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Let U/K be a compact Riemannian symmetric space with U simply con-
nected and K connected. Let G/K be the noncompact dual space, with G
and U analytic subgroups of the simply connected complexification GC. Let
G = K AN be an Iwasawa decomposition of G, and let M be the centralizer
of A in K . For δ ∈ Û , let µ be the highest restricted weight of δ, and let σ

be the M-type acting in the highest restricted weight subspace of Hδ . Fix a
K -type τ . Earlier we proved that if U/K has rank one, then δ|K contains
τ if and only if τ |M contains σ and µ ∈ µσ,τ + 3sph, where 3sph is the set
of highest restricted spherical weights and µσ,τ is a suitable element of a∗

uniquely determined by σ and τ . In this paper we obtain an explicit for-
mula for this element in the case of U/K = Sn, Pn(C), Pn(H). This gives
a generalization of the Cartan–Helgason theorem to arbitrary K -types on
these rank one symmetric spaces.

1. Introduction

Let U be a compact semisimple simply connected Lie group, K the (necessarily
connected) fixed point group of an involutive automorphism of U , and U/K the
corresponding Riemannian symmetric space of the compact type.

Along with U/K consider the noncompact dual symmetric space G/K , where
we assume that both G and U are analytic subgroups of the (complex semisimple)
simply connected Lie group GC

= U C whose Lie algebra is the complexification
gC of the Lie algebra g of G.

Let g = k ⊕ p be the Cartan decomposition of g, and let u = k ⊕ ip be the
corresponding decomposition of the Lie algebra u of U , where p is the orthogonal
complement of k = Lie(K ) in g with respect to the Killing form.

Let a be maximal abelian in p, let m be the centralizer of a in k, and let A, Me

be the analytic subgroups of GC with Lie algebras a and m respectively. The
centralizer M of A in K is not connected, in general, and is the product M = Me FM
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of its identity component Me and the finite abelian subgroup FM = exp(ia)∩K ; see
[Kostant 2004, Lemma 2.4]. As is well known, FM is generated by the (order-two)
elements γα = exp(2π i Aα/|α|

2), where α ∈ 6 = 6(g, a) is a restricted root, with
|α|

2
= 〈α, α〉, and Aα ∈ a is determined as usual by 〈H, Aα〉 = α(H) for H ∈ a,

where 〈, 〉 is the inner product on a, a∗ induced by the Killing form; see, e.g.,
[Helgason 1984, p. 536]. The most complete result is proved in [Kostant 2004,
Theorem 2.28], namely M is actually the direct product Me × Fs , where Fs ⊂ FM

is a product of Z2 factors, Fs = Zl
2.

Let b be maximal abelian in m; then h = b ⊕ ia is a Cartan subalgebra of u.
We define roots and weights of uC with respect to hC. Roots and weights are real-
valued on hR = ih = a ⊕ ib, and define members of h∗

R by restriction. We order
a∗ lexicographically, thereby determining a system 6+

= 6+(g, a) of positive
restricted roots. We extend this ordering to an ordering of h∗

R by requiring that a∗

come before (ib)∗, and we call 1+
= 1+(uC, hC) the resulting system of positive

roots. Then a restricted root α is in 6+ if and only if all of the roots β such that
β|a = α are in 1+.

Let 3 be the set of dominant integral forms on hC. Since U is simply connected
we have Û ' û ' 3 for the unitary duals of U and u. For each λ ∈ 3 let δλ be an
irreducible representation of U (U -type) with highest weight λ, acting in Hλ. The
differential of this representation is also denoted δλ.

Let 3m be the set of dominant integral forms on bC, and let 3Me be the subset
of all η ∈ 3m that are analytically integral for Me. In other words, 3Me is the set
of highest weights of the m-types which exponentiate to Me-types.

An element λ ∈ a∗ or (ib)∗ is considered as an element of h∗

R by extending it
to zero on ib or a, respectively. We decompose each λ ∈ 3 ⊂ h∗

R in terms of its
restrictions to a and ib as

λ = µ + η, where µ = λ|a, η = λ|ib.

Then µ is the so-called highest restricted weight of δλ, and η is in 3Me (as easily
seen). The meaning of η is that m, Me, act irreducibly on the highest restricted
weight subspace Vµ of Hλ, defined as

Vµ = {v ∈ Hλ : δλ(H)v = µ(H)v, ∀H ∈ a},

and this irreducible representation ση = δλ(Me)|Vµ
has highest weight η. The group

M = Me FM also acts irreducibly on Vµ by the M-type σλ = δλ(M)|Vµ
. This M-

type σλ extends the Me-type ση and it is a scalar on FM , since we have

σλ(γα) = δλ(γα)|Vµ
= exp(2π iµ(Aα)/|α|

2) Id, ∀α ∈ 6.

The map λ→σλ from 3' Û to M̂ is surjective, by [Kostant 2004, Theorem 2.33].
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The classical Cartan–Helgason theorem describes the set Û (τ0) of (equivalence
classes of) irreducible spherical representations of U , that is, the U -types that con-
tain the trivial K -type τ0 upon restriction to K . According to this theorem, if δλ|K

contains τ0, then σλ is equivalent to the trivial M-type σ0, i.e., the group M acts
trivially on the highest weight vector vλ of δλ. Conversely, if vλ is M-fixed, then
there is a K -fixed vector vK ∈ Hλ, that is, δλ|K contains the trivial K -type τ0. The
first characterization of the set Û (τ0) of spherical U -types is then

Û (τ0) = {δλ ∈ Û : σλ ∼ σ0}.

It is well known that τ0 occurs only once in each δλ ∈ Û (τ0).
An equivalent characterization of Û (τ0) in terms of the highest weight λ of δλ

is

Û (τ0) = {δλ ∈ Û : λ|ib = 0 and λ|a ∈ 3sph},

where the set 3sph of highest restricted spherical weights is given by

3sph =

{
µ ∈ a∗

:
〈µ, α〉

|α|2
∈ Z+ for α ∈ 6+

}
.

Conversely any linear form λ on hR such that λ|ib = 0 and λ|a ∈ 3sph is the highest
weight of some δ ∈ Û (τ0); see [Helgason 1984, Theorem 4.1 p. 535].

Suppose we now replace the trivial K -type τ0 by an arbitrary K -type τ , and
ask for a similar description of the set Û (τ ) of the U -types δ that contain τ upon
restriction to K (with multiplicity m(τ, δ) > 0).

Evidently, to know explicitly Û (τ ) and the multiplicity m(τ, δ) for any τ and
any δ ∈ Û (τ ) is tantamount to knowing the branching theorem for U ⊃ K . In
other words, the information contained in the branching law can be separated into
two parts: given τ we first determine the set Û (τ ), and then for each δ ∈ Û (τ ) we
compute m(τ, δ).

The multiplicity function m(τ, δ) is, in general, a complicated object. (See
[Kostant 2004, Theorem 2.3] for a recent result.) On the other hand, the results
in [Kostant 2004] make it possible to give a general description of the set Û (τ )

independently of the multiplicity function.
First, it is easy to prove that if δλ|K contains τ then τ |M contains σλ, but the

multiplicities are not the same in general, namely we have m(τ, δλ) ≤ m(σλ, τ )

[Camporesi 2005, Proposition 2.2].
This result says that if δλ is in Û (τ ) then σλ is in M̂(τ ), the finite set of the

M-types that occur in τ |M . Then Û (τ ) is clearly the disjoint union

Û (τ ) =

⋃
σ∈M̂(τ )

Ûσ (τ ), where Ûσ (τ ) = {δλ ∈ Û (τ ) : σλ ∼ σ }.
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Let 3σ (τ ) be the set of highest restricted weights of all U -types in Ûσ (τ ), and let
ησ be the highest weight of σ |Me . Then each δλ ∈ Ûσ (τ ) has highest weight λ of the
form µ + ησ , with µ ∈ 3σ (τ ), and we have an obvious parametrization for Û (τ ):

Û (τ ) =

⋃
σ∈M̂(τ )

{δλ ∈ Û : λ ∈ ησ + 3σ (τ )}.

