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In this paper we determine the reducibility of standard representations for
classical p-adic groups in terms of the classification of discrete series due to
Mœglin and Tadić.

Introduction

We describe the reducibility of standard representations for classical p-adic groups
in terms of the classification of discrete series due to Mœglin [2002] and Tadić
[2002] and tempered representations done by Goldberg [1994]. Their results, and
consequently ours, are complete only assuming that discrete series have generic
supercuspidal support, thanks to the work of Shahidi [1990] on rank-one super-
cuspidal reducibilities. The present paper completes our work on reducibility of
generalized principal series [Muić 2004; 2005].

Many authors have studied this subject, including Ban, Jantzen, Goldberg, and
those just cited. The main application of our results is to the determination of
the unitary duals of classical p-adic groups, and especially to the determination
of ends of complementary series. The reducibility problem for standard modules
for generic inducing data was solved in [Muić 1998; 2001], with the proof of
the Casselman–Shahidi conjecture; there we used only the L-function theory of
Shahidi [1990]. A nice application was given in [Lapid et al. 2004] with the clas-
sification of the generic unitary dual via a reduction (using the results of [Muić
2001]) to the determination of complementary series.

To describe the results of the present paper, we introduce some notation. Let
Gn be a symplectic or (full) orthogonal group having split rank n. Let F be a
nonarchimedean field of characteristic different from 2. Let δ ∈ Irr GL(mδ, F)

(this defines mδ) be an essentially square-integrable representation. Then we can
write δ ' |det|e(δ) ⊗ δu , where e(δ) is real and δu is unitary. A standard rep-
resentation is an induced representation of the form δ′

1 × · · · × δ′
m o τ , where

δ′

i ∈ Irr GL(mδi , F), i = 1, . . . , m, are essentially square-integrable representations
such that e(δ′

1) ≥ · · · ≥ e(δ′
m) > 0 and τ is tempered. The importance of standard
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representations stems from their occurrence in the Langlands classification of ir-
reducible admissible representations. In our case, δ′

1 × · · · × δ′
m o τ has a unique

proper maximal subrepresentation, whose corresponding quotient will be denoted
by Lang(δ′

1 × · · · × δ′
m o τ). As first realized by Langlands in the case of real

reductive groups, then extended by Borel and Wallach [1980] to p-adic (Zariski-)
connected reductive groups, and then by Ban and Jantzen [2001] to nonconnected
reductive groups, the quotient Lang(δ′

1 ×· · ·× δ′
m o τ) is isomorphic to the image

of a particular integral intertwining-operator,

δ′

1 × · · · × δ′

m o τ → δ̃′

1 × · · · × δ̃′

m o τ,

called the long-intertwining operator. (If π is an representation, π̃ stands for its
contragredient representation.)

In this paper we determine the reducibility of δ′

1 × · · · × δ′

k o τ . First, there is
a standard reduction to the maximal parabolic case outlined by Speh and Vogan
[1980] and used extensively by many authors, including Jantzen, Tadić, Shahidi,
and the author. It can be stated as follows in our case (see for example [Jantzen
1996] for the proof):

Theorem. δ′

1 × · · · × δ′

k o τ reduces if and only if one of the following holds:

(i) δ′

i × δ′

j reduces for some pair i 6= j .

(ii) δ′

i × δ̃′

j reduces for some pair i 6= j .

(iii) δ′

i o τ reduces for some i .

The work of Bernstein and Zelevinsky attaches to each δ′

i a segment and (i)
and (ii) can be rephrased in terms of segments. In this paper we determine the
reducibility in (iii). Thus, let δ ∈ Irr GL(mδ, F) be an essentially square-integrable
representation. According to [Zelevinsky 1980], δ is attached to a segment. We
may (and will) write this segment as [ν−l1ρ, νl2ρ], with l1, l2 ∈ R, l1 + l2 ∈ Z≥0,
and ρ ∈ Irr GL(mρ, F) unitary. In this paper we describe the reducibility of the
following induced representation (see [Tadić 1998] for notation):

δ o τ.

Since reducibility for unitary δ is an integral part of the classification of discrete
series and tempered representations (see Theorem 1.1 as well as [Goldberg 1994;
Mœglin 2002; Mœglin and Tadić 2002]), we consider only nonunitary generalized
principal series. Thus, we may assume l2 − l1 > 0, since δ o τ and δ̃ o τ have the
same composition factors.

By the work of Harish-Chandra (see [Waldspurger 2003]) there exist discrete
series δ1, . . . , δk, σ such that τ ↪→ δ1×· · ·×δk oσ . In this introduction, we say that
τ is basic if all δi , i = 1, . . . , k, are pairwise nonequivalent and δi oσ reduces, for
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i = 1, . . . , k. (See [Mœglin and Tadić 2002] or Theorem 4.1 for the reformulation
in terms of admissible triple attached to σ .) Any other tempered representation is
of the form τ ' δ′′

1 ×· · ·×δ′′

k′′ oτ ′′, where τ ′′ is basic and δ′′

1 , . . . , δ′′

k′′ are in discrete
series. In this case, we again directly apply the idea of [Speh and Vogan 1980] to
see that δ o τ reduces if and only if one of the following holds:

δ × δ′′

i reduces for some i;

δ × δ̃′′

i reduces for some i;

δ o τ ′′.

This is done in Lemma 2.1. Therefore we have reduced the study of reducibility
to the case when τ is basic; this case will occupy the main portion of this paper.

We mention that in the case when Gn is a symplectic group, being basic means
being an elliptic tempered representation; see [Herb 1993].

Definition 0.1. We say that τ is elementary if one of the following holds:

(1) τ ' σ .

(2) τ ↪→ δ([ν−l1ρ, νl1ρ]) o σ .

(3) τ ↪→ δ([ν−l2ρ, νl2ρ]) o σ .

(4) τ ↪→ δ([ν−l2ρ, νl2ρ]) × δ([ν−l1ρ, νl1ρ]) o σ .

As it can be seen, the notion of a elementary tempered representation depends
on δ; we use it only in this introduction, to explain the results of the paper. Of
course any elementary representation is also basic.

Sections 2 and 3 reduce the determination of the reducibility of δoτ for τ basic
to the case δ o τ for τ elementary. We then have (see Lemma 3.1):

Theorem. Assume τ is basic. There exist a unique sequence of discrete series
δ′′

1 , . . . , δ′′

k′′ and an elementary representation τ ′′ such that

(a) τ ↪→ δ′′

1 × · · · × δ′′

k′′ o τ ′′,

(b) δ([ν−l1ρ, νl1ρ]), δ([ν−l2ρ, νl2ρ]) 6∈ {δ′′

1 , . . . , δ′′

k′′}.

Moreover, δ o τ reduces if and only if one of the following holds:

δ × δ′′

i reduces for some i ;

δ × τ ′′ reduces.

This proof is based on certain results of multiplicity-one type in Jacquet mod-
ules, coming from the deep fact that if δoσ reduces, then apart from its Langlands
quotient it has one more representation appearing in its composition series with
multiplicity one. This follows from a careful analysis of the reducibility of δ o σ ,
carried out in [Muić 2005] and summarized in Section 4; see Theorem 4.3.
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Thus, we have reduced to the case that τ is elementary. The case τ ' σ is
treated in [Muić 2005] and recapitulated here in Theorem 4.3. The remaining
cases in Definition 0.1 are treated in Sections 5, 6, and 7, respectively. To describe
the results let Jordρ be the set of all Jordan blocks (a, ρ) from Jord = Jord(σ ) (see
Section 4 for definition).

We describe the elementary cases. If δ o σ is irreducible, then δ o τ ′′ is irre-
ducible for any elementary representation τ ′′ (see Lemma 2.4 and the discussion
following its proof). Otherwise, δ o σ reduces (see Theorem 4.1) and we are in
one of the three remaining cases of Definition 0.1:

Case (2): Write δ([ν−l1ρ, νl1ρ])oσ ' τ1 ⊕τ2. (Theorem 4.1 implies that 2l1+1 /∈

Jordρ .) We have several cases (Lemmas 5.1, 5.3, 5.4, and 5.5):

• Assume Jordρ ∩ ]2l1+1, 2l2+1] = ∅. Then δ o τ1 and δ o τ2 both reduce.

• Assume Jordρ ∩ ]2l1+1, 2l2+1] = {2l2+1}. Then exactly one of δ o τ1 and
δ o τ2 reduces.

• Assume Jordρ ∩ ]2l1+1, 2l2+1[ 6= ∅. Take the smallest element in that in-
tersection, say 2lmin+1. We can distinguish τ1 from τ2 using the previous
case:

δ([ν−l1ρ, νlminρ]) o τ1 is irreducible;

δ([ν−l1ρ, νlminρ]) o τ2 reduces.

Then δ o τ2 reduces and δ o τ1 reduces if and only if δ([νlmin+1ρ, νl2ρ]) o σ

reduces. (The last reducibility is described completely in Theorem 4.1. Recall
that we have assumed that δ o σ reduces.)

Case (3): Write δ([ν−l2ρ, νl2ρ]) o σ ' τ1 ⊕ τ2. (Theorem 4.1 implies that 2l2+1
does not lie in Jordρ .) We have several cases, treated in Lemmas 6.2, 6.4, 6.5, 6.6:

• Assume that l1 ≥ 0 and Jordρ ∩ [2l1+1, 2l2+1[ 6= ∅. Then δ o τ1 and δ o τ2

both reduce.

• Assume that l1 ≥ 0 and Jordρ ∩ [2l1+1, 2l2+1[ = {2l1+1}, or that l1 < 0 and
Jordρ ∩ [−2l1−1, 2l2+1[ = {−2l1−1}, or that l1 = −

1
2 and Jordρ ∩ [−2l1−1,

2l2+1[ = ∅. Then exactly one of δ o τ1 and δ o τ2 reduces.

• Assume that l1 ≥ 0 and Jordρ ∩ [2l1+1, 2l2+1[ 6= ∅, or that l1 < 0 and
Jordρ ∩ [−2l1−1, 2l2+1[ 6= ∅. Write 2lmax+1 for the largest element of that
intersection. (It depends on the sign of l1.) We can distinguish τ1 from τ2

using the previous case:

δ([νlmax+1ρ, νl2ρ]) o τ1 is irreducible;

δ([νlmax+1ρ, νl2ρ]) o τ2 reduces.
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Then δ o τ2 reduces and δ o τ1 reduces if and only if δ([ν−l1ρ, νlmaxρ]) o σ

reduces. (The last reducibility is described completely in Theorem 4.1. Recall
that δ o σ reduces.)

Case (4): Write δ([ν−l1ρ, νl1ρ])oσ ' τ1 ⊕τ2 and δ([ν−l1ρ, νl1ρ])oτi ' τi1 ⊕τi2.
(Theorem 4.1 implies that 2l1+1, 2l2+1 /∈ Jordρ .) We again have several cases,
listed in Lemma 7.1:

• Assume Jordρ ∩ ]2l1+1, 2l2+1[ = ∅. Then exactly one of the representations
δ o τi j (i fixed, j = 1, 2) is irreducible.

• Assume Jordρ ∩ ]2l1+1, 2l2+1[ 6= ∅. Let 2lmax+1 be the largest element of
that intersection. The representations τi j (i fixed, j = 1, 2) can be distin-
guished as follows:

δ([νlmax+1ρ, νl2ρ]) o τi1 is irreducible;

δ([νlmax+1ρ, νl2ρ]) o τi2 is reducible.

Then δ o τi1 is reducible if and only if δ([ν−l1ρ, νlmaxρ])o τi reduces. More-
over, δ o τi2 reduces.

1. Preliminaries

Let F be a nonarchimedean field of characteristic different from 2. We will look at
towers of orthogonal or symplectic groups Gn = G(Vn) that are groups of isome-
tries of F-spaces (Vn, ( , )), n ≥ 0, where the form ( , ) is nondegenerate and it
is skew-symmetric if the tower is symplectic and symmetric otherwise. We fix a
set of standard parabolic subgroups in the usual way. See [Mœglin et al. 1987] for
details.

We will use freely the main results and standard notation of [Zelevinsky 1980]
on the representation theory of general linear groups. In particular, we write ν

for the character obtained by the composition of the determinant character and the
absolute value of F (normalized as usual).

If ρ ∈ Irr GL(Mρ, F) is a supercuspidal representation and k ∈ Z≥0, we define
a segment [ρ, νkρ] as the set {ρ, νρ, . . . , νkρ}. This segment has associated to it
a unique essentially square-integrable representation δ([ρ, νkρ]) given as a unique
irreducible subrepresentation of νkρ × · · · × νρ × ρ.

Next we discuss briefly tempered representations in Irr′ = ∪n≥1 Irr Gn . Our
main reference is [Goldberg 1994] in the connected case and [Mœglin and Tadić
2002] in the general case (full orthogonal groups). Of course, everything is based
on deep results of Harish-Chandra (see [Waldspurger 2003]) on the theory of R-
groups in the connected case. Mackey theory can be used to extend this results to
nonconnected case [Mœglin and Tadić 2002; Lapid et al. 2004].
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Theorem 1.1. (i) Let δ1, . . . , δk, σ be a sequence of discrete series. Then the
induced representation δ1 ×· · ·×δk oσ is a direct sum of pairwise nonequiv-
alent tempered representations. It has a length 2l where l is the number of
nonequivalent δi such that δi o σ reduces (see Theorem 4.1).

