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We give examples of bihermitian compact surfaces (M, g) whose Ricci ten-
sor ρ satisfies ∇Xρ(X, X) =

1
3 Xτ g(X, X). We construct one-parameter

families of such metrics on all the Hirzebruch surfaces 6k, for k ≥ 0.

Introduction

Let (M, g) be a riemannian manifold with Ricci tensor ρ satisfying

(0–1) ∇Xρ(X, X) =
2

n + 2
Xτg(X, X),

where τ is the scalar curvature of (M, g) and n = dim M . A. Gray [1978] called
such manifolds AC⊥ manifolds. Many interesting manifolds are of this type,
including (compact) Einstein–Weyl manifolds [Jelonek 1999], weakly self-dual
Kähler surfaces [Jelonek 2002a; Apostolov et al. 2003] and D’Atri spaces.

In [Jelonek 2002a] we showed that every Kähler surface has a harmonic anti-
self-dual part W − of the Weyl tensor W (i.e. such that δW −

= 0) if and only if it
is an AC⊥-manifold. Later [2002b] we gave an example of a Kähler AC⊥-metric
on a Hirzebruch surface 61; this example was independently found by Apostolov,
Calderbank and Gauduchon [Apostolov et al. 2003], who additionally proved that
this is the only compact Kähler AC⊥-surface with nonconstant scalar curvature.
We show here that for hermitian surfaces the situation is different: there are many
examples of hermitian AC⊥-surfaces with nonconstant scalar curvature.

In [Jelonek 2002a] we also showed that any simply connected 4-dimensional
AC⊥-manifold (M, g) whose Ricci tensor has exactly two eigenvalues of multi-
plicity 2 admits two mutually opposite hermitian structures commuting with the
Ricci tensor. Surfaces admitting two oppositely oriented complex structures will
be called bihermitian surfaces. (The reader should be warned that this term has
been used differently in [Apostolov et al. 2003], where it means a surface admitting
two positively oriented hermitian structures).

The work was supported by KBN grant 2 P0 3A 023 24.
MSC2000: 53C07, 53C20.
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Proposition 0.1 [Jelonek 2002b]. Let (M, g) be a compact 4-manifold with even
first Betti number admitting two opposite to each other hermitian structures J, J̄
which commute with the Ricci tensor ρ of (M, g). Then M is a ruled surface or is
locally a product of two riemannian surfaces. �

Here we construct examples of AC⊥-metrics with nonconstant scalar curvature
and bihermitian Ricci tensor. We shall call such surfaces with the appropriate
riemannian structure the Gray surfaces. We shall construct our examples on Hirze-
bruch surfaces 6k which are ruled surfaces of genus 0.

Using the methods of Bérard-Bergery [1982] (see also [Sentenac 1981; Page
1978]) we reduce the problem to a certain ODE of the second order. We show
that this equation has a positive solution satisfying the appropriate boundary con-
ditions and we shall prove in this way the existence of bihermitian AC⊥-metrics.
In this way we also give new examples of compact 4-dimensional AC⊥-manifolds;
compare [Besse 1987, p. 433].

1. Hermitian 4-manifolds

Let (M, g, J ) be an almost hermitian manifold. We say that (M, g, J ) is a her-
mitian manifold if its almost hermitian structure J is integrable. In the sequel we
shall consider 4-dimensional hermitian manifolds (M, g, J ), which we shall also
call hermitian surfaces. Such manifolds are always oriented and we choose an
orientation in such a way that the Kähler form �(X, Y ) = g(J X, Y ) is self-dual
(that is, � ∈ ∧

+M). The vector bundle of self-dual forms admits a decomposition

∧
+M = R� ⊕ L M,

where L M = {8 ∈ ∧M : 8(J X, JY ) = −8(X, Y ) is the bundle of real J -skew
invariant 2-forms. L M is a complex line bundle over M with the complex structure
J defined by (J8)(X, Y ) = −8(J X, Y ). For a 4-dimensional hermitian manifold
the covariant derivative of the Kähler form � is locally expressed by

(1–1) ∇� = a ⊗ 8 + Ja ⊗ J8,

where Ja(X) = −a(J X).
An opposite (almost) hermitian structure on a hermitian 4-manifold (M, g, J )

is an (almost) hermitian structure J whose Kähler form (with respect to g) is anti-
self-dual.