The problem is then to find an explicit description of the set 3σ (τ ), analogous to
the Cartan–Helgason theorem in the case τ = τ0.

Let Fσ be the set of all λ ∈ 3 such that σλ ∼ σ . In other words Fσ is the
fiber over σ ∈ M̂ of the map λ → σλ from 3 ' Û to M̂ . Then 3 =

⋃
σ∈M̂ Fσ

(disjoint union); see [Kostant 2004]. Obviously ησ + 3σ (τ ) is a subset of Fσ for
each σ ∈ M̂(τ ) — in fact ησ + 3σ (τ ) is just Fσ ∩ Û (τ ). Moreover, if σ is fixed
and τ varies over the K -types that contain σ , we have clearly

(1–1) Fσ = ησ +

⋃
τ⊃σ

3σ (τ ).

Kostant [2004, Theorem 3.5] proves that Fσ is just a translate of 3sph, namely there
exists a unique minimal element ησ + µσ ∈ Fσ (relative to the partial ordering of
3 defined by λ′

≥ λ ⇐⇒ λ′
− λ ∈ 3, or also relative to the partial ordering of

3 defined just before Theorem 3.4 of [Kostant 2004] — the two being equivalent
within each fiber Fσ as a consequence of that theorem) such that (in our notation)

(1–2) Fσ = ησ + µσ + 3sph.

The element µσ ∈ a∗ can be computed explicitly [Kostant 2004, formula (194)].
Kostant refers to (1–2) as a generalization of the Cartan–Helgason theorem.

Now (1–1) suggests that we look for a similar description of the set 3σ (τ ). We
did so for U/K of rank one and τ arbitrary, and using the results of [Kostant 2004]
we proved the following in an earlier article:

Theorem 1.1 [Camporesi 2005, Proposition 2.3 and Theorem 2.4]. Let U/K be a
compact Riemannian symmetric space of rank one with U simply connected and K
connected, and let τ be any K -type. For each σ ∈ M̂(τ ) there is a unique minimal
element µσ,τ ∈ 3σ (τ ) such that

(1–3) 3σ (τ ) = µσ,τ + 3sph.

Thus we have

Û (τ ) = {δλ ∈ Û : σλ ∼ σ for some σ ∈ M̂(τ ) and λ|a ∈ µσ,τ + 3sph}

= {δλ ∈ Û : λ|ib = ησ for some σ ∈ M̂(τ ) and λ|a ∈ µσ,τ + 3sph}

=

⋃
σ∈M̂(τ )

{δλ ∈ Û : λ ∈ ησ + µσ,τ + 3sph}.
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Moreover Fσ \ (ησ + 3σ (τ )) is a finite set, consisting of the weights λ = ησ + µ

with µσ ≤ µ < µσ,τ . Conversely, any linear form λ on hR such that λ|ib = ησ for
some σ ∈ M̂(τ ) and λ|a ∈ µσ,τ + 3sph is the highest weight of a U-type δ ∈ Û (τ ).
Finally,

(1–4) µσ = min
τ⊃σ

µσ,τ .

At the time we did not give an explicit formula for µσ,τ . With such a formula the
theorem above yields a generalization of the Cartan–Helgason theorem (for U/K
of rank one) which holds for any K -type τ and is more refined than (1–2).

Here we obtain an explicit formula for the minimal element µσ,τ in the case of
U/K = Sn , Pn(C), Pn(H) and for τ arbitrary. Our method is based on a case-by-
case direct evaluation of µσ,τ by putting together the known branching theorems
for U ⊃ K and K ⊃ M .

For U/K = Sn, Pn(C) we only need the so-called interlacing conditions on the
highest weights, which are necessary and sufficient for τ ∈ K̂ to occur in δ ∈ Û .

In the quaternionic case the branching theorems for U ⊃ K and K ⊃ M are
more complicated. The first was given in [Lepowsky 1971]. The double interlacing
conditions on the highest weights of τ ∈ K̂ and δ ∈ Û stated in this theorem are still
necessary but no longer sufficient for δ to contain τ . To find the minimal element
µσ,τ we shall also need the multiplicity formula of Lepowsky.

Finally, a remark about the higher rank case. For U/K of higher rank the set
3σ (τ ) has, in general, more than one minimal element. There can be at most a
finite number of such minimal elements, µ

( j)
σ,τ , j = 1, . . . , kσ,τ . We then have

3σ (τ ) =

⋃
j

(
µ( j)

σ,τ + 3sph
)
,

where the union is not necessarily disjoint. It is an interesting open problem to find
a general formula for these 3sph-generators of 3σ (τ ).

2. The case of spheres

Let U/K = Sd (d ≥ 2), with U = Spin(d +1), K = Spin(d). The linear realization
of the spin groups is of course more complicated than that of the orthogonal groups
SO(d). However it is enough to work at the Lie algebra level, where we can use
the well known isomorphism spin(d) ' so(d).

We can treat the even and odd cases in a unified way, up to some point, including
the definition of a and m, as follows. We start with the noncompact form g and
take k embedded from below. Thus let g = so(1, d) = k ⊕ p, where

k =

(
0 0
0 so(d)

)
' so(d) and p =

{(
0 X t

X 0d

)
, X ∈ Rd

}
.
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The compact form of g is

u = k ⊕ ip =

{(
0 i X t

i X Y

)
, X ∈ Rd , Y ∈ so(d)

}
.

The Lie algebra u is Lie isomorphic to u′
= so(d + 1) realized as

u′
= so(d + 1) =

{(
0 −X t

X Y

)
, X ∈ Rd , Y ∈ so(d)

}
.

Indeed u and u′ are conjugate in SU(d +1), i.e., there is an element g ∈ SU(d +1)

such that gu′g−1
= u. For example, let g be the element

g =

(
a−d 0
0 a1d

)
,

where a is any complex number such that ad+1
= i . It is easily checked that

(2–1) g
(

0 −X t

X Y

)
g−1

=

(
0 i X t

i X Y

)
, ∀X ∈ Rd , Y ∈ so(d).

We fix the maximal abelian subspace of p given by

a = Re1 = R


0 1 0 · · · 0
1
0
...

0

0d

 .

Then m is given by

m = Zk(a) =

(
02 0
0 so(d−1)

)
' so(d − 1).

We take the standard Cartan subalgebra h′ of u′ given by

h′
=





0
0 ih1

−ih1 0
. . .

0 ihn

−ihn 0


, h j ∈ iR


for d = 2n, and by
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h′
=




0 ih1

−ih1 0
. . .

0 ihn

−ihn 0

 , h j ∈ iR


for d = 2n − 1. In both cases h′

= b1 ⊕ b, where b is the Cartan subalgebra of m

given for any n ≥ 2 by

b =





0
0 ih2

−ih2 0
. . .

0 ihn

−ihn 0


, h j ∈ iR


(here 0 = 03 for d = 2n and 0 = 02 for d = 2n − 1) and b1 is the orthogonal
complement of b in h′ with respect to the Killing form; it consists of the elements( B

02n−2

)
, where B is of the form 0

0 ih1

−ih1 0

 for d = 2n or
(

0 ih1

−ih1 0

)
for d = 2n − 1,

and h1 ∈ iR. For d =2 we have h′
=b1, m=b=03, and the group M 'Spin(1)'Z2

is not connected.
For d = 2n we have rank u′

= rank k and h′
⊂ k ⊂ u, so h′ is also a Cartan

subalgebra of k and u.
For d =2n−1 we have rank u′ > rank k= rank m, so b is also a Cartan subalgebra

of k, while h′ is no longer contained in u.
In both cases we take as Cartan subalgebra of u

h = ia ⊕ b.

For d = 2n − 1 the element g given above conjugates h′ with h, and the map
Ad(g)= g( · )g−1 is actually the identity on b, and exchanges b1 with ia bijectively;
see (2–1).