(ii) Let τ ∈ Irr′ be a tempered representation. Then there exist discrete series
δ1, . . . , δk, σ such that τ ↪→ δ1 × · · · × δk o σ . If δ′

1, . . . , δ
′

k, σ
′ is also a

sequence of discrete series such that τ ↪→ δ′

1 × · · · × δ′

k o σ , then σ '

σ ′ and sequence δ′

1, . . . , δ
′

k is obtained form sequence δ1, . . . , δk permut-
ing terms and taking replacing terms with its contragredient. The multiset
{δ1, . . . , δk, δ̃1, . . . , δ̃k, σ } is called the tempered support of τ .

Corollary 1.2. Let δ ∈ Irr GL(mδ, F) be a discrete series and let τ ∈ Irr′ be a
tempered representation.

(i) If δ appears in the tempered support of τ or δ oσ is irreducible, then δ o τ is
irreducible.

(ii) If δ does not appear in the tempered support of τ and δ o σ is reducible, then
δ o τ is a direct sum of two nonequivalent tempered representations.

Proof. Part (i) follows directly form Theorem 1.1(i). Part (ii) also follows from
Theorem 1.1(i); see [Lapid et al. 2004, Corollary 2] for details. �

Lemma 1.3. Assume that τ ∈ Irr′ is a tempered representation, that m ∈
1
2 Z≥0, and

that ρ ∈ Irr is an irreducible unitary supercuspidal representation. If there exists
τ ′

∈ Irr′ such that τ ↪→ νm1ρ × · · · × ν−m1ρ o τ ′, then τ ′ is tempered and τ ↪→

δ([ν−m1ρ, νm1ρ]) o τ ′. In particular, δ([ν−m1ρ, νm1ρ]) appears in the tempered
support of τ .

Proof. We first prove that τ ↪→ δ([ν−m1ρ, νm1ρ]) o τ ′. If not, take the smallest
k ≥ 1 for which there exists a sequence m1 > a1 > · · · > ak > −m1 such that

(1–1) τ ↪→ δ([νa1+1ρ, νm1ρ]) × δ([νa2+1ρ, νa1]) × · · · × δ([ν−m1ρ, νak ρ]) o τ ′.

The minimality of k implies that we can permute essentially square-integrable rep-
resentations in (1–1) as we want, and the inclusion is still preserved. In particular,

τ ↪→ δ([ν−m1ρ, νak ρ]) × δ([νa1+1ρ, νbm1]) × δ([νa2+1ρ, νa1])

× · · · × δ([νak+1ρ, νak−1ρ]) o τ ′.

Since ak < m1, this violates the temperedness criterion for τ , proving that τ ↪→

δ([ν−m1ρ, νm1ρ])oτ ′. Now, we show that τ ′ is tempered. If not, by the Langlands
classification, we can find a unitary supercuspidal representation ρ ′, real numbers
α, β ∈ R with α −β < 0 and α +β ∈ Z≥0, and a representation τ ′′

∈ Irr′, such that

τ ′ ↪→ δ([ν−βρ ′, ναρ ′
]) o τ ′′.
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Hence
τ ↪→ δ([ν−m1ρ, νm1ρ]) × δ([ν−βρ ′, ναρ ′

]) o τ ′′.

The segments [ν−m1ρ, νm1ρ] and [ν−βρ ′, ναρ ′
] must be linked; otherwise, by

[Zelevinsky 1980], the second intertwining operator in

(1–2) τ ↪→ δ([ν−m1ρ, νm1ρ]) × δ([ν−βρ ′, ναρ ′
]) o τ ′′

→ δ([ν−βρ ′, ναρ ′
]) × δ([ν−m1ρ, νm1ρ]) o τ ′′

is an isomorphism, and this violates the temperedness criterion for τ . Now, since
the segments [ν−m1ρ, νm1ρ] and [ν−βρ ′, ναρ ′

] are linked, we must have ρ ′
' ρ

and α − m1 ∈ Z. We also must have m1 > α and −β < −m1 ≤ α+1, and again
using (1–2), we see that τ must satisfy

τ ↪→ δ([ν−m1ρ, ναρ]) × δ([ν−βρ, νm1ρ]) o τ ′′.

Again, this violates the temperedness criterion for τ . �

Our main tool in the subsequent analysis is Tadić’s theory of Jacquet modules.
We conclude this section by recalling his basic result.

Let R(Gn) be the Grothendieck group of admissible representations of finite
length. Define

R(G) =

⊕
n≥0

R(Gn), R(GL) =

⊕
n≥0

R(GL(n, F)).

We write ≥ or ≤ for the natural order on R(G). Explicitly, we have π1 ≤ π2

for π1, π2 ∈ R(G) if and only if π2 − π1 is a linear combination of irreducible
representations with nonnegative coefficients.

Let σ ∈ Irr Gn . For each standard proper maximal parabolic subgroup (see
[Mœglin et al. 1987]) Pj with Levi factor GL( j, F)× Gn− j , where 1 ≤ j ≤ n, we
can identify RPj (σ ) with its semisimplification in R(GL( j, F))⊗ R(Gn− j ). Thus,
we can consider

µ∗(σ ) = 1 ⊗ σ +

n∑
j=1

RPj (σ ) ∈ R(GL) ⊗ R(G).

The basic result of Tadić is the following (see [Mœglin and Tadić 2002] and
references there):

Theorem 1.4. Let σ ∈ Irr Gn . Consider the decomposition into irreducible con-
stituents

µ∗(σ ) =

∑
δ′,σ1

δ′
⊗ σ1 ∈ R(GL) ⊗ R(G)
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(with repetitions possible). Assume that l1, l2 ∈ R, that l1 + l2+1 ∈ Z>0, and that
ρ ∈ Irr GL(mρ, F) is a supercuspidal representation. Then

µ∗
(
δ([ν−l1ρ, νl2ρ]) o σ

)
=

∑
δ′,σ1

l1+l2+1∑
i=0

i∑
j=0

δ([νi−l2 ρ̃, νl1 ρ̃]) × δ([νl2+1− jρ, νl2ρ]) × δ′

⊗ δ([νl2+1−iρ, νl2− jρ]) o σ1.

(We omit δ[ναρ, νβρ]) if α > β.)

2. Basic reductions

In this section we perform basic reductions in the determination of reducibility.
Let τ ∈ Irr′ be a tempered irreducible representation. We assume that

(2–1) τ ↪→ δ1 × δ2 × · · · × δk o σ,

where δ1, . . . , δk, σ are discrete series. By [Zelevinsky 1980], δi is attached to a
segment. We may (and will) write this segment as

[ν−mi ρi , ν
mi ρi ],

with 2mi ∈ Z≥0 and ρi ∈ Irr GL(mρi , F) unitary and supercuspidal.
Let δ ∈ Irr GL(mδ, F) be a nonunitary essentially square-integrable representa-

tion. We study the reducibility and the composition series of δ o τ . Again, δ is
attached to a segment, which we write as

(2–2) [ν−l1ρ, νl2ρ],

with l1, l2 ∈ R, l1 + l2 ∈ Z≥0, and ρ ∈ Irr GL(mρ, F) unitary and supercuspidal.
Next, since δ o τ = δ̃ o τ in R(G), we also assume

(2–3) l2 − l1 > 0

In this way is δ o τ becomes a standard representation, whose Langlands quotient
we denote by Lang(δ o τ).

The first reduction in the study of the reducibility of δ o τ follows from the
factorization of the long-intertwining operator δ o τ → δ̃ o τ .

Lemma 2.1. Assume that there exists i0, 1 ≤ i0 ≤ k, such that δi0 oσ is irreducible,
or that there exist j0, 1 ≤ j0 ≤ k, and i0 6= j0 such that δi0

∼= δ j0 . Then there exists
a tempered irreducible representation τ ′ ↪→ ×

k
i=1,i 6=i0

δi o σ such that

τ ' δi0 o τ ′.

Moreover δ o τ reduces if and only if at least one of the following holds:
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(i) δ × δi0 reduces (see [Zelevinsky 1980]).

(ii) δ × δ̃i0 reduces.

(iii) δ o τ ′ reduces.

Proof. The existence of τ ′ with the required properties follows from Corollary
1.2. Next, all induced representations δ o τ , δ o τ ′, δ × δi0 , δi0 × δ̃ are standard
representations (that is, they admit Langlands quotients). Therefore, we have a
factorization of the long-intertwining operator into long-intertwining operators:

δ o τ ' δ × δi0 o τ ′
→ δi0 × δ o τ ′

→ δi0 × δ̃ o τ ′
→ δ̃ × δi0 o τ ′

' δ̃ o τ.

The lemma follows by the standard argument. �

Lemma 2.1 enables us to assume that

(2–4) δi 6' δ j if i 6= j and δi o σ reduces, for i, j = 1, . . . , k.

We use (2–4) in the remainder of the paper (sometimes without mentioning it ex-
plicitly). In particular, since δi o σ reduces we must have

δi ' δ̃i

and δ1 × δ2 × · · · × δk o σ is a multiplicity-free representation of length 2k , by
Theorem 1.1.

Lemma 2.2. Assume that (2–4) holds and that δ×δi reduces for some i , 1 ≤ i ≤ k.
Then δ o τ reduces.

Proof. Without loss of generality, we may assume i = 1. Since δ × δ1 reduces,
by [Zelevinsky 1980], ρ ' ρ1 and the segments [ν−m1ρ, νm1ρ], [ν−l1ρ, νl2ρ] are
linked. Hence, using (2–2) and (2–3), we obtain l2 > m1 ≥ −l1−1 and −m1 < −l1.
Again, by [Zelevinsky 1980], the long-intertwining operator δ × δ1 → δ1 × δ has
kernel isomorphic to

δ
(
[ν−m1ρ, νl2ρ]

)
× δ

(
[ν−l1ρ, νm1ρ]

)
' δ

(
[ν−l1ρ, νm1ρ]

)
× δ

(
[ν−m1ρ, νl2ρ]

)
.

Thus, for any tempered irreducible representation τ ′, the induced representation
δ
(
[ν−m1ρ, νl2ρ]

)
× δ

(
[ν−l1ρ, νm1ρ]

)
o τ ′ has a Langlands quotient.

Theorem 1.1 implies that δ2 × · · · × δk o σ is a direct sum of 2k−1 pairwise
nonequivalent tempered representations. Moreover there exists a unique one among
them, say τ ′, such that

τ ↪→ δ1 o τ ′.

Hence, by Frobenius reciprocity,

µ∗(τ ) ≥ δ1 ⊗ τ ′.
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Therefore, Theorem 1.4 shows that

(2–5) µ∗(δ o τ) ≥

l1+l2+1∑
i=0

i∑
j=0

δ([νi−l2ρ, νl1ρ]) × δ([νl2+1− jρ, νl2ρ]) × δ1

⊗ δ([νl2+1−iρ, νl2− jρ]) o τ ′.

Now, the multiplicity of

(2–6) δ
(
[ν−l2ρ, νm1ρ]

)
× δ

(
[ν−m1ρ, νl1ρ]

)
⊗ τ ′

in µ∗(δ o τ) is at least 1. (Take i = j = 0 in (2–5).) Hence, to complete the proof
we just need the next lemma.

Lemma 2.3. (i) The Langlands quotient

Lang
(
δ
(
[ν−m1ρ, νl2ρ]

)
× δ

(
[ν−l1ρ, νm1ρ]

)
o τ ′

)
appears in δ × δ1 o τ ′ with multiplicity exactly two.

(ii) The multiplicity of (2–6) in µ∗(δ × δ1 o τ ′) is exactly two.

Proof. The proof is similar to that of [Muić 2005, Theorem 3.1], but there are some
differences since we are considering the tempered case. We expand

µ∗
(
δ([ν−l1ρ, νl2ρ]) × δ([ν−m1ρ, νm1ρ]) o τ ′

)
using Theorem 1.4. Thus, we take indices 0≤ j ≤ i ≤ l1+l2+1, 0≤ j ′

≤ i ′
≤2m1+1,

and irreducible constituents δ′
⊗ τ1 of µ∗(τ ′), and we obtain

(2–7) δ([ν−l2ρ, νm1ρ]) × δ([ν−m1ρ, νl1ρ])

≤ δ([νi−l2ρ, νl1ρ]) × δ([νl2+1− jρ, νl2ρ])

× δ([νi ′
−m1ρ, νm1ρ]) × δ([νm1+1− j ′

ρ, νm1ρ]) × δ′

and
τ ′

≤ δ([νl2+1−iρ, νl2− jρ]) × δ([νm1+1−i ′

ρ, νm1− j ′

ρ]) o τ1.

