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For a locally compact group G and p ∈ (1, ∞), we define Bp(G) to be the
space of all coefficient functions of isometric representations of G on quo-
tients of subspaces of L p spaces. For p=2, this is the usual Fourier–Stieltjes
algebra. We show that Bp(G) is a commutative Banach algebra that con-
tractively (isometrically, if G is amenable) contains the Figà-Talamanca–
Herz algebra Ap(G). If 2 ≤ q ≤ p or p ≤ q ≤ 2, we have a contractive
inclusion Bq(G) ⊂ Bp(G). We also show that Bp(G) embeds contractively
into the multiplier algebra of Ap(G) and is a dual space. For amenable G,
this multiplier algebra and Bp(G) are isometrically isomorphic.

Introduction

P. Eymard [1964] introduced the Fourier algebra A(G) of a locally compact group
G. If G is abelian with dual group 0, the Fourier transform yields an isometric
isomorphism of L1(0) and A(G): this motivates (and justifies) the name.

For any p ∈ (1,∞), as usual, we define p′
∈ (1,∞) to be such that 1/p+1/p′

=

1; we say that p′ is dual to p. The Figà-Talamanca–Herz algebra Ap(G) is defined
as the collection of those functions f : G →C such that there are sequences (ξn)

∞

n=1
in L p′(G) and (φn)

∞

n=1 in L p(G) such that

(0–1) f (x)=

∞∑
n=1

〈λp′(x)ξn, φn〉 (x ∈ G),

where λp′ denotes the regular left representation of G on L p′(G), and

(0–2)
∞∑

n=1

‖ξn‖‖φn‖<∞.
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The norm of f ∈ Ap(G) is the infimum over all expressions of the form (0–2)
satisfying (0–1). These Banach algebras were first considered by C. Herz [1971;
1973]; their study has been an active area of research ever since (see [Cowling
1979; Forrest 1993; 1994; Lambert et al. 2004; Miao 1996], and many more). For
p = 2, the algebra Ap(G) is nothing but the Fourier algebra A(G).

Another algebra introduced in [Eymard 1964] is the Fourier–Stieltjes algebra
B(G). For abelian G, it is isometrically isomorphic to M(0) via the Fourier–
Stieltjes transform. It consists of all coefficient functions of unitary representations
of G on some Hilbert space and contains A(G) as a closed ideal.

Is there, for general p ∈ (1,∞), an analog of B(G) in a p-setting that relates to
Ap(G) as does B(G) to A(G)?

In the literature (see [Cowling 1979; Forrest 1994; Miao 1996; Pier 1984], for
instance), sometimes an algebra Bp(G) is considered: it is defined as the multiplier
algebra of Ap(G). If p = 2 and if G is amenable, we do have B(G)= Bp(G); for
nonamenable G, however, B(G)( B2(G) holds. Hence, the value of Bp(G) as the
appropriate replacement for B(G) when dealing with Ap(G) is a priori limited to
the amenable case.

In the present paper, we pursue a novel approach. We define Bp(G) to consist
of the coefficient functions of all representations of G on quotients of subspaces
of L p′-spaces, so-called QSLp′-spaces. This class of spaces is identical with the
p′-spaces considered in [Herz 1973] and turns out to be appropriate for our pur-
pose (such representations were considered only recently, in a completely different
context, in [Jaming and Moran 2000]).

We list some properties of our Bp(G):

• Under pointwise multiplication, Bp(G) is a commutative Banach algebra with
identity.

• Ap(G) is an ideal of Bp(G), into which it contractively embeds (isometrically
if G is amenable).

• If 2 ≤ q ≤ p or p ≤ q ≤ 2, we have a contractive inclusion of Bq(G) in Bp(G).

• Bp(G) is a dual Banach space.

• Bp(G) embeds contractively into the multiplier algebra of Ap(G) and is iso-
metrically isomorphic to it if G is amenable.

This list shows that our Bp(G) relates to Ap(G) in a fashion similar to how
B(G) relates to A(G) and therefore may be the right substitute for B(G) when
working with Figà-Talamanca–Herz algebras.

The main challenge when defining Bp(G) and trying to establish its properties
is that the powerful methods from C∗- and von Neumann algebras are no longer at
one’s disposal for p 6= 2, so that one has to look for appropriate substitutes.
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1. Group representations and QSL p-spaces

We begin with defining what we mean by a representation of a locally compact
group on a Banach space:

Definition 1.1. A representation of a locally compact group G (on a Banach space)
is a pair (π, E) where E is a Banach space and π is a group homomorphism from
G into the invertible isometries on E which is continuous with respect to the given
topology on G and the strong operator topology on B(E).

Remarks. 1. Our definition is more restrictive than the usual definition of a
representation, which does not require the range of π to consist of isome-
tries. Since we will not encounter any other representations, however, we feel
justified to use the general term “representation” in the sense just defined.

2. Any representation (π, E) of a locally compact group G induces a represen-
tation of the group algebra L1(G) on E , i.e. a contractive algebra homomor-
phism L1(G) to B(E)— which we shall denote likewise by π — through

(1–1) π( f ) :=

∫
G

f (x)π(x) dx ( f ∈ L1(G)),

where the integral (1–1) converges with respect to the strong operator topol-
ogy.

3. Instead of requiring π to be continuous with respect to the strong operator
topology on B(E), we could have demanded that π be continuous with respect
to the weak operator topology on B(E): both definitions are equivalent by
[de Leeuw and Glicksberg 1965].

Definition 1.2. Let G be a locally compact group, and let (π, E) and (ρ, F) be
representations of G. Then:

(a) (π, E) and (ρ, F) are said to be equivalent if there is an invertible isometry
V : E → F such that

Vπ(x)V −1
= ρ(x) (x ∈ G).

(b) (ρ, F) is called a subrepresentation of (π, E) if F is a closed subspace of E
such that

ρ(x)= π(x)|F (x ∈ G).

(c) (ρ, F) is said to be contained in (π, E)— in symbols: (ρ, F) ⊂ (π, E)— if
(ρ, F) is equivalent to a subrepresentation of (π, E).

Throughout, we shall often not tell a particular representation apart from its
equivalence class. This should, however, not be a source of confusions.

In this paper, we are interested in representations of locally compact groups on
rather particular Banach spaces:



382 VOLKER RUNDE

Definition 1.3. Let p ∈ (1,∞).

