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A geometric characterization of the Arf invariant of a knot in the 3-sphere
is given in terms of two kinds of 4-dimensional bordisms, half-gropes and
Whitney towers. These types of bordisms have associated complexities class
and order which filter the condition of bordism by an embedded annulus,
i.e. knot concordance, and it is shown constructively that the Arf invariant
is exactly the obstruction to cobording pairs of knots by half-gropes and
Whitney towers of arbitrarily high class and order, respectively. This illus-
trates geometrically how, in the setting of knot concordance, the Vassiliev
(isotopy) invariants “collapse” to the Arf invariant.

1. Introduction

This paper gives a geometric characterization of the Arf invariant of a knotted
circle in the 3-sphere that is related to recent developments in knot theory [Teich-
ner 2002]. Conant and Teichner [2004b] have shown that the Vassiliev finite type
filtration [Bar-Natan 1995] on isotopy classes of knots corresponds to a geometric
equivalence relation called 3-dimensional capped grope-cobordism and that this
equivalence relation is generated by certain simplified half-gropes in S3. Gropes
(see [Teichner 2004]) are 2-complexes built by gluing together embedded surfaces
and in this setting the Vassiliev degree corresponds to a measure of grope complex-
ity called class, which counts the layers of attached surfaces. The Arf invariant
Arf k ∈ Z2 of a knot k ⊂ S3 is the mod 2 reduction of the lowest degree nontrivial
finite type knot invariant (the degree two coefficient of the Conway polynomial
of k) and a result of Ng [1998] says that Arf k is the only finite type invariant of
k up to concordance, that is, up to bordism of k by an embedded annulus in the
product S3

× I of the 3-sphere with an interval. Gropes have been extensively
studied in 4-dimensional topology; see for example [Freedman and Quinn 1990;
Freedman and Teichner 1995; Krushkal 2000; Krushkal and Quinn 2000; Krushkal
and Teichner 1997]; they are closely related to Whitney towers which measure the
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failure of the Whitney move in terms of intersections among higher order Whitney
disks [Cochran et al. 2003; Schneiderman ≥ 2005; Schneiderman and Teichner
2001; 2004].

The following theorem illustrates geometrically how, in the setting of knot con-
cordance, the Vassiliev isotopy invariants “collapse” to the Arf invariant and the
failure of the Whitney move can be “pushed out” to arbitrarily high order Whitney
disks:

Theorem 1. For knots k0 and k1 in S3 the following statements are equivalent:

(i) Arf(k0) = Arf(k1),

(ii) k0 and k1 cobound a properly embedded class n half-grope in S3
× I for all

n ∈ N,

(iii) k0 and k1 cobound a properly immersed annulus in S3
× I admitting an order

n Whitney tower for all n ∈ N.

It follows from Theorem 1 and a result in [Schneiderman ≥ 2005] (which de-
scribes how to convert gropes into half-gropes) that a knot in the 3-sphere has trivial
Arf invariant if and only if it bounds embedded gropes (not necessarily half-gropes)
of arbitrarily high class in the 4-ball.

Definitions of Whitney towers, Arf k and half-gropes will be given in Sections
2, 3 and 4, respectively. Theorem 1 will be proved constructively by exploiting
the flexibility of the Whitney towers in (iii). The infinite cyclic Vassiliev (iso-
topy) invariant which lifts the Arf invariant can be interpreted as the obstruction to
“pushing down” this construction into the 3-sphere.

Remark. The equivalence of (i) and (ii) also follows indirectly from results in
[Conant and Teichner 2004b; 2004a; Cochran et al. 2003]; see particularly [Conant
and Teichner 2004a, Proposition 3.8].

It should be mentioned that slight variations of the bordism equivalence relations
of class n grope concordance and order n Whitney concordance suggested by (ii)
and (iii) are highly nontrivial. For instance, when using “height” instead of class
and order to measure complexity, Cochran and Teichner [2003] have used von
Neumann ρ-invariants to show that the associated filtration on grope (and Whitney)
concordance classes of knots is nontrivial for all n [Cochran and Teichner 2004].
(And see comment regarding links following Lemma 3 below.)

Simple Whitney towers. The essential arguments in the proof of Theorem 1 are
contained in two lemmas. The first describes a close relationship between half-
gropes and certain simple Whitney towers (Section 4.2) both of which are geomet-
ric analogues of simple (right- or left-normed) commutators in a group [Magnus
et al. 1976].
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Lemma 2. Let L be a link in the boundary of a simply connected 4-manifold. Then
L is the boundary of the bottom stage of a properly embedded half-grope of class
n if and only if L is the boundary of a properly immersed planar surface which
admits a simple Whitney tower of order n − 1.

Remark. A much more general relation between class n gropes and order n − 1
Whitney towers in (not necessarily simply connected) 4-manifolds is described in
[Schneiderman ≥ 2005].

