= θ .

Let γ (t) be the matrizant of (2–1), i.e., the solution of

(2–2) γ̇ (t)= J B(t)γ (t) for a.e. t ∈ (0, 1), γ (0)= I2n.

Then

ker(31+ B̄)=
{

x = γ (t)
( 0

c

)
| c ∈ Rn, Px(1)= 0

}
∼=

{
c ∈ Rn

| Pγ (1)
( 0

c

)
= 0

}
⊂ Rn.

Thus dim ker(31 + B̄) ≤ n, and ν(B) = dim ker(31 + B̄) ∈ {0, 1, . . . , n}. In
particular, if B ≡ λI2n , we have

γ (t)=exp Jλt =

(
In cos λt −In sin λt
In sin λt In cos λt

)
, Pγ (1)

(
0
c

)
= P

(
−c sin λ

c cos λ

)
=−c sin λ,

so ker(31 + B̄) = {c ∈ Rn
|c sin λ = 0}. Therefore, ν(λI2n) = 0 if and only if

λ/π /∈ Z, and ν(λI2n)= n if λ/π ∈ Z.
Still in the case B ≡ λI2n , the system (2–1) is equivalent to

(2–3) y′′
+ λ2 y = 0 for t ∈ (0, 1), y(0)= 0 = y(1),

via the change y = Px . For the general second-order Hamiltonian system

(2–4) x ′′
+ A(t)x = 0 for t ∈ (0, 1), x(0)= 0 = x(1),

with any A ∈ L∞
n , we define as in [Dong 2005]

ψA(x, x) :=

∫ 1

0

(
|ẋ(t)|2 − (A(t)x(t), x(t))

)
dt,

where x ∈ F := {x ∈ W 1,2([0, 1]; Rn) | x(0) = 0 = x(1)}. Then we have a ψA-
orthogonal decomposition F = F+(A)⊕ F0(A)⊕ F−(A), and we define

m−(A) := dim F−(A), m0(A) := dim F0(A).

In particular, m0(λ2 In) = 0 if λ/π /∈ Z, and m0(λ2 In) = n if λ/π ∈ Z. Thus
m0(λ2 In)= ν(λI2n) for λ> 0. Letting x1 = y, x2 = −ẏ, (2–3) is also equivalent to
(2–1) with B = diag{λ2 In, In}. By Definition 2.1, we obtain ν(diag{λ2 In, In}) =

m0(λ2 In).

Proposition 2.2. For any A ∈ L∞
n ,

ν(diag{A, In})= m0(A).
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Proof. Making the change x1 = y, x2 =−ẏ, we see that (2–4) is equivalent to (2–1)
with B = diag{A, In}. �

In the following we consider the definition of i(B) for any B ∈ L∞

2n . Since (2–4)
is a special case of (2–1), we begin with B = λI2n . Following [Ekeland 1990], we
define E[α] for α real as the integer a ∈ Z such that a < α ≤ a + 1; in particular
E[α] = α−1 for integer α. Since (2–3) is equivalent to (2–1) when B = λI2n , and
m−(λ2 In)= nE[λ/π ] as λ > 0, we have:

Definition 2.3. For any λ ∈ R, we define

i(λI2n)= nE[λ/π ].

In order to define i(B) for any B ∈ L∞

2n , we need to compare B with λI2n for
any λ > 0 with λI2n > B.

Definition 2.4. For any B1, B2 ∈ L∞

2n with B1 < B2, set

I (B1, B2)=

∑
λ∈[0,1)

ν((1−λ)B1 + λB2).

We call I (B1, B2) the relative Morse index, following [Fei 1995; Zhu and Long
1999; Long and Zhu 2000; Long 2002].

In Proposition 2.10 we will show that the relative Morse index is finite.

Proposition 2.5. Assume B,C ∈ L∞

2n with ν(B) = 0,C ≥ ε I2n for some positive
constant ε ∈ R.

(1) The operator 31 + B̄ : W → L2 is invertible and the inverse (31 + B̄)−1
:

L2
→ L2 is compact and self-adjoint.

(2) There exists a sequence {λ j }
+∞

j=−∞
⊂ R with λ j → ±∞ as j → ±∞, such

that the problem

J ẋ(t)+ B(t)x(t)= λ j C(t)x(t), Px(0)= 0 = Px(1)

has a nontrivial solution subspace E j with dim E j ≤ n and L2
=

⊕
+∞

j=−∞
E j .

Proof. (1) Let γ (t) be the matrizant of (2–1) (see (2–2)). To prove that 31 + B̄ is
invertible for any u ∈ L2, we have to solve the problem

J ẋ + B(t)x = u, Px(0)= 0 = Px(1).

The first equation has a general solution

(2–5) x(t)= γ (t)x(0)− γ (t)
∫ t

0
γ (s)−1 Ju(s) ds.
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The second condition gives

(2–6) x(0)=

(
0
c

)
, Px(1)= Pγ (1)

(
0
c

)
− Pγ (1)

∫ 1

0
γ (s)−1 Ju(s) ds = 0.

Since ν(B)= 0, setting γ (1)=

(
γ11(1) γ12(1)
γ21(1) γ22(1)

)
, we see that the equation

0 = Pγ (1)
(

0
c

)
= γ12(1)c

has no nontrivial solutions, so γ12(1) is invertible. From (2–6) we have 31 + B̄ is
invertible and

((31 + B̄)−1u)(0)= γ12(1)−1 Pγ (1)
∫ 1

0
γ (s)−1 Ju(s) ds.

From (2–5) and the Ascoli–Arzelà theorem, the operator (31 + B̄)−1
: L2

→

C([0, 1],R2n) is compact, and so is the operator (31 + B̄)−1
: L2

→ L2.

(2) Let (5u)(t)= (31 + B̄)−1C(t)u(t) for any u ∈ L2. With (x, y)=
∑2n

i=1 xi yi ,
the inner product (u, v)1 :=

∫ 1
0 (C(t)u(t), v(t)) dt defines a Hilbert space structure,

and

(5u, v)1 =

∫ 1

0
(C(t)(31 + B̄)−1C(t)u(t), v(t)) dt

=

∫ 1

0
(C(t)u(t), (31 + B̄)−1C(t)v(t)) dt = (u,5v)1

for every u, v ∈ L2. Thus 5 : L2
→ L2 is self-adjoint and compact. By spectral

theory, there are {µ j }
∞

j=1 ⊂ R with µ j → 0 as j → ∞ and a basis {u j }
∞

j=1 of L2

such that

(u j , ui )1 = δi j ,5u j = µ j u j , u j 6= θ.

By the definition of 5, we have (31 + B̄)µ j u j = C(t)u j . So µ j 6= 0 and

J u̇ j (t)+ B(t)u j (t)=
1
µ j

C(t)u j (t), Pu j (0)= 0 = Pu j (1).

Hence, setting E j := ker(5−µ j ), we get

dim E j = ν
(

B −
1
µ j

C
)

≤ n.

Letting λ j := 1/µ j , we only need to show that λ j is bounded above and below.
In fact, assume λ j ≥ λ̄ for some λ̄ ∈ R. For any x ∈ W , set C(t)u(t) := J ẋ(t)+
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B(t)x(t); then u(t)=
∑

+∞

j=1 u j (t) with u j ∈ E j , x(t)= (5u)(t)=
∑

+∞

j=1 µ j u j (t)
and ∫ 1

0
(J ẋ(t)+ B(t)x(t), x(t)) dt =

∫ 1

0
(C(t)u(t), x(t)) dt

=

∫ 1

0

∞∑
i=1

µi (C(t)ui (t), ui (t)) dt

≥ λ̄

∫ 1

0
(C(t)x(t), x(t)) dt.

Thus there exists a constant c1 depending only on B,C and λ̄ such that

(2–7)
∫ 1

0
(J ẋ(t), x(t)) dt ≥ c1‖x‖

2
L2 for all x ∈ W.

As in [Ekeland 1990], set x p(t) := exp(pπ(−J )(t))
(

0
ξ

)
with p ∈ Z and ξ ∈ Rn

satisfying |ξ | = 1. Then x p(t)=

(
ξ sin pπ t
ξ cos pπ t

)
∈ W , and

‖x p‖
2
L2 = 1,

∫ 1

0
(J ẋ p(t), x p(t)) dt = p.