(a) A Banach space is called an L p-space if it is of the form L p(X) for some
measure space X .

(b) A Banach space is called a QSLp-space if it is isometrically isomorphic to a
quotient of a subspace of an L p-space.

Remarks. 1. Equivalently, a Banach space is a QSLp-space if and only if it is a
subspace of a quotient of an L p-space.

2. Trivially, the class of QSLp-spaces is closed under taking subspaces and quo-
tients.

3. If (Eα)α is a family of QSLp-spaces, its `p-direct sum `p-
⊕

α Eα is again a
QSLp-space.

4. If E is a QSLp-space and if p′
∈ (1,∞) is dual to p, the dual space E∗ is an

QSLp′-space. In particular, every QSLp-space is reflexive.

5. By [Kwapień 1972, §4, Theorem 2], the QSLp-spaces are precisely the p-
spaces in the sense of [Herz 1971], i.e. those Banach spaces E such that for
any two measure spaces X and Y the amplification map

B(L p(X), L p(Y ))→ B(L p(X, E), L p(Y, E)), T 7→ T ⊗ idE

is an isometry. In particular, an Lq -space is a QSLp-space if and only if
2 ≤ q ≤ p or p ≤ q ≤ 2. Consequently, if 2 ≤ q ≤ p or p ≤ q ≤ 2, then every
QSLq -space is a QSLp-space.

6. All Lp,1-spaces in the sense of [Lindenstrauss and Rosenthal 1969] — and,
more generally, all L

g
p,1-spaces in the sense of [Defant and Floret 1993] —

are QSLp-spaces.

7. Since the class of L p-space is stable under forming ultrapowers ([Heinrich
1980]), so is the class of QSLp-spaces (this immediately yields that QSLp-
spaces are not only reflexive, but actually superreflexive). In the case where
X = Y = C, the QSLp-spaces are therefore precisely those that occur in
[Le Merdy 1996, Theorem 4.1] and play the rôle played by Hilbert spaces
in Ruan’s representation theorem for operator spaces ([Effros and Ruan 2000,
Theorem 2.3.5]).

2. The linear space Bp(G)

We shall not so much be concerned with representations themselves, but rather
with certain functions associated with them:
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Definition 2.1. Let G be a locally compact group, and let (π, E) be a representation
of G. A coefficient function of (π, E) is a function f : G → C of the form

(2–1) f (x)= 〈π(x)ξ, φ〉 (x ∈ G),

where ξ ∈ E and φ ∈ E∗.

Remark. It is clear that every coefficient function of the form (2–1) must be both
bounded — by ‖ξ‖‖φ‖ — and continuous.

For any locally compact group G and p ∈ (1,∞), we denote by Repp(G) the
collection of all (equivalence classes) of representations of G on a QSLp-space.

Examples. 1. The left regular representation (λp, L p(G)) of G with

λp(x)ξ(y) := ξ(x−1 y) (x, y ∈ G, ξ ∈ L p(G))

belongs to Repp(G).

2. For any QSLp-space E , the trivial representation (idE , E) lies in Repp(G).

3. For 2≤q ≤ p or p ≤q ≤2, we have Repq(G)⊂Repp(G), so that, in particular,
every unitary representation of G on a Hilbert space belongs to Repp(G).

We can now define the main object of study in this article:

Definition 2.2. Let G be a locally compact and let p, p′
∈ (1,∞) be dual to each

other. Let

Bp(G) :=
{

f : G → C : f is a coefficient of some (π, E) ∈ Repp′(G)
}
.

Remarks. 1. In the literature (see, for instance, [Pier 1984]), the symbol Bp(G)
is usually used to denote the multiplier algebra of Ap(G), i.e. the set of those
continuous functions f on G such that f Ap(G)⊂ Ap(G).

2. Since subspaces and quotients of Hilbert spaces are again Hilbert spaces,
B2(G) is just the usual Fourier–Stieltjes algebra B(G) introduced in [Eymard
1964]. For amenable G, this is consistent with the usage in [Pier 1984]. In
the nonamenable case, however, B2(G) = B(G) as defined in Definition 2.2
and B2(G) in the sense of [Pier 1984] denote different objects.

We conclude this section with proving a few, very basic properties of Bp(G):

Lemma 2.3. Let G be a locally compact group, let p, p′
∈ (1,∞) be dual to each

other, and let f : G → C be a function such that the following holds: There are
sequences ((πn, En))

∞

n=1, (ξn)
∞

n=1, and (φn)
∞

n=1 with (πn, En)∈ Repp′(G), ξn ∈ En ,
and φn ∈ E∗

n for n ∈ N such that
∞∑

n=1

‖ξn‖‖φn‖<∞



384 VOLKER RUNDE

and

f (x)=

∞∑
n=1

〈πn(x)ξn, φn〉 (x ∈ G).

Then f lies in Bp(G).

Proof. Without loss of generality, we may suppose that

∞∑
n=1

‖ξn‖
p′

<∞ and
∞∑

n=1

‖φn‖
p <∞.

Define (π, E) ∈ Repp′(G) by letting E := `p′-
⊕

∞

n=1 En and, for η = (η1, η2, . . .)

in E ,
π(x)η := (π1(x)η1, π2(x), η2, . . .) (x ∈ G).

It follows that ξ := (ξ1, ξ2, . . .) ∈ E , that φ := (φ1, φ2, . . .) ∈ E∗, and that f is a
coefficient function of (π, E)— therefore belonging to Bp(G). �

For any topological space �, we use Cb(�) to denote the bounded continuous
functions on it.

Proposition 2.4. Let G be a locally compact group, and let p ∈ (1,∞). Then
Bp(G) is a linear subspace of Cb(G) containing Ap(G). Moreover, if 2 ≤ q ≤ p
or p ≤ q ≤ 2, we have Bq(G)⊂ Bp(G).

Proof. We have already seen that Bp(G)⊂ Cb(G).
Let p′

∈ (1,∞) be dual to p, and let f1, f2 ∈ Bp(G). By the definition of Bp(G),
there are (π1, E1), (π2, E2) ∈ Repp′(G) such that f j is a coefficient function of
(π j , E j ) for j = 1, 2. It is clear that the pointwise sum f1 + f2 is then of the form
considered in Lemma 2.3 (take ξ3 = ξ4 = · · · = 0) and thus contained in Bp(G).