On a riemannian manifold a distribution D ⊂ T M is called umbilical [Jelonek
2000] if ∇X X |D⊥ =g(X, X)ξ for every X ∈0(D), where X |D⊥ is the D⊥ component
of X with respect to the orthogonal decomposition T M = D⊕D⊥. The vector field
ξ is called the mean curvature normal of D. An involutive distribution D is tangent
to a foliation, which is called totally geodesic if its every leaf is a totally geodesic
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submanifold of (M, g), i.e., ∇X X ∈ D if X is a section of a vector bundle D ⊂ T M .
In the sequel we shall not distinguish between D and a tangent foliation and we
shall also say that D is totally geodesic in such a case.

On any hermitian non-Kähler 4-manifold (M, g, J ) there are two natural distri-
butions D = {X ∈ T M : ∇X J = 0} and D⊥ defined in the open set U = {x : |∇ Jx | 6=

0}. We shall call D the nullity distribution of (M, g, J ). From (1–1) it is clear that
D is J -invariant and that dimD = 2 in U = {x ∈ M : ∇ Jx 6= 0}. By D⊥ we shall
denote the orthogonal complement of D in U . On U we can define the opposite
almost hermitian structure J̄ by formulas J̄ X = J X if X ∈ D⊥ and J̄ X = −J X
if X ∈ D, which we shall call natural opposite almost hermitian structure. It is
not difficult to check that for the famous Einstein hermitian manifold CP2#CP

2

with the Page metric [1978] (see also [Bérard-Bergery 1982; Sentenac 1981; Koda
1993; LeBrun 1997]) the opposite structure J̄ is hermitian and extends to the global
opposite hermitian structure.

By an AC⊥-manifold [Gray 1978] we mean a riemannian manifold (M, g)

satisfying

CXY Z∇Xρ(Y, Z) =
2

dim M + 2
CXY Z Xτg(Y, Z),

where ρ is the Ricci tensor of (M, g) and C means the cyclic sum. A riemannian
manifold (M, g) is an AC⊥ manifold if and only if the Ricci endomorphism Ric of
(M, g) is of the form Ric = S+

2
n+2τ Id, where S is a Killing tensor, τ is the scalar

curvature and n = dim M . Recall that a (1, 1)-tensor S on a riemannian manifold
(M, g) is called a Killing tensor if g(∇S(X, X), X) = 0 for all X ∈ T M . It is not
difficult to prove the following lemma:

Lemma. Let S ∈ End(T M) be a (1, 1)-tensor on a riemannian 4-manifold (M, g).
Assume that S has exactly two everywhere different eigenvalues λ, µ of the same
multiplicity 2, i.e., dim Dλ = dim Dµ = 2, where Dλ, Dµ are eigendistributions
of S corresponding to λ, µ respectively. Then S is a Killing tensor if and only
if both distributions Dλ and Dµ are umbilical with mean curvature normal equal
respectively

ξλ =
∇µ

2(λ − µ)
, ξµ =

∇λ

2(µ − λ)
.

2. Gray surfaces

Let (M, g0) be a compact riemannian surface of constant curvature K ∈ R and let
p : P → M be a principal circle bundle over M with a connection form θ such that
dθ = cp∗ω, where ω is the volume form of (M, g) and c ∈ R. The manifold P with
the metric gP = θ ⊗ θ + p∗g0 is a 3-dimensional A-manifold. Let θ ] be a vector
field dual to θ with respect to gP . Consider a local orthonormal frame {X, Y } on
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(M, g0) and let Xh, Y h be horizontal lifts of X, Y with respect to p : P → M (so
that θ(Xh) = θ(Y h) = 0 and p(Xh) = X, p(Y h) = Y ). Set H = ∂/∂t .

Now consider the manifold Q = R × P with the metric

(2–1) g f,h = dt ⊗ dt + f (t)2θ ⊗ θ + h(t)2 p∗g0,

where f, h ∈ C∞((a, b))∩ C([a, b]) and f > 0 on (a, b) and h > 0 on [a, b]. We
define two almost hermitian structures J, J̄ on Q as follows:

J H =
1
f
θ ], J Xh

= Y h, J̄ H = −
1
f
θ ], J̄ Xh

= Y h .