For d = 2n the element g cannot of course conjugate h′ with h since it fixes k,
so it fixes h′

⊂ k. However h′ and h are two Cartan subalgebras of the compact Lie
algebra u, thus there exists u0 ∈ U such that Ad(u0)h

′
= h. The transformation

Ad(u0) is essentially a Cayley transform. Moreover we can always choose u0 so
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that Ad(u0) acts as the identity on b and sends b1 bijectively onto ia. To unify the
notation, we shall denote this u0 by g.

In both cases we then have an isomorphism Ad(g) (of u into itself for d = 2n,
of u′ into u for d = 2n − 1) such that

Ad(g)h′
= h, Ad(g)|b = Id, Ad(g)b1 = ia.

Moreover if B1 is the basis of b1 given by the element
( B

02n−2

)
, where

B =

 0
0 −1
1 0

 for d = 2n and B =

(
0 −1
1 0

)
for d = 2n − 1,

we can always arrange that

Ad(g)B1 = ie1.

The point is now as follows. Let the choice of Cartan subalgebras be h′ for u′,
b for m, and hk = h′ (d = 2n) or hk = b (d = 2n − 1) for k. Then the branching
rules for u′

⊃ k and for k ⊃ m are classical and well known (see below).
Our aim is to find the branching rule for u ⊃ k using for u the Cartan subalgebra

h = ia ⊕ b. This branching rule will involve the branching rule for k ⊃ m plus
a condition characterizing the highest restricted weights µ. More precisely, we
shall find that a U -type δ with highest weight λ = µ+η contains a K -type τ with
highest weight ν if and only if τ contains the M-type σ with highest weight η, and
moreover the highest restricted weight µ is of the form µσ,τ +µ0, with µ0 a highest
spherical weight and µσ,τ a suitable element of a∗ (to be determined below).

Let ε j ( j = 1, . . . , n) be the linear form on h′ C which equals h j when acting on
the elements of h′ given above. We denote the restriction of ε j to bC still by ε j .
Then we have the following systems of positive roots:

1+

u′ = 1+(u′ C, h′ C) = 1+

so(d+1),

1+

k = 1+(kC, hC
k ) = 1+

so(d),

1+

m = 1+(mC, bC) = 1+

so(d−1),

where
1+

so(2n+1) = {εi ± ε j , 1 ≤ i < j ≤ n} ∪ {εk, 1 ≤ k ≤ n},

1+

so(2n) = {εi ± ε j , 1 ≤ i < j ≤ n},

and similar expressions hold for 1+

so(2n−1) and 1+

so(2n−2) with the indices running
from 2 to n. For d = 2n, 1+

u′ is also the set of roots of uC with respect to h′ C.
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The standard parametrization of û′, k̂ and m̂ is as follows. The dominant integral
forms for u′ are the linear functionals

λ′
=

n∑
j=1

a jε j , with 2a j ∈ Z, ai − a j ∈ Z, ∀i, j, and{
a1 ≥ a2 ≥ · · · ≥ an ≥ 0 for d = 2n,

a1 ≥ a2 ≥ · · · ≥ |an| ≥ 0 for d = 2n − 1.

For d = 2n these are also the dominant integral forms for u with respect to h′.
The dominant integral forms for k are the linear functionals

ν =

{∑n
1 b jε j for d = 2n,∑n
2 b jε j for d = 2n − 1,

}
with 2b j ∈ Z, bi − b j ∈ Z, ∀i, j, and{

b1 ≥ b2 ≥ · · · ≥ |bn| ≥ 0 for d = 2n,

b2 ≥ b3 ≥ · · · ≥ bn ≥ 0 for d = 2n − 1.

The dominant integral forms for m are the linear functionals (for all n ≥ 2)

η =

n∑
j=2

c jε j , with 2c j ∈ Z, ci − c j ∈ Z, ∀i, j, and{
c2 ≥ c3 ≥ · · · ≥ cn ≥ 0 for d = 2n,

c2 ≥ c3 ≥ · · · ≥ |cn| ≥ 0 for d = 2n − 1.

For d = 2 we have M̂ = {σ0, σ1}, where σ0 and σ1 are the trivial and nontrivial
representations of M ' Z2.

The branching theorem for u′
⊃ k says that (with obvious notations)

λ′
⊃ ν ⇐⇒

{
a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ bn−1 ≥ an ≥ |bn| for d = 2n,

a1 ≥ b2 ≥ a2 ≥ b3 ≥ · · · ≥ an−1 ≥ bn ≥ |an| for d = 2n − 1,

and a j − b j ∈ Z, ∀ j . Moreover the multiplicity is always one.
The branching theorem for k ⊃ m says that (∀n ≥ 2)

ν ⊃ η ⇐⇒

{
b1 ≥ c2 ≥ b2 ≥ c3 ≥ · · · ≥ bn−1 ≥ cn ≥ |bn| for d = 2n,

b2 ≥ c2 ≥ b3 ≥ c3 ≥ · · · ≥ cn−1 ≥ bn ≥ |cn| for d = 2n − 1,

and b j − c j ∈ Z, ∀ j . The multiplicity is again always one. For d = 2 the repre-
sentation of K = Spin(2) with weight ν = b1ε1 (where 2b1 ∈ Z) contains σ0 (resp.
σ1) if and only if b1 ∈ Z (resp. b1 ∈ Z +

1
2 ).

Now the map Ad(g) : h′
→ h induces a map λ′

→ g · λ′ from the linear forms
λ′ on h′ C to those on hC given by

(2–2) (g · λ′)(H) = λ′(Ad(g−1)H), ∀H ∈ hC.
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Since Ad(g) is the identity on b and since Ad(g−1)e1 =−i B1, we get in both cases

g · ε j = ε j , ∀ 2 ≤ j ≤ n, g · ε1 = α,

where α ∈ a∗ is the (unique) positive restricted root defined by α(e1) = 1, and as
linear forms on hC, α|b ≡ 0, ε j |a ≡ 0. Let us order h∗

R = (ih)∗ by requiring that a∗

comes before (ib)∗. Then the system of positive roots of uC with respect to hC is
given by

1+
= 1+(uC, hC) = g · 1+

u′ = 1+

m ∪ 1+

α ,

where

1+

α = {β ∈ 1+
: β|a = α} =

{
{α ± ε j , 2 ≤ j ≤ n} ∪ {α} for d = 2n,

{α ± ε j , 2 ≤ j ≤ n} for d = 2n − 1.

The dominant weights of uC with respect to hC are obtained by applying g to
the dominant weights of u′ C with respect to h′ C. Note that each λ′

∈ û′ can be
decomposed as

λ′
=

n∑
1

a jε j = a1ε1 + η,

where η =
∑n

2 a jε j is in m̂ (∀n ≥ 2), as immediately seen. Then each λ ∈ û has
the form

λ = g · λ′
= µ + η,

where µ = a1α is the highest restricted weight and η =
∑n

2 a jε j ∈ m̂, with a1 ≥ a2

and a1 −a2 ∈ Z, i.e., a1 = a2 + k, k ∈ Z+. For d = 2 we have λ = µ = a1α, where
a1 is in Z+ (resp. Z+

+
1
2 ) if and only if σλ ∼ σ0 (resp. σ1). It follows that û is the

disjoint union
û ' 3 =

⋃
σ∈M̂

Fσ ,

where for σ fixed in M̂ , with highest weight η =
∑n

2 a jε j , we have for any d > 2
(M ' Spin(d − 1) being connected in this case)

Fσ = {λ ∈ 3 : δλ(M)|Vµ
∼ σ }

= {λ ∈ 3 : λ|ib = η}

= {λ = µ + η : µ = (a2 + k)α, k ∈ Z+
}

= η + µσ + 3sph,

where
µσ = a2α, 3sph = {kα, k ∈ Z+

}

(a2 the first component of η). For d = 2 we still have 3 = Fσ0 ∪ Fσ1 , with η = 0
and µσ0 = 0, µσ1 =

1
2α. This is just Kostant’s result (1–2); see [Kostant 2004,

Theorem 3.5].
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Comparing the two branching rules for u′
⊃ k and for k⊃m, and using the above

parametrization of û, we obtain the following branching rule for u ⊃ k (∀d > 2):

λ = µ+ η ⊃ ν ⇐⇒ ν ⊃ η and µ = a1α, a1 =

{
b1 + k, d = 2n,

b2 + k, d = 2n − 1,
k ∈ Z+,

where again b1 (for d = 2n) or b2 (for d = 2n − 1) is the first component of
ν =

∑
b jε j . For d = 2 we get λ = a1α ⊃ ν = b1ε1 if and only if a1 = |b1| + k,

k ∈ Z+.
If δ ∈ Û has highest weight λ = µ + η, if τ ∈ K̂ has highest weight ν, and if

σ ∈ M̂ has highest weight η, then we get the following rule for branching from U
to K in terms of branching from K to M :

(2–3) δ|K ⊃ τ ⇐⇒ τ |M ⊃ σ and µ ∈ µσ,τ + 3sph,

where

µσ,τ =

{
b1α, d = 2n,

b2α, d = 2n − 1.