To see that Ap(G)⊂ Bp(G), apply Lemma 2.3 again with

(πn, En)= (λp′, L p′(G)) for n ∈ N.

Suppose 2 ≤ q ≤ p or p ≤ q ≤ 2, and let q ′
∈ (1,∞) be dual to q. Since every

QSLq ′ space is a is a QSLp′-space, the inclusion Bq(G)⊂ Bp(G) holds. �

3. Tensor products of QSL p-spaces

Let G be a locally compact group. In B(G) = B2(G), the pointwise product of
functions corresponds to the tensor product of representations, which, in turn, relies
on the existence of the Hilbert space tensor product. In order to turn Bp(G) into
an algebra, we will therefore equip, in this section, the algebraic tensor product of
two QSLp′-spaces (where p′ is dual to p), with a suitable norm.

The main result is the following:



REPRESENTATIONS OF LOCALLY COMPACT GROUPS ON QSL p -SPACES 385

Theorem 3.1. Let E and F be QSLp-spaces. Then there is a norm ‖ · ‖p on the
algebraic tensor product E ⊗ F such that:

(i) ‖ · ‖p dominates the injective norm;

(ii) ‖ · ‖p is a cross norm;

(iii) the completion E⊗̃p F of E ⊗ F with respect to ‖ · ‖p is a QSLp-space.

Moreover, if G is a locally compact group with (π, E), (ρ, F) ∈ Repp(G), then
(π ⊗ ρ, E⊗̃p F) ∈ Repp(G) is well defined through

(π(x)⊗ ρ(x))(ξ ⊗ η) := π(x)ξ ⊗ ρ(x)η (x ∈ G, ξ ∈ E, η ∈ F).

Proof. Let X be a measure space, let E1 and F1 be closed subspaces of L p(X), and
let E2 and F2 be closed subspaces of E1 and F1, respectively, such that E = E1/E2

and F = F1/F2.
We may embed the algebraic tensor product L p(X) ⊗ L p(X) into the vector

valued L p-space L p(X, L p(X)) and thus equip it with a norm, denoted by ||| · |||p,
which dominates the injective norm on L p(X)⊗ L p(X) [Defant and Floret 1993,
7.1, Proposition]. Of course, we may restrict ||| · |||p to E1 ⊗ E2. We denote the (un-
completed) injective tensor product by ⊗ε . Since ⊗ε respects passage to subspaces,
we see that the identity on E1 ⊗ F1 induces a contraction from (E1 ⊗ E2, ||| · |||p) to
E1 ⊗ εF1. Let πE : E1 → E and πF : F1 → F denote the canonical quotient maps.
The mapping property of the injective tensor product then yields that

πE ⊗πF : (E1 ⊗ F1, ||| · |||p)→ E1 ⊗ εF1 → E ⊗ εF

is a surjective contraction, so that, in particular, ker(πE ⊗πF ) is closed in

(E1 ⊗ F1, ||| · |||p).

Let ‖ ·‖p denote the induced quotient norm on E ⊗ F = (E1 ⊗ F1)/ ker(πE ⊗πF ).
It is immediate that ‖·‖p dominates the injective tensor norm on E ⊗ F , so that (i)
holds. Moreover, since ||| · |||p is a cross norm on E1 ⊗ E2, it is clear that ‖ · ‖p is
at least subcross on E ⊗ F . Since ‖ ·‖p, however, dominates the injective norm —
which is a cross norm — on E ⊗ F , we conclude that ‖ · ‖p is indeed a cross norm
on E ⊗ F . This proves (ii).

For notational convenience, we write L p(X)⊗ p L p(X) := (L p(X)⊗ L p(X), ||| ·
|||p), and let E ⊗ p F := (E ⊗ F, ‖ · ‖p). Let Y and Z be any measure spaces. In
view of [Defant and Floret 1993, 7.2 and 7.3], it is clear that the amplification map

B(L p(Y ), L p(Z))→ B
(
L p(Y, L p(X)⊗ p L p(X)), L p(Z , L p(X)⊗ p L p(X))

)
,

T 7→ T ⊗ id
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is an isometry, and from [Defant and Floret 1993, 7.4, Proposition] we conclude
that the same is true for

(3–1) B(L p(Y ), L p(Z))→ B(L p(Y, E ⊗ p F), L p(Z , E ⊗ p F)), T 7→ T ⊗ id.

However, if we replace E ⊗ p F in (3–1) by its completion E⊗̃p F , the map obvi-
ously remains an isometry. Hence, E⊗̃p F is a p-space in the sense of [Herz 1971]
and thus a QSLp-space by [Kwapień 1972, §4, Theorem 2].

For the moreover part of the theorem, it is sufficient to show that, for S ∈ B(E)
and T ∈ B(F), their tensor product S ⊗ T is continuous on E ⊗ p F and has
operator norm at most ‖S‖‖T ‖. We first treat the case where S = idE . Let E1⊗ p F
stand for E1 ⊗ F equipped with the norm obtained by factoring E1 ⊗ F2 out of
(E1 ⊗ F1, ||| · |||p). From [Defant and Floret 1993, 7.3], it follows that idE1 ⊗ T ∈

B(E1 ⊗ F) and has operator norm such that

‖idE1 ⊗ T ‖B(E1⊗p F) = ‖T ‖B(F).

It is easy to see that E⊗F is, in fact, the quotient space of E1⊗ p F modulo E2⊗F ,
and it follows that

‖idE ⊗ T ‖B(E⊗p F) ≤ ‖idE1 ⊗ pT ‖B(E1⊗F) = ‖T ‖B(F).

By symmetry, we obtain that

‖S ⊗ idF‖B(E⊗p F) ≤ ‖S‖B(E)

as well. Consequently,

‖S ⊗ T ‖B(E⊗p F) ≤ ‖S ⊗ idF‖B(E⊗p F)‖idE ⊗ T ‖B(E⊗p F) ≤ ‖S‖B(E)‖T ‖B(F). �

Remarks. 1. For a measure space X and for a QSLp-space E , the tensor product
L p(X)⊗̃p E constructed in the proof of Theorem 3.1 is nothing but the vector
valued L p-space L p(X, E).