Equation (2–7) shows that δ′ is nondegenerate. In particular, it is fully induced from
the tensor product of essentially square-integrable representations; see [Zelevinsky
1980]. Now, if i > 0, (2–7) shows that one of those essentially square-integrable
representations must be attached to a segment of the form [ν−l2ρ, νkρ], for some
k < l2. Since µ∗(τ ′) ≥ δ′

⊗ τ1, we obtain τ ′ ↪→ νkρ × · · · × ν−l2ρ o τ ′

1, for some
irreducible representation τ ′

1. This contradicts the temperedness criterion for σ ′.
Thus, i = 0, and since 0 ≤ j ≤ i , we obtain j = 0. Then (2–7) becomes

(2–8) δ([ν−l2ρ, νm1ρ]) × δ([ν−m1ρ, νl1ρ])

≤ δ([ν−l2ρ, νl1ρ]) × δ([νi ′
−m1ρ, νm1ρ]) × δ([νm1+1− j ′

ρ, νm1ρ]) × δ′.
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This implies that the only possible terms in a supercuspidal support of δ′ are
ν−m1ρ, . . . , νm1ρ, without repetition.

If i ′
= 2m1+1 and j ′

= 0, we obtain δ′
' δ([ν−m1ρ, νm1ρ]) since δ′ is nondegen-

erate. Since µ∗(τ ′) ≥ δ′
⊗ τ1, we obtain τ ′ ↪→ νm1ρ × · · ·× ν−m1ρ o τ ′

1, for some
irreducible representation τ ′

1. Applying Lemma 1.3 we arrive at a contradiction.
Next, if j ′ > 0, then i ′

= 2m1+1 since νm1ρ appears exactly once in the su-
percuspidal support of the representation on the left-hand side of (2–8). If j ′

were less than 2m1+1, then ν−m1ρ, . . . , νm1− j ′

(without repetition) would form
the supercuspidal support of δ′. Since j ′ > 0, as before, this would violate the
temperedness criterion for τ ′. Thus j ′

= 2m1+1, and our term (2–6) arises exactly
once. The case i ′ < 2m1+1 is analogous, and yields the term (2–6) exactly once.
This proves (ii).

Now, we prove (i). Write L for the Langlands quotient defined in (i). We show
that it appears at least twice in δ × δ1 o τ ′; then (ii) implies that it appears exactly
twice. We have

(2–9) δ([ν−l1ρ, νl2ρ]) × δ([ν−m1ρ, νm1ρ]) o τ ′
→

δ([ν−m1ρ, νm1ρ]) × δ([ν−l1ρ, νl2ρ]) o τ ′
→

δ([ν−m1ρ, νm1ρ]) × δ([ν−l2ρ, νl1ρ]) o τ ′
→

δ([ν−l2ρ, νl1ρ]) × δ([ν−m1ρ, νm1ρ]) o τ ′

Now, applying [Zelevinsky 1980], the third intertwining operator above has kernel
isomorphic to

δ([ν−l2ρ, νm1ρ]) × δ([ν−m1ρ, νl1ρ]) o τ ′,

and this representation has L as a unique irreducible subrepresentation (Langlands
subrepresentation). Also, applying [Zelevinsky 1980], the first intertwining oper-
ator in (2–9) has kernel isomorphic to

δ([ν−m1ρ, νl2ρ]) × δ([ν−l1ρ, νm1ρ]) o τ ′.

Obviously L is its quotient.
We prove that the copies of L differ. First, by Corollary 1.2(ii), we decompose

δ1 o τ ′
'

⊕2
i=1 τi (multiplicity-free). Inducing in stages, (2–9) can be considered

as a factorization of the long-intertwining operator⊕2
i=1 δ o τi →

⊕2
i=1 δ̃ o τi .

Thus, its image is isomorphic to⊕2
i=1 Lang(δ o τi ).
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Hence, it is also the image of the composition of all three intertwining operators
in (2–9).

We show that the image of the composition of the first and second intertwining
operators in (2–9) intersects the kernel of the third. If not, we see that

(2–10) δ([ν−m1ρ, νm1ρ]) × δ([ν−l2ρ, νl1ρ]) o τ ′

has at least three different irreducible subrepresentations. Thus, by Frobenius reci-
procity,

(2–11) δ([ν−m1ρ, νm1ρ]) ⊗ δ([ν−l2ρ, νl1ρ]) ⊗ τ ′

appears at least three times in an appropriate Jacquet module of (2–10). We show
that this is not the case, combining Theorem 1.4 and the transitivity of Jacquet
modules. First, we express

µ∗
(
δ([ν−m1ρ, νm1ρ]) × δ([ν−l2ρ, νl1ρ]) o τ ′

)
using Theorem 1.4, and arguing as before we can easily see that only the following
term, appearing with multiplicity two,

δ([ν−m1ρ, νm1ρ]) × δ([ν−l2ρ, νl1ρ]) ⊗ τ ′

can have (2–10) in an appropriate Jacquet module. Finally, the Jacquet modules of

δ([ν−m1ρ, νm1ρ]) × δ([ν−l2ρ, νl1ρ])

can be computed easily and explicitly [Zelevinsky 1980], showing that (2–11) ap-
pears with multiplicity one therein. �

The next lemma elucidates further reductions.

Lemma 2.4. Assume that (2–4) holds, that δ×δi is irreducible for all i = 1, . . . , k,
and that δ o σ is irreducible. Then δ o τ is irreducible.

Proof. This follows from the factorization of the long-intertwining operator δoτ →

δ̃ o τ given by

(2–12) δ o τ ↪→ δ × δ1 × δ2 × · · · × δk o σ

' δ1 × δ × δ2 × · · · × δk o σ ' · · · ' δ1 × δ2 × · · · × δk × δ o σ

' δ1 × δ2 × · · · × δk × δ̃ o σ ' · · · ' δ̃ × δ1 × δ2 × · · · × δk o σ.

Hence the long-intertwining operator has no kernel, and δ o τ ' Lang(δ o τ). �

We conclude this section by explaining how we will study reducibility in the
remainder of the paper.

Assuming the truth of (2–4), Lemma 2.4 shows that a necessary condition for
δ o τ to be reducible is that δ × δi be reducible for some i , 1 ≤ i ≤ k, or that δ oσ
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reduces. The reducibility of δoσ is described in [Muić 2005]. We recall this result
in Section 4. Because of Lemma 2.2, in our further investigation of reducibility
we may assume that

(2–13) δ × δi is irreducible for i = 1, . . . , k,

that (2–4) holds, and that

(2–14) δ o σ reduces.

It is implicit in [Muić 2005] that when δ o σ reduces, it contains, apart from
its Langlands quotient (appearing with multiplicity one), one more subquotient,
appearing with multiplicity one (see Section 4). Then Lemma 3.1 reduces the
investigation of reducibility to the determination of three basic cases:

k = 1 and δ1 = δ([ν−l1ρ, νl1ρ]) (only for l1 ≥ 0),

k = 1 and δ1 = δ([ν−l2ρ, νl2ρ]),

k = 2 and δ1 = δ([ν−l1ρ, νl1ρ]) δ2 = δ([ν−l2ρ, νl2ρ]) (only for l1 ≥ 0).

Here (2–4), (2–13), (2–14) hold; see (2–1).

3. Main reduction

In this section we prove the key lemma just described.

Lemma 3.1. Assume the following:

(a) (2–4) holds.

(b) τ ′
∈ Irr′ is a tempered representation and δ′

1, . . . , δ
′

l are discrete series such
that τ ↪→ δ′

1 × · · · × δ′

l o τ ′. We write δ′

i = δ([ν−m′

i ρ ′

i , ν
m′

i ρ ′

i ]), with m′

i ∈ Z≥0

and ρ ′

i unitary and supercuspidal.

(c) (2l1+1, ρ), (2l2+1, ρ) /∈ {(2m′

i+1, ρ ′

i ); i = 1, . . . , l}.

(d) δoτ ′ contains an irreducible subquotient π other than Lang(δoτ) appearing
with multiplicity one in its composition series.

(e) [ν−m′

i ρ ′

i , ν
m′

i ρ ′

i ] and [ν−l1ρ, νl2ρ] are not linked, for all i = 1, . . . , l.

Then δ o τ reduces.

Proof. Upon several applications of Corollary 1.2(ii), equation (2–4) shows that
δ′

1 ×· · ·× δ′

l o τ ′ decomposes into a direct sum of pairwise inequivalent tempered
representations:

(3–1) δ′

1 × · · · × δ′

l o τ ′
'

⊕2l

i=1 τi .
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Thus we have, in the appropriate Grothendieck group,

(3–2)
∑2l

i=1 δoτi = δ×δ′

1×· · ·×δ′

l oτ ′
≥

{
δ × δ′

1 × · · · × δ′

l o π

δ × δ′

1 × · · · × δ′

l o Lang(δ × τ).

It will follow from Lemma 3.2 below that δ o τi for all i = 1, . . . , 2l , has a
common irreducible subquotient with both induced representations on the right-
hand side of (3–2), and hence that δ o τi reduces. But this implies the conclusion
of Lemma 3.1. �

Lemma 3.2. The multiplicity of δ′

1 ×· · ·× δ′

l ⊗π in µ∗(δ × δ′

1 ×· · ·× δ′

l o τ ′) and
in µ∗(δ′

1 ×· · ·×δ′

l oπ) is equal to 2l (see (3–1)). Moreover, it is one in µ∗(δoτi ),
for all i = 1, . . . , 2l . The same holds upon replacing π by Lang(δ o τ ′).

To prove this, we first show:

Claim 3.3. The multiplicity of δ′

1 × · · · × δ′

l ⊗ π in µ∗(δ × δ′

1 × · · · × δ′

l o τ ′) is
exactly 2l .

Proof. The discrete series δ′

i are all nonequivalent because of assumption (a). The
same assumption implies that none of the δ′

i show up in the tempered support of
τ ′.

Next, we may assume m′

1 ≥ m′

2 ≥ · · · ≥ m′

l . We remark that (2–4) implies
that if m′

i = m′

i+1, then ρ ′

i 6' ρ ′

i+1. Now, we apply Theorem 1.4 several times
computing the multiplicity of δ′

1 × · · ·× δ′

l ⊗π in the terms that we describe now.
We take irreducible constituents µ∗(τ ′)≥ δ′

⊗τ ′

1, and indices 0 ≤ j ≤ i ≤ l1+l2+1,
0 ≤ ja ≤ ia ≤ 2ma+1 (a = 1, . . . , l), so that

(3–3) δ′

1 × · · · × δ′

l ≤ δ([νi−l2ρ, νl1ρ]) × δ([νl2+1− jρ, νl2ρ])×

l∏
a=1

(
δ([νia−m′

a ρ ′

a, ν
m′

a ρ ′

a]) × δ([νm′
a+1− ja ρ ′

a, ν
m′

a ρ ′

a])
)
×δ′

and

π ≤ δ([νl2+1−iρ, νl2− jρ]) ×

l∏
a=1

δ([νm′
a+1−ia ρ ′

a, ν
m′

a− ja ρ ′

a]) o τ ′

1.

We want to show that j = 0, that i = l1 + l2+1, and that, for all a = 1, . . . , l,
ja = ia = 2ma+1 or ja = ia = 0. This implies δ′ is trivial and τ ′

' τ , and in view
of assumption (d) this shows the desired multiplicity.

Assume that m′
p ≥ l2 > m′

p+1 and that, if l1 ≥ 0, then m′
t ≥ l1 > m′

t+1. Observe
that p ≤ t . (We omit m p if l2 is strictly greater than all the m′

i , and similarly we
omit m′

p+1 if l2 is strictly smaller than all the m′

i . We treat l1 similarly.) First, we
show that ja = ia = 2ma+1 or ja = ia = 0, for a = 1, . . . , p. (We omit this if
m′

p is not defined.) We do this using induction on the index a. First, let a = 1 and
consider the term ν−m1ρ ′

1. It appears on the left-hand side of (3–3) exactly once.
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On the right-hand side it can either be obtained in the way already described or
come from δ′. (Note that i − l2 ≥ −l2 ≥ −m p and l2+1 − j ≥ −l1 > −l2; see
(2–3).) If it comes from δ′, then δ′ ought to be nondegenerate and by [Zelevinsky
1980] it is induced from a product of essentially square-integrable representations.
One of them must be attached to the segment [ν−m1ρ ′

1, ν
sρ ′

1], where a ≤ m1. Now,
if a < m1, this would violate the temperedness criterion for τ ′ (see the proof of
Lemma 1.3). If a = m1, then Lemma 1.3 implies that δ′

1 appears twice in the
tempered support of τ . This violates (2–4); see (a). This completes the proof of
the base of induction. The proof of the induction step is similar. We just remark
that if a = p and m′

a = l2, then (c) implies ρ 6' ρ ′
p. This completes the proof of

the first induction. We also must have j = 0 since νl2ρ does not contribute to the
creation of remaining terms on the left-hand side of (3–3) since the remaining m′

a
satisfy m′

a < l2. Now, we show ja = ia = 2ma+1 or ja = ia = 0, p < a ≤ t .
(We omit this if m′

t is not defined.) We do this again by induction on index a.
First, let a = p+1 and consider the term ν−m p+1ρ ′

p+1. It appears on the left-hand
side of (3–3) exactly once in not yet determined terms. On the right-hand side it
can either be obtained in the way already described ( jp+1 = i p+1 = 2m p+1+1 or
jp+1 = i p+1 = 0), or it may come from δ′, or we may have i −l2 = −m p+1 ≤ l1 and
ρ ' ρ ′

p+1. The second case can be treated as before. The third case is treated as
follows. First, if t is not defined, l1 is greater than all the m′

i , and therefore νl1ρ does
not show up on the left-hand side of (3–3). Thus i − l2 = l1+1. This contradicts
our assumption that i − l2 = −m p+1 ≤ l1. Next we must have i > 0, otherwise
l2 = m p+1, contradicting (c). Hence −l1 ≥ m p+1 = l2 − i < l2. This contradicts (e)
if l1 < 0, since the segments [ν