This contradicts (2–7) when p < c1. �

Remark. From this Proposition, when ν(B1) = 0, B2 − B1 ≥ ε I2n , the number
of λ ∈ [0, 1) such that ν((1−λ)B1 + λB2) 6= 0 is finite, and I (B1, B2) < +∞.
According to Proposition 2.10 below, the relative Morse index is finite in general
case.

Let card denote the cardinality of a set. When λ1 < λ2, by the definition, we
have I (λ1 I2n, λ2 I2n) = n card{ j ∈ Z | j ∈ [λ1/π, λ2/π)}, and I (λ1 I2n, λ3 I2n) =

I (λ1 I2n, λ2 I2n)+ I (λ2 I2n, λ3 I2n) if λ3 > λ2 > λ1. More generally:

Proposition 2.6. Assume Bi , i = 1, 2, 3,∈ L∞

2n with B1 < B2 < B3. Then

I (B1, B3)= I (B1, B2)+ I (B2, B3).

We postpone the proof and first define i(B). From Definition 2.3, for any λ<λ1

we have i(λ1 I2n)= i(λI2n)+ I (λI2n, λ1 I2n), so

i(λ1 I2n)− I (B, λ1 I2n)= i(λ1 I2n)− (I (λI2n,

λ1 I2n)+ I (B, λI2n))= i(λI2n)− I (B, λI2n);

that is, the number i(λI2n)− I (B, λI2n) is independent of λ ∈ R with λI2n > B.
Hence:
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Definition 2.7. For any B ∈ L∞

2n , we define

i(B)= i(λI2n)− I (B, λI2n),

where λ ∈ R satisfies B < λI2n .

This index i(B) is monotonously nondecreasing with respect to B. That is:

Proposition 2.8. Assume B1, B2 ∈ L∞

2n with B1 < B2. Then i(B1)+ν(B1)≤ i(B2).

Proof. By definition,

i(B2)= i(λI2n)− I (B2, λI2n)= i(λI2n)−
(
I (B1, λI2n)− I (B1, B2)

)
= i(λI2n)− I (B1, λI2n)+ I (B1, B2)= i(B1)+ I (B1, B2)

≥ i(B1)+ ν(B1). �

We next prove that the relative Morse index defined in Definition 2.4 is finite
for any B1, B2 with B1 < B2; we also prove Proposition 2.6. To do this, following
[Ekeland 1990], we define a Morse type index iµ(B) for any B ∈ L∞

2n , and prove
that I (B1, B2)= iµ(B2)− iµ(B1). More precisely, for any B ∈ L∞

2n , let µ∈ R\πZ

with B +µI2n ≥ I2n; then ν(−µI2n) = 0. The operator 3x := J ẋ(t)−µx(t) is
invertible and its inverse3−1

: L2
→ L2 is self-adjoint and compact, by Proposition

2.5. Define a quadratic form by setting, for u ∈ L2,

qµ,B(u, u)=
1
2

∫ 1

0

(
((3−1u)(t), u(t))+ (Cµ(t)u(t), u(t))

)
dt,

(Cµu, u) :=

∫ 1

0
(Cµ(t)u(t), u(t)) dt,

where Cµ(t) := (µI2n + B(t))−1. Then (Cµu, u) defines a Hilbert space structure
on L2. C−1

µ 3−1 is a self-adjoint and compact operator under this interior product.
By spectral theory there is a basis {e j } j∈N of L2 and a sequence λ j → 0 in R such
that

(2–8) (Cµei , e j )= δi j , (3−1e j , u)= (Cµλ j e j , u) for allu ∈ L2.

For any u ∈ L2, expressible as u =
∑

∞

j=1 ξ j e j , we have

q(µ,B)(u, u)=
1
2

∫ 1

0

(
(3−1u, u)+ (Cµ(t)u, u)

)
dt =

1
2

∞∑
j=1

(1 + λ j )ξ
2
j .
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Define

E−

µ (B) :=

{ ∞∑
j=1

ξ j e j

∣∣∣ ξ j = 0 if 1 + λ j ≥ 0
}
,

E0
µ(B) :=

{ ∞∑
j=1

ξ j e j

∣∣∣ ξ j = 0 if 1 + λ j 6= 0
}
,

E+

µ (B) :=

{ ∞∑
j=1

ξ j e j

∣∣∣ ξ j = 0 if 1 + λ j ≤ 0
}
.

Obviously, E−
µ (B), E0

µ(B) and E+
µ (B) are q(µ,B)-orthogonal and

E−

µ (B)⊕ E0
µ(B)⊕ E+

µ (B)= L2.

Since λ j → 0 as j → ∞, the spaces E0
µ(B) and E−

µ (B) are finite-dimensional.

Definition 2.9. For any B ∈ L∞

2n, µ ∈ R with µI2n + B ≥ I2n , we define

νµ(B) := dim E0
µ(B), iµ(B) := dim E−

µ (B).

We call νµ(B) and iµ(B) the µ-nullity and µ-index of B respectively.

Proposition 2.10. For any B1, B2, B ∈ L∞

2n with B1 < B2, we have

νµ(B)= ν(B), I (B1, B2)= iµ(B2)− iµ(B1).

Proof of the first equality. By the definitions, E−
µ (B), E0

µ(B) and E+
µ (B) are q(µ,B)-

orthogonal and satisfy L2
= E−

µ (B)⊕ E0
µ(B)⊕ E+

µ (B). For every u ∈ E0
µ(B), we

have
q(µ,B)(u, v)= 0 for any v ∈ L2.

So
3−1u + Cµ(t)u = 0.

Set x := 3−1u. Applying Cµ(t) = (B(t)+ µI2n)
−1 to both sides and using the

equalities 3= J d
dt −µ and u =3x , we get

(B(t)+µI2n)x(t)+ J ẋ(t)−µx(t)= 0.

That is,
B(t)x(t)+ J ẋ(t)= 0.

Hence, ker(31 + B̄)∼= E0
µ(B) and ν(B)= νµ(B). �

Proof of the second equality. Step 1. We show that if X is a subspace of L2 such
that q(µ,B)(u, u) < 0 for every u ∈ X \ {θ}, then dim X ≤ iµ(B).

In fact, let e1, . . . , ek be a basis of X , we have the decomposition ei = e−

i + e∗

i
with e−

i ∈ E−
µ (B), e∗

i ∈ E0
µ(B)⊕ E+

µ (B). Suppose there exist numbers αi ∈ R,
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not all zero, such that
∑k

i=1 αi e−

i = θ . Write e :=
∑k

i=1 αi ei ; then e ∈ X \ {θ}

and q(µ,B)(e, e) < 0; at the same time, e =
∑k

i=1 αi e∗

i ∈ E0
µ(B)⊕ E+

µ (B), and
q(µ,B)(e, e) ≥ 0, a contradiction. So {e−

i }
k
i=1 is linearly independent and iµ(B) ≥

k = dim X .

Step 2. For B1 < B2 ∈ L∞

2n , set i(λ) := iµ((1−λ)B1 + λB2) for λ ∈ [0, 1]. Then
i(λ2)≥ i(λ1)+ ν(λ1) for any λ1, λ2 ∈ [0, 1] with λ1 < λ2.

In fact, write Ai = (1−λi )B1 + λi B2 for i = 1, 2; we only need to prove that

q(µ,A2)(u, u) < 0 for all u ∈ E−

µ (A1)⊕ E0
µ(A1) \ {θ}.

Take any u = u0
+ u− with u0

∈ E0
µ(A1), u−

∈ E−
µ (A1). If u−

6= θ we have

q(µ,A2)(u, u)≤ q(µ,A1)(u, u)= q(µ,A1)(u
−, u−)+ q(µ,A1)(u

0, u0)

= q(µ,A1)(u
−, u−) < 0.