2. We suspect, but have been unable to prove, that ‖ · ‖p is the Chevet–Saphar
tensor norm dp on E ⊗ F (see [Defant and Floret 1993, 12.7]). This is indeed
the case when both E and F are L

g
p,1-spaces; see [Jaming and Moran 2000].

We conclude this section with two simple corollaries of Theorem 3.1:

Corollary 3.2. Let G be a locally compact group, let p ∈ (1,∞), and let f, g :

G → C be the coefficient functions of (π, E) and (ρ, F) in Repp(G), respectively:

f (x)= 〈π(x)ξ, φ〉 and g(x)= 〈ρ(x)η, ψ〉 (x ∈ G)

where ξ ∈ E , φ ∈ E∗, η ∈ F , and ψ ∈ F∗. Then φ⊗ψ : E ⊗ F → C is continuous
with respect to ‖ · ‖p with norm at most ‖φ‖‖ψ‖, so that the pointwise product of
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f and g is a coefficient function of (π ⊗ ρ, E⊗̃p F), namely

f (x)g(x)= 〈(π(x)⊗ ρ(x))(ξ ⊗ η), φ⊗ψ〉 (x ∈ G).

Proof. In view of the definition of (π ⊗ ρ, E⊗̃p F), only the claim about φ ⊗ψ

needs some consideration: it is, however, an immediate consequence of parts (i)
and (ii) of Theorem 3.1. �

Corollary 3.3. Let G be a locally compact group, and let p ∈ (1,∞). Then Bp(G)
is a unital subalgebra of Cb(G).

Proof. By Proposition 2.4, Bp(G) is a linear subspace of Cb(G), and by Corollary
3.2, it is a subalgebra. The constant function 1 is a coefficient function of any
trivial representation of G on an QSLp-space. �

4. The Banach algebra Bp(G)

Our next goal is to equip the algebra Bp(G) with a norm turning it into a Banach
algebra.

Definition 4.1. Let G be a locally compact group, and let (π, E) be a representation
of G. Then (π, E) is called cyclic if there is x ∈ E such that π(L1(G))x is dense
in E . For p ∈ (1,∞), we let

Cycp(G) := {(π, E) ∈ Repp(G) : (π, E) is cyclic}.

Remark. Let f ∈ Bp(G) be a coefficient function of (π, E) ∈ Repp(G), i.e.

f (x)= 〈 f (x)ξ, φ〉 (x ∈ G)

with ξ ∈ E and φ ∈ E∗. Let F := π(L1(G))ξ , and define ρ : G → B(F) by
restriction of π(x) to F for each x ∈ G. Then (ρ, F) is cyclic with f as a coefficient
function.

Definition 4.2. Let G be a locally compact group, let p, p′
∈ (1,∞) be dual to each

other, and let f ∈ Bp(G). We define ‖ f ‖Bp(G) as the infimum over all expressions∑
∞

n=1 ‖ξn‖‖φn‖, where, for each n ∈ N, there is (πn, En)∈ Cycp′(E) with ξn ∈ En

and φn ∈ E∗
n such that

∞∑
n=1

‖ξn‖‖φn‖<∞ and f (x)=

∞∑
n=1

〈πn(x)ξn, φn〉 (x ∈ G).

Remarks. 1. In view of the remark after Definition 4.1, it is clear that ‖ · ‖Bp(G)

is well defined, and it is easily checked that ‖ · ‖Bp(G) is indeed a norm on
Bp(G).
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2. One might think that it would be more appropriate to define ‖ · ‖Bp(G) in such
a way that the infimum is taken over general (πn, En) ∈ Repp′(G) instead of
only in Cycp′(G). The problem here, however, is that QSLp-spaces can be
of arbitrarily large cardinality, so that Repp′(G) is not a set, but only a class.
Since, for (π, E) ∈ Cycp′(G), the space E has a cardinality not larger than
|L1(G)|ℵ0 , it follows that Cycp′(G)— unlike all of Repp′(G)— is indeed a
set, so that it makes sense to take an infimum over it.

In view of the last one of the two preceding remarks, the following lemma is
comforting:

Lemma 4.3. Let G be a locally compact group, let p, p′
∈ (1,∞) be dual to each

other, and let ((πn, En))
∞

n=1 be a sequence in Repp′(G) such that, with ξn ∈ En

and φn ∈ E∗
n for n ∈ N, we have

∑
∞

n=1 ‖ξn‖‖φn‖<∞. Then, for each n ∈ N, there
are (ρn, Fn)∈ Cycp′(G) with (ρn, Fn)⊂ (πn, En), ηn ∈ Fn , and ψn ∈ E∗, such that

∞∑
n=1

‖ηn‖‖ψn‖ ≤

∞∑
n=1

‖ξn‖‖φ‖

and
∞∑

n=1

〈ρn(x)ηn, ψn〉 =

∞∑
n=1

〈ρn(x)ξn, φn〉 (x ∈ G)

Proof. We proceed as in the remark immediately following Definition 4.1: For
n ∈ N, let Fn := πn(L1(G))ξn , define ρn through restriction, let ηn := ξn , and let
ψn be the restriction of φn to Fn . �

Lemma 4.4. Let G be a locally compact group, let p, p′
∈ (1,∞) be dual to

each other, and let f ∈ Ap(G). Then ‖ f ‖Ap(G) is the infimum over all expressions∑
∞

n=1 ‖ξn‖‖φn‖, where, for each n ∈ N, there is (πn, En) ∈ Cycp′(E) contained in
(λp′, L p′(G)) with ξn ∈ En and φn ∈ E∗

n such that

∞∑
n=1

‖ξn‖‖φn‖<∞ and f (x)=

∞∑
n=1

〈πn(x)ξn, φn〉 (x ∈ G).

Proof. From Lemma 4.3, it follows that the infimum in the statement of Lemma
4.4 is less or equal to ‖ f ‖Ap(G). Let this infimum be denoted by C f . Let ε > 0,
and choose a sequence ((πn, En))

∞

n=1 of cyclic subrepresentations of (λp′, L p′(G))
and, for each n ∈ N, ξn ∈ En and φn ∈ E∗

n such that

∞∑
n=1

‖ξn‖‖φn‖< C f + ε and f (x)=

∞∑
n=1

〈πn(x)ξn, φn〉 (x ∈ G).
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For each n ∈N, use the Hahn–Banach theorem to extend φn ∈ E∗
n toψn ∈ L p′(G)∗ =

L p(G) with ‖ψn‖ = ‖φn‖. It follows that

‖ f ‖Ap(G) ≤

∞∑
n=1

‖ξn‖‖ψn‖ =

∞∑
n=1

‖ξn‖‖φn‖< C f + ε.