(For d = 2, µσ,τ = |b1|α.) This agrees with the general rank-one result (1–3). Note
that in this case µσ,τ is the same for all σ in M̂(τ ) and depends on τ only. Finally,
since b1 ≥ a2 (for d = 2n) and b2 ≥ a2 (for d = 2n − 1), we see that for σ fixed
and τ varying over the K -types that contain σ we have, in agreement with (1–4),

min
τ⊃σ

µσ,τ = a2α = µσ .

3. The case of complex projective spaces

Let U/K = Pn(C) (n ≥2), with U =SU(n+1) and K =S(U(n)×U(1)) embedded
as

K =

{(
B 0
0 b

)
, B ∈ U(n), b ∈ U(1), b det B = 1

}
.

The group K is isomorphic to U(n).
At the Lie algebra level, consider the noncompact form g = su(n, 1) = k ⊕ p,

where

k =

{(
Y 0
0 y

)
, Y ∈ u(n), y ∈ u(1) = iR, y + tr Y = 0

}
,

p =

{(
0n Z
Z̄ t 0

)
, Z ∈ Cn

}
.

Then the compact form u = k ⊕ ip coincides, in this case, with the Lie algebra
su(n + 1) of (n+1) × (n+1) antihermitian traceless matrices:

u =

{(
Y Z

−Z̄ t y

)
, Z ∈ Cn, Y ∈ u(n), y ∈ u(1), y + tr Y = 0

}
.
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We fix the maximal abelian subspace of p given by

a = Re1 = R


0n

1
0
...

0
1 0 · · · 0 0

 .

The group A is then

A = exp a =


 ch t 0 sh t

0 1n−1 0
sh t 0 ch t

 , t ∈ R

 ,

and the centralizer of A in K is

M =


 b 0 0

0 B 0
0 0 b

 , B ∈ U(n − 1), b ∈ U(1), b2 det B = 1

 ,

with Lie algebra

m =


 y 0 0

0 Y 0
0 0 y

 , Y ∈ u(n − 1), y ∈ u(1), 2y + tr Y = 0

 .

The group M is connected and isomorphic to a double cover of U(n − 1).
As in the case of S2n we have rank u = rank k. Let hk be the Cartan subalgebra

of u which is contained in k and consists of the diagonal matrices. Let b ⊂ hk be
the Cartan subalgebra of m consisting of the diagonal elements. Then hk = b1 ⊕b,
where b1 consists of the matrices of the form diag(h, 0, . . . , 0, −h) with h ∈ iR.

The classical branching rule for U ⊃ K with respect to the Cartan subalgebra
hk is well known (see below). We will find the branching rule for U ⊃ K using for
u the Cartan subalgebra

h= ia⊕b=




h0 0 i x

0

h2
. . .

hn

0

i x 0 h0

, x ∈ R, h j ∈ iR, 2h0+h2+ · · · +hn = 0


.

Again this branching rule will involve the branching rule for K ⊃ M , which is
known, plus a condition on the highest restricted weights. In order to relate the
roots and weights of U in the two different Cartan subalgebras, we need an element
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that conjugates hk with h. It is easy to check that the element

(3–1) g =


√

2
2

0 −

√
2

2
0 1n−1 0

√
2

2
0

√
2

2

 ∈ U

satisfies

(3–2) Ad(g)hk = h, Ad(g)|b = Id, Ad(g)b1 = ia.

Moreover if B1 is the basis of b1 given by B1 = diag(i, 0, . . . , 0, −i), we verify
that Ad(g)B1 = ie1.

Let ε j be the linear functional on hC
k defined by ε j (diag(h1, . . . , hn+1)) = h j ,

for 1 ≤ j ≤ n + 1. Then ε1 + · · · + εn+1 = 0, and each linear form λ′
∈ (ihk)

∗ can
be written in a unique way as

(3–3) λ′
=

n+1∑
j=1

a jε j , with
n+1∑

1

a j = 0.

The positive roots (in the standard ordering) of the pairs (uC, hC
k ), (kC, hC

k ), and
(mC, bC), are the linear forms εi −ε j , with 1 ≤ i < j ≤ n+1 for 1+

u , 1 ≤ i < j ≤ n
for 1+

k , and 2 ≤ i < j ≤ n for 1+
m. (The restriction of ε j to bC is still denoted ε j .)

We have the following parametrizations of Û , K̂ , and M̂ :

Û '

{
λ′

=

n+1∑
j=1

a jε j : a j ∈
Z

n+1
, ai−a j ∈ Z, ∀ i, j, a1 ≥ a2 ≥ · · · ≥ an ≥ an+1

}
,

K̂ '

{
ν =

n+1∑
j=1

b jε j : b j ∈
Z

n+1
, bi−b j ∈ Z, ∀ i, j, b1 ≥ b2 ≥ · · · ≥ bn

}
,

M̂ '

{
η = c0(ε1 + εn+1) +

n∑
j=2

c jε j : c j ∈
Z

n+1
, ci−c j ∈ Z, ∀ 2 ≤ i, j ≤ n,

2c0 ∈
Z

n+1
, 2(c0 − c j ) ∈ Z, ∀ 2 ≤ j ≤ n, c2 ≥ c3 ≥ · · · ≥ cn

}
.

In all cases it is understood that the sum of the components of the weights is zero;
compare (3–3). For M we have 2c0 + c2 + · · · + cn = 0.

Given these parametrizations, we have the following simple branching rules.
For U ⊃ K we have (with obvious notations)

λ′
⊃ ν ⇐⇒

{
a j − b j ∈ Z, ∀ 1 ≤ j ≤ n + 1,

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ an ≥ bn ≥ an+1.
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For K ⊃ M we have

ν ⊃ η ⇐⇒

{
b j − c j ∈ Z, ∀ 2 ≤ j ≤ n,

b1 ≥ c2 ≥ b2 ≥ c3 ≥ · · · ≥ cn ≥ bn.

In both cases the multiplicity is one. (For the first see [Ikeda and Taniguchi 1978,
Proposition 5.1], for example. For the second see [Baldoni Silva 1979, Theorem
4.4] and note that the additional condition required there is automatically satisfied
in our parametrization, in view of (3–3).)

We now proceed as in the case of spheres. If g is the element (3–1), we define
a map λ′

→ g ·λ′ from the linear forms λ′ on hC
k to those on hC given by (2–2). By

(3–2) we find

(3–4) g ·ε j = ε j , ∀ 2 ≤ j ≤ n, g ·(ε1 +εn+1) = ε1 +εn+1, g ·(ε1 −εn+1) = 2α,

where now 6(g, a)={±α, ±2α}, the shorter root α being defined again by α(e1)=

1, and as linear forms on hC, α|b ≡ 0, (ε1 + εn+1)|a ≡ 0, ε j |a ≡ 0. With the usual
ordering, we get the following system of positive roots of uC with respect to hC:

1+
= 1+(uC, hC) = g · 1+(uC, hC

k ) = 1+

m ∪ {2α} ∪1+

α ,

where

1+

α = {α − ε j +
1
2(ε1 + εn+1), α + ε j −

1
2(ε1 + εn+1), 2 ≤ j ≤ n}.