Proposition 2.1 [Jelonek 2002b]. Let D be a distribution spanned by the fields
{θ ], H}. Then D is a totally geodesic foliation with respect to the metric g f,h . Both
structures J, J̄ are hermitian and D is contained in the nullity of J and J̄ . The
distribution D⊥ is umbilical with the mean curvature normal ξ = −∇ ln h. �

Proposition 2.2. Let (M, g) be a 4-dimensional riemannian manifold whose Ricci
tensor ρ has two eigenvalues λ0(x), µ0(x) of the same multiplicity 2 at every point
x of M . Assume that the eigendistribution Dλ = D corresponding to λ0 is a to-
tally geodesic foliation and the eigendistribution Dµ = D⊥ corresponding to µ0 is
umbilical. Then (M, g) is an AC⊥-manifold if and only if λ0 − 2µ0 is constant
and ∇τ ∈ 0(D). The distributions D, D⊥ determine two hermitian structures J, J̄
which are opposite to each other and commute with ρ. Both structures J, J̄ are
hermitian and D is contained in the nullity of J and J̄ .

Proof. Let S0 be the Ricci endomorphism of (M, g), so that ρ(X, Y ) = g(S0 X, Y ).
Let the tensor S be defined by the formula

S0 = S +
τ

3
id .

Then tr S = −
1
3τ . Let λ0, µ0 be eigenfunctions of S0 and assume that

λ0 − 2µ0 = 3C

is constant. S also has two eigenfunctions, which we denote by λ, µ. It is easy
to see that λ0 =

1
3τ + C and µ0 =

1
6τ − C . Then µ = −

1
6τ − C and λ = C

is constant. Since the distribution D⊥ is umbilical we have ∇X X |D = g(X, X)ξ

for any X ∈ 0(D⊥) where ξ is the mean curvature normal of D⊥. Since the dis-
tribution D is totally geodesic we also have ∇X X |D⊥ = 0 for any X ∈ 0(D). Let
{E1, E2, E3, E4} be a local orthonormal basis of T M such that D⊥

= span {E1, E2}

and D = span {E3, E4}. Then ∇E1 E1|D = ∇E2 E2|D = ξ . Consequently, noting that
∇µ|D⊥ vanishes if and only if ∇τ|D⊥ does, we get

trg ∇S = 2∇S(E1, E1) = −2(S − µ Id)(∇E1 E1) + ∇µ|D⊥ = −2(λ − µ)ξ,
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if we assume that ∇τ|D⊥ = 0. On the other hand, trg ∇S0 =
1
2∇τ and trg ∇S =

trg ∇S0 −
1
3∇τ . Consequently

trg ∇S =
∇τ

6
= −∇µ.

Thus
ξ = −

1
2(µ − λ)

∇µ.

From the lemma it follows that (M, g) is an AC⊥-manifold if λ0 −2µ0 is constant
and ∇τ ∈ 0(D). These conditions are also necessary, since ∇λ = 0 if (M, g) is
AC⊥-manifold and Dλ is totally geodesic. Analogously

ξ = −
1

2(µ − λ)
∇µ and ∇µ = −

1
6
∇τ ∈ 0(D),

where ξ is the mean curvature normal of an umbilical distribution Dµ, if (M, g) is
an AC⊥-manifold. �

We now construct examples of compact AC⊥-surfaces (M, g, J ) with noncon-
stant scalar curvature on a ruled surface 60 = CP1

×CP1. Let a, b ∈ R be any two
real numbers such that a < b. Consider a metric g f,h on a product (a, b)× S1

× S2

given by the formula

(2–2) g f,h = dt2
+ gt ,

where gt = f 2(t)θ2
+ h(t)2can is the metric on S1

× S2 parameterized by t , can
denotes the canonical metric on S2 of constant curvature 1 and f, h ∈ C∞(a, b)

are positive functions defined on (a, b).

Proposition 2.3 [Bérard-Bergery 1982; Sentenac 1981]. The metric g f,h defined
on (a, b) × S1

× S2 extends to a smooth metric on the surface 60 = CP1
× CP1 if

the following conditions are satisfied:

(a) f (a) = f (b) = 0, f ′(a) = 1, f ′(b) = −1, and f (2k)(a) = f (2k)(b) = 0 for
k ∈ N.