If u−
= θ , write x0

=3−1u0; then u0
=3x0 and x0 is a nontrivial solution of

J ẋ(t)+ A1(t)x(t)= 0, Px(0)= Px(1)= 0.

So x0(t) 6= 0 for every t ∈ [0, 1], and u0(t) = −(A1(t)+µI2n)x0(t) 6= 0 for a.e.
t ∈ (0, 1). Hence

1
λ1−λ2

q(µ,A2)(u, u)

=
1

λ1−λ2
(q(µ,A2)(u

0, u0)− q(µ,A1)(u
0, u0))

=

∫ 1

0

(
(µI2n + A2(t))−1(B1(t)− B2(t))(µI2n + A1(t))−1u0(t), u0(t)

)
dt

=

∫ 1

0

(
(B1(t)− B2(t))x0(t), (µI2n + A2(t))−1(µI2n + A1(t))x0(t)

)
dt.

If λ1 = λ2, we have A2(t)= A1(t), and the last integral is∫ 1

0

(
(B2(t)− B1(t))x0(t), x0(t)

)
dt > 0.

Hence, if λ2 is close to λ1 and λ2 > λ1, we have q(µ,A2)(u, u) < 0. So for λ2 < λ1

and λ2 close to λ1, we have i(λ2)≥ i(λ1)+ ν(λ1).

Step 3. For any λ ∈ [0, 1), we have i(λ+ 0)= i(λ)+ ν(λ).
In fact, from Step 2, i(λ) + ν(λ) ≤ i(λ + 0). So we only need to show that

i(λ)+ ν(λ)≥ i(λ+0). Write k := i(λ+0). There exists λ′ > λ such that i(s)= k
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and ν(s) = 0 for s ∈ (λ, λ′). Set C(s) := (µI2n + (1 − s)B1(t)+ s B2(t))−1. By
(2–8) we have

(2–9) (C(s)es
j , es

i )= δi j and 3−1es
j = C(s)λs

j e
s
j for all u ∈ L2.

Since C(s)≥ (µI2n + B2)
−1 for s ∈ [0, 1], the sequence {es

j } is bounded in L2, and
λs

j = (3−1es
j , es

j ) is bounded in R for j = 1, . . . , k and s ∈ [0, 1]. So there exist
sl ∈ (λ, λ

′) such that sl →λ+0, esl
j ⇀ e j in L2, λsl

j →λ j in R, and3−1esl
j →3−1e j

in L2. Taking the limit in (2–9) we obtain (C(λ)e j , ei )=δi j and3−1e j =C(λ)λ j e j

for j = 1, . . . , k. Again for j = 1, . . . , k, since i(s) = k for every s ∈ (λ, λ′), we
have by the definitions 1 + λ

sl
j < 0 and {1/λsl

j } bounded in R. So

esl
j =

1
λ

sl
j

C(sl)
−13−1esl

j →
1
λ j

C(λ)−13−1e j = e j

in L2. It follows that {ei }
k
i=1 is linearly independent and for every u =

∑k
j=1 α j e j ,

since
∑k

j=1 α j e
sl
j → u in L2 and

q(µ,(1−sl )B1+sl B2)

( k∑
j=1

α j e
sl
j ,

k∑
j=1

α j e
sl
j

)
< 0,

taking the limit as sl → λ+0 we have q(µ,(1−λ)B1+λB2)(u, u)≤ 0. In a way similar
to the proof of Step 1, this implies i(λ)+ ν(λ)≥ k := i(λ+ 0).

Step 4. The function i(λ) is left continuous for λ ∈ (0, 1] and continuous for
λ ∈ (0, 1) with ν(λ)= 0.

In fact, from Steps 2 and 3 we only need to show i(λ)≤ i(λ−0). Let e1, . . . , ek

be a basis of E−(λ) := E−
µ ((1−λ)B1 + λB2), and set

S1 :=

{
(α1, . . . , αk) ∈ Rk

∣∣∣∣ k∑
i=1

α2
i = 1

}
.

Then

f (s, α1, . . . , αk)

:= q(µ,(1−s)B1+s B2)

( k∑
i=1

αi ei ,

k∑
i=1

αi ei

)

=
1
2

∫ 1

0

((
3−1

k∑
i=1

αi ei (t),
k∑

i=1

αi ei (t)
)

+(µI2n + (1 − s)B1(t)+ s B2(t))−1
k∑

i=1

αi ei (t),
k∑

i=1

αi ei (t)
)

dt



264 YUJUN DONG

is continuous on [0, 1]× S1. Since f (λ, α1, . . . , αk) < 0 for (α1, · · · , αk) ∈ S1 we
have f (s, α1, . . . , αk) < 0 for (α1, . . . , αk) ∈ S1 and s close enough to λ. From
Step 1, we have i(λ)≤ i(s) for s close to λ. Hence i(λ)≤ i(λ−0). In conclusion:

iµ(B2)= iµ(B1)+
∑

0≤λ<1

νµ((1−λ)B1 + λB2)

= iµ(B1)+
∑

0≤λ<1

ν((1−λ)B1 + λB2)= iµ(B1)+ I (B1, B2). �

Remark. The method of the proof comes from [Ekeland 1990, Theorem I.4.6],
with some modifications.

Proof of Proposition 2.6. From Proposition 2.10, fix µ ∈ R with µI2n + B1 ≥ I2n .
Then

I (B1, B2)+ I (B2, B3)= iµ(B2)− iµ(B1)+ iµ(B3)− iµ(B2)

= iµ(B3)− iµ(B1)= I (B1, B3). �

Proposition 2.11. For any A ∈ L∞
n , we have

i(diag{A, In})= m−(A).

Proof. Fix ε > 0 and c > 0 with c2 In > (1+ε)A. Since 0 ≤ λ1 < λ2 < 1, we have

((1−λ2)A + λ2c2 In)(1+ελ2)
−1

− ((1−λ1)A + λ1c2 In)(1+ελ1)
−1

= (λ2 − λ1)(1+ελ1)
−1(1+ελ2)

−1(c2 In − (1+ε)A) > 0
and

diag
{
(λ1c2 In + (1−λ1)A)(1+ελ1)

−1, (1+ελ1)In
}

< diag
{
(λ2c2 In + (1−λ2)A)(1+ελ2)

−1, (1+ελ2)In
}
.

As in the proof of Proposition 2.10, we obtain

(2–10)
∑

0≤λ<1

ν diag
{
(λc2 In + (1−λ)A)(1+ελ)−1, (1+ελ)In

}
= iµ diag{c2 In(1+ε)−1, (1+ε)In} − iµ diag{A, In},

where we have dropped the parentheses enclosing the argument of iµ to lighten the
notation. By Proposition 2.10 itself, we have

(2–11) iµ diag
{
c2 In(1+ε)−1, (1+ε)In

}
− iµ diag{A, In}

= I
(

diag{A, In}, diag
{ c2

1+ε
In, (1+ε)In

})
.

For any A ∈ L∞
n , consider the system

x ′′
+ A(t)x = 0, x(0)= 0 = x(1).
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Via the change z1 = x , z2 = −(1+ε)−1 ż1, this system is equivalent to

ż = J B(t)z, Pz(0)= Pz(1)= 0,

where B := diag{A(1+ε)−1, (1+ε)In}. So

(2–12) ν
(
diag{A(1+ε)−1, (1+ε)In}

)
= m0(A).

It follows that∑
0≤λ<1

ν diag
{
(λc2 In+(1−λ)A)(1+ελ)−1, (1+ελ)In

}
=

∑
0≤λ<1

m0(λc2 In+(1−λ)A).

Denote the right-hand side by I1(A, c2 In). Again as in Proposition 2.10, we can
show that I1(A, B)= m−(B)−m−(A) for any A, B ∈ L∞

n with A< B. Combining
(2–10) and (2–11) with part (1) of Proposition 2.13 below we obtain

(2–13) i diag
{ c2

1+ε
In, (1+ε)In

}
− i diag{A, In} = m−(c2 In)− m−(A).