The element g then relates the dominant weights of uC with respect to hC
k to the

dominant weights of uC with respect to hC. Note that any λ′
∈ Û can be written as

λ′
=

∑n+1
1 a jε j =

1
2(a1 − an+1)(ε1 − εn+1) + η,(3–5)

η =
1
2(a1 + an+1)(ε1 + εn+1) +

∑n
2 a jε j .(3–6)

It is easy to check that η is in 3Me ' M̂ . Applying g we find that any highest
weight λ of U with respect to hC can be written as

(3–7) λ = g · λ′
= µ + η,

where µ = (a1 − an+1)α is the highest restricted weight and η ∈ M̂ as above.
To fully parametrize the weights as λ = µ + η, we need a condition relating the
quantity a1 − an+1 to the components a j of η (2 ≤ j ≤ n).

From the first parametrization of Û we have a1 ≥ a2 and a1 − a2 ∈ Z, whence
a1 =a2+k ′, k ′

∈Z+. On the other hand we also have an ≥an+1 and an+1 =−
∑n

1 a j ,
whence k ′

≥ −a2 −an −
∑n

2 a j . Putting together the two conditions we see that k ′

must satisfy

k ′
≥ max

(
0, −a2 − an −

n∑
2

a j

)
.



A GENERALIZATION OF THE CARTAN–HELGASON THEOREM 15

With this condition we get

a1 − an+1 = a1 + (a1 + a2 + · · · + an)

= 2a1 + a2 + · · · + an (using a1 = a2 + k ′)

= 2a2 + 2k ′
+ a2 + · · · + an (with k ′ as above)

= a2 − an +

∣∣∣∣a2 + an +

n∑
2

a j

∣∣∣∣ + 2k, k ∈ Z+,

as immediately checked. This gives a condition on a1 − an+1 as a function of
a2, . . . , an in order for λ′ to be in Û . Thus we get Kostant’s result that

Û ' 3 =

⋃
σ∈M̂

Fσ ,

where for σ fixed in M̂ , with highest weight η = a0(ε1 +εn+1)+
∑n

2 a jε j , we have

Fσ = {λ ∈ 3 : λ|ib = η}

= {λ = µ + η : µ = µσ + 2kα, k ∈ Z+
}

= η + µσ + 3sph,

where µσ =
(
a2 − an +

∣∣a2 + an +
∑n

2 a j
∣∣)α = (a2 − an + |a2 + an − 2a0|)α and

3sph = {2kα, k ∈ Z+
}.

Next, comparing the branching rules for U ⊃ K and K ⊃ M , we see that if
λ = µ + η ∈ Û contains ν ∈ K̂ , then ν must contain η ∈ M̂ . We need now a
condition relating µ with ν and η.

By going over the same steps as in the computation of the element µσ , we find
that the highest restricted weights of the U -types in Fσ that contain the K -type τ

with highest weight ν =
∑n+1

1 b jε j must have the form µ = µσ,τ + 2kα, k ∈ Z+,
where

µσ,τ = (b1 − bn + |b1 + bn + a2 + · · · + an|) α.

This agrees with (1–3), and we again get the rule (2–3). In this case µσ,τ depends
explicitly on both σ and τ .

It is easy to see that µσ,τ ≥ µσ , with equality holding only for a2 = b1 and
an = bn , which are, respectively, the highest possible value of a2 and the lowest of
an (regarding τ as fixed and σ as varying over M̂(τ )).

If we instead fix σ ∈ M̂ and let τ vary over the K -types that contain σ , then
b1 = a2 is the lowest possible value of b1 and bn = an the highest of bn . Comparing
the formulas for µσ and µσ,τ we get then (1–4).
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4. The case of quaternionic projective spaces

Let U/K = Pn(H) (n ≥ 2), with U = Sp(n +1), K = Sp(n)×Sp(1). We adopt the
notations of [Baldoni Silva 1979], which the reader should consult for background;
see especially pp. 240–241 there for the definition of k, p, m, and H .

The noncompact form is g = sp(n, 1) = k ⊕ p. We fix a = RH , so that m '

sp(n − 1) ⊕ sp(1). The group M ' Sp(n − 1) × Sp(1) is connected.
Let hk be the Cartan subalgebra of u= k⊕ip that is contained in k and consists of

the diagonal matrices. We fix the basis {X j }
n+1
j=1 of hC

k as in [Baldoni Silva 1979],
and let {ε j }

n+1
j=1 be the dual basis.

Let b ⊂ hk be the Cartan subalgebra of m consisting of the diagonal matrices.
Then hk = b1 ⊕ b, where b1 = RB1, B1 the 2(n + 1) × 2(n + 1) matrix given by

B1 = diag(i, 0, . . . , 0, −i, −i, 0, . . . , 0, i) = i(X1 − Xn+1).

We denote by the same symbol ε j the restriction of ε j to bC.
Consider the other Cartan subalgebra h = ia⊕b of u. Let g ∈ U be an element

such that (3–2) holds with Ad(g)B1 = i H . Transporting g to the linear forms as
usual, we find again (3–4), where α(H) = 1 defines again the shorter restricted
positive root α.

The root systems of the pairs (uC, hC
k ), (kC, hC

k ), and (mC, bC), are

1u = 1(uC, hC
k ) = {±εi ± ε j , 1 ≤ i < j ≤ n + 1} ∪ {±2ε j , 1 ≤ j ≤ n + 1},

1k = 1(kC, hC
k ) = {±εi ± ε j , 1 ≤ i < j ≤ n} ∪ {±2ε j , 1 ≤ j ≤ n + 1},

1m = 1(mC, bC) = {±(ε1+εn+1)}∪{±εi ±ε j , 2≤ i < j ≤n}∪{±2ε j , 2≤ j ≤n}.

We make the following choice of positive roots for m:

1+

m = {ε1 + εn+1} ∪ {εi ± ε j , 2 ≤ i < j ≤ n} ∪ {2ε j , 2 ≤ j ≤ n}.

In the usual ordering of h∗

R = (a ⊕ ib)∗ in which a∗ comes before (ib)∗, we have
the following system of positive roots of the pair (uC, hC):

1+
= 1+(uC, hC) = 1+

m ∪ 1+

2α ∪ 1+

α ,

where

1+

2α = {β ∈ 1+
: β|a = 2α} = {2α, 2α + ε1 + εn+1, 2α − (ε1 + εn+1)},

1+

α = {β ∈ 1+
: β|a = α} = {α +

1
2(ε1 + εn+1) ± ε j , α −

1
2(ε1 + εn+1) ± ε j ,

2 ≤ j ≤ n}.

(Note that m2α = |1+

2α| = 3, mα = |1+
α | = 4(n − 1), and m2α + mα + 1 = 4n =

dimPn(H).)
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For the positive roots 1+

k and 1+
u of kC and uC with respect to hC

k we make the
choice

1+

k = {εi ± ε j , 1 ≤ i < j ≤ n} ∪ {2ε j , 1 ≤ j ≤ n} ∪ {−2εn+1},

1+

u = 1+

k ∪ 1+

p , where 1+

p = {ε1 ± εn+1} ∪ {−εn+1 ± ε j , 2 ≤ j ≤ n}.

It is easily checked using (3–4) that with this choice one has

g · 1+

u = 1+.

The notion of dominance is then preserved by g, and g relates the dominant weights
of uC in the two different Cartan subalgebras.

We have the following parametrizations of Û , K̂ , and M̂ :

Û ' {λ′
=

n+1∑
j=1

a jε j : a j ∈ Z, ∀ j, a1 ≥ −an+1 ≥ a2 ≥ · · · ≥ an ≥ 0},

K̂ ' {ν =

n+1∑
j=1

b jε j : b j ∈ Z, ∀ j, b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, bn+1 ≤ 0},

M̂ ' {η = c0(ε1 + εn+1) +

n∑
j=2

c jε j : c j ∈ Z, ∀ 2 ≤ j ≤ n, 2c0 ∈ Z,

c2 ≥ c3 ≥ · · · ≥ cn ≥ 0, c0 ≥ 0}.