(b) h(a) 6= 0 6= h(b), h′(a)= h′(b)= 0, and h(2k+1)(a)= h(2k+1)(b)= 0 for k ∈ N.
�

Theorem 2.4. On the surface 60 = CP1
×CP1 there exists a one-parameter family

{gα : α > 1} of bihermitian AC⊥-metrics. The Ricci tensor ρ = ρα of (60, gα) is
bihermitian and has two eigenvalues, which are everywhere different.

Proof. Consider the metric (2–2) on (a, b)× S1
× S2. We shall find the conditions

on f, h to obtain the warped product metric (CP1, g f ) ×h (CP1, 4 can), where
g f = dt2

+ f 2(t)θ2 is the metric on the first copy of CP1 and can is the standard
Fubini–Studi metric on the second copy of CP1. Then the Ricci tensor of (U, gh)
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has two eigenvalues λ, µ corresponding to the eigendistributions Dλ =D, Dµ =D⊥

which are given by the following formulas [Jelonek 2000; Madsen et al. 1997]:

λ1 = −2
h′′

h
−

f ′′

f
, λ2 = −

f ′′

f
− 2

f ′h′

f h
, µ = −

h′′

h
−

(h′

h

)2
−

f ′h′

f h
+

1
h2 .

Since λ1 = λ2 we obtain
f = Dh′.

Note that Dλ is totally geodesic and Dµ is totally umbilical (since g f,h is the warped
product metric).

To obtain an AC⊥-metric, λ, µ have to satisfy

λ − 2µ = 3C

for some constant C ∈ R. Thus we obtain an equation

h′′′

h′
− 2

h′′

h
− 2

(h′

h

)2
+

2
h2 + 3C = 0;

introducing h′
=

√
P(h), this becomes

h2 P ′′(h) − 2P ′(h)h − 4P(h) + 4 + 6Ch2
= 0.

Consequently

P(h) =
A
h

+ Bh4
+ Ch2

+ 1,

where A, B ∈ R are arbitrary.
Now let D = 1 and consider the equations

P(x) = 0, P(y) = 0, P ′(x) = 2, P ′(y) = −2.

We are looking for unknown real numbers A, B, C and (x, y), where 0 < x < y.
We have

A
x

+ Bx4
= −Cx2

− 1,

−
A
x2 + 4Bx3

= 2 − 2Cx,

A
y

+ By4
= −Cy2

− 1,

−
A
y2 + 4By3

= −2 − 2Cy.

Then

A =
xy

(
x4

− y4
+ Cx2 y2(x2

− y2)
)

y5 − x5 ,

B =
x − y + C(x3

− y3)

y5 − x5 ,

C =
y2

+ x2
+ 2(x − y)

y3 − x3 ,
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and

x =
(α − 1)(α2

+ 3α + 1)

α(2α2 + α + 2)
, y = αx =

(α − 1)(α2
+ 3α + 1)

(2α2 + α + 2)
for some α > 1.

Note that x, y > 0 and C > 0, A, B < 0.
Consider the differential equation

(2–3)
d2h
dt2 =

1
2 P ′(h), h′(0) = 0, h(0) = x =

(α − 1)(α2
+ 3α + 1)

α(2α2 + α + 2)
,

where P = Pα and h = hα depend on the parameter α > 1. This equation is
equivalent to

dh
dt

=

√
P(h), h(0) = x =

(α − 1)(α2
+ 3α + 1)

α(2α2 + α + 2)
,

if t ∈ D = {t ≥ 0 : h′(t) ≥ 0}. One can also check that

P ′′(h) =
2
h2 (P(h) − 1 + 5Bh2).

Consequently P ′′(h0) < 0 if P(h0) = 0. It follows that P = Pα, where (α > 1),
has exactly two positive roots {x, y} and P(t) > 0 if t ∈ (x, y). Note that equation
(2–3) admits a smooth periodic solution h defined on the whole of R and such that
img h = [x, y]. Let b be the smallest positive number such that

h(b) = y =
(α − 1)(α2

+ 3α + 1)

(2α2 + α + 2)
.