From Definitions 2.4 and 2.7 and equation (2–12), for any c1 ∈ R with c1 > 1+ε

and c1 > c2/(1+ε) we have

i diag
{ c2

1+ε
In, (1+ε)In

}
= i(c1 I2n)− I

(
diag

{ c2

1+ε
In, (1+ε)In

}
, c1 I2n

)
= i(c1 I2n)−

∑
0≤λ<1

ν diag
{(
λc1 + (1−λ)

c2

1+ε

)
In, ((1+ε)(1−λ)+ c1λ)In

}
= i(c1 I2n)−

∑
0≤λ<1

m0
((
(1−λ)

c2

1+ε
+ λc1

)
((1+ε)(1−λ)+ c1λ)In

)
= i(c1 I2n)− n card

{
j ∈ N | j ∈ [c/π, c1/π)

}
= i(c1 I2n)− I (cI2n, c1 I2n)= i(cI2n)= m−(c2 I2n).

By (2–13) this proves the result. �

Definition 2.12. For any B1, B2 ∈ L∞

2n , define

I (B1, B2)= I (B1, µI2n)− I (B2, µI2n)

where µ ∈ R satisfies µI2n > B1, µI2n > B2.

From Proposition 2.6, I (B1, B2) is independent of µ and coincides with the
object of Definition 2.4 when B1 < B2, so it is well defined.



266 YUJUN DONG

Proposition 2.13. The index defined by Definitions 2.3 and 2.7, the relative Morse
index defined by Definitions 2.4 and 2.12, and the µ-index defined by Definition
2.9 have the following properties:

(1) For any B1, B2 ∈ L∞

2n , we have

I (B1, B2)= i(B2)− i(B1).

(2) For any B1, B2, B3 ∈ L∞

2n , we have

I (B1, B2)+ I (B2, B3)= I (B1, B3).

(3) For any B ∈ L∞

2n , there exists ε0 > 0 such that for any ε ∈ (0, ε0] we have

ν(B + ε I2n)= 0 = ν(B − ε I2n),

i(B − ε I2n)= i(B),

i(B + ε I2n)= i(B)+ ν(B).

In particular, if ν(B)= 0, we have i(B + ε I2n)= i(B) for ε ∈ (0, ε0].

(4) iµ(B)−i(B) is a constant for B satisfying B+µI2n ≥ I2n , i.e., iµ(B)−i(B)=
iµ(B1)− i(B1) for any other B1 ∈ L∞

2n with B1 +µI2n ≥ I2n . For any µ > 1,
we have

iµ(0)= nE
[
µ

π

]
and iµ(B)= nE

[
µ

π

]
+ n + i(B)

for any B ∈ L∞

2n with B +µI2n ≥ I2n .

Proof. (1) follows directly from Definitions 2.7 and 2.12, and (2) follows from (1).
We prove the other two parts.

(3) From part (1), we have i(B + I2n)= i(B)+ I (B, B + I2n). From Definition 2.4
and Proposition 2.10, we see that I (B, B + I2n) =

∑
0≤λ<1 ν(B + λI2n) is finite.

So there is some ε0 > 0 such that ν(B + ε I2n)= 0 for ε ∈ (0, ε0], and

i(B + ε I2n)= i(B)+
∑

0≤λ<1

ν(B + λε I2n)= i(B)+ ν(B).

(4) By Definition 2.9, iµ(0)= dim E−
µ (0)=

∑
1+λ j<0 dim ker(3−1

−Cµλ j ), where
Cµ = µ−1 I2n . If 3−1e j − Cµλ j e j = 0, letting 3−1e j = x j , we have

J ẋ j −µ
(

1 +
1
λ j

)
x j = 0.

So kπ = µ
(

1 +
1
λ j

)
for k ∈ Z, and 1 + λ j =

µ

kπ−µ
+ 1. Since

1 + λ j < 0 ⇐⇒ {kπ −µ < 0, kπ > 0} ⇐⇒ 0< k <
µ

π
,
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we have ker(3−1
− Cµλ j ) ∼= ker(31 + B̄), where B̄x = −kπx and 31x = J ẋ .

Hence dim ker(3−1
− Cµλ j ) = n, and iµ(0) = nE[

µ
π
]. This is the first displayed

equality in (4). From (1) and Proposition 2.10, we have

iµ(B1)− iµ(B)= I (B, B1)= i(B1)− i(B).

So
iµ(B)− i(B)= iµ(0)− i(0).

From Definition 2.3, we have i(0)= −n, and the second desired equality follows.
�

3. Existence and multiplicity of solutions for nonlinear Hamiltonian systems

Consider the problem

(3–1) ẋ = J H ′(t, x), Px(0)= 0 = Px(1),

where H : [0, 1]×R2n
→ R is continuous and H ′(t, x) is its gradient with respect

to x . (For the definition of P see immediately after (1–2).) A problem of the
form (3–1) is called a Bolza problem by I. Ekeland. We will always assume that
H ′

: [0, 1] × R2n
→ R2n is continuous as well.

Theorem 3.1. Assume that H and H ′ are continuous and that

(1) H ′(t, x) = B(t, x)x + o(|x |) as |x | → +∞, where B(t, x) is a symmetric
2n × 2nmatrix and continuous with respect to (t, x) ∈ [0, 1] × R2n;

(2) there exist B1(t) and B2(t) such that B1(t) ≤ B(t, x) ≤ B2(t), i(B2) = i(B1)

and ν(B2)= 0.

Then (3–1) has at least one solution.

Proof. Consider

(3–2) J ẋ + λB1(t)x + (1−λ)H ′(t, x)= 0, Px(0)= 0 = Px(1),

where λ ∈ (0, 1). Set

C0([0, 1]; R2n) :=
{

x : [0, 1] → R2n
∣∣ Px(0)= 0 = Px(1)

and x(t) is continuous for t ∈ [0, 1]
}
,

with the norm ‖x‖C = maxt∈[0,1] |x(t)|. We only need to show that there exists
r > 0 such that ‖xλ‖C < r for any solution xλ of (3–2). In fact, let (3x)(t) =

J ẋ(t) − µx(t), (Cx)(t) = (µI2n + B1(t))x(t), (N x)(t) = µx(t) + H ′(t, x(t)).
Then 3−1C : C0([0, 1]; R2n) → C0([0, 1]; R2n) is linear and compact, 3−1 N :

C0([0, 1]; R2n)→ C0([0, 1]; R2n) is compact, and ker(3−1C + id)= {θ}. We have
the Leray–Schauder degree deg(id +3−1C, Br , θ) 6= 0. By homotopy invariance
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we have deg(id +3−1 N , Br , θ)= deg(id +3−1C, Br , θ) 6= 0, and3−1 N x+x = 0,
so (3–1) has a solution.

Now we prove that the solution xλ of (3–2) is bounded. Assume to the contrary
that there exists a sequence {xk} in C([0, 1]; R2n) such that ‖xk‖C → +∞, {λk} ⊂

(0, 1), and

J ẋk + λk B1(t)xk(t)+ (1−λk)H ′(t, xk(t))= 0,

Pxk(0)= 0 = Pxk(1).

Set yk = xk/‖xk‖C and Ak(t)= λk B1(t)+ (1−λk)B(t, xk(t)); also define ek(t)=

(1−λk)(H ′(t, xk(t))− B(t, xk(t))xk(t))‖xk‖
−1
C . Then

(3–3) J ẏk(t)+ Ak(t)yk(t)+ ek(t)= 0, Pyk(0)= 0 = Pyk(1).

From assumption (2), {ẏk} is bounded in C0([0, 1],R2n). By the Ascoli–Arzelà
theorem we may assume that yk → y0 in C0([0, 1]; R2n). From assumption (1), we
have ek → 0 in C([0, 1]; R2n). From assumption (2) again we have B1 ≤ Ak ≤ B2.
Now write Ak(t)= (a

(k)
i j (t))2n×2n and Bk(t)= (b

(k)
i j (t))2n×2n for k =1, 2, . . . . Then

b(1)i i ≤ a(k)i i ≤ b(2)i i and 2b(1)i j +b(1)i i +b(1)j j ≤ 2a(k)i j +a(k)i i +a(k)j j ≤ 2b(2)i j +b(2)i i +a(2)j j

for all distinct i and j . We may further assume λk → λ0 in R and a(k)i j ⇀ ai j

in L2(0, 1) by going to subsequences if necessary. Write A0(t) = (ai j (t))2n×2n;
integrating (3–3) and taking the limit we have

(3–4) J ẏ0 + A0(t)y0(t)= 0, Py0(0)= 0 = Py0(1).