Whitney towers are of interest in their own right, in part because an order n
Whitney tower comes equipped with an n-th order geometric intersection obstruc-
tion to the existence of an (n+1)-th order tower which is related to Milnor’s µ̄ link
invariants [Schneiderman and Teichner ≥ 2005] and the Kontsevich integral, and is
conjectured to generalize to give homotopy invariants of immersed surfaces in arbi-
trary 4-manifolds; see [Schneiderman and Teichner 2001; 2004]. The next lemma
illustrates how in the present setting (of knots in a simply connected manifold) the
obstruction theory collapses after order 2.

Lemma 3. A properly immersed connected surface in a simply connected 4-
manifold admitting an order 2 Whitney tower admits an order n simple Whitney
tower for all n.

The connectivity conditions in Lemma 3 are crucial. For instance, as explained
in [Schneiderman and Teichner 2004], in the setting of link concordance, a first
nonvanishing term of Vassiliev degree n in the tree part of the Kontsevich integral
is an obstruction to building a Whitney tower of order n on a collection of im-
mersed disks in the 4-ball bounded by the link components in S3, and the already
mentioned higher order Whitney tower intersection obstruction is conjectured to be
(highly) nontrivial for connected surfaces in non-simply connected 4-manifolds.

Outline. Whitney towers are defined in Section 2, which also describes the basic
geometric manipulations of immersed surfaces in 4-manifolds that we will use.
The Arf invariant is defined in Section 3. Lemma 2 is proved in Section 4, which
also contains definitions of half-gropes and simple Whitney towers. Lemma 3 is
proved in Section 5 and the proof of Theorem 1 is assembled in Section 6. All
manifolds are assumed smooth and oriented.

2. Whitney towers

Whitney towers are introduced in this section, along with some fundamental tech-
niques from the theory of immersed surfaces in 4-manifolds. More information
about Whitney towers can be found in [Cochran et al. 2003; Conant et al. 2004;
Schneiderman ≥ 2005; Schneiderman and Teichner 2001; 2004]. For more details
on surfaces in 4-manifolds the reader is referred to [Freedman and Quinn 1990].
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Figure 1. A generic transverse intersection point p between sur-
faces A and B in a 4-manifold.

It will be convenient to illustrate surfaces locally in 4-space by picturing 3-
dimensional slices in which a surface may appear either in the “present slice” or as
an arc which extends into neighboring slices; surfaces may also appear as a “movie
of arcs” in a sequence of 3-dimensional slices (Figure 1).

2.1. Whitney disks. In a simply connected 4-manifold X , two intersection points
between oriented connected surfaces A and B are a called a cancelling pair if they
have opposite signs (via the usual sign convention that compares the orientations of
the surfaces at an intersection point with the orientation of the ambient manifold).
Such a cancelling pair p and q in A∩B can be paired by a Whitney disk as follows:
The union of an arc α from p to q in A and an arc β from q to p in B forms a
loop in X which bounds an immersed 2–disk W meeting A and B along ∂W in the
standard way. Such a W is a Whitney disk pairing p and q. (An embedded Whitney
disk is shown in Figure 2.) The normal disk bundle νW of W in X pulls back to a
trivial D2-bundle over the pre-image of W (which is contractible). The restriction
of νW to ∂W has a canonical 1-dimensional sub-bundle ν∂ which restricts along α

A

W

B

Figure 2. An embedded Whitney disk W pairing intersections be-
tween surfaces A and B.
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W

V

Figure 3. Part of an order n Whitney tower. The Whitney disk
V contains an unpaired intersection point which must be of order
greater than or equal to n.

to the normal bundle of α in A and restricts along β to the orthogonal complement
(in νW ) of the normal bundle of β in B. Since p and q have opposite signs, ν∂ is
a trivial I -bundle over ∂W . The obstruction to extending a nonvanishing section
of ν∂ to a nonvanishing section of νW is an element of π1SO(2) ∼= Z. If this
obstruction vanishes then W is said to be (correctly) framed.

2.2. Definition of a Whitney tower. A Whitney disk can be used to eliminate its
cancelling pair of intersection points via a Whitney move (a motion of one of the
sheets guided by the Whitney disk), as introduced in [Whitney 1944] for higher-
dimensional manifolds immersed in Euclidean space. In the present 4-dimensional
setting, a Whitney move will create new intersections if the interior of the Whitney
disk has any “higher order” intersections with sheets of surfaces or Whitney disks
(or if the Whitney disk is not framed), whereas in dimensions greater than 4, such
higher order intersection points can eliminated by general position. The following
notion of a Whitney tower filters the condition that a properly immersed surface in
a 4-manifold is homotopic (rel boundary) to an embedding.