−m′

p+1ρ ′

p+1, ν
m′

p+1ρ ′

p+1] and [ν−l1ρ, νl2ρ] are linked.
If l1 ≥ 0, then, by the observation made above, t is defined m′

p+1 ≥ m′
t ≥ l1 and by

construction. Since ρ 'ρ ′

p+1, assumption (c) implies that m′

p+1 > l1. This, together
with −l1 ≥ m p+1 = l2 − i < l2 and ρ ' ρ ′

p+1, contradicts (e). This completes the
proof of the base of the second induction. The proof of the induction step is the
same as the proof of the base. This completes the proof if l1 < 0 or t+1 is not
defined. If t+1 is defined, we do one more easy induction on a, where a ≥ t+1;
this is left to the reader. This completes the proof of Claim 3.3. �

Now, using Theorem 1.4, it is easy to show that δ′

1×· · ·×δ′

l ⊗π has multiplicity
at least 2l in µ∗(δ′

1 × · · · × δ′

l o π). Since

µ∗(δ × δ′

1 × · · · × δ′

l o τ ′) ≥ µ∗(δ′

1 × · · · × δ′

l o π),

this multiplicity is exactly 2l . Finally, since τi ↪→ δ′

1 × · · · × δ′

l o τ ′, Frobenius
reciprocity implies that

µ∗(τi ) ≥ δ′

1 × · · · × δ′

l ⊗ τ ′.
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Hence, by Theorem 1.4,

µ∗(δ o τi ) ≥

l1+l2+1∑
i=0

i∑
j=0

δ([νi−l2ρ, νl1ρ]) × δ([νl2+1− jρ, νl2ρ])

× δ′

1 × · · · × δ′

l ⊗ δ([νl2+1−iρ, νl2− jρ]) o τ ′

≥ δ′

1 × · · · × δ′

l ⊗ δ([ν−l1ρ, νl2ρ]) o τ ′
≥ δ′

1 × · · · × δ′

l ⊗ π.

Since this holds for all i = 1, . . . , 2l , we see that the multiplicity of δ′

1×· · ·×δ′

l ⊗π

in µ∗(δ o τi ) is exactly one. This completes the proof of Lemma 3.2.

4. Reducibility of δ o σ

We keep the notation from Section 2. In this section we recall reducibility results
for δ o σ , starting with the basic setup for the classification of discrete series
[Mœglin 2002; Mœglin and Tadić 2002]. (A brief overview can also be found
in [Muić 2005, Section 1].) Let (Jord, σ ′, ε) be the admissible triple attached in
[Mœglin 2002] to σ . It can be described as follows:

First, σ ′
∈ Irr′ is a supercuspidal representation such that there exists an ir-

reducible representation π ∈ GL(mπ , F) such that σ ↪→ π o σ ′. This property
determines σ ′

∈ Irr′ uniquely.

Next, Jord is defined as a set of all pairs (a, ρ) (ρ ∼= ρ̃ is a supercuspidal repre-
sentation of some GL(mρ, F), a > 0 is integer) such that (a) and (b) below hold:

(a) a is even if and only if L(s, ρ, r) has a pole at s = 0. The local L-function
L(s, ρ, r) is the one defined by Shahidi [1990; 1992], where r =

∧2
Cmρ is

the exterior square representation of the standard representation on Cmρ of
GL(mρ, C) if Gn is a symplectic or even-orthogonal group and r = Sym2 Cmρ

is the symmetric-square representation of the standard representation on Cmρ

of GL(mρ, C) if Gn is an odd-orthogonal group. Any such pair (not necessarily
related to σ ) is said to satisfy the parity condition.

(b) The induced representation δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]) o σ is irreducible.

We write Jordρ = {a; (a, ρ) ∈ Jord}, and for a ∈ Jordρ we write a− for the
largest element of Jordρ that is strictly less than a, if one exists. (It is proved in
[Mœglin 2003] that Jord is a finite set.)

Finally, ε is a function defined on a subset of Jord ∪ (Jord × Jord) into {±1}. The
precise definition is not important here; See [Mœglin 2002], [Mœglin and Tadić
2002], or [Muić 2005, Section 1]. We just record the next two facts. We say that
σ is attached to an alternating triple if ε(a, ρ) · ε(a−, ρ)−1

= −1 whenever a− is
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defined and there is an increasing bijection φρ : Jordρ → Jord′

ρ(σ ′), where

Jord′

ρ(σ ′) =

{
Jordρ(σ ′) ∪ {0} if a is even and ε(min Jordρ, ρ) = 1 ;

Jordρ(σ ′) otherwise.

In this case σ can be described explicitly as follows: For each ρ such that Jordρ 6=

∅, we write the elements of Jordρ in increasing order as aρ

1 < aρ

2 < · · · < aρ
kρ

. Then
σ is the unique irreducible subrepresentation of

×ρ ×
kρ

i=1 δ([ν(φρ(aρ
i )+1)/2ρ, ν(aρ

i −1)/2ρ]) o σ ′.

Suppose (a, ρ) ∈ Jord is such that a− is defined and ε(a, ρ) · ε(a−, ρ)−1
= 1.

Then there exists a unique discrete series σ ′′
∈ Irr′ such that

σ ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) o σ ′′.

It is attached to the triple (Jord′′, σ ′, ε), where

Jord′′
= Jord \{(2b+1, ρ), (2b−+1, ρ)}

and ε′′ is the restriction of ε to Jord′′.
Removing successively some pairs (a, ρ), (a−, ρ) with ε(a, ρ) ·ε(a−, ρ)−1

= 1
we can reach an alternating triple. (Note that a− is defined in terms of the current
triple from which we remove the pair.) We say that ensuing alternating triple is
dominated by that of σ .

Now, we recall reducibility results from [Mœglin and Tadić 2002, Section 13].

Theorem 4.1. Assume l ∈
1
2 Z≥0 and ρ ∈ Irr is an unitary and supercuspidal rep-

resentation. Then δ([ν−lρ, νlρ]) o σ is reducible if and only if (2l+1, ρ) satisfies
the parity condition and (2l+1, ρ) /∈ Jord.

Finally, we describe nonunitary reduction [Muić 2005]. In the description of
reducibility of δ o σ it is convenient to introduce the following definition.

Definition 4.2. We say that the pair (2a−

0 +1, 2a0+1)∈ Jordρ × Jordρ , a−

0 <a0, is a
ρ-admissible pair if ε(2a0+1, ρ)ε(2a−

0 +1, ρ)−1
= 1 and ]2a−

0 +1, 2a0+1[∩Jordρ

is either empty or can be divided into disjoint sets of pairs {2a−

j +1, 2a j+1}, j =

1, . . . , k (this defines k), such that a−

j < a j , ε(2a j+1, ρ)ε(2a−

j +1, ρ)−1
= 1 and

there is no pair of indices i 6= j such that a−

j < a−

i < a j < ai or a−

i < a−

j < ai < a j .

Theorem 4.3. Put

Jord(l1, l2, ρ) =

{
]2l1+1, 2l2+1[ ∩ Jordρ if l1 ≥ 0,

[−2l1−1, 2l2+1[ ∩ Jordρ if l1 < 0.

Then δ o σ reduces if and only if (2l1+1, ρ) satisfies the parity condition (hence
also (2l2+1, ρ)) and one of the following holds:
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(a) There exists an ρ-admissible pair (2a′
+1, 2a+1) such that {2a′

+1, 2a+1}

intersects Jord(l1, l2, ρ).

(b) Jord(l1, l2, ρ) 6= ∅ and there is an alternating triple (Jordalt, σ
′, εalt) domi-

nated by (Jord, σ ′, ε) such that Jord(l1, l2, ρ) ⊆ Jordalt and one of the follow-
ing conditions holds:

• l1 ≥ 0 and 2l1+1 or 2l2+1 /∈ (Jordalt)ρ .

• l1 < 0 (6= −
1
2) and 2l2+1 /∈ (Jordalt)ρ .

• l1 = −
1
2 and 2l2+1 ∈ (Jordalt)ρ and ε(min(Jordalt)ρ, ρ) = 1.

(c) Jord(l1, l2, ρ) = ∅, and one of the following holds:

• l1 ≥ 0 and {2l1+1, 2l2+1} 6⊂ Jordρ or ε(2l2+1, ρ)ε(2l1+1, ρ)−1
= 1.

• l1 = −
1
2 and 2l2+1 ∈ Jordρ H⇒ ε(min(Jordalt)ρ, ρ) = 1.

Moreover, if δ o σ reduces than it has an irreducible subquotient other than
Lang(δ o σ) that appears in its composition series with multiplicity one.

Proof. The reducibility part is a reformulation of the main result of [Muić 2005].
(See particularly the following results in that reference: Theorems 3.1 and 3.2,
Lemmas 4.1 and 4.3, Theorem 5.1, Lemmas 6.1, 6.2 and 6.4.) The last part of
the theorem is also a consequence of the results in [Muić 2005] just mentioned,
except when l1 ≥ 0, Jord(l1, l2, ρ) = ∅, and 2l1+1 or 2l2+1 ∈ Jordρ but not both.
If σ is strongly positive this case is covered in [Muić 2004]. The general case is
similar and is already contained in [Muić 2005] and [Muić 2004]. We just sketch
the proof. According to [Muić 2004, Lemma 2.1] we have two cases:

If 2l1+1 ∈ Jordρ , the possible tempered subquotient of δ o σ is common with
δ([ν−l1ρ, νl1ρ])oσ1, where σ1 is a discrete series subquotient of δ([νl1+1ρ, νl2ρ])o
σ . Going in the opposite direction, δ([νl1+1ρ, νl2ρ]) o σ reduces and besides its
Langlands quotient it has a discrete series subquotient appearing with multiplicity
one [Muić 2005, Lemma 6.1]. Now, one can show that δoσ and δ([ν−l1ρ, νl1ρ])o
σ1 have a common irreducible subquotient that appears with multiplicity one in
their composition series. It is enough to show that δ([ν−l1ρ, νl1ρ]) ⊗ σ1 appears
with multiplicity two in µ∗

(
δ([ν−l1ρ, νl1ρ])×δ([νl1+1ρ, νl2ρ])oσ

)
and with mul-

tiplicity one in µ∗
(
δ([ν−l1ρ, νl2ρ]) o σ

)
. We expand

µ∗
(
δ([ν−l1ρ, νl1ρ]) × δ([νl1+1ρ, νl2ρ]) o σ

)
using Theorem 1.4. Thus, we take indices 0 ≤ j ≤ i ≤ 2l1+1, 0 ≤ j ′

≤ i ′
≤ l2 − l1,

and irreducible constituents δ′
⊗ σ ′

1 of µ∗(σ ), and we obtain

δ([ν−l1ρ, νl1ρ]) ≤ δ([νi−l1ρ, νl1ρ]) × δ([νl1+1− jρ, νl1ρ])

× δ([νi ′
−l2ρ, ν−l1−1ρ]) × δ([νl2+1− j ′

ρ, νl2ρ]) × δ′
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and

(4–1) σ1 ≤ δ([νl1+1−iρ, νl1− jρ]) × δ([νl2+1−i ′

ρ, νl2− j ′

ρ]) o σ ′

1.

Since on the left-hand side of the first formula there are no terms ν−l1−1ρ and νl2ρ

we must have i ′
= l2 − l1 and j ′

= 0. Next, ν−l1ρ can not be obtained by δ′.
Otherwise, since δ′ is obviously nondegenerate, it is induced from the product of
essentially square-integrable representations. One of them must be attached to the
segment of the form [ν−l1ρ, νaρ], where a ≤ l1. Now, using idea already applied
in the proof of Lemma 1.3, we see that this violates square-integrability criterion
for σ . Thus i = 0 (hence j = 0) or j = 2l1+1 (hence i = 2l1+1). Now, δ′ is trivial
and σ ′

1 ' σ . Now, (4–1) is

σ1 ≤ δ([νl1+1ρ, νl2ρ]) o σ,

and as we already observed it contains σ1 with multiplicity one. This proves the
first multiplicity. To show that the multiplicity of δ([ν−l1ρ, νl1ρ]) ⊗ σ1is one in
µ∗

(
δ([ν−l1ρ, νl2ρ])oσ

)
, we expand µ∗

(
δ([ν−l1ρ, νl2ρ])oσ

)
using Theorem 1.4.