Since ε > 0 was arbitrary, we conclude that ‖ f ‖Ap(G) ≤ C f . �

Definition 4.5. Let G be a locally compact group, and let p ∈ (1,∞). Then
(π, E)∈Repp(G) is called p-universal if (ρ, F)⊂(π, E) for all (ρ, F)∈Cycp(G).

Example. Let G be a locally compact group, and let p ∈ (1,∞). Since Cycp(G) is
a set, we can form the `p-direct sum of all (ρ, F) ∈ Cycp(G). This representation
is then obviously p-universal.

Lemma 4.6. Let G be a locally compact group, let p, p′
∈ (1,∞) be dual to each

other, and let (π, E) ∈ Repp′(G) be p′-universal. Then, for each f ∈ Bp(G), the
norm ‖ f ‖Bp(G) is the infimum over all expressions

∑
∞

n=1 ‖ξn‖‖φn‖ with ξn ∈ E
and φn ∈ E∗ for each n ∈ N such that

∞∑
n=1

‖ξn‖‖φn‖<∞ and f (x)=

∞∑
n=1

〈π(x)ξn, φn〉 (x ∈ G).

Proof. Obvious in the light of Definition 4.5. �

In the end, we obtain:

Theorem 4.7. Let G be a locally compact group, let p ∈ (1,∞), and let Bp(G) be
equipped with ‖ · ‖Bp(G). Then:

(i) Bp(G) is a commutative Banach algebra.

(ii) The inclusion Ap(G)⊂ Bp(G) is a contraction.

(iii) For 2 ≤ q ≤ p or p ≤ q ≤ 2, the inclusion Bq(G)⊂ Bp(G) is a contraction.

Proof. Let p′
∈ (1,∞) be dual to p, and let (π, E) ∈ Repp′(G) be p′-universal. It

follows that Bp(G) is a quotient space of the complete projective tensor product
E⊗̃π E∗ and thus complete. By Corollary 3.3, Bp(G) is an algebra, so that all that
remains to prove (i) is to show that ‖ · ‖Bp(G) is submultiplicative.

Let f, g ∈ Bp(G), and let ε > 0. Let ((πn, En))
∞

n=1 and ((ρn, Fn))
∞

n=1 be se-
quences in Cycp′(G) and, for n ∈ N, let ξn ∈ En , φn ∈ E∗

n , ηn ∈ Fn , and ψn ∈ F∗
n

such that

f (x)=

∞∑
n=1

〈πn(x)ξn, φn〉 and g(x)=

∞∑
n=1

〈ρn(x)ηn, ψn〉 (x ∈ G)
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and
∞∑

n=1

‖ξn‖‖φn‖ ≤ ‖ f ‖Bp(G) + ε and
∞∑

n=1

‖ηn‖‖ψn‖ ≤ ‖g‖Bp(G) + ε.

By the “moreover” part of Theorem 3.1, we see that

(πn ⊗ ρm, En⊗̃p Fm) ∈ Repp′(G)

for n,m ∈ N, and Corollary 3.2 yields

f (x)g(x)=

∞∑
n,m=1

〈(πn(x)⊗ ρm(x))(ξn ⊗ ηm), φn ⊗ψm〉 (x ∈ G)

and that
∞∑

n,m=1

‖ξn ⊗ ηm‖En⊗̃p Fn
‖φn ⊗ψm‖(En⊗̃p Fn)∗

≤

∞∑
n,m=1

‖ξn‖‖ηm‖‖φn‖ψm‖

≤

( ∞∑
n=1

‖ξn‖‖φn‖

)( ∞∑
m=1

‖ηm‖‖ψm‖

)
≤ (‖ f ‖Bp(G) + ε)(‖g‖Bp(G) + ε).

From Lemma 4.3 and Definition 4.2, we conclude that

‖ f g‖Bp(G) ≤ (‖ f ‖Bp(G) + ε)(‖g‖Bp(G) + ε).

Since ε > 0 was arbitrary, this yields the submultiplicativity of ‖ · ‖Bp(G) and thus
completes the proof of (i).

From Lemma 4.4 and Definition 4.2, (ii) is immediate.
Let 2 ≤ q ≤ p or p ≤ q ≤ 2, and let q ′

∈ (1,∞) be dual to q. Since Cycq ′(G)⊂
Cycp′(G), this proves (iii). �

5. Bp(G) and A p(G)

For any locally compact group G, the Fourier algebra A(G) embeds isometrically
into B(G) and can be identified with the closed ideal of B(G) generated by the
functions in B(G) with compact support [Eymard 1964].

For general p ∈ (1,∞), the only information we have so far about the relation
between Bp(G) and Ap(G) is Theorem 4.7(ii). In the present section, we further
explore the relation between those algebras.

Our first result is known for p = 2 as Fell’s absorption principle:

Proposition 5.1. Let G be a locally compact group, let p ∈ (1,∞), and let (π, E)∈
Repp(G). Then the representations (λp ⊗π, L p(G, E)) and (λp ⊗ idE , L p(G, E))
are equivalent.
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Proof. The proof very much goes along the lines of the case p = 2.
Let C00(G, E) denote the continuous E-valued functions on G with compact

support (so that C00(G, E) is a dense subspace of L p(G, E)). Define

Wπ : C00(G, E)→ C00(G, E)

by letting

(Wπξ)(x) := π(x)ξ(x) (ξ ∈ C00(G, E), x ∈ G).

Since π(G) consists of isometries, we have

‖Wπξ‖
p
L p(G,E) =

∫
G

‖π(x)ξ(x)‖p dx =

∫
G

‖ξ(x)‖p dx (ξ ∈ C00(G, E)),

so that Wp is an isometry with respect to the norm of L p(G, E) and thus extends
to all of L p(G, E) as an isometry. Clearly, Wπ is invertible with inverse given by

(W −1
π ξ)(x) := π(x−1)ξ(x) (ξ ∈ C00(G, E), x ∈ G).