By proceeding as in the complex case, we decompose any λ′
∈ Û as in (3–5),

with η given by (3–6). Then η ∈ M̂ , as easily seen. Applying g and using (3–4), we
find that any highest weight λ of U with respect to hC can be written as in (3–7),
where again µ = (a1 − an+1)α is the highest restricted weight and η ∈ M̂ .

Let σ be a fixed M-type with highest weight

ησ = a0(ε1 + εn+1) +

n∑
j=2

a jε j .

Let λ = g ·λ′
= ησ +µ be in Fσ , then λ′

=
∑n+1

1 a jε j with a1 +an+1 = 2a0 (fixed
with σ ). To find the minimal element of the restricted weights µ = (a1 − an+1)α

(for λ ∈ Fσ ) write

(4–1) a1 − an+1 = a1 + an+1 − 2an+1,

and observe that since a1+an+1 is fixed and −an+1 ≥a2, the minimum of a1−an+1

is attained when −an+1 = a2. Thus we get

(4–2) min Fσ = ησ + µσ , where µσ = (a1 + an+1 + 2a2)α = 2(a0 + a2)α.

(Note that µσ is not necessarily in 3sph since a0 can be half-odd-integer.)
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The decomposition (4–1) can then be written as

a1 − an+1 = (a1 + an+1 + 2a2) + 2(−an+1 − a2),

and since k = −an+1 − a2 ∈ Z+, we get

µ = µσ + 2kα ∈ µσ + 3sph,

which is Kostant’s result (1–2).
To find the minimal element µσ,τ of 3σ (τ ) we need the branching theorems for

U ⊃ K and K ⊃ M . The first is given in [Lepowsky 1971, Theorem 2], the second
in [Baldoni Silva 1979, Theorem 5.5]. By adapting these theorems to our case (in
particular to our choice of ordering) we obtain the following statements.

Theorem 4.1 (Lepowsky branching theorem for Sp(n + 1) ⊃ Sp(n) × Sp(1)). Let
λ′

=
∑n+1

1 a jε j ∈ Û and ν =
∑n+1

1 b jε j ∈ K̂ . Define

A1 = a1 − max(−an+1, b1),

A2 = min(−an+1, b1) − max(a2, b2),

A3 = min(a2, b2) − max(a3, b3),

...

An = min(an−1, bn−1) − max(an, bn),

An+1 = min(an, bn).

Then the multiplicity m(ν, λ′) vanishes unless

(4–3) −bn+1 +

n+1∑
1

A j ∈ 2Z

(or, equivalently, −an+1 − bn+1 +
∑n

1(a j + b j ) ∈ 2Z) and

(4–4) A1 ≥ 0, A2 ≥ 0, . . . , An ≥ 0

(An+1 ≥ 0 automatically). Under these conditions we have

(4–5)

m(ν, λ′) =

∑
L⊂{1,2,...,n+1}

(−1)|L|

(
n − 1 − |L| +

1
2

(
bn+1 +

∑n+1
1 A j

)
−

∑
j∈L A j

n − 1

)
,

where the binomial coefficient
(x

y

)
is defined to be zero if x < y.

Keeping in mind the conditions of dominance on λ′ and ν, it is easy to see that
(4–4) is equivalent to the following double interlacing conditions on the highest
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weights:

(4–6)
a1 ≥ b1 ≥ a2 ≥ b3 ≥ a4 ≥ · · · ≥

{
bn−1 ≥ an if n is even,

an−1 ≥ bn if n is odd,

−an+1 ≥ b2 ≥ a3 ≥ b4 ≥ a5 ≥ · · · ≥

{
an−1 ≥ bn if n is even,

bn−1 ≥ an if n is odd.

What makes the quaternionic case more complicated is that these conditions are
only necessary but not sufficient, in general, for λ′ to contain ν. This is due to the
alternating sum formula (4–5), which involves a great deal of cancellation and may
give zero even if λ′ satisfies (4–6).

Theorem 4.2 (Baldoni Silva branching theorem for Sp(n)×Sp(1)⊃Sp(n−1)×Sp(1)).
Let ν =

∑n+1
1 b jε j ∈ K̂ and η = a0(ε1 + εn+1) +

∑n
2 a jε j ∈ M̂ . Define

A′

1 = b1 − max(a2, b2),

A′

2 = min(a2, b2) − max(a3, b3),

A′

3 = min(a3, b3) − max(a4, b4),

...

A′

n−1 = min(an−1, bn−1) − max(an, bn),

A′

n = min(an, bn).

Then the multiplicity m(η, ν) vanishes unless

(4–7) A′

1 ≥ 0, A′

2 ≥ 0, . . . , A′

n−1 ≥ 0

(A′
n ≥ 0 automatically) and

(4–8) 2a0 = −bn+1 + c1 − 2l for some l = 0, 1, . . . , min(−bn+1, c1),

where c1 satisfies c1 ∈ Z+ and

(4–9) c1 +

n∑
1

A′

j ∈ 2Z

(or, equivalently, c1 + b1 +
∑n

2(a j + b j ) ∈ 2Z). Under these conditions we have

(4–10)

m(η, ν) =

∑
c1

∑
L⊂{1,2,...,n}

(−1)|L|

(
n − 2 − |L| +

1
2

(
−c1 +

∑n
1 A′

j

)
−

∑
j∈L A′

j

n − 2

)
,

where the outer sum is over all values of c1 satisfying (4–8).
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Again (4–7) is equivalent to the following double interlacing conditions:

(4–11)
b1 ≥ a2 ≥ b3 ≥ a4 ≥ · · · ≥

{
bn−1 ≥ an if n is even,

an−1 ≥ bn if n is odd,

b2 ≥ a3 ≥ b4 ≥ a5 ≥ · · · ≥

{
an−1 ≥ bn if n is even,

bn−1 ≥ an if n is odd.

To better understand the condition (4–8), note first that it is equivalent to

2a0 = −bn+1 + c1, −bn+1 + c1 − 2, . . . , | − bn+1 − c1|,

that is,

(4–12) | − bn+1 − c1| ≤ 2a0 ≤ −bn+1 + c1,

with 2a0 changing by steps of 2 and having the same parity as −bn+1 + c1. By
(4–12) we get similar inequalities involving −bn+1 and c1, namely

|2a0 − c1| ≤ − bn+1≤ 2a0 + c1,(4–13)

|2a0 + bn+1| ≤ c1 ≤ 2a0 − bn+1,(4–14)

with −bn+1 and c1 changing by steps of 2 and having the same parity as 2a0 + c1

and 2a0 − bn+1, respectively.
The value of c1 may also be required to satisfy the additional condition

−c1 +

n∑
1

A′

j ≥ 0,

for otherwise the sum over L in (4–10) gives zero. Thus the integer c1 must satisfy

(4–15) 0 ≤ c1 ≤

n∑
1

A′

j = b1 − max(a2, b2) +

n∑
2

A′

j ≡ k0,

and must have the same parity as the integer k0, by (4–9).
By (4–14) and (4–15) we see that the allowed values of c1 must satisfy

(4–16) |2a0 + bn+1| ≤ c1 ≤ min(2a0 − bn+1, k0).

For example, suppose ν ∈ K̂ is fixed and we want to compute the M-types of
ν. By (4–11) we determine the possible values of (a2, a3, . . . , an) (a finite number
of (n − 1)-tuples). For each such (n − 1)-tuple we find the allowed values of 2a0

using (4–12) with c1 subject to (4–9) and (4–15). A given value of 2a0 will be
obtained for different values of c1, namely those satisfying (4–16). The sum over
c1 in the multiplicity formula (4–10) will then be over these values. On the other
hand if η ∈ M̂ is fixed, we use instead (4–13) to find the allowed values of −bn+1,
again with c1 subject to (4–9) and (4–15).
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For later use note the following. From (4–16) we get the inequality

(4–17) |2a0 + bn+1| ≤ k0.

If we let

(4–18) 2k = 2a0 + bn+1 − k0 + 2
n∑
2

A′

j ,

then (4–17) implies that k is an integer and that

(4–19) −(b1 − max(a2, b2)) ≤ k ≤

n∑
2

A′

j .