Thus, we take indices 0 ≤ j ≤ i ≤ l1 + l2+1, and irreducible constituents δ′
⊗ σ ′

1
of µ∗(σ ), and we obtain

δ([ν−l1ρ, νl1ρ]) ≤ δ([νi−l2ρ, νl1ρ]) × δ([νl2+1− jρ, νl2ρ]) × δ′,(4–2)

σ1 ≤ δ([νl2+1−iρ, νl2− jρ]) o σ ′

1.(4–3)

As in the above multiplicity computation, we see that j = 0 since the left-hand
of (4–2) does not contain νl2ρ. Also as in the above computation of multiplicity
we conclude that ν−l1ρ cannot be obtained by δ′. Thus i = l2 −l1. Now, δ′ is trivial
and σ ′

1 ' σ . Now, formula in (4–3) is

σ1 ≤ δ([νl1+1ρ, νl2ρ]) o σ,

and as already observed it contains σ1 with multiplicity one. This proves the second
multiplicity.

If 2l2+1 ∈ Jordρ , then the possible tempered subquotient of δ o σ is common
with δ([ν−l2ρ, νl2ρ]) o σ1, where σ1 is some discrete series satisfying µ∗(σ ) ≥

δ([νl1+1ρ, νl2ρ]) ⊗ σ1. Now, arguing as in [Muić 2004, Lemma 4.1], we see that
there exists an irreducible representation σ ′

1 such that

(4–4) σ ↪→ δ([νl1+1ρ, νl2ρ]) o σ ′

1.

First, we show that σ ′

1 is in a discrete series. We start as in the proof of Lemma
1.3. If σ ′

1 is not in a discrete series, by the Langlands classification and the theory
of R-groups, we can find a unitary supercuspidal representation ρ ′, real numbers
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α, β with β − α ≤ 0 and α + β ∈ Z≥0, and σ ′′

1 ∈ Irr′, such that

σ ′

1 ↪→ δ([ν−αρ ′, νβρ ′
]) o σ ′′

1 .

We look at the chain of equivariant morphisms:

σ ↪→ δ([νl1+1ρ, νl2ρ]) × δ([ν−αρ ′, νβρ ′
]) o σ ′′

1

→ δ([ν−αρ ′, νβρ ′
]) × δ([νl1+1ρ, νl2ρ]) o σ ′′

1 .

The representation σ must include into the kernel of the second equivariant
morphism, otherwise β −α ≤ 0 would violate the square-integrability criterion for
σ . In particular, the segments [νl1+1ρ, νl2ρ] and [ν−αρ ′, νβρ ′

] are linked. Thus,
ρ ′

' ρ. Further, since β − α ≤ 0 and α + β ≥ 0 imply α ≥ 0, we have l1 ≥ β and

(4–5) σ ↪→ δ([νl1+1ρ ′, νβρ ′
]) × δ([ν−αρ, νl2ρ]) o σ ′′

1 '

δ([ν−αρ, νl2ρ]) × δ([νl1+1ρ ′, νβρ ′
]) o σ ′′

1 .

If β > l1, it follows from the first induced representation in (4–5) and [Mœglin
2002, Remark 5.1.2] that 2β+1 ∈ Jord(l1, l2, ρ). This is a contradiction. Other-
wise, since α ≤ 0, the appearance of the second induced representation in (4–5)
shows that Jordρ ∩[2α+1, 2l2+1[ 6=∅. This follows from [Mœglin 2002, Theorem
3.1] and again represents a contradiction since α ≥ β = l1.

Now, we show that σ ′

1 ' σ1 and that δ([νl1+1ρ, νl2ρ]) ⊗ σ1 appears in

µ∗
(
δ([νl1+1ρ, νl2ρ]) o σ1

)
with multiplicity one. We expand

µ∗
(
δ([νl1+1ρ, νl2ρ]) o σ ′

1
)
≥ µ∗(σ ) ≥ δ([νl1+1ρ, νl2ρ]) ⊗ σ1

using Theorem 1.4. Thus, we take indices 0 ≤ j ≤ i ≤ l2 − l1 and an irreducible
constituent δ′

⊗ σ2 of µ∗(σ ′

1) to obtain

δ([νl1+1ρ, νl2ρ]) ≤ δ([νi−l2ρ, ν−l1−1ρ]) × δ([νl2+1− jρ, νl2ρ]) × δ′,

σ ′

1 ≤ δ([νl2+1−iρ, νl2− jρ]) o σ2.

The first of these formulas shows that i = l2 − l1, since the left-hand side does not
have ν−l1−1ρ. Next, if δ′ is nontrivial, it is nondegenerate and hence induced from
the essentially square-integrable representations attached to segments that have
members in [νl1+1ρ, νl2ρ]. Now, by [Mœglin 2002, Remark 5.1.2], as in proof of
[Muić 2004, Lemma 4.1], we conclude that Jord(σ ′

1) ∩ [2(l1+1)+1, 2l2+1] 6= ∅,
and this contradicts [Muić 2004, Lemma 2.1]. Thus, δ′ is trivial, l2+1− j = l1+1,
and σ2 ∼= σ1. Our assertion is now obvious.

Finally, we check that δoσ and δ([ν−l2ρ, νl2ρ])oσ1 have a common irreducible
subquotient that appears in δ o σ with multiplicity one. It is enough to show that
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δ([ν−l2ρ, νl2ρ])⊗σ1 appears with multiplicity one in µ∗
(
δ([ν−l1ρ, νl2ρ])oσ

)
and

in µ∗
(
δ([ν−l1ρ, νl2ρ])×δ([νl1+1ρ, νl2ρ])oσ1

)
. We compute the first multiplicity

only; the determination of the second is analogous.
First, we expand µ∗

(
δ([ν−l1ρ, νl2ρ]) o σ

)
using Theorem 1.4. Thus, we take

indices 0 ≤ j ≤ i ≤ l1 + l2+1 and irreducible constituents δ′
⊗ σ ′

1 of µ∗(σ ), and
we obtain

δ([ν−l2ρ, νl2ρ]) ≤ δ([νi−l2ρ, νl1ρ]) × δ([νl2+1− jρ, νl2ρ]) × δ′,

σ1 ≤ δ([νl2+1−iρ, νl2− jρ]) o σ ′

1.

First, ν−l2ρ cannot come from δ′. Otherwise, δ′ being nondegenerate and hence
induced from essentially square-integrable representations, it must have one of the
segments of the form [ν−l2ρ, νsρ], where s ≤ l2. This contradicts the square-
integrability criterion for σ . Thus i = 0. Hence j = 0, and δ′

' δ([νl1+1ρ, νl2ρ]).
This implies that σ ′

1 ' σ1, thanks to the second formula in (4–5). Finally, since
δ([νl1+1ρ, νl2ρ])⊗σ1 appears in µ∗

(
δ([νl1+1ρ, νl2ρ])oσ1

)
with multiplicity one,

it also appears with the same multiplicity in µ∗(σ ). �

5. The first basic case

In Sections 2 and 3 we reduced the reducibility problem to the three basic cases
recorded at the end of Section 2. In this section we consider the first basic case,
where l1 ≥0 and δ([ν−l1ρ, νl1ρ])oσ reduces. By Theorem 4.1, (2l1+1, ρ) satisfies
the parity condition and is not an element of Jord. Furthermore, according to the
general theory of Harish-Chandra [Waldspurger 2003], we see that

δ([ν−l1ρ, νl1ρ]) o σ ' τ1 ⊕ τ2,

where τ1 and τ2 are inequivalent irreducible tempered representations. We fix this
notation throughout this section.

From the assumptions at the end of Section 2, the one that interests us is (2–14)
(see also Theorem 4.3). Now, we have several cases:

The first case we consider is Jordρ ∩ ]2l1+1, 2l2+1] = ∅. Then Jordρ is in fact
disjoint from [2l1+1, 2l2+1]. Hence, [Muić 2004, Theorems 2.1 and 2.3] imply
that in the appropriate Grothendieck group

δ o σ = σ1 + σ2 + Lang(δ o σ),

where σ1 and σ2 are nonisomorphic discrete series representations. Moreover,

Jord(σ1) = Jord(σ2) = Jord ∪ {(2l1+1, ρ), (2l2+1, ρ)}.

Hence, Theorem 4.1 implies that

Ti := δ([ν−l1ρ, νl1ρ]) o σi for i = 1, 2
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is an irreducible tempered representation. Finally, we can relate τi and σi using
[Mœglin and Tadić 2002]. That is, we can assume that

(5–1) σi ↪→ δ([νl1+1ρ, νl2ρ]) o τi for i = 1, 2,

and that σi is a unique irreducible subrepresentation of δ([νl1+1ρ, νl2ρ]) o τi .

Lemma 5.1. Assume that Jordρ ∩ ]2l1+1, 2l2+1]=∅. In the appropriate Grothen-
dieck group,

δ o τi = Ti + Lang(δ o τi ) for i = 1, 2.

In particular, δ o τ1 and δ o τ2 reduce.

Proof. First, (5–1) implies

Ti ' δ([ν−l1ρ, νl1ρ]) × σi ↪→ δ([ν−l1ρ, νl1ρ]) × δ([νl1+1ρ, νl2ρ]) o τi

→ δ([νl1+1ρ, νl2ρ]) × δ([ν−l1ρ, νl1ρ]) o τi .

The image of the second intertwining operator in this sequence is isomorphic to
δ([ν−l1ρ, νl2ρ]) o τi . To show that Ti is not in the kernel of that intertwining
operator we show that multiplicity of δ([ν−l1ρ, νl1ρ]) ⊗ τi is equal to 3 in

(5–2) µ∗
(
δ([νl1+1ρ, νl2ρ]) × δ([ν−l1ρ, νl1ρ]) o τi

)
,

but it is at most 2 in µ∗
(
δ([ν−l1ρ, νl2ρ]) o τi

)
and in µ∗

(
δ([ν−l1ρ, νll ρ]) o σi

)
.

We start by computing the multiplicity in (5–2). Using Theorem 1.4, we look for
δ([ν−l1ρ, νl1ρ])⊗ τi in terms of the following form. We take indices 0 ≤ j ′

≤ i ′
≤

l2 − l1, 0 ≤ j ′′
≤ i ′′

≤ 2l1+1, and irreducible constituents δ′
⊗ τ ′ of µ∗(τi ), and we

obtain

(5–3) δ([ν−l1ρ, νl2ρ]) ≤ δ([νi ′
−l2ρ, ν−l1−1ρ]) × δ([νl2+1− j ′

ρ, νl2ρ])

×δ([νi ′′
−l1ρ, νl1ρ]) × δ([νl1+1− j ′′

ρ, νl1ρ]) × δ′

and

(5–4) τi ≤ δ([νl2+1−i ′

ρ, νl2− j ′

ρ]) × δ([νl1+1−i ′′

ρ, νl1− j ′′

ρ]) o τ ′.

First, since the left-hand side of (5–3) does not contain ν−l1−1ρ, we must have
i ′

= l2 − l1. We claim that j ′
= l2 − l1. Otherwise, δ′ is not trivial. Therefore, δ′

is nondegenerate. Hence it is fully induced from the product of essentially square-
integrable representations and one of them must have a segment that upper-ends
with νaρ, a ∈ [l1+1, l2]. Since µ∗(τi ) ≥ δ′

⊗ τ ′, we have τi ↪→ νaρ o τ ′′ for
some irreducible representation τ ′′. Hence, by the Frobenius reciprocity, µ∗(τi ) ≥

νaρ ⊗ τ ′′. Thus

µ∗
(
δ([ν−l1ρ, νl1ρ]) o σ

)
≥ µ∗(τi ) ≥ νaρ ⊗ τ ′′.

The first inequality here can be analyzed using Theorem 1.4. First, there are indices
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0 ≤ j ′
≤ i ′

≤ 2l1+1 and an irreducible constituent δ′′
⊗ σ ′′ of µ∗(σ ) such that

νaρ ≤ δ([νi ′
−l1ρ, νl1ρ]) × δ([νl1+1− j ′

ρ, νl1ρ]) × δ′′.

Since a ∈ [l1+1, l2], this implies δ′′
' νaρ. Hence σ ↪→ νaρ o σ ′′

1 , for some
irreducible representation σ ′′

1 . Hence 2a+1 ∈ Jordρ by [Mœglin 2002, Remark
5.1.2]. This contradicts the lemma’s assumption that Jordρ ∩ ]2l1+1, 2l2+1] = ∅.
Thus, we have proved i ′

= j ′
= l2 − l1.

Next we look at how to obtain ν−l1ρ. In view of (5–3) there are two cases. First,
if ν−l1ρ is obtained from the terms δ([νi ′′

−l1ρ, νl1ρ]) and δ([νl1+1− j ′′

ρ, νl1ρ]) in
(5–3), then δ′ is trivial, and τ ′ ∼= τi , i ′′

= j ′′
= 0 or i ′′

= j ′′
= 2l1+1. Then (5–4)

trivially holds, so we have obtained our term twice. The other possibility is that
ν−l1ρ is obtained from δ′. Then δ′ is nontrivial and clearly nondegenerate. Hence
it is fully induced from the product of essentially square-integrable representations
such that one of them is attached to a segment containing ν−l1ρ. In view of (5–3)
and the already proved fact that i ′

= j ′
= l2 − l1, we see that this segment must be

of the form [ν−l1ρ, νaρ], for a ∈ [−l1, l1]. This violates the temperedness criterion
for τi unless a = l1. Hence δ′

' δ([ν−l1ρ, νl1ρ]), and because of (5–3) and the
already proved fact that i ′

= j ′
= l2 − l1, we must have i ′′

= 2l1+1 and j ′′′
= 0.