Since B1 ≤ Ak ≤ B2, it follows that B1 ≤ A0 ≤ B2, and A0 ∈ L∞

2n . Because
i(B2) = i(B1) and ν(B2) = 0, we see from Proposition 2.8 that ν(A0) = 0. This
contradicts the fact that y0 is a nontrivial solution of (3–4). �

Theorem 3.2. Assume that H and H ′ are continuous and that there exist B1, B2 ∈

L∞

2n satisfying the following properties:

(1) B1 ≤ B2.

(2) H is (B1, B2)-subquadratic at infinity, i.e., the difference

N (t, x) := H(t, x)− 1
2(B1(t)x, x)

is strict convex with respect to x for all t ∈ [0, 1], and there exists c ∈ R such
that H(t, x)≤

1
2(B2(t)x, x)+ c for all (t, x).

(3) i(B2)= i(B1)+ ν(B1), and ν(B2)= 0 if B1 < B2.

Then (3–1) has one solution.
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Proof. Step 1. Let 0 : W ⊂ L2
→ L2 be defined by (0x)(t) := J ẋ(t)+ B1(t)x(t).

We first prove that the range R(0) := 0(W ) is closed in L2, that

(3–5) L2
= ker(0)⊕ R(0),

that the restriction 00 := 0|R(0) is invertible, and that 0−1
0 : R(0) → R(0) is

self-adjoint and compact.
In fact, if ν(B1) = 0, by Proposition 2.5, we have ker0 = {θ} and R(0) = L2.

Thus we need only consider the case ν(B1) 6= 0. From Proposition 2.13, there
exists ε > 0 such that ν(B1+ε I2n)= 0. From Proposition 2.5(2), there exist λ j ∈ R

with λ j → ±∞ as λ j → ±∞ such that

L2
=

+∞⊕
j=−∞

E j , whereE j := ker
(

J
d
dt

+ B1(·)+ ε I2n − λ j I2n

)
.

Since ν(B1) = dim ker(J (d/dt)+ B1(·)) 6= 0 and since 0u = (λ j − ε)u for all
u ∈ E j , there exists some j0 ∈ Z such that ε−λ j0 = 0. Then E j0 = ker0, R(0)=⊕

+∞

j=−∞, j 6= j0 E j , and L2
= ker(0)⊕ R(0). Now, given u ∈ R(0), write

u =

+∞∑
j=−∞, j 6= j0

u j , with
+∞∑

j=−∞, j 6= j0

‖u j‖
2
L2 <+∞.

Since 0u j = (λ j − ε)u j , we have 0−1
0 u j =

1
λ j −ε

u j . So

0−1
0 u =

+∞∑
j=−∞, j 6= j0

1
λ j − ε

u j .

Since λ j → ∞, 0−1
0 : R(0)→ R(0) is compact and self-adjoint.

Step 2. Consider the functional

(3–6) ψ(u) :=

∫ 1

0

(1
2(0

−1
0 u, u)+ N ∗(t,−u)

)
dt,

where N ∗(t, u) = supv∈R2n {(u, v)− N (t, v)} is the Fenchel conjugate of N (t, u).
From the continuity of H and H ′ as well as the definition and the strict convexity
of N , we conclude that the gradient N ∗′(t, u) of N ∗(t, u) with respect to u exists
and is continuous with respect to u, so ψ ∈ C1(L2,R) and

(3–7) (ψ ′(u), v)=

∫ 1

0

(
(0−1

0 u, v)+ (N ∗′
(t,−u),−v)

)
dt

for all v ∈ R(0). In view of Proposition 2.13 and of ν(B2)= 0, there exists ε > 0
such that ν(B2 +ε I2n)= 0 and i(B2 +ε I2n)= i(B2). So without loss of generality
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we assume that, for some ε > 0,

(3–8) B2 − B1 ≥ ε I2n.

Write C(t) := (B2(t)− B1(t))−1. Then (Cu, v) :=
∫ 1

0 (C(t)u(t), v(t)) dt defines
a Hilbert inner product structure on R(0). By the spectral theory of self-adjoint
compact operators we find a basis of R(0), denoted by {e j }, and a real sequence
{λ j } with λ j → 0 satisfying

(3–9) (Cei , e j )= δi j and (0−1
0 e j , u)= λ j (Ce j , u) for all u ∈ R(0).

From (3–5), there exists ξ j ∈ ker0 such that

λ j C(t)e j −0−1
0 e j = ξ j .

Let x j = 0−1
0 e j + ξ j . We have 0x j − λ−1

j (B2(t)− B1(t))x j = 0. Since i(B2) =

i(B1)+ ν(B1) and ν(B2)= 0, we have ν(B1 + λ(B2 − B1))= 0 for any λ ∈ (0, 1]

by Definition 2.4 and Proposition 2.13(1). Hence, for λ j < 0 we have −λ−1
j > 1

and λ j +1> 0. So for any j ∈ N, we have 1+λ j > 0. Set λ̄ := inf{λ j < 0 | j ∈ N}.
Since λ j → 0 as j → ∞, we have

(3–10) 1 + λ̄ > 0.

For any u =
∑

∞

i=1 ξi ei ∈ R(0), we get from (3–9)

(3–11) (0−1
0 u, u)=

∞∑
j=1

ξ j (0
−1
0 u, e j )=

∞∑
i=1

λ j |ξ j |
2
≥ λ̄(Cu, u).

On the other hand, we know that N (t, u)≤ 1
2((B2(t)− B1(t))u, u)+c for all (t, u),

by assumption (2) of the theorem. Thus

N ∗(t, u)≥
1
2(C(t)u, u)− c

and ∫ 1

0
N ∗(t,−u) dt ≥

1
2(Cu, u)− c

for all u ∈ R(0). Combining this with (3–10), (3–11) and (3–6), we obtain

ψ(u)≥ (λ̄+ 1)(Cu, u)− c → +∞

as (Cu, u) → +∞. Let {u j } ⊂ R(0) satisfy ψ(un) → infu∈R(0) ψ(u). Then
{u j } is bounded in R(0), and there exists a subsequence, denoted again by {u j },
converging weakly to u0 in R(0). As in [Ekeland 1990, Theorem II.2.1], ψ
is weakly lower semicontinuous, so infu∈R(0) ψ(u) = limψ(u j ) ≥ ψ(u0), and
ψ(u0)= infu∈R(0) ψ(u). Therefore, ψ ′(u0)= 0.
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By (3–7), we have ∫ 1

0

(
0−1

0 u0 − N ∗′
(t,−u0), v

)
dt = 0

for all v ∈ R(0). From (3–5) again, ξ0 := 0−1
0 u0 − N ∗′(t,−u0) lies in ker0.

Writing 0−1
0 u0 − ξ0 = x0, we get

J ẋ0(t)+ B1(t)x0(t)+ N ′(t, x0(t))= 0, Px(0)= 0 = Px(1).

The proof is complete. �

Remark. As in [Ekeland 1990, Theorem III.2.1], it is not necessary to assume that
N (t, u) is strictly convex with respect to u: simple convexity suffices. We used the
strict condition only in order to derive that N ∗(t, u) is differentiable with respect
to u, to simplify the proof.

Corollary 3.3. Assume B1, B2 ∈ L∞

2n, B1(t), B2(t) are continuous with respect to
t , and satisfy assumption (1) of Theorem 3.2. Let γi (t) with 0 ≤ γ1(t)≤ · · ·≤ γ2n(t)
be the eigenvalues of B2(t)− B1(t), and let λ j be the eigenvalues of 0, and set:

γ := max{γ2n(t)|0 ≤ t ≤ 1}, λ := max{λ j < 0}.