Let ξ ∈ C00(G, E), and let x ∈ G. Then we have

((λp(x)⊗ idE)W −1
π ξ)(y)= π(y−1x)ξ(x−1 y) (y ∈ G)

and thus

(Wπ (λp(x)⊗ idE)W −1
π ξ)(y)= π(y)π(y−1x)ξ(x−1 y)

= π(x)ξ(x−1 y)

= ((λp(x)⊗π(x))ξ)(y) (y ∈ G).
Hence,

Wπ (λp(x)⊗ idE)W −1
π = λp(x)⊗π(x) (x ∈ G)

holds, so that (λp ⊗ π, L p(G, E)) and (λp ⊗ idE , L p(G, E)) are equivalent as
claimed. �

Corollary 5.2. Let G be a locally compact group, let p ∈ G, let f ∈ Ap(G), and
let g ∈ Bp(G). Then f g lies in Ap(G) such that

‖ f g‖Ap(G) ≤ ‖ f ‖Ap(G)‖g‖Bp(G).

Proof. Apply Proposition 5.1 (with p replaced by p′ dual to p) to a p′-universal
representation (π, E) ∈ Repp′(G). The norm estimate is proven as is the submul-
tiplicativity assertion of Theorem 4.7. �

Let G be a locally compact group, and let p ∈ (1,∞). A multiplier of Ap(G) is a
function f ∈ Cb(G) such that f Ap(G)⊂ Ap(G). We denote the set of all multipli-
ers of Ap(G) by M(Ap(G)). Clearly, M(Ap(G)) is a subalgebra of Cb(G). From
the closed graph theorem, it is immediate that multiplication with f ∈ M(Ap(G))
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is a bounded linear operator on Ap(G), so that M(Ap(G)) embeds canonically into
B(Ap(G)) turning it into a Banach algebra.

We have the following (compare [Herz 1971, Lemma 0]):

Corollary 5.3. Let G be a locally compact group, and let p ∈ (1,∞). Then Bp(G)
is contained in M(Ap(G)) such that

(5–1) ‖ f ‖M(Ap(G)) ≤ ‖ f ‖Bp(G) ( f ∈ Bp(G)).

In particular,

(5–2) ‖ f ‖M(Ap(G)) ≤ ‖ f ‖Bp(G) ≤ ‖ f ‖Ap(G) ( f ∈ Ap(G))

holds with equality throughout if G is amenable.

Proof. By Corollary 5.2, Bp(G) ⊂ M(Ap(G)) holds as does (5–1). The first
inequality of (5–2) follows from (5–1) and the second one from Theorem 4.7(ii).
Finally, if G is amenable, Ap(G) has an approximate identity bounded by one [Pier
1984, Theorem 4.10], so that ‖ f ‖M(Ap(G))=‖ f ‖Ap(G) holds for all f ∈ Ap(G). �

Remark. Let G be a locally compact group such that, for any p ∈ (1,∞), the
embedding of Ap(G) into Bp(G) is an isometry. Since Ap(G) is regular [Herz
1973], this means that Ap(G) can be identified with the closed ideal of Bp(G)
generated by the functions in Bp(G) with compact support. In view of Theorem
4.7(iii), this would yield a contractive inclusion Ap(G) ⊂ Aq(G) whenever 2 ≤

q ≤ p or p ≤ q ≤ 2. Such in inclusion result is indeed true for amenable G [Herz
1971] — and also for certain nonamenable G (see [Herz and Rivière 1972]) — but
is false for noncompact, semisimple Lie groups with finite center [Lohoué 1980],
as was pointed out to me by Michael Cowling.

6. Bp(G) as a dual space

The Fourier–Stieltjes algebra B(G) of a locally compact group G can be identified
with the dual space of the full group C∗-algebra C∗(G) [Eymard 1964].

In this section, we show that Bp(G) is a dual space in a canonical fashion for
arbitrary p ∈ (1,∞). This, in turn, will enable us to further clarify the relation
between Bp(G) and M(Ap(G)).

We begin with some more definitions:

Definition 6.1. Let G be a locally compact group, let p ∈ (1,∞), and let (π, E) ∈
Repp(G). Then:

(a) ‖ · ‖π is the algebra seminorm on L1(G) defined through

‖ f ‖π := ‖π( f )‖B(E) ( f ∈ L1(G)).
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(b) The algebra PFp,π (G) of p-pseudofunctions associated with (π, E) is the clo-
sure of π(L1(G)) in B(E).

(c) If (π, E) = (λp, L p(G)), we simply speak of p-pseudofunctions and write
PFp(G) instead of PFp,λp(G).

(d) If (π, E) is p-universal, we denote PFp,π (G) by UPFp(G) and call it the
algebra of universal p-pseudofunctions.

Remarks. 1. The notion of p-pseudofunctions is well established in the litera-
ture; the other definitions seem to be new.

2. For p = 2, the algebra PFp(G) is the reduced group C∗-algebra and UPFp(G)
is the full group C∗-algebra of G.

3. If (ρ, F) ∈ Repp(G) is such that (π, E) contains every cyclic subrepresen-
tation of (ρ, F), then ‖ · ‖ρ ≤ ‖ · ‖π holds. In particular, the definition of
UPFp(G) is independent of a particular p-universal representation.

4. With 〈·, ·〉 denoting the L1(G)-L∞(G) duality and with (π, E) a p-universal
representation of G, we have

‖ f ‖π = sup{|〈 f, g〉| : f ∈ Bp′(G), ‖g‖Bp′ (G) ≤ 1} ( f ∈ L1(G)),

where p′
∈ (1,∞) is dual to p: this follows from Lemma 4.6.

We now turn to representations of Banach algebras.

Definition 6.2. A representation of a Banach algebra A is a pair (π, E) where E
is a Banach space and π is a contractive algebra homomorphism from A to B(E).
We call (π, E) isometric if π is an isometry and essential if the linear span of
{π(a)ξ : a ∈ A, ξ ∈ E} is dense in E .

Remarks. 1. As with Definition 1.1, our definition of a representation of a
Banach algebra is somewhat more restrictive than the one usually used in
a literature. Our reasons for this are the same as given after Definition 1.1.