To complete the proof that δ([ν−l1ρ, νl1ρ])⊗ τi appears in (5–2) with multiplicity
one, we need to show the following facts. If µ∗(τi ) ≥ δ([ν−l1ρ, νl1ρ])⊗ τ ′, where
τ ′ is irreducible, then τ ′

' σ . Moreover, δ([ν−l1ρ, νl1ρ]) ⊗ σ appears in µ∗(τi )

with multiplicity one.
First, µ∗

(
δ([ν−l1ρ, νl1ρ]) o σ

)
≥ µ∗(τi ) ≥ δ([ν−l1ρ, νl1ρ]) ⊗ τ ′. This can be

analyzed using Theorem 1.4. Thus, there are indices 0 ≤ j ′
≤ i ′

≤ 2l1+1 and an
irreducible constituent δ′′

⊗ σ ′′ of µ∗(σ ) such that

δ([ν−l1ρ, νl1ρ]) ≤ δ([νi ′
−l1ρ, νl1ρ]) × δ([νl1+1− j ′

ρ, νl1ρ]) × δ′′,(5–5)

τ ′
≤ δ([νl1+1−i ′

ρ, νl1− j ′

ρ]) o σ ′′.(5–6)

Again we investigate how to obtain the term ν−l1ρ in (5–5). An analysis similar
to the one given for (5–3) shows that this term cannot be obtained from δ′′, since this
would imply that δ′′ is nondegenerate and one of its the segments is of the form
[ν−l1ρ, νaρ] for a ∈ [−l1, l1]. This would then violate the square-integrability
criterion for σ . Hence, in view of (5–5), i ′

= j ′
= 0 or i ′

= j ′
= 2l1+1, δ′′ is

trivial, and σ ′′
' σ . Now, (5–6) shows that τ ′ ∼= σ . Thus, we have proved that

the multiplicity of δ([ν−l1ρ, νl1ρ])⊗σ in µ∗
(
δ([ν−l1ρ, νl1ρ])oσ

)
is exactly two

and by Frobenius reciprocity, exactly one in each µ∗(τα), for α = 1, 2. Moreover,
we have shown that if µ∗(τi ) ≥ δ([ν−l1ρ, νl1ρ])⊗ τ ′, where τ ′ is irreducible, then
τ ′

' σ . This completes the proof that δ([ν−l1ρ, νl2ρ]) ⊗ τi appears in (5–2) with
multiplicity 3.
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The other two claims about multiplicities can be proved similarly. We leave
details to the reader.

Thus, we have proved that

δ o τi ≥ Ti + Lang(δ o τi ) for i = 1, 2.

To prove that there is equality we use the factorization of the long-intertwining
operator

δ o τ1 ⊕ δ o τ2 → δ̃ o τ1 ⊕ δ̃ o τ2.

It can be factored into the long-intertwining operators (with δ = δ([ν−l1ρ, νl2ρ])):

δ o τ1 ⊕ δ o τ2 ' δ([ν−l1ρ, νl2ρ]) × δ([ν−l1ρ, νl1ρ]) o σ →

δ([ν−l1ρ, νl1ρ]) × δ([ν−l1ρ, νl2ρ]) o σ →

δ([ν−l1ρ, νl1ρ]) × δ([ν−l2ρ, νl1ρ]) o σ →

δ([ν−l2ρ, νl1ρ]) × δ([ν−l1ρ, νl1ρ]) o σ ' δ̃ o τ1 ⊕ δ̃ o τ2.

We denote the induced long-intertwining operators (the arrows in the preceding
lines) by ϕ1, ϕ2, and ϕ3, respectively. From [Zelevinsky 1980] we get that ϕ1 and
ϕ3 are isomorphisms, and ϕ2, by [Muić 2005, Theorem 2.1], has kernel isomorphic
to T1 ⊕ T2. This proves the lemma. �

The second case that we consider is Jordρ ∩ ]2l1+1, 2l2+1] = {2l2+1}. Recall
that we assume the parity condition for (2l1+1, ρ) /∈ Jordρ . The proof of Theorem
4.3 proves the next lemma.

Lemma 5.2. Let σ ∈ Irr′ be a discrete series such that Jordρ ∩ [2l1+1, 2l2+1] =

{2l2+1}.

(i) There exists a unique discrete series representation σ(l2) (called σ1 in the
proof of Theorem 4.3) such that σ ↪→ δ([νl1+1ρ, νl2ρ]) o σ(l2). Moreover,
δ([νl1+1ρ, νl2ρ]) ⊗ σ(l2) appears in µ∗(σ ) with multiplicity one. If µ∗(σ ) ≥

δ([νl1+1ρ, νl2ρ])⊗σ ′(l2), where σ ′(l2) is irreducible, then σ ′(l2) ' σ(l2). As
a consequence, Jord(σ (l2)) = Jord ∪ {(2l1+1, ρ)} \ {(2l2+1ρ)} (see [Mœglin
and Tadić 2002, Section 8]).

(ii) There exists a unique common irreducible representation, say σtemp(l2), of
δ([ν−l2ρ, νl2ρ])oσ(l2) and δ([ν−l1ρ, νl2ρ])oσ . In the appropriate Grothen-
dieck group, δ o σ = σtemp(l2) + Lang(δ o σ).

We are now ready to settle the reducibility of δ o τi .

Lemma 5.3. There exists a unique i ∈ {1, 2} such that δoτi is irreducible. Without
loss of generality, we may take i = 1. In the appropriate Grothendieck group,

δ o τ2 = δ([ν−l1ρ, νl1ρ]) o σtemp(l2) + Lang(δ o τ2).
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(The irreducibility of δ([ν−l1ρ, νl1ρ]) o σtemp(l2) follows from [Goldberg 1994];
see also [Mœglin and Tadić 2002].)

Proof. We use the long-intertwining operator form the proof of Lemma 5.1. Again,
[Zelevinsky 1980] implies that ϕ1 and ϕ3 are isomorphisms, and ϕ2, by Lemma 5.2,
has kernel isomorphic to irreducible tempered representation δ([ν−l1ρ, νl1ρ]) o
σtemp(l2). This proves the lemma. �

Finally, we consider the case Jordρ ∩ ]2l1+1, 2l2+1[ 6= ∅. We denote by 2l+1
the minimal element of that intersection. Then according to Lemma 5.3, we can
distinguish τ1 from τ2 by assuming that

(5–7)
δ([ν−l1ρ, νlρ]) o τ1 is irreducible;

δ([ν−l1ρ, νlρ]) o τ2 ≥ δ([ν−l1ρ, νl1ρ]) o σtemp(l).

Lemma 2.3 shows that δ([νl+1ρ, νl2ρ]) o σtemp(l) contains

Lang
(
δ([ν−lρ, νl2ρ]) o σ(l)

)
with multiplicity one. Hence, by (5–7), in the appropriate Grothendieck group, we
have

(5–8) δ([νl+1ρ, νl2ρ]) × δ([ν−l1ρ, νlρ]) o τ2

≥ δ([νl+1ρ, νl2ρ]) × δ([ν−l1ρ, νl1ρ]) o σtemp(l)

= δ([ν−l1ρ, νl1ρ]) o δ([νl+1ρ, νl2ρ]) o σtemp(l)

≥ δ([ν−l1ρ, νl1ρ]) × Lang
(
δ([ν−lρ, νl2ρ]) o σ(l)

)
≥ Lang

(
δ([ν−lρ, νl2ρ]) o T

)
,

where T := δ([ν−l1ρ, νl1ρ])oσ(l) is irreducible and tempered. The last inequality
here follows from

(5–9) δ([ν−l1ρ, νl1ρ]) × Lang
(
δ([ν−lρ, νl2ρ]) o σ(l)

)
↪→ δ([ν−l1ρ, νl1ρ]) × δ([ν−l2ρ, νlρ]) o σ(l)

' δ([ν−l2ρ, νlρ]) × δ([ν−l1ρ, νl1ρ]) o σ(l) ' δ([ν−l2ρ, νlρ]) o T.

We show that δ([νl+1ρ, νl2ρ]) × δ([ν−l1ρ, νlρ]) o τ2 contains

Lang
(
δ([ν−lρ, νl2ρ]) o T

)
with multiplicity one. It is enough to show that

µ∗
(
δ([νl+1ρ, νl2ρ]) × δ([ν−l1ρ, νlρ]) o τ2

)
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contains δ([ν−l2ρ, νlρ]) ⊗ T with multiplicity one. Using Theorem 1.4, we take
indices 0 ≤ j ′

≤ i ′
≤ l2 − l, 0 ≤ j ′′

≤ i ′′
≤ l1 + l+1, and an irreducible constituent

δ′
⊗ τ ′ of µ∗(τ2) to obtain

δ([ν−l2ρ, νlρ]) ≤ δ([νi ′
−l2ρ, ν−l−1ρ]) × δ([νl2+1− j ′

ρ, νl2ρ])

× δ([νi ′′
−lρ, νl1ρ]) × δ([νl+1− j ′′

ρ, νlρ]) × δ′

and

(5–10) T ≤ δ([νl2+1−i ′

ρ, νl2− j ′

ρ]) × δ([νl+1−i ′′

ρ, νl− j ′′

ρ]) o τ ′.

The analysis of these two inequalities is similar to the one in the proof of Lemma
5.1. We just sketch the computation. First, ν−l2ρ cannot come from δ′ since this
would violate the temperedness criterion for τ2. Next, l2+1 − j ′′

≥ l+1 > −l2,
i ′′

− l ≥ −l > −l2, l+1 − j ′′
≥ −l1 > −l2 imply i ′

= 0. Hence i ′
≥ j ′

≥ 0 implies
j ′

= 0. Next, ν−lρ cannot come from δ′ because of Lemma 1.3. Hence i ′′
= 0.

Thus, j ′′
= 0. Hence δ′ ∼= δ([νl1+1ρ, νlρ]). Finally, (5–10) implies that T ' τ ′.

Hence to complete our analysis, we show that δ([νl1+1ρ, νlρ])⊗T occurs in µ∗(τ2)

with multiplicity one. Since by (5–8) it occurs at least once, it is enough to show
that µ∗(δ([ν−l1ρ, νl1ρ])oσ) contains δ([νl1+1ρ, νlρ])⊗ T with multiplicity one.
We apply Theorem 1.4 and Lemma 5.2 (with l2 replaced by l). Thus, we take
indices 0 ≤ j ≤ i ≤ l2 − l and an irreducible constituent δ′

⊗σ ′

1 of µ∗(σ ), to obtain

δ([νl1+1ρ, νlρ]) ≤ δ([νi−l1ρ, νl1ρ]) × δ([νl1+1− jρ, νl1ρ]) × δ′,

T ≤ δ([νl1+1−iρ, νl1− jρ]) o σ ′

1.

The first formula implies that i = 2l1+1 and j = 0. Hence δ ' δ([νl1+1ρ, νlρ]),
and therefore σ ′

1
∼= σ(l). The second displayed inequality then holds by the def-

inition of T. Finally, the multiplicity follows from the fact that µ∗(σ ) contains
δ([νl1+1ρ, νlρ]) ⊗ σ(l) with multiplicity one.

Next, by Theorem 1.4 and using µ∗(τ2) ≥ δ([νl1+1ρ, νlρ]) ⊗ T we have

µ∗
(
δ([ν−l1ρ, νl2ρ]) o τ2

)
≥ δ([ν−l2ρ, νl1ρ]) × δ([νl1+1ρ, νlρ]) ⊗ T

≥ δ([ν−l2ρ, νlρ]) ⊗ T.

Since
δ([νl+1ρ, νl2ρ]) × δ([ν−l1ρ, νlρ]) o τ2 ≥ δ([ν−l1ρ, νl2ρ]) o τ2,

we have proved the following lemma:

Lemma 5.4. δ o τ2 contains Lang
(
δ([ν−lρ, νl2ρ]) o T

)
with multiplicity one. In

particular, it is reducible.

Next we consider δoτ1. We decompose the long-intertwining operator δoτ1 →

δ̃ o τ1 as follows:
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(5–11) δ o τ1 ↪→ δ([νl+1ρ, νl2ρ]) × δ([ν−l1ρ, νlρ]) o τ1

' δ([νl+1ρ, νl2ρ]) × δ([ν−lρ, νl1ρ]) o τ1

' δ([ν−lρ, νl1ρ]) × δ([νl+1ρ, νl2ρ]) o τ1

→ δ([ν−lρ, νl1ρ]) × δ([ν−l2ρ, ν−l−1ρ]) o τ1.

Lemma 5.5. δ o τ1 reduces if and only if δ([νl+1ρ, νl2ρ]) o σ reduces. If δ o τ1

reduces, it contains with multiplicity one an irreducible subquotient other than its
Langlands quotient.