Then (3–1) has a solution if |λ|> γ .

Proof. We only need to prove that ν(B2)= 0 and i(B2)= i(B1)+ν(B1). In fact, by
the definition of γ we have B2(t)− B1(t)≤ γ I2n , and B2(t)≤ B1(t)+γ I2n . Since
−λ= |λ|>γ , then 0x +µx = 0 has no nontrivial solutions for any µ∈ (0, γ ]. By
Proposition 2.13 and Definition 2.4, we have i(B1 +γ I2n)= i(B1)+ν(B1). Since
B1< B2 ≤ B1+γ I2n , we have i(B1)+ν(B1)≤ i(B2), i(B2)+ν(B2)≤ i(B1+γ I2n).
So ν(B2)= 0 and i(B2)= i(B1)+ ν(B1). �

Corollary 3.4. Assume that

((k − 1)π + ε)I2n ≤ H ′′(t, x)≤ (kπ − ε)I2n for all (t, x),

where ε > 0 is small and k ∈ Z. Then (3–1) has at least one solution.

Proof. Take B1(t) := (k − 1)π I2n and B2(t) := (kπ −
1
2ε)I2n . Then N (t, x) :=

H(t, x)− 1
2(B1(t)x, x) is convex with respect to x , since N ′′(t, x)≥ ε I2n , and

H(t, x)=

∫ 1

0
ds

(∫ 1

0
H ′′(t, τ sx)xs dτ, x

)
+ (H ′(t, θ), x)+ H(t, θ)

≤
1
2(kπ − ε)|x |

2
+ (H ′(t, θ), x)+ H(t, θ)

≤
1
2 b|x |

2
+ c,

where b := kπ −
1
2ε and c > 0 is a constant. Since i(bI2n) = i((k − 1)π I2n)+

ν((k − 1)π I2n), the hypotheses of Theorem 3.2 are satisfied. �
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Example 3.5. Let

b(t)=


π

2(1−t1)
for t ∈ (t1, 1),

π

2t1
for t ∈ (0, t1).

Then i(bI2n)=
∑

λ∈[0,1) ν(λbI2n)−n = 0. Let H(t, x)= (b(t)−ε)|x |
2
+|x |

ε+1
+

h(t) and ε ∈ (0, 1) is fixed. By Theorem 3.2, (3–1) has a solution. But γi (t) =

b(t)−ε→ +∞ as t1 → 0+ for t ∈ (0, t1). So the assumptions in Corollary 3.3 are
not satisfied.

Remark. Corollary 3.3 can be compared with [Ekeland 1990, Theorem II.2.1].
There Ekeland discusses periodic solutions of the Hamiltonian system consisting
of the first equation in (3–1), and proves existence under similar conditions.

We now discuss the multiplicity for solutions of (3–1).

Theorem 3.6. Let the assumptions of Theorem 3.1 be satisfied, and assume more-
over that

H ′(t, x)= A(t, x)x + o(|x |) for small |x|,

where A(t, x) is a symmetric 2n × 2n matrix varying continuously with (t, x) ∈

[0, 1] × R2n and satisfying A1(t) ≤ A(t, x) ≤ A2(t), for all (t, x), where A1 and
A2 are such that i(A1)= i(A2) and ν(A2)= 0.

Then (3–1) has a nontrivial solution if i(B1)− i(A1) is odd.

We will use Leray–Schauder degree theory to prove the theorem.

Lemma 3.7 [Chang 1986, Chapter 1, Proposition 4.1′]. Assume that K : X → X
is a linear compact operator and σ(K ), the spectral set of K , does not con-
tain −1. Then the Leray–Schauder degree deg(id +K , �, θ) is (−1)β , where
β =

∑
λ j +1<0,λ j ∈σ(K ) β j and β j = dim

⋃
∞

k=1 ker(K − λ j id)k . �

Proof of Theorem 3.6. We use the notations in Theorem 3.1. For µ ∈ R with
µI2n + B1 ≥ I2n and µI2n + A1 ≥ I2n , we want to show that there exist r1, r ∈ R

with r > r1 > 0 such that

deg(id +3−1 N , Br , θ)= (−1)iµ(B1),(3–12)

deg(id +3−1 N , Br1, θ) = (−1)iµ(A1).(3–13)

From Proposition 2.13, we have iµ(B1) − iµ(A1) = i(B1) − i(A1), and hence
deg(id +3−1 N , Br \ Br1, θ) = (−1)iµ(B1) − (−1)iµ(A1) 6= 0, so the problem (3–1)
has a nontrivial solution x = x(t) with r > ‖x‖C > r1. We only prove (3–12) since
in a similar way we can get (3–13). From the proof of Theorem 3.1, we have

deg(id +3−1 N , Br , θ)= deg(id +3−1C, Br , θ).
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Set K =3−1C . If λ∈ σ(K ) with 1+λ< 0, we have K x = λx for some x 6= θ . Set
y(t) := (µI2n + B1(t))x(t); then 3−1 y = C−1λy, and ker(K −λ id)∼= ker(3−1

−

C−1λ). From the definitions,

E−

µ (B1)=

⊕
λ+1<0

ker(3−1
− C−1λ)∼=

⊕
λ+1<0

ker(K − λ id),

iµ(B1)= dim E−

µ (B1)= dim
⊕
λ+1<0

ker(K − λ id).

By Lemma 3.7, in order to prove (3–12) we only need to prove that

(3–14) ker(K − λ id)2 = ker(K − λ id).

From (2–8), we have an orthogonal decomposition

(3–15) L2
= R(3−1

− C−1λ)⊕ ker(3−1
− C−1λ).

If (K − λ id)2x = θ , let x̄ := (K − λ id)x =3−1Cx − λx . Then

x̄ = (3−1
− λC−1)(Cx).

Since (K − λ id)x̄ = 0, we have Cx̄ ∈ ker(3−1
− λC−1). From (3–15) we get

(Cx̄, x̄)= 0 and x̄ = θ . This proves (3–14). �

To conclude we will use Morse theory to discuss the multiplicity of solutions.
We will make the assumption that the second derivative H ′′

: [0, 1]×R2n
→ R2n×2n

is continuous.

Theorem 3.8. Assume that H, H ′, H ′′ are all continuous, that H(t, θ) ≡ 0, that
H ′(t, θ)≡ θ and that the following conditions are satisfied:

(1) There exist B1, B2 ∈ L∞

2n with i(B2)= i(B1), ν(B2)= 0 such that

B1(t)≤ H ′′(t, x)≤ B2(t) for all (t, x) with |x | ≥ r > 0.

(2) With B0(t) := H ′′(t, θ), we have

i(B1) /∈ [i(B0), i(B0)+ ν(B0)].

Then (3–1) has one nontrivial solution. Moreover, under the further assumption
that

(3) 0=ν(B0) and |i(B1)−i(B0)|≥n, equation (3–1) has two nontrivial solutions.

Proof. From assumption (1), H ′′(t, x) is bounded and there exist µ1, µ > 0 such
that

(3–16) µ1 I2n ≥ H ′′(t, x)+µI2n ≥ I2n for all (t, x).
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Recall that (3x)(t) = J ẋ(t) − µx(t). Define N (t, x) = H(t, x) +
1
2µ|x |

2 and
N ∗(t, x) = supy∈R2n {(x, y)− N (t, y)}. From [Ekeland 1990, Proposition II.2.10]
we have

(3–17) N ∗′′
(t, u∗)= N ′′(t, u)−1

if u = N ∗′(t, u∗), or equivalently if u∗
= N ′(t, u) (by the Fenchel conjugate for-

mula; see [Ekeland 1990, Proposition II.1.15]). By (3–16) we have

(3–18) I2n ≤ N ∗′′
(t, u∗)≤ µ−1

1 I2n for all (t, u) ∈ [0, 1] × R2n,

and hence |u| → +∞ if and only if |u∗
| → +∞. From assumption (1) and (3–17)

there exists r1 > 0 such that

(3–19) (B2(t)+µI2n)
−1

≤ N ∗′′
(t, u∗)≤ (B1(t)+µI2n)

−1

for all (t, u∗) ∈ [0, 1]×R2n such that |u∗
| ≥ r1. Consider the functional defined by

(3–20) ψ(u)=

∫ 1

0

(1
2(3

−1u(t), u(t))+ N ∗(t, u(t))
)

dt for all u ∈ L2.