2. If G is a locally compact group and (π, E) is a representation of G in the sense
of Definition 1.1, then (1–1) induces an essential representation of L1(G).
Conversely, every essential representation of L1(G) arises in the fashion.

3. The notions introduced in Definition 1.2 for representations of locally compact
groups carry over to representations of Banach algebras accordingly.

We require three lemmas:

Lemma 6.3. Let A be a Banach algebra with an approximate identity bounded by
one, and let (π, E) be a representation of A. Let F be the closed linear span of
{π(a)ξ : a ∈ A, ξ ∈ E}, and define

ρ : A → B(F), a 7→ π(a)|F .
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Then (ρ, F) is an essential subrepresentation of (π, E) which is isometric if (π, E)
is. Moreover, if E is a reflexive Banach space — so that B(E) is a dual space —
and π is weak-weak∗ continuous, then so is ρ.

Proof. Straightforward. �

For our next lemma, recall the notion of an ultrapower of a Banach space E with
respect to a (free) ultrafilter U (see [Heinrich 1980]); we denote it by EU.

The lemma is a straightforward consequence of [Daws 2004, Proposition 5]:

Lemma 6.4. Let E be a superreflexive Banach space, and let p ∈ (1,∞). Then
there is a free ultrafilter U such that the canonical representation of B(E) on
`p(N, E)U is weak-weak∗ continuous.

Lemma 6.5. Let G be a locally compact group, let p, p′
∈ (1,∞) be dual to each

other, and let (π, E) ∈ Repp′(G). Then, for each φ ∈ PFp′,π (G), there is a unique
g ∈ Bp(G) with ‖g‖Bp(G) ≤ ‖φ‖ such that

(6–1) 〈π( f ), φ〉 =

∫
G

f (x)g(x) dx ( f ∈ L1(G)).

Moreover, if (π, E) is p′-universal, we have ‖g‖Bp(G) = ‖φ‖.

Proof. By Lemma 6.4, there is a free ultrafilter such that the canonical represen-
tation of PFp′,π (G) on `p′(N, E)U is weak-weak∗ continuous. Use Lemma 6.3 to
obtain an isometric, essential, and still weak-weak∗ continuous subrepresentation
(ρ, F) of it.

Since E is a QSLp′-space and since the class of all QSLp′-spaces is closed under
the formation of `p′-direct sums, of ultrapowers, and of subspaces, F is again a
QSLp′-space. Since ρ is weak-weak∗ continuous and an isometry, it follows that
ρ∗ restricted to F⊗̃π F∗ is a quotient map onto PFp′,π (G). Let ε > 0. Then there
are sequences (ξn)

∞

n=1 in F and (ψn)
∞

n=1 in F∗ such that, for f ∈ L1(G).

‖φ‖ ≤

∞∑
n=1

‖ξn‖‖ψn‖< ‖φ‖ + ε and 〈ρ(π( f )), φ〉 =

∞∑
n=1

〈ρ( f )ξn, ψn〉.

Since π(L1(G)) is dense in PFp,π (G), it follows that (ρ ◦π, F) is an essential rep-
resentation of L1(G), which therefore can be identified via (1–1) with an element
(σ, F) of Repp′(G). Letting

g(x) :=

∞∑
n=1

〈σ(x)ξn, ψn〉 (x ∈ G)
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we obtain g ∈ Bp(G) such that (6–1) holds. Moreover,

‖g‖Bp(G) ≤

∞∑
n=1

‖ξn‖‖ψn‖< ‖φ‖ + ε;

holds, and since ε > 0 was arbitrary, this means that even ‖g‖Bp(G) ≤ ‖φ‖.
Suppose now that (π, E) is p′-universal. Since the representation of L1(G)

induced by (π, E) is essential, so is its infinite amplification (π∞, `p′(N, E)). With
the appropriate identifications in place, we thus have

`p′(N, E)⊂ F ⊂ `p′(N, E)U.

Consequently, (σ, F) is also p′-universal. It then follows from Lemma 4.6 that
‖g‖Bp(G) = ‖φ‖. �

In view of Lemma 6.5, the following is now immediate:

Theorem 6.6. Let G be a locally compact group, and let p, p′
∈ (1,∞) be dual to

each other. Then:

(i) For any (π, E) ∈ Repp′(G), the dual space PFp′,π (G)∗ embeds contractively
into Bp(G).

(ii) The embedding of UPFp′(G)∗ into Bp(G) is an isometric isomorphism.

Remarks. 1. For p = 2, the adverb “contractively” can be replaced by “iso-
metrically”. For p 6= 2, this is not true. To see this, assume otherwise, and
let 2 ≤ q ≤ p or p ≤ q ≤ p. Since (λq ′, Lq ′(G)) ∈ Repp′(G), we would
thus have an isometric embedding of PFq(G)∗ — and thus of Aq(G)— into
Bp(G). For amenable G, this, in turn, would entail that Aq(G) = Ap(G)
holds isometrically. This is clearly impossible except in trivial cases.

2. As Michael Cowling pointed out to me, there is some overlap of this section
with [Cowling and Fendler 1984]. In particular, it is an immediate conse-
quence of Theorem 2 in that reference that Bp(G) is a dual Banach space.

We conclude this section with a theorem that further clarifies the relation be-
tween Bp(G) and Ap(G):

Theorem 6.7. Let G be an amenable, locally compact group, and let p, p′
∈ (1,∞)

be dual to each other. Then PFp′(G)∗, Bp(G), and M(Ap(G)) are equal with
identical norms.