We are now ready to prove the following result, which gives the minimal element
of 3σ (τ ) explicitly in most (though not all) of the cases.

Theorem 4.3. Let τ be a fixed K -type with highest weight ν =
∑n+1

1 b jε j , and
let σ be a fixed M-type with highest weight ησ = a0(ε1 + εn+1) +

∑n
2 a jε j such

that σ ⊂ τ |M . For each λ in Fσ write λ = g · λ′ with λ′
=

∑n+1
1 a jε j , so that

a1 + an+1 = 2a0 is fixed with σ , and the highest restricted weight of λ is µ =

(a1 − an+1)α. Define the elements

rσ,τ = b1 − bn+1 + max(a2, b2) −

n+1∑
3

A j , λ0 = ησ + rσ,τα,

sσ,τ = 2a0 + 2 max(a2, b2), λ1 = ησ + sσ,τα,

tσ,τ = 2b1 − 2a0, λ2 = ησ + tσ,τα.

Then

(4–20) a1 − an+1 ≥ max(rσ,τ , sσ,τ , tσ,τ ), ∀λ ∈ Fσ ∩ Û (τ ).

If max(rσ,τ , sσ,τ , tσ,τ ) = rσ,τ then the minimal element of 3σ (τ ) is

(4–21) µσ,τ = rσ,τα, with m(τ, δλ0) = 1.

If max(rσ,τ , sσ,τ , tσ,τ ) = sσ,τ then µσ,τ = (sσ,τ + 2p)α, where p is the first integer
with 0 ≤ p ≤ b1 −max(a2, b2) such that the element λ = ησ +(sσ,τ +2p)α satisfies

m(τ, δλ) =

∑
L⊂{1,2,...,n+1}

(−1)|L|

(
n −1−|L|+

1
2(sσ,τ −rσ,τ )+ p−

∑
j∈L A j

n −1

)
6= 0.

(In most cases p = 0, but there are some special cases where p > 0; see below.)
A similar conclusion holds if max(rσ,τ , sσ,τ , tσ,τ ) = tσ,τ , with sσ,τ replaced by tσ,τ

and 0 ≤ p ≤ 2a0.

Proof. We first observe that for all λ ∈ Fσ , A j = A′

j−1, ∀ j = 3, . . . , n + 1 (in
the notations of Theorems 4.1 and 4.2). Therefore the quantities A j , j ≥ 3, are
the same for all λ in Fσ since they depend on σ and τ only (not on the highest
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restricted weight of λ). The interlacing conditions A j ≥ 0 ( j ≥ 3), as well as the
condition b1 ≥ max(a2, b2), then follow immediately from the branching law for
K ⊃ M and the fact that σ ⊂ τ |M . The other conditions A1 ≥ 0 and A2 ≥ 0 for
λ ∈ Fσ ∩ Û (τ ) give (compare (4–6)):

a1 ≥ b1, −an+1 ≥ max(a2, b2),

whence
a1 − an+1 = 2a0 − 2an+1 ≥ 2a0 + 2 max(a2, b2) = sσ,τ ,

and
a1 − an+1 = 2a1 − 2a0 ≥ 2b1 − 2a0 = tσ,τ .

Thus

(4–22) a1 − an+1 ≥ max(sσ,τ , tσ,τ ), ∀λ ∈ Fσ ∩ Û (τ ).

Secondly, from the Lepowsky multiplicity formula (4–5), we see that m(ν, λ′)

vanishes unless

(4–23) bn+1 +

n+1∑
1

A j ≥ 0.

This condition may be regarded as an additional interlacing condition necessary
for m(ν, λ′) > 0. Unlike (4–6), (4–23) involves the parameter bn+1, which is the
highest weight of the representation τ |1×Sp(1). Using (4–3) we rewrite (4–23) as

(4–24) bn+1 +

n+1∑
1

A j ∈ 2Z+, ∀λ ∈ Fσ ∩ Û (τ ).

To gain more information from (4–23)–(4–24), we divide the elements of Fσ

into two classes, namely we say λ ∈ Fσ is in class 1 if −an+1 > b1, in class 2 if
−an+1 ≤ b1. These two classes are separated by the element λ3 with −an+1 = b1,
i.e., λ3 = ησ +2(a0 +b1)α. Class 1 is certainly nonempty and actually infinite. (If
we had −an+1 ≤ b1 for all λ ∈ Fσ , then Fσ would be bounded by λ3, whereas we
know that Fσ = ησ + µσ + 3sph by Kostant’s result.)

For λ in class 1 or for λ = λ3 we have A1 = a1 + an+1 = 2a0 and A2 =

b1 − max(a2, b2), and the double interlacing conditions (4–4) are automatically
satisfied. Since A1 and A2 (like A j , j ≥ 3) depend on σ and τ only, all λ in class 1
have the same A j as λ3, ∀ j . The same holds for the quantity

(4–25) bn+1 +

n+1∑
1

A j = bn+1 + 2a0 + b1 − max(a2, b2) +

n+1∑
3

A j

= 2(a0 + b1) − rσ,τ = sσ,τ − rσ,τ + 2(b1 − max(a2, b2)).



A GENERALIZATION OF THE CARTAN–HELGASON THEOREM 23

It then follows from (4–5) that all δλ with λ in class 1 must contain τ with the
same multiplicity as δλ3 . This multiplicity cannot be zero, for otherwise Fσ ∩Û (τ )

would be finite (class 2 being finite, see below), whereas we know that Fσ ∩Û (τ )=

ησ + µσ,τ + 3sph by Theorem 1.1. In conclusion, we have

m(τ, δλ) = m(τ, δλ3) > 0, ∀λ in class 1,

and the minimal element ησ + µσ,τ must be ≤ λ3. Moreover the quantity bn+1 +∑n+1
1 A j in (4–25) must be ≥ 0 and actually in 2Z+ by (4–24). This can easily

be checked independently using the branching rule for K ⊃ M . In fact the right
hand side of (4–25) equals 2a0 + bn+1 + k0 (where k0 is defined in (4–15)), and
our claim follows easily from (4–17).

Formula (4–25) then implies

(4–26) a1 − an+1 > (a1 − an+1)λ=λ3 = 2a0 + 2b1 ≥ rσ,τ , ∀λ in class 1.

Class 2 consists of those λ ∈ Fσ such that µσ ≤ µ ≤ 2(a0 + b1)α, i.e.,

2(a0 + a2) ≤ a1 − an+1 ≤ 2(a0 + b1).

For λ in class 2 we have A1 = a1 − b1 and A2 = −an+1 − max(a2, b2), so that

(4–27) bn+1 +

n+1∑
1

A j = bn+1 + a1 − an+1 − b1 − max(a2, b2) +

n+1∑
3

A j

= (a1 − an+1) − rσ,τ .

Still for λ in class 2, if m(τ, δλ) is positive, (4–23) and (4–27) yield

a1 − an+1 ≥ rσ,τ .

Now this and (4–26) imply

a1 − an+1 ≥ rσ,τ , ∀λ ∈ Fσ ∩ Û (τ ),

which, together with (4–22), proves (4–20).
Note that the quantity sσ,τ − rσ,τ must be in 2Z since the right hand side of

(4–25) is in 2Z+. In fact sσ,τ − rσ,τ is just the right hand side of (4–18), so that
sσ,τ − rσ,τ = 2k ∈ 2Z, with k satisfying (4–19). Thus sσ,τ can be greater, equal or
less than rσ,τ , in general.

Now let us suppose that max(rσ,τ , sσ,τ , tσ,τ ) = rσ,τ . Then the element λ0 =

ησ + rσ,τα is in Fσ and it is in class 2, by (4–26). Moreover λ0 satisfies all of the
interlacing conditions (4–6). Indeed if we solve for a1 and −an+1 from the two
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relations a1 + an+1 = 2a0, a1 − an+1 = rσ,τ , we get

a1 =
1
2(rσ,τ + 2a0) =

1
2

(
b1 − bn+1 + max(a2, b2) −

∑n+1
3 A j + 2a0

)
,

−an+1 =
1
2(rσ,τ − 2a0) =

1
2

(
b1 − bn+1 + max(a2, b2) −

∑n+1
3 A j − 2a0

)
.