We prove that ψ satisfies the Palais–Smale condition. Assume that {u j } is a se-
quence in L2 such thatψ(u j ) is bounded andψ ′(u j )→θ in L2. From N ′(t, θ)≡θ ,
we have N ∗′(t, θ)≡ θ and

(3–21) (ψ ′(u), v)=

∫ 1

0

(
(3−1u(t), v(t))+ (N ∗′

(t, u(t)), v(t))
)

dt

for all v ∈ L2. Noticing that
∫ 1

0 N ∗′′(t, θu j (t)) dθu j (t)= N ∗′(t, u j (t)), we have

(3–22) 3−1u j +

∫ 1

0
N ∗′′

(t, θu j (t)) dθu j = ψ ′(u j )→ θ, in L2.

If ‖u j‖L2 → ∞, we set x j = u j/‖u j‖L2 . Without loss of generality, we assume
x j ⇀ x0 in L2, and hence 3−1x j →3−1x0 in L2. For any δ ∈ (0, 1) fixed, set

C j (t)=

{∫ 1
0 N ∗′′(t, θu j (t)) dθ if |u j (t)| ≥ r1/δ,

(B1(t)+µI2n)
−1 otherwise,

ξ j (t)=

∫ 1

0
N ∗′′

(t, θu j (t)) dθu j (t)− C j (t)u j (t).

Then there exists a constant M1 > 0 such that

(3–23) |ξ j (t)| ≤ M1 for a.e. t ∈ (0, 1),
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and

(1 − δ)(B2(t)+µI2n)
−1

+ δ I2n ≤ C j (t)≤ (1 − δ)(B1(t)+µI2n)
−1

+µ−1
1 δ I2n.

So for every ε > 0, there exists δ > 0 such that

(3–24) ((B2(t)+ ε I2n)+µI2n)
−1

≤ C j (t)≤ ((B1(t)− ε I2n)+µI2n)
−1

for all t ∈ (0, 1). Now we may further assume C−1
j (t)u(t) ⇀ B0(t)u(t) in L2 for

every u ∈ L2 with µI2n + B1−ε I2n ≤ B0 ≤µI2n + B2+ε I2n . Let3−1x0(t)= y0(t),
from equations (3–22)–(3–24), we have

(3–25) J ẏ0(t)+ (B0(t)−µI2n)y0(t)= 0, Py0(0)= 0 = Py0(1).

From assumption (1) and Proposition 2.13(3), for ε > 0 is small enough, we have
ν(B1 −ε I2n)= ν(B2 +ε I2n)= 0 and i(B1 −ε I2n)= i(B2 +ε I2n). So ν(B0 −µI2n)

vanishes. This is impossible since ‖y0‖L2 = 1 and y0 is a nontrivial solution of
(3–25); thus ‖u j‖L2 is bounded. Assume u j ⇀ u0 in L2; then 3−1u j → 3−1u0.
Let ζ j := 3−1u j + N ∗′(t, u j ); then N ∗′(t, u j ) = ζ j −3−1u j → −3−1u0 in L2,
from (3–22). The Fenchel conjugate formula gives u j = N ′(ζ j − 3−1u j ) →

N ′(−3−1u0) in L2, by [Ekeland 1990, II, Theorem 4]. So ψ satisfies the PS
condition.

In order to continue the proof we need a lemma. Let X be a Banach space and
take f ∈ C2(X, R1). Set K = {x ∈ X | f ′(x)= θ} and fa = {x ∈ X | f (x)≤ a}. If
f ′(p) = θ and c = f (p), we say that p is a critical point of f and c is a critical
value. Otherwise, we say that c ∈ R is a regular value of f . For any p ∈ K ,
f ′′(p) is a self-adjoint operator; the Morse index of p is defined as the dimension
of the negative space corresponding to the spectral decomposing, and is denoted by
m−( f ′′(p)). We also set m0( f ′′(p0)) = dim ker f ′′(p0). If f ′′(p) has a bounded
inverse we say that p is nondegenerate.

From [Chang 1993, Chapter III, Theorem 3.1; Chapter II, Theorems 5.1, 5.2
and Corollary 5.2], one can prove:

Lemma 3.9. Assume f ∈ C2(X, R) satisfies the PS condition, f ′(θ)= θ , and there
is a positive integer γ such that γ /∈ [m−( f ′′(θ)),m0( f ′′(θ))+ m−( f ′′(θ))] and
Hq(X, fa; R)= δqγR for some regular value a< f (θ). Then f has a critical point
p0 6= θ with Cγ ( f, p0) 6= 0. Moreover, if θ is a nondegenerate critical point and
m0( f ′′(p0))≤|γ−m−( f ′′(θ))|, then f has another critical point p1 6= p0, θ . �

We resume the proof of the theorem. By (3–17), we have

N ∗′′
(t, θ)= (N ′′(t, θ))−1

= (H ′′(t, θ)+µI2n)
−1.
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Thus, for any u ∈ L2,

(ψ ′′(θ)u, u)=

∫ 1

0

(
(3−1u, u)+ (N ∗′′

(t, θ)u, u)
)

dt

=

∫ 1

0

(
(3−1u, u)+ ((B0(t)+µI2n)

−1u(t), u(t))
)

dt.

By definition, m−(ψ ′′(θ)) = iµ(B0) and m0(ψ ′′(θ)) = νµ(B0). By Propositions
2.10 and 2.13, we have i(B1) /∈ [i(B0), i(B0) + ν(B0)] if and only if iµ(B1) ∈

[iµ(B0), iµ(B0) + νµ(B0)]; and ν(B0) = 0, |i(B0) − i(B0)| ≥ n if and only if
νµ(B0)= 0, |iµ(B1)− iµ(B0)| ≥ n. Hence, by Lemma 3.9, we only need to show

(3–26) Hq(L2, ψ−a; R)∼= δqγR for q = 0, 1, 2, . . . ,

for a > 0 is large enough, where γ := iµ(B1). We proceed in three steps.

Step 1. For any B1, B2 ∈ L∞

2n with B1 < B2, i(B1)= i(B2) and ν(B2)= 0, we have
L2

= E−
µ (B1)⊕ E+

µ (B2).
In fact, if θ 6= u ∈ E−

µ (B1), then ψ(µ,B1)(u, u) < 0,

ψ(µ,B2)(u, u)≤ ψ(µ,B1)(u, u) < 0,

and u /∈ E+
µ (B2). So E−

µ (B1) ∩ E+
µ (B2) = {θ}. We only need to prove that

L2
= E−

µ (B1)+ E+
µ (B2). By definition, L2

= E−
µ (B2)⊕ E+

µ (B2), and iµ(B2) =

dim E−
µ (B2) < ∞. Let {e j }

γ

j=1 be a basis of E−
µ (B1) where γ := iµ(B1). We

have decompositions e j = e−

j + e+

j with e−

j ∈ E−
µ (B2) and e+

j ∈ E+
µ (B2). If∑γ

j=1 α j e−

j = 0, then x̄ :=
∑γ

j=1 α j e j =
∑γ

j=1 α j e+

j ∈ E+
µ (B2), and x̄ ∈ E−

µ (B1),
so x̄ = θ and α j = 0, j = 1, 2, . . . , γ . Hence {e−

j }
γ

j=1 is linear independent. Since
dim E−

µ (B2) = iµ(B2) = iµ(B1) = γ , {e−

j }
γ

j=1 is a basis of E−
µ (B2). For any

u ∈ L2 written as u = u−
+ u+ with u−

∈ E−
µ (B2) and u+

∈ E+
µ (B2), we have

u−
=

∑γ

j=1 β j e−

j . So u =
∑γ

j=1 β j e j +
(
u+

−
∑γ

j=1 β j e+

j

)
; the first sum lies in

E−
µ (B1) and the remainder is in E+

µ (B2).