Proof. Since G is amenable, we have PFp′(G)∗ = M(Ap(G)) with identical norms
by [Cowling 1979, Theorem 5], so that, by Theorem 6.6 and Corollary 5.3, we
have a chain

PFp′(G)∗ ⊂ Bp(G)⊂ M(Ap(G))= PFp′(G)∗

of contractive inclusions. This proves the claim. �
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Remark. By [Cowling 1979, Theorem 5], the equality PFp′(G)∗ = M(Ap(G)),
even with merely equivalent and not necessarily identical norms, is also sufficient
for the amenability of G. In view of the situation where p = 2, we suspect that G is
amenable if and only if Bp(G)= M(Ap(G)) and if and only if Bp(G)= PFp′(G)∗.
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[Kwapień 1972] S. Kwapień, “On operators factorizable through L p space”, pp. 215–225 in Actes
du Colloque d’Analyse Fonctionnelle de Bordeaux (Bordeaux, 1971), Bull. Soc. Math. France
Suppl. Mém. 31–32, Soc. Math. France, Paris, 1972. MR 53 #1323 Zbl 0246.47040

[Lambert et al. 2004] A. Lambert, M. Neufang, and V. Runde, “Operator space structure and amen-
ability for Figà-Talamanca–Herz algebras”, J. Funct. Anal. 211 (2004), 245–269. MR 2005e:46111
Zbl 02083560

[Le Merdy 1996] C. Le Merdy, “Factorization of p-completely bounded multilinear maps”, Pacific
J. Math. 172:1 (1996), 187–213. MR 98b:46073 Zbl 0853.46054

[de Leeuw and Glicksberg 1965] K. de Leeuw and I. Glicksberg, “The decomposition of certain
group representations”, J. Analyse Math. 15 (1965), 135–192. MR 32 #4211 Zbl 0166.40202

[Lindenstrauss and Rosenthal 1969] J. Lindenstrauss and H. P. Rosenthal, “The Lp spaces”, Israel
J. Math. 7 (1969), 325–349. MR 42 #5012

http://dx.doi.org/10.1007/BF01406711
http://www.ams.org/mathscinet-getitem?mr=81f:43003
http://www.emis.de/cgi-bin/MATH-item?0399.43004
http://dx.doi.org/10.1007/BF01475581
http://www.ams.org/mathscinet-getitem?mr=85j:46083
http://www.emis.de/cgi-bin/MATH-item?0508.46035
http://dx.doi.org/10.1112/S0024609303003072
http://www.ams.org/mathscinet-getitem?mr=2005b:47161
http://www.emis.de/cgi-bin/MATH-item?02113443
http://www.ams.org/mathscinet-getitem?mr=94e:46130
http://www.emis.de/cgi-bin/MATH-item?0774.46018
http://www.ams.org/mathscinet-getitem?mr=2002a:46082
http://www.emis.de/cgi-bin/MATH-item?0969.46002
http://www.numdam.org/item?id=BSMF_1964__92__181_0
http://www.ams.org/mathscinet-getitem?mr=37:4208
http://www.emis.de/cgi-bin/MATH-item?0169.46403
http://links.jstor.org/sici?sici=0002-9939(199310)119:2%3C595:ARATAA%3E2.0.CO%3B2-8
http://www.ams.org/mathscinet-getitem?mr=93k:43003
http://www.emis.de/cgi-bin/MATH-item?0799.43001
http://links.jstor.org/sici?sici=0002-9947(199405)343:1%3C233:AATSOT%3E2.0.CO%3B2-U
http://www.ams.org/mathscinet-getitem?mr=94g:43001
http://www.emis.de/cgi-bin/MATH-item?0804.43001
http://www.ams.org/mathscinet-getitem?mr=82b:46013
http://www.emis.de/cgi-bin/MATH-item?0412.46017
http://links.jstor.org/sici?sici=0002-9947(197102)154%3C69:TTOP%3E2.0.CO%3B2-R
http://www.ams.org/mathscinet-getitem?mr=42:7833
http://www.emis.de/cgi-bin/MATH-item?0216.15606
http://www.numdam.org/item?id=AIF_1973__23_3_91_0
http://www.ams.org/mathscinet-getitem?mr=50:7956
http://www.emis.de/cgi-bin/MATH-item?0257.43007
http://www.ams.org/mathscinet-getitem?mr=49:7703
http://www.emis.de/cgi-bin/MATH-item?0269.43006
http://www.ams.org/mathscinet-getitem?mr=2001g:22008
http://www.emis.de/cgi-bin/MATH-item?0949.43007
http://www.ams.org/mathscinet-getitem?mr=53:1323
http://www.emis.de/cgi-bin/MATH-item?0246.47040
http://dx.doi.org/10.1016/j.jfa.2003.08.009
http://dx.doi.org/10.1016/j.jfa.2003.08.009
http://www.ams.org/mathscinet-getitem?mr=2005e:46111
http://www.emis.de/cgi-bin/MATH-item?02083560
http://projecteuclid.org/getRecord?id=euclid.pjm/1102366190
http://www.ams.org/mathscinet-getitem?mr=98b:46073
http://www.emis.de/cgi-bin/MATH-item?0853.46054
http://www.ams.org/mathscinet-getitem?mr=32:4211
http://www.emis.de/cgi-bin/MATH-item?0166.40202
http://www.ams.org/mathscinet-getitem?mr=42:5012


REPRESENTATIONS OF LOCALLY COMPACT GROUPS ON QSL p -SPACES 397

[Lohoué 1980] N. Lohoué, “Estimations L p des coefficients de représentation et opérateurs de con-
volution”, Adv. in Math. 38:2 (1980), 178–221. MR 82m:43004 Zbl 0463.43003

[Miao 1996] T. Miao, “Compactness of a locally compact group G and geometric properties of
A p(G)”, Canad. J. Math. 48:6 (1996), 1273–1285. MR 98g:43003 Zbl 0890.43001

[Pier 1984] J.-P. Pier, Amenable locally compact groups, Wiley, New York, 1984. MR 86a:43001
Zbl 0621.43001

Received February 13, 2004. Revised October 17, 2004.

VOLKER RUNDE

DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES

UNIVERSITY OF ALBERTA

EDMONTON, ALBERTA

CANADA, T6G 2G1

vrunde@ualberta.ca
http://www.math.ualberta.ca/~runde/

http://www.ams.org/mathscinet-getitem?mr=82m:43004
http://www.emis.de/cgi-bin/MATH-item?0463.43003
http://www.ams.org/mathscinet-getitem?mr=98g:43003
http://www.emis.de/cgi-bin/MATH-item?0890.43001
http://www.ams.org/mathscinet-getitem?mr=86a:43001
http://www.emis.de/cgi-bin/MATH-item?0621.43001
mailto:vrunde@ualberta.ca
http://www.math.ualberta.ca/~runde/

	Introduction
	1. Group representations and QSLp-spaces
	2. The linear space Bp(G)
	3. Tensor products of QSLp-spaces
	4. The Banach algebra Bp(G)
	5. Bp(G) and Ap(G)
	6. Bp(G) as a dual space
	References