Proof. By Lemma 3.1, δ([νl+1ρ, νl2ρ])oσ reduces if and only if δ([νl+1ρ, νl2ρ])o
τ1 reduces. Next, (5–11) shows that if δ([νl+1ρ, νl2ρ]) o τ1 is irreducible, so is
δoτ1. Next, assume that δ([νl+1ρ, νl2ρ])oτ1 reduces. Hence δ([νl+1ρ, νl2ρ])oσ

reduces. Let π1 be any irreducible subquotient of δ([νl+1ρ, νl2ρ])oσ other than its
Langlands quotient, occurring with multiplicity one (see Theorem 4.3). Applying
Lemma 3.2 to δ([νl+1ρ, νl2ρ]) o τ1 we see that the latter contains a unique irre-
ducible subquotient, say π , containing δ([ν−l1ρ, νl1ρ])⊗π1 in its Jacquet module.
It is contained with multiplicity one in the composition series of δ([νl+1ρ, νl2ρ])o
τ1 and is the unique common irreducible subquotient of δ([νl+1ρ, νl2ρ]) o τ1 and
δ([ν−l1ρ, νl1ρ]) o π1. The proof of Lemma 3.1 shows that

π 6' Lang
(
δ([νl+1ρ, νl2ρ]) o τ1

)
.

Next, δ([ν−lρ, νl1ρ]) o π is the subquotient of the kernel of the last intertwining
operator in (5–11). If we show that δ([ν−lρ, νl1ρ]) ⊗ π appears with multiplicity
one in µ∗

(
δ([ν−lρ, νl1ρ])×δ([νl+1ρ, νl2ρ])oτ1

)
and in µ∗

(
δ([ν−l1ρ, νl2ρ])oτ1

)
,

the lemma will be proved.
We consider first µ∗

(
δ([ν−lρ, νl1ρ]) × δ([νl+1ρ, νl2ρ]) o τ1

)
. Using Theorem

1.4, we take indices 0 ≤ j ′
≤ i ′

≤ l + l1+1, 0 ≤ j ′′
≤ i ′′

≤ l − l2, and irreducible
constituent δ′

⊗ τ ′ of µ∗(τ1), to obtain

δ([ν−lρ, νl1ρ]) ≤ δ([νi ′
−l1ρ, νlρ]) × δ([νl1+1− j ′

ρ, νl1ρ])

× δ([νi ′′
−l2ρ, ν−l−1ρ]) × δ([νl2+1− j ′′

ρ, νl2ρ]) × δ′

and
(5–12) π ≤ δ([νl1+1−i ′

ρ, νl1− j ′

ρ]) × δ([νl2+1−i ′′

ρ, νl2− j ′′

ρ]) o τ ′.

We just sketch the analysis of these two inequalities, which is similar to the one
given in the proof of Lemma 5.1. First, we see that i ′

= l + l1+1, i ′′
= l2 − l,

and j ′′
= 0. Next, since l1 < l, ν−lρ cannot come from δ′. Thus j ′

= l + l1+1,
δ′ is trivial, and τ ′

' τ1. Finally, π is contained in the right-hand side of the
induced representation of (5–12) with multiplicity one by the construction of π .
The analysis of µ∗

(
δ([ν−l1ρ, νl2ρ]) o τ1

)
is similar. �
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6. The second basic case

In this section consider the second case: δ([ν−l2ρ, νl2ρ])oσ reduces. By Theorem
4.1, (2l2+1, ρ) satisfies the parity condition and does not lie in Jord. From Harish-
Chandra theory as before, we see that

δ([ν−l2ρ, νl2ρ]) o σ ' τ1 ⊕ τ2,

where τ1 and τ2 are nonisomorphic irreducible tempered representations. We fix
this notation throughout this section.

The first case that we consider is Jord(l1, l2, σ )=∅ and 2l1+1 /∈ Jordρ (if l1 ≥0).
Since we are assuming that δ o σ reduces, l1 < 0 implies l1 = −

1
2 .

Lemma 6.1. Under the assumptions above, in the appropriate Grothendieck group
we have

δ o σ =

{
σ1 + σ2 + Lang(δ o σ) if l1 ≥ 0,

σ1 + Lang(δ o σ) if l1 = −
1
2 ,

where σ1 and σ2 are nonisomorphic discrete series representations. Moreover,

Jord(σ1) =

{
Jord ∪ {(2l1+1, ρ), (2l2+1, ρ)} = Jord(σ2) if l1 ≥ 0,

Jord ∪ {(2l2+1, ρ)} if l1 = −
1
2 .

Proof. If l1 ≥ 0 or l1 =−
1
2 and Jordρ =∅, this follows from [Muić 2004, Theorems

2.1 and 2.3]. If l1 = −
1
2 and Jordρ = ∅, the proof of [Muić 2005, Lemma 6.1]

shows that all irreducible subquotients of δ o σ other than its Langlands quotient
are in a discrete series. Hence we may apply the idea used in the proof of [Muić
2004, Theorem 2.1] to show that any of them must be actually a subrepresentation
of δ o σ . Now, it is not hard to check, using Theorem 1.4 and [Mœglin 2002,
Remark 5.1.2], that δ⊗σ appears in µ∗(δoσ) with multiplicity one. Since similar
arguments were given in the previous section, we leave details to the reader. �

Now, Lemma 6.1 and Theorem 4.1 imply that

Ti := δ([ν−l2ρ, νl2ρ]) o σi for i = 1, 2

is an irreducible tempered representation.

Lemma 6.2. We keep the same assumptions.

(i) Assume l1 = −
1
2 . Exactly one of the representations δ o τ1 and δ o τ2 re-

duces. Without loss of generality, we assume it is δ o τ1. In the appropriate
Grothendieck group,

δ o τ2 = T1 + Lang(δ o τ2).
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(ii) Assume l1 ≥ 0. In the appropriate Grothendieck group,

δ o τi = Ti + Lang(δ o τi ) for i = 1, 2.

In particular, δ o τ1 and δ o τ2 reduce.

Proof. The proof of (i) is similar to that of Lemma 5.3, using the factorization
of the relevant long-intertwining operator (see the end the proof of Lemma 5.1).
Similarly, we can conclude the proof of (ii) as in Lemma 5.3 as soon as we
have proved that δ o τi ≥ Ti for i = 1, 2. The latter follows from the fact that
δ([ν−l2ρ, νl2ρ])×δ([ν−l1ρ, νl2ρ])⊗σ has multiplicity 6 in µ∗

(
δ([ν−l2ρ, νl2ρ])×

δ([ν−l1ρ, νl2ρ]) o σ
)
, multiplicity 3 in µ∗(δ o τi ), and multiplicity at least 2 in

µ∗
(
δ([ν−l2ρ, νl2ρ]) o σi

)
. We prove the second of these estimates, leaving the

simple verification of the first and third to the reader.
First, Theorem 4.3 implies that δ([νl1+1ρ, νl2ρ]) o σ is irreducible. Therefore,

τi ↪→ δ([ν−l2ρ, νl2ρ]) o σ

↪→ δ([ν−l1ρ, νl2ρ]) × δ([ν−l2ρ, ν−l1−1ρ]) o σ

' δ([ν−l1ρ, νl2ρ]) × δ([νl1+1ρ, νl2ρ]) o σ.

Hence, Frobenius reciprocity implies

µ∗(τi ) ≥ δ([ν−l2ρ, νl2ρ]) ⊗ σ + δ([ν−l1ρ, νl2ρ]) × δ([νl1+1ρ, νl2ρ]) ⊗ σ.

Now, by Theorem 1.4, we have

µ∗(δ o τi )

≥

l1+l2+1∑
i=0

i∑
j=0

δ([νi−l2ρ, νl1ρ]) × δ([νl2+1− jρ, νl2ρ]) × δ([ν−l2ρ, νl2ρ])

⊗ δ([νl2+1−iρ, νl2− jρ]) o σ

+

l1+l2+1∑
i=0

i∑
j=0

δ([νi−l2ρ, νl1ρ]) × δ([νl2+1− jρ, νl2ρ]) × δ([ν−l1ρ, νl2ρ])

× δ([νl1+1ρ, νl2ρ]) ⊗ δ([νl2+1−iρ, νl2− jρ]) o σ

≥2 δ([ν−l2ρ,νl2ρ])×δ([ν−l1ρ,νl2ρ])⊗σ+δ([ν−l2ρ,νl2ρ])×δ([ν−l1ρ,νl2ρ])⊗σ.

(The last inequality follows by taking i = j = l2 − l1 or i = j = 0 in the first sum
and i = j = 0 in the second sum.) �

Now, consider the case Jord(l1, l2, σ )={−2l1−1} (l1 < 0) or Jord(l1, l2, σ )= ∅
and 2l1+1 ∈ Jordρ (l1 ≥ 0).

Lemma 6.3. We keep the same assumptions.
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(i) Assume l1 ≥ 0. In the appropriate Grothendieck group,

δ([νl1+1ρ, νl2ρ]) o σ = σd + Lang(δ([νl1+1ρ, νl2ρ]) o σ),

where σd is in a discrete series. Moreover,

Jord(σd) = Jord ∪ {(2l2+1, ρ)} \ {(2l1+1, ρ).

Further, δ([ν−l1ρ, νl1ρ])oσd and δ([ν−l1ρ, νl2ρ])oσ have a unique common
irreducible subquotient say σtemp. In the appropriate Grothendieck group,

δ([ν−l1ρ, νl2ρ]) o σ = σtemp + Lang(δ([ν−l1ρ, νl2ρ]) o σ).

(ii) Assume l1<0. (Actually, our assumption −2l1−1∈Jordρ implies −2l1−1>0,
l1 < −

1
2 .) In the appropriate Grothendieck group,

δ([ν−l1ρ, νl2ρ]) o σ = σd + Lang(δ([ν−l1ρ, νl2ρ]) o σ),

where σd is in discrete series. Moreover,

Jord ∪ {(2l2+1, ρ)} \ {(−2l1−1, ρ)}.

Proof. (ii) follows from (i) replacing l1 by −l1−1. The proof of (i) follows from
the proof of Theorem 4.3 (see Lemma 5.2). �

The following reducibility result is a consequence of Lemma 6.3:

Lemma 6.4. Exactly one of δ o τ1 and δ o τ2 is irreducible. Without loss of
generality, we assume it’s δ o τ1. In the appropriate Grothendieck group,

δ o τ2 = Lang(δ o τ2) +

{
δ([ν−l2ρ, νl2ρ]) o σtemp if l1 ≥ 0,

δ([ν−l2ρ, νl2ρ]) o σd if l1 < 0.

Both δ([ν−l2ρ, νl2ρ]) o σtemp and δ([ν−l2ρ, νl2ρ]) o σd are irreducible.

Proof. Like Lemma 6.2(i), this follows from arguments similar to those of Lemma
5.3. �

Finally, we consider the case where ]−2l1+1, 2l2+1[∩Jordρ 6= ∅ (with l1 < 0)
or ]2l1+1, 2l2+1[ ∩ Jordρ 6= ∅ (with l1 ≥ 0). Let 2l+1 be the maximal element
of the intersection. Lemma 6.3 implies that δ([νl+1ρ, νl2ρ])oσ contains a unique
irreducible subquotient, say σd,l , in a discrete series.

We distinguish between τ1 and τ2:

(6–1)
δ([νl+1ρ, νl2ρ]) o τ1 is irreducible;

δ([νl+1ρ, νl2ρ]) o τ2 ≥ δ([ν−l2ρ, νl2ρ]) o σd,l (also irreducible).

The next lemma is an analogue of Lemma 5.5.
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Lemma 6.5. δ o τ1 reduces if and only if δ([ν−l1ρ, νlρ]) o σ reduces. If δ o τ1

reduces, it contains with multiplicity one an irreducible other than its Langlands
quotient.

Proof. From Lemma 3.1 we know that δ([ν−l1ρ, νlρ]) o σ reduces if and only if
δ([ν−l1ρ, νlρ]) o τ1 reduces. Next, we decompose the long-intertwining operator
δ o τ1 → δ̃ o τ1 as follows:

(6–2) δ o τ1 ↪→ δ([νl+1ρ, νl2ρ]) × δ([ν−l1ρ, νlρ]) o τ1

→ δ([νl+1ρ, νl2ρ]) × δ([ν−lρ, νl1ρ]) o τ1

' δ([ν−lρ, νl1ρ]) × δ([νl+1ρ, νl2ρ]) o τ1

' δ([ν−lρ, νl1ρ]) × δ([ν−l2ρ, ν−l−1ρ]) o τ1.