The condition a1 ≥ b1 is then equivalent to rσ,τ ≥ tσ,τ , while the condition −an+1 ≥

max(a2, b2) is equivalent to rσ,τ ≥ sσ,τ .
For λ = λ0 we have by (4–27)

bn+1 +

n+1∑
1

A j = rσ,τ − rσ,τ = 0,

and λ0 satisfies (4–3), being equal to −bn+1 +
∑n+1

1 A j = −2bn+1 ∈ 2Z+. By
applying the multiplicity formula (4–5) to λ0 we see that only L = ∅ contributes
to the sum over L in this case, and we get

m(τ, δλ0) = 1.

In view of (4–20), this proves (4–21).
Now let max(rσ,τ , sσ,τ , tσ,τ ) = sσ,τ , with sσ,τ > rσ,τ . Then the element λ1 =

ησ + sσ,τα (which is always in class 2) satisfies the double interlacing conditions.
Indeed for λ = λ1 we have a1 = 2a0 + max(a2, b2) and −an+1 = max(a2, b2), so
that

A1 = 2a0 + max(a2, b2) − b1, A2 = 0.

The condition A1 ≥ 0 is then equivalent to sσ,τ ≥ tσ,τ . For λ = λ1 we have by
(4–27)

(4–28) bn+1 +

n+1∑
1

A j = sσ,τ − rσ,τ ,

which is greater than zero in this case. Actually we have sσ,τ − rσ,τ = 2k ∈ 2Z+,
with 0 < k ≤

∑n+1
3 A j ; compare (4–19). By (4–5) we have

(4–29) m(τ, δλ1) =

∑
L⊂{1,2,...,n+1}

(−1)|L|

(
n − 1 − |L| + k −

∑
j∈L A j

n − 1

)
,

with a subset L contributing to the sum if and only if

(4–30) k ≥ |L| +

∑
j∈L

A j .

For example, L = ∅ and L = {2} always contribute to the sum. One would expect
m(τ, δλ1) to be always nonzero, yielding sσ,τα as the minimal element µσ,τ . This
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is true in most of the cases but not always. For some special values of a0, b1 and
A j ( j ≥ 3) we actually get zero from the formula above.

Let, e.g., k = 1, that is, sσ,τ − rσ,τ = 2. By (4–30) the subsets with |L| ≥ 2 do
not contribute to the sum. Besides L = ∅, {2}, the subset L = { j} contributes if
and only if A j = 0. The numbers A1, A3, . . . , An+1 cannot all be zero since (4–28)
would give then bn+1 = 2, while bn+1 < 0. Similarly, the numbers A3, . . . , An+1

cannot all be zero since this would conflict with (4–19) (k being 1). If q is the
number of vanishing A j , j 6= 2, then (4–29) gives

m(τ, δλ1) = n − 1 − q.

This is zero if q = n − 1, that is, when A1 and n − 2 of the n − 1 numbers A j ,
j ≥ 3, vanish. The nonvanishing one, A j1 , will satisfy A j1 ≥ 2 since bn+1+ A j1 = 2
by (4–28). We conclude that for sσ,τ − rσ,τ = 2 the minimal element of 3σ (τ ) is
µσ,τ = sσ,τα, except when the following condition holds:{

A j = 0, ∀ j ≥ 3, j 6= j1, A j1 ≥ 2,

b1 = 2a0 + max(a2, b2).

In this case we compute

m(τ, δλ) = 1 for λ = ησ + (sσ,τ + 2)α,

so that µσ,τ = (sσ,τ + 2)α. If k ≥ 2 we can reason in a similar way, but we get
more cases in which µσ,τ > sσ,τα. In general we have then

sσ,τα ≤ µσ,τ ≤ 2(a0 + b1)α,

i.e., µσ,τ = (sσ,τ + 2p)α, where p is the first integer such that 0 ≤ p ≤ b1 −

max(a2, b2) and m(τ, δλ) > 0 for λ = ησ + (sσ,τ + 2p)α.
Finally, let max(rσ,τ , sσ,τ , tσ,τ ) = tσ,τ with tσ,τ > rσ,τ . Then the element λ2 =

ησ + tσ,τα is in Fσ , it is in class 2, and satisfies the double interlacing conditions.
Indeed for λ = λ2 we get a1 = b1 and −an+1 = b1 − 2a0, so that

A1 = 0, A2 = b1 − 2a0 − max(a2, b2).

The condition A2 ≥ 0 is equivalent to tσ,τ ≥ sσ,τ . For λ = λ2 we have

bn+1 +

n+1∑
1

A j = tσ,τ − rσ,τ = 2k,

with k a positive integer. The multiplicity m(τ, δλ2) is given by the same formula
(4–29), and we can repeat similar considerations as in the previous case. We get
µσ,τ = (tσ,τ +2p)α, where p is the first integer such that 0≤ p ≤2a0 and m(τ, δλ)>

0 for λ = ησ + (tσ,τ + 2p)α. This finishes the proof of the theorem. �
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Example 1. Consider the spinor K -types τ j , with highest weights

ν j =

j∑
k=1

εk − (n − j)εn+1 (0 ≤ j ≤ n).

(It is understood that
∑b

k=a =0 if b <a.) Let σ j , σ
′

j be the M-types with respective
highest weights

η j =

j+1∑
k=2

εk +
n − j

2
(ε1 + εn+1) (0 ≤ j ≤ n − 1),

η′

j =

j∑
k=2

εk +
n − j − 1

2
(ε1 + εn+1) (1 ≤ j ≤ n − 1).

Theorem 4.2 gives the following M-decompositions of the K -types τ j , all with
multiplicity one:

τ0|M = σ0, τ1|M = σ1 ⊕ σ ′

1 ⊕ σ0,

τ j |M = σ j ⊕ σ ′

j ⊕ σ j−1 ⊕ σ ′

j−1 (2 ≤ j ≤ n − 1),

τn|M = σn−1 ⊕ σ ′

n−1.

(See [Camporesi and Pedon 2002, Lemma 4.1]; note the misprint in the decompo-
sition of τn|M , where σn should read σn−1.)

It is an easy matter to compute the minimal element µσ,τ for each pair (σ, τ )

with σ ∈ M̂(τ ). The result is as follows.
For (σ, τ ) = (σ ′

1, τ1) we get

µσ,τ = rσ,τα = nα > sσ,τα = (n − 2)α,

and λ0 = λ3 > λ1. The element λ1 = ησ + sσ,τα satisfies the double interlacing
conditions (4–6) for any n ≥ 3, but it does not contain τ (formula (4–5) gives zero
since bn+1+

∑n+1
1 A j =−2<0). This shows that the double interlacing conditions

(4–6) are not sufficient, in general, for ν to occur in λ′.
For (σ, τ ) = (σ j−1, τ j ) (2 ≤ j ≤ n) we get

µσ,τ = sσ,τα = (n + 3 − j)α > rσ,τα = (n + 1 − j)α,

and λ1 = λ3 > λ0. For all remaining cases we get

µσ,τ = sσ,τα = rσ,τα,

and λ0 = λ1 = λ3, except for (σ, τ ) = (σ0, τ1) where λ0 = λ1 < λ3.
In all cases we have λ2 ≤ λ0 and λ2 ≤ λ1, except for (σ, τ ) = (σ ′

1, τ1) and n = 2,
where 0 = λ1 < λ2 = λ0.
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Example 2. Let τ be the K -type with highest weight ν = 2ε1 + ε2, and σ the
M-type with highest weight ησ = ε2. Theorem 4.2 implies easily that σ occurs in
τ |M with multiplicity m(σ, τ ) = 1. One computes

µσ,τ = tσ,τα = 4α > sσ,τα = rσ,τα = 2α,

and λ2 = λ3 > λ1 = λ0. This shows that tσ,τ can be greater than sσ,τ and rσ,τ .
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