Step 2. For ε > 0 small enough, set MR := (E+
µ (B2 +ε I2n)∩ BR)⊕ E−

µ (B1 −ε I2n).
For R, a > 0 large enough, then,

(3–27) Hq(L2, ψ−a; R)= Hq(MR,MR ∩ψ−a; R) for q = 0, 1, 2, . . . .

In fact, from assumption (1) and Proposition 2.13, we have ν(B2 + ε I2n) = 0 and
i(B2 + ε I2n)= i(B1 − ε I2n). In addition, by Step 1, we have

L2
= E−

µ (B1 − ε I2n)⊕ E+

µ (B2 + ε I2n).
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For every u = u1 + u2 ∈ L2 with u1 ∈ E−
µ (B1 − ε I2n) and u2 ∈ E+

µ (B2 + ε I2n),
from (3–21) we have

(ψ ′(u), u2 − u1)

=

∫ 1

0

(
(3−1u, u2 − u1)+ (N ∗′

(t,−u), u1 − u2)
)

dt

= −

∫ 1

0

(
(3−1u1, u1)+

(∫ 1

0
N ∗′′

(t,−θu) dθu1, u1

))
dt

+

∫ 1

0

(
(3−1u2, u2)−

(∫ 1

0
N ∗′′

(t,−θu) dθu2, u2

))
dt

≥ −

∫ 1

0

(
(3−1u1, u1)+ ((µI2n + B1(t)− ε I2n)

−1u1, u1)
)

dt

+

∫ 1

0

(
(3−1u2, u2)+ ((µI2n + ε I2n + B2(t))−1u2, u2)

)
dt − c3,

where c3 > 0 is a constant. Now we bound these last two integrals using the fact
that in the subspace E−

µ (B1 − ε I2n) of L2, the norm ‖ · ‖L2 is equivalent to ‖ · ‖1

defined by

‖u‖1 := (−

∫ 1

0
[(3−1u, u)+ ((µI2n + B1(t)− ε I2n)

−1u, u)] dt)1/2;

in this way we obtain

(3–28) (ψ ′(u), u2 − u1)≥ c2‖u2‖
2
L2 + c1‖u1‖

2
L2 − c3,

with c1, c2 > 0. Thus when R is large enough we have (ψ ′(u), u2 − u1) > 1 for
every u = u1 +u2 with u1 ∈ E−

µ (B1 − ε I2n), u2 ∈ E+
µ (B2 + ε I2n) and ‖u2‖L2 ≥ R,

or ‖u1‖L2 ≥ R. For any u = u2 + u1 /∈ MR , let σ(t, u) = e−t u2 + et u1, Tu =

ln ‖u2‖ − ln R, and

η(t, u2 + u1)=

{
u2 + u1 if ‖u2‖ ≤ R,

σ (Tu t, u) if ‖u2‖> R.

Then η : [0, 1]×L2
→ L2 is continuous and satisfies η(0, · )= idL2 , η(1, L2)⊂ MR ,

η(1, ψa)⊂ MR ∩ψa ,

η(t, ψa)⊂ ψa, η(t, · )|MR = idMR for all t ∈ [0, 1].

So (MR,MR ∩ψa) is a deformation retract of (L2, ψa), yielding (3–27).

Step 3. For R,−a > 0 are large enough,

Hq(MR,MR ∩ψa; R)∼= δqγR for q = 0, 1, . . . .
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In fact, we have from (3–18) and (3–19) that∫ 1

0
N ∗(t, u(t)) dt

=

∫ 1

0

(∫ 1

0
θdθ

∫ 1

0
N ∗′′

(t, θsu(t)) dsu(t), u(t)
)

dt +

∫ 1

0
N ∗(t, θ) dt

≤

∫
|u(t)|≥kr1

(∫ 1

0
θdθ

∫ 1

0
N ∗′′

(t, θsu(t)) dsu(t), u(t)
)

dt + Mk

=

∫
|u(t)|≥kr1

(∫∫
|θsu(t)|≥r1,θ,s∈[0,1]

θN ∗′′
(t, θsu(t)) ds dθ u(t), u(t)

)
dt

+

∫
|u(t)|≥kr1

(∫∫
|θsu(t)|≤r1,θ,s∈[0,1]

N ∗′′
(t, θsu(t)) ds dθ u(t), u(t)

)
dt + Mk

≤
1
2

∫ 1

0
((µI2n + B1(t))−1u(t), u(t)) dt

+µ−1
1

∫ 1

0
(u(t), u(t)) dt

∫∫
|θs|≤ 1

k ,θ,s∈[0,1]

θds dθ + Mk,

where Mk is a constant depending only on k. Hence, for every ε > 0 there exists a
constant M such that∫ 1

0
N ∗(t, u(t)) dt ≤

1
2

∫ 1

0
((µI2n + B1(t)− ε I2n)

−1u(t), u(t)) dt + M

for all u ∈ L2. Together with (3–20), this yields, for any u = u1 + u2 with u1 ∈

E−
µ (B1 − ε I2n) and u2 ∈ E+

µ (B2 + ε I2n)∩ BR , the bound

ψ(u)≤ −c1‖u1‖
2
L2 + c4‖u1‖L2 + c5,

where c4, c5 > 0, and c1 is the constant in (3–28). Hence ψ(u)→ −∞ if and only
if ‖u1‖ → +∞ uniformly in u2 ∈ E+

µ (B2 + ε I2n)∩ BR . Thus there exist T > 0,
a1 < a2 <−T , and R0 > R1 > R2 > 0 such that

(E+

µ (B2 + ε I2n)∩ BR0)⊕ (E−

µ (B1 − ε I2n) \ BR2)⊂ ψa1 ∩ MR0

⊂ (E+

µ (B2 + ε I2n)∩ BR0)⊕ (E−

µ (B1 − ε I2n) \ BR1)⊂ ψa2 ∩ MR0 .

For any u ∈ MR0 ∩(ψa2 \ψa1), since σ(t, u)= e−t u2+et u1, the function ψ(σ(t, x))
is continuous in t and satisfies ψ(σ(0, x))=ψ(u) > a1 and ψ(σ(t, u))→ −∞ as
t → +∞. Thus there exists a unique t = T1(u) such that ψ(σ(t, u))= a1. Since

d
dt
ψ(σ(t, u))= 〈dψ(σ(t, u)), σ ′(t, u)〉

= 〈dψ(e−t u2 + et u1),−e−t u2 + et u1〉 ≤ −1
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as t > 0, by the implicit function theorem, t = T1(u) is continuous. Define

η1(t, u)= u, u ∈ ψa1 ∩ MR0 = σ(T1(u)t, u), u ∈ M ∩ (ψa2 \ψa1);

then η1 : [0, 1] × ψa2 ∩ MR0 → ψa2 ∩ MR0 is a deformation from ψa2 ∩ MR0 to
ψa1 ∩ MR0 . Set τ1 := η1(1, · ) : MR0 ∩ψa2 → MR0 ∩ψa1 , and define

τ2(u)=

{
u if ‖u1‖ ≥ R1,

u2 + (u1/‖u1‖)R1 if ‖u1‖< R1.

Then τ = τ2 ◦ τ1 is a strong deformation retract:

τ : MR0 ∩ψa2 → (E+

µ (B2 + ε I2n)∩ BR0)⊕ (E−

µ (B1 − ε I2n) \ intBR1),

where int BR1 is the interior of BR1 . Hence, for q = 0, 1, 2, . . . ,

H(MR0,MR0 ∩ψa2; R)∼= Hq
(
(E+

µ (B2 +ε I2n)∩ BR0)⊕ E−

µ (B1 −ε I2n),

(E+

µ (B2 +ε I2n)∩ BR0)⊕(E
−

µ (B1 −ε I2n)\ int BR1); R
)

∼= Hq(E−

µ (B1 −ε I2n)∩ BR1, ∂(E
−

µ (B1 −ε I2n)∩ BR1); R)

∼= δqγR. �

Remark. The method of the proof of (3–26) comes from [Chang 1993], but we
have modified it to suit our case.
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