This shows that if δ([ν−l1ρ, νlρ]) o τ1 is irreducible, so is δ o τ1. Assume that
δ([ν−l1ρ, νlρ]) o τ1 reduces. Hence δ([ν−l1ρ, νlρ]) o σ reduces. Let π1 be any
irreducible subquotient of δ([ν−l1ρ, νlρ]) o σ other than its Langlands quotient
coming with multiplicity one (see Theorem 4.3). Now Lemma 3.2, applied to
δ([ν−l1ρ, νlρ]) o τ1, shows that it contains a unique irreducible subquotient, say
π containing δ([ν−l2ρ, νl2ρ]) ⊗ π1 in its Jacquet module. It is contained with
multiplicity one in the composition series of δ([ν−l1ρ, νlρ])oτ1 and is the unique
common irreducible subquotient of δ([ν−l1ρ, νlρ]) o τ1 and δ([ν−l2ρ, νl2ρ]) o
π1. The proof of Lemma 3.1 shows that π 6' Lang

(
δ([ν−l1ρ, νlρ]) o τ1

)
. Next,

δ([νl+1ρ, νl2ρ])oπ is a subquotient of the kernel of the first intertwining operator
in (6–2). If we show that δ([ν−l2ρ, ν−l−1ρ]) ⊗ π appears with multiplicity one in
µ∗

(
δ([ν−lρ, νl1ρ]) × δ([νl+1ρ, νl2ρ]) o τ1

)
and in µ∗

(
δ([ν−l1ρ, νl2ρ]) o τ1

)
, the

lemma will be proved.
We start with µ∗

(
δ([ν−lρ, νl1ρ])× δ([νl+1ρ, νl2ρ])o τ1

)
. Using Theorem 1.4,

we take indices 0 ≤ j ′
≤ i ′

≤ l + l1+1, 0 ≤ j ′′
≤ i ′′

≤ l2 − l and an irreducible
constituent δ′

⊗ τ ′ of µ∗(τ1) to obtain

δ([ν−l2ρ, ν−l−1ρ]) ≤ δ([νi ′
−l1ρ, νlρ]) × δ([νl1+1− j ′

ρ, νl1ρ])

×δ([νi ′′
−l2ρ, ν−l−1ρ]) × δ([νl2+1− j ′′

ρ, νl2ρ]) × δ′

and

(6–3) π ≤ δ([νl1+1−i ′

ρ, νl1− j ′

ρ]) × δ([νl2+1−i ′′

ρ, νl2− j ′′

ρ]) o τ ′.

Again, we just sketch the analysis. First we see that i ′
= l + l1+1, j ′

= 0,
and j ′′

= 0. Next, since ν−l2ρ cannot come from δ′ (since this would violate
temperedness criterion for τ ), we see that i ′′

= 0. Finally, π is contained in the
right-hand side of the induced representation of (6–3) with multiplicity one by
construction. The analysis of µ∗

(
δ([ν−l1ρ, νl2ρ]) o τ1

)
is similar. �
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Lemma 6.6. δ o τ2 contains Lang(δ([ν−l1ρ, νlρ]) × δ([ν−l2ρ, νl2ρ] o σd,l) in its
composition series with multiplicity one.

Proof. First, (6–2) implies that in appropriate Grothendieck group

δ([ν−l1ρ, νlρ]) × δ([νl+1ρ, νl2ρ]) o τ2

≥ δ([ν−l1ρ, νlρ]) × δ([ν−l2ρ, νl2ρ]) o σd,l

≥ Lang
(
δ([ν−l1ρ, νlρ]) × δ([ν−l2ρ, νl2ρ]) o σd,l

)
.

To complete the proof of the lemma, we need only show that

δ([ν−lρ, νl1ρ]) ⊗ δ([ν−l2ρ, νl2ρ]) o σd,l

appears with multiplicity one in µ∗
(
δ([ν−lρ, νl1ρ]) × δ([νl+1ρ, νl2ρ]) o τ2

)
and

in µ∗
(
δ([ν−l1ρ, νl2ρ]) o τ2

)
. We consider only the first of these; the second goes

the same way.
Using Theorem 1.4, we take indices 0 ≤ j ′

≤ i ′
≤ l + l1+1, 0 ≤ j ′′

≤ i ′′
≤ l2 − l,

and an irreducible constituent δ′
⊗ τ ′ of µ∗(τ2) to obtain

(6–4) δ([ν−lρ, νl1ρ]) ≤ δ([νi ′
−l1ρ, νlρ]) × δ([νl1+1− j ′

ρ, νl1ρ])

× δ([νi ′′
−l2ρ, ν−l−1ρ]) × δ([νl2+1− j ′′

ρ, νl2ρ]) × δ′

and

(6–5) δ([ν−l2ρ,νl2ρ]oσd,l ≤ δ([νl1+1−i ′

ρ,νl1− j ′

ρ])×δ([νl2+1−i ′′

ρ,νl2− j ′′

ρ])oτ ′.

Since l, l2 > l1, (6–4) shows that i ′
= l + l1+1, i ′′

= l2 − l, j ′′
= 0. Next, ν−lρ

cannot be arise from δ′ since this would violate temperedness criterion for τ2.
Hence j ′

= l + l1+1, δ′ is trivial, and τ ′ ∼= τ2. Now, (6–5) reads

δ([ν−l2ρ, νl2ρ]) o σd,l ≤ δ([νl+1ρ, νl2ρ]) o τ2.

We need to show that the left-hand side is contained in the right-hand side with
multiplicity one. We use Theorem 1.4 again, showing that δ([ν−l2ρ, νl2ρ]) ⊗ σd,l

is contained in µ∗
(
δ([νl+1ρ, νl2ρ]) o τ2

)
and in µ∗

(
δ([ν−l2ρ, νl2ρ]) o σd,l

)
with

multiplicity two. We consider only the first case since it is the more complicated.
We take indices 0 ≤ j ≤ i ≤ l − l2 and an irreducible constituent δ′

⊗ τ ′ of µ∗(τ2),
to obtain δ([ν−l2ρ, νl2ρ]) ≤ δ([νi−l2ρ, ν−l−1ρ]) × δ([νl2+1− jρ, νl2ρ]) × δ′ and

(6–6) σd,l ≤ δ([νl2+1−iρ, νl2− jρ]) o τ ′.

Now, ν−l2ρ either arises from i = 0 or comes from δ′. If it comes from δ′, as
in Lemma 1.3 we conclude that δ o δ([ν−l2ρ, νl2ρ]). Hence τ ′ ∼= σ and j = 0,
producing δ([ν−l2ρ, νl2ρ]) ⊗ σd,l once. If ν−l2ρ arises from i = 0, we have j = 0
and δ′

' δ([ν−lρ, νl2ρ]). We show that

(6–7) τ ′ ∼= δ([νl+1ρ, νl2ρ]) o σ,
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and that δ′
⊗ τ ′ appears in µ∗(τ2) with multiplicity one. Then will imply that the

left-hand side of (6–6) is contained in the right-hand side with multiplicity one,
completing the multiplicity computation.

From Theorem 4.3 we know that δ([νl+1ρ, νl2ρ]) o σ is irreducible. As in the
proof of Lemma 6.2(ii) (replacing l by l1), we obtain

τ1 ⊕ τ2 ↪→ δ([ν−lρ, νl2ρ]) × δ([νl+1ρ, νl2ρ]) o σ.

Hence
µ∗(τi ) ≥ δ([ν−lρ, νl2ρ]) ⊗ δ([νl+1ρ, νl2ρ]) o σ.

Finally, we use Theorem 1.4 to show that if

µ∗(δ([νl+1ρ, νl2ρ]) o σ) ≥ δ([ν−lρ, νl2ρ]) ⊗ τ ′

1,

where τ ′

1 is irreducible, then τ ′

1 ' δ([νl+1ρ, νl2ρ]) o σ and the right-hand side of
6 is contained in the left-hand side with multiplicity two. We take indices 0 ≤ j ≤

i ≤ 2l2+1 and an irreducible constituent δ′
⊗ σ ′

1 of µ∗(σ ) to obtain

δ([ν−lρ, νl2ρ]) ≤ δ([νi−l2ρ, νl2ρ]) × δ([νl2+1− jρ, νl2ρ]) × δ′

and

(6–8) τ ′

1 ≤ δ([νl2+1−iρ, νl2− jρ]) o σ ′

1.

We check first that ν−lρ cannot come from δ′. Otherwise δ′ would be nondegen-
erate and thus induced from essentially square-integrable representations. One of
them must be attached to a segment of the form [ν−lρ, νsρ]; moreover s > l1,
otherwise the square-integrability criterion for σ would be violated. Since s ≤ l2

as well, we see that 2s+1 is the largest element of Jordρ that is strictly less than
2l2+1. This is a contradiction. Thus, we have two possibilities: i = l2 − l and
j = 0 or i = 2l2+1 and j = l + l2+1. In both cases, δ′ is trivial, σ ′

1 ' σ , and (6–8)
in both cases implies τ ′

1 ' δ([νl+1ρ, νl2ρ]) o σ . �

7. The third basic case

In this section we consider the final basic case, where both δ([ν−l1ρ, νl1ρ])oσ and
δ([ν−l2ρ, νl2ρ])oσ reduce. According to Theorem 4.1, (2l2+1, ρ) and (2l2+1, ρ)

satisfy the parity condition and are not elements of Jord. From Harish-Chandra
theory we see that

δ([ν−l1ρ, νl1ρ]) o σ ' τ1 ⊕ τ2,

where τ1 and τ2 are nonisomorphic irreducible tempered representations. We fix
this notation throughout this section. Then a result of Goldberg (see [Goldberg
1994] for the connected case and [Mœglin and Tadić 2002] for the general case)
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and Corollary 1.2 enable us to write

δ([ν−l2ρ, νl2ρ]) o τi ' τi1 ⊕ τi2 for i = 1, 2.

(Note that τi1 6∼= τi2.) We fix this notation.
The goal of this section is to determine the reducibility of δ o τi j , i, j = 1, 2.

The main result of this section is the next lemma.

Lemma 7.1. We maintain the preceding assumptions.

(i) Assume Jordρ ∩ [2l1+1, 2l2+1] = ∅. Using the notation fixed before Lemma
5.1, exactly one of the representations δ o τi j (i fixed, j = 1, 2) is irreducible.
Without loss of generality we may assume that it is δ o τi1. Then

δ o τi2 = δ([ν−l2ρ, νl2ρ]) × δ([ν−l1ρ, νl1ρ]) o σi + Lang(δ o τi2)

for i = 1, 2. (Note that 2l1+1, 2l2+1 ∈ Jordρ(σi ) implies the irreducibility of
δ([ν−l2ρ, νl2ρ]) × δ([ν−l1ρ, νl1ρ]) o σi .)

(ii) Assume Jordρ ∩ ]2l1+1, 2l2+1[ 6= ∅. Let 2lmax+1 be the largest element of
that intersection. Let σd be the discrete series defined in Lemma 6.3, with l1

replaced by lmax. Thus 2lmax+1 /∈ Jordρ(σd) and we have the decomposition
δ([ν−lmaxρ, νlmaxρ]) o σd ' τ 1

d ⊕ τ 2
d . Then:

(a) In the appropriate Grothendieck group (perhaps changing the indices of
τ 1

d and τ 2
d ), we have

δ([νlmax+1ρ, νl2ρ]) o τi = τ i
d + Lang(δ([νlmax+1ρ, νl2ρ]) o τi ) for i = 1, 2.

(b) The representations τi j (i fixed, j = 1, 2) can be distinguished as follows:

δ([νlmax+1ρ, νl2ρ]) o τi1 is irreducible;

δ([νlmax+1ρ, νl2ρ]) o τi2 ≥ δ([νlmax+1ρ, νl2ρ]) o τ i
d (irred., multipl. one).

δ o τi1 is reducible if and only if δ([ν−l1ρ, νlmaxρ]) o τi reduces. Next,
δ o τi2 reduces. Finally, if δ o τi j , j = 1, 2, reduces it contains some rep-
resentation, other than its Langlands quotient, in its composition series
with multiplicity one.

Proof outline. For (i) we use a decomposition of the relevant long-intertwining
operator analogous to the one the proof of Lemma 5.3. (See proof of Lemma 6.2.)

For (ii)(1), we first note that Lemmas 3.1 and 6.3 imply that δ([νlmax+1ρ, νl2ρ])o
τi reduces, for i = 1, 2. Next we factor the long-intertwining operator

δ([νlmax+1ρ, νl2ρ]) o τ1 ⊕ δ([νlmax+1ρ, νl2ρ]) o τ2

→ δ([ν−l2ρ, ν−lmax−1ρ]) o τ1 ⊕ δ([ν−l2ρ, ν−lmax−1ρ]) o τ2
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into the long-intertwining operators

δ([νlmax+1ρ, νl2ρ]) o τ1 ⊕ δ([νlmax+1ρ, νl2ρ]) o τ2

' δ([νlmax+1ρ, νl2ρ]) × δ([ν−l1ρ, νl1ρ]) o σ

→ δ([ν−l1ρ, νl1ρ]) × δ([νlmax+1ρ, νl2ρ]) o σ

→ δ([ν−l1ρ, νl1ρ]) × δ([ν−l2ρ, ν−lmax−1ρ]) o σ

→ δ([ν−l2ρ, ν−lmax−1ρ]) × δ([ν−l1ρ, νl1ρ]) o σ

' δ([ν−l2ρ, ν−lmax−1ρ]) o τ1 ⊕ δ([ν−l2ρ, ν−lmax−1ρ]) o τ2.

From [Zelevinsky 1980] we know that the first and third arrows (induced long-
intertwining operators) are isomorphisms. The second has kernel isomorphic to
δ([ν−l1ρ, νl1ρ]) o σd ' τ 1

d ⊕ τ 2
d , by [Muić 2005, Theorem 2.1]. We obtain (1),

since δ([νlmax+1ρ, νl2ρ]) o τi reduces.
Next, we discuss (2). That the representations τi j can be distinguished as claimed

follows from the argument used in the proof of Lemmas 5.3, 6.2 and 6.4 (again
based on the factorization of the long-intertwining operator). The remaining state-
ments of (ii) follow using ideas employed in the proof of Lemmas 6.4 and 6.5. We
leave details to the reader. �
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