Let us take a = 0. Then it is easy to check that h′′(a) = 1 and h′′(b) = −1 since
P ′(x) = 2 and P ′(y) = −2. Note also that h′(a) = h′(b) = 0 and consequently
h(2k+1)(a) = h(2k+1)(b) = 0. Thus the metric gh extends to a smooth warped
product metric on the whole of the surface 60. Now it is easy to check that λ =

−10Bh2
−3C and µ = −5Bh2

−3C . The tensor ρ −
1
3τg is a Killing tensor with

eigenvalues C and 5Bh2
+ C , corresponding to D and D⊥ respectively. It follows

that we obtained a one-parameter family of bihermitian AC⊥-metrics {gα : α > 1}

on 60. �

Remark. In that way we have constructed examples of compact AC⊥ bihermitian
surfaces whose Ricci tensor is bihermitian. Our examples are of cohomogeneity 1
under the action of the group G = S1

× SO(3) of isometries with principal orbit
S1

× CP1 and two special orbits CP1; see [Madsen et al. 1997]. They do not have
a harmonic Weyl tensor, hence they are proper AC⊥ manifolds, meaning that their
Ricci tensor is not a Codazzi tensor; compare [Besse 1987].
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Next we shall give the examples with the symmetry group U (2). As in [Madsen
et al. 1997], L(k, 1) (where k ∈ N) will denote the a lens space. By 6k we denote
the CP1-bundle over CP1 associated with the principal bundle

p : P(k) = L(k, 1) → CP1

(it is the space of cohomogeneity 1 under an action of U (2) with principal orbit
L(k, 1) and two special orbits CP1). The diffeomorphism type of 6k depends only
on the parity of k: if k is even , then 6k is diffeomorphic to S2

× S2, for k odd, 6k

is diffeomorphic to CP2#C̄P
2
. Let us consider the metric (2–1) where P = P(k),

g0 = gF S is the Fubini–Study metric on CP1 and dθ = 2kp∗ωF S where ωF S is the
Kähler form of (CP1, gF S).

Theorem 2.5. On the surfaces 6k, k ≥ 1 there exists a one-parameter family {gx :

x ∈ (0, εk)} of bihermitian AC⊥-metrics. The Ricci tensor ρ = ρx of (6k, gx) is
bihermitian and has two eigenvalues, which are everywhere different.

Proof. Consider the metric (2–1) on (α, β)× P(k). We shall find the conditions on
f, h to obtain the metric on the whole of 6k . Then the Ricci tensor of (U, gh) has
two eigenvalues λ, µ corresponding to the eigendistributions Dλ = D, Dµ = D⊥

which are given by the following formulas (see [Besse 1987; Jelonek 2002b; 2000;
Madsen et al. 1997):

λ1 = −2
h′′

h
−

f ′′

f
,

λ2 = −
f ′′

f
+ 2

(
k2 f 2

h4 −
f ′h′

f h

)
,

µ = −
h′′

h
+

(
k2 f 2

h4 −
f ′h′

f h

)
−

(
h′

h

)2

− 3k2 f 2

h4 +
4
h2 .

Since λ1 = λ2 we obtain

f = ±
hh′

√
k2 + Ah2

.

We shall consider the case where A < 0 and up to homothety of the metric we can
assume that A = −1. Note that Dλ is totally geodesic and Dµ is umbilical. To
obtain an AC⊥-metric λ, µ have to satisfy

λ − 2µ = C,

for some constant C ∈ R. Thus we obtain an equation

(2–4)
f ′′

f
− 2

h′′

h
− 2

(
h′

h

)2

− 6k2 f 2

h4 +
8
h2 + C = 0,
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with boundary conditions h > 0, f (α) = f ′′(α) = h′(α) = 0, f ′(α) = 1, f (β) =

f ′′(β) = h′(b) = 0, f ′(β) = −1; compare [Jelonek 2002b; Madsen et al. 1997;
Bérard-Bergery 1982]. Write

(2–5) h2
= k2

− g2, f = g′, g′
=

√
z(g).

Then our equation reads

(k2
−g2)2z′′(g)+2g(k2

−g2)z′(g)−4z(g)(g2
+2k2)+16(k2

−g2)+2C(k2
−g2)2

=0.

Write z(g) = P(g)/(k2
− g2). Then equation (2–4) reads

(k2
− g2)P ′′(g) + 6g P ′(g) − 6P(g) + 16(k2

− g2) + 2C(k2
− g2)2

= 0.

Consequently

P(g) = 4(k2
+ g2) + ag + b

(
1
5

(g
k

)6
−

(g
k

)4
+ 3

(g
k

)2
+ 1

)
+ d(k2

− g2)3

where a, b ∈ R and d = C/(6k2). It follows that

z(g) =
Q(g/k)

1 − (g/k)2 = z0

(g
k

)
,

where

Q(t) = 4(1 + t2) +
a
k

t +
b
k2

(1
5 t6

− t4
+ 3t2

+ 1
)
+ dk4(1 − t2)3,

and z0(t) = Q(t)/(1 − t2). We shall show that our equation has a one-parameter
family of solutions for every k ∈ N. Let us write (for simplicity we shall write b
instead of b/k2, d instead of dk4)

(2–6) Q(t) =
1
5(b − 5d)t6

+ (3d − b)t4
+

(
4 + 3(b − d)

)
t2

+ 4 + b + d.

We shall show that for small x ∈ (0, 1) there exist b, d ∈ R such that Q has only one
positive root equal to x and Q′(x) = −2k(1 − x2). Setting z0(t) = Q(t)/(1 − t2),
this means that z0(x)=0, that x is the only positive root of z0 and that z′

0(x)=−2k.
The equations Q(x) = 0 and Q′(x) = −2k(1 − x2) are equivalent to

b
( 1

5 x6
− x4

+ 3x2
+ 1

)
+ d(1 − x2)3

= −4 − 4x2,

b
( 6

5 x5
−4x3

+6x
)
+d

(
−6x(1−x2)2

)
= 2kx2

− 8x − 2k.

Therefore, assuming x ∈ (0, 1), we have
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(2–7)

b =
5
2

(kx4
+8x3

−2kx2
+16x +k)

x(x4−10x2−15)
,

d =
kx7

+(k+8)x6
+(8−5k)x5

−5kx4
+15kx3

+(15k−40)x2
+(5k−40)x +5k

2x(x −1)(x +1)2(x4−10x2−15)
.

Note that

lim
x→0+

4 + b + d
x

= k > 0, lim
x→0+

2d
d − b

= 1, lim
x→0+

b = −∞, lim
x→0+

d = +∞.

Consequently there exists ε>0 (depending on k) such that Qx(0)>0 and Qx(x)=0
if x ∈ (0, ε) where Qx is given by (2–6) and b, d are given by (2–7). We shall show
now that if x is small then it is the only positive root of Q. We have

Q′′(t) = 2t (b − d)

(( 4
b−d

+ 3
)

+ 2
(3d−b

b−d

)
t2

+
3
5

(b−5d
b−d

)
t4

)
.

Consider a quadratic polynomial

Hx(T ) = αx T 3
+ βx T + γx ,

where

γx = 2
( 4

b−d
+ 3

)
, βx = 2

(3d−b
b−d

)
, αx =

3
5

(b−5d
b−d

)
.

It is easy to show that

lim
x→0+

αx =
9
5 , lim

x→0+

βx = −4, lim
x→0+

γx = 3.

Consequently Hx(T )>0 for all T ∈R and small x . Thus there exists εk >0 such
that Qx(t) > 0 for all t ∈ (−x, x), Qx(−x) = Qx(x) = 0, Q′

x(−x) = 2k(1 − x2),
Q′

x(x) = −2k(1 − x2) if x ∈ (0, εk).
Now write

zx(t) =
Qx(t)
1 − t2 .

If x ∈ (0, εk) then there exists a solution g : (−A, A) → (−kx, kx), where

A = lim
t→kx−

∫ t

0

dg
√

zx(g/k)
,

of an equation
g′

=
√

zx(g/k),

such that g(−A)=−kx , g(A)=kx , g′(−A)= g(A)=0, g′′(−A)=1, g′′(A)=−1.
If we define f, h by (2–5) then equation (2–4) and the boundary conditions are
satisfied (note that Ck2

= 6d) and the metric (2–1) on (−A, A)× P(k) determined



BIHERMITIAN GRAY SURFACES 67

by x ∈ (0, 1) extends to a smooth bihermitian AC⊥-metric on the surface 6k for
every x ∈ (0, εk). �

Remark. For other examples of manifolds of the type studied here, see [Madsen
et al. 1997]; their Ricci tensor has two eigenvalues of multiplicities 1 and 3, whereas
ours have Ricci tensor with two eigenvalues of the same multiplicity 2. Non-
compact examples of bihermitian Kähler AC⊥-surfaces (also of cohomogeneity
1) were first given [Derdziński 1981] and recently the general explicit expression
of such Kähler surfaces was discovered by Apostolov, Calderbank and Gauduchon
[Apostolov et al. 2003].
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