Definition. A surface of order 0 in a 4-manifold X is a properly immersed surface
(that is, its boundary is embedded in the boundary of X and its interior is immersed
in the interior of X ). A Whitney tower of order 0 in X is a collection of order 0
surfaces.

The order of a (transverse) intersection point between a surface of order n and
a surface of order m is n + m.

The order of a Whitney disk is (n+1) if it pairs intersection points of order n.
For n ≥ 0, a Whitney tower of order (n+1) is a Whitney tower W of order n

together with (framed) Whitney disks pairing all order n intersection points of W.
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(These top order disks are allowed to intersect each other as well as lower order
surfaces.)

All Whitney disks in a Whitney tower are oriented (arbitrarily) and are required
to have disjointly embedded boundaries.

If A is a properly immersed surface in a 4-manifold and there exists an order n
Whitney tower containing A as its order 0 surface, then A is said to admit an order
n Whitney tower.

If a Whitney tower of order n has no intersection points of order greater than or
equal to n, then the Whitney disks can be used to guide a regular homotopy (rel
boundary) of the order 0 surfaces to an embedding.

2.3. Modifying Whitney disks. There are several moves that allow for controlled
modification of Whitney towers. Since the moves are supported in a neighborhood
of an arc or a point they commute with each other and can be iterated disjointly
arbitrarily many times.

The first two twisting moves change the framing of a Whitney disk.

2.3.1. Interior twisting. Introducing an self-intersection in the interior W̊ of W
by a cusp homotopy (see Figure 4) changes the framing by ±2 as can be seen by
counting the intersections between a local kink and its parallel push off.

Figure 4. A local cusp homotopy.

2.3.2. Boundary twisting. Introducing a boundary twist by changing a collar of
W near a point in ∂W (as in Figure 5) changes the framing by ±1 and creates an
intersection between W̊ and the sheet containing ∂W .

The next two moves do not affect framing but can be used to make Whitney
disks disjointly embedded.

2.3.3. Boundary push-off. Intersections or self-intersections between boundaries
of Whitney disks can always be eliminated by a regular homotopy in a collar at
the cost of creating an intersection between the interior of a Whitney disk and a
surface sheet (Figure 6).
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Figure 5. Boundary twisting a Whitney disk.

Figure 6. Boundary push-off.

2.3.4. Pushing down an intersection point. An intersection point between W̊ and
any surface S can be removed by a finger move on S, a homotopy of S supported in
a neighborhood of an arc, in this case an arc in W from the intersection to a point
in ∂W (Figure 7, left). Such a finger move is called “pushing S down” into either
sheet and creates two new cancelling pairs of intersection points between S and the
sheet. This move can also be used to remove interior self-intersections of W . Note
that the newly created cancelling pair can be paired by an embedded Whitney disk
V whose boundary is disjoint from W by applying the boundary push-off move to
the obvious small embedded Whitney disk near the cancelling pair. The interior
of V has a single intersection point with the sheet that was not “pushed into” as
illustrated in Figure 7, right.

2.4. Order 1 towers for knots. Applying the moves of Section 2.3 yields the next
lemma, which will be used in the definition of the Arf invariant.
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W

V

Figure 7. Left: Pushing down an intersection between the interior
of a Whitney disk W and a sheet of a surface. Right: A Whitney
disk V for the cancelling pair created by pushing down (with ∂V
and ∂W disjoint).

Lemma 4. Any knot k in S3 bounds a properly immersed 2-disk in S3
× I admitting

a Whitney tower of order 1.

Proof. A finite number of crossing changes, leading from k to the unknot, describes
a properly immersed 2-disk D in S3

× I (with the unknot capped off by an embed-
ded disk). Fixing orientations, the signs of the self-intersections of D correspond
to the signs of the crossing changes and, after introducing trivial crossing changes
(if necessary), the self-intersections of D can be made to occur in cancelling pairs
of order 0 intersections which are paired by Whitney disks of order 1 as in Section
2.1. By applying boundary twists (2.3.2) and boundary push-off (2.3.3) as needed,
it can be arranged that the Whitney disks are framed with disjointly embedded
boundaries. �

3. The Arf invariant

Robertello [1965] used Kervaire and Milnor’s [1961] generalization of Rochlin’s
Theorem to define a Z2-valued concordance invariant of a knot in S3, and showed
that it was equal to the Arf invariant of a quadratic enhancement of (the mod 2
reduction of) the Seifert form. (The Arf invariant of a nondegenerate quadratic
form is defined as 0 or 1 depending on whether a majority of elements are taken to
0 or 1.) This invariant has numerous characterizations, all of which are commonly
referred to as the Arf invariant (of a knot). The following geometric definition,
which we have translated into the language of Whitney towers, is due to Matsumoto
[1978], using Freedman and Kirby’s [1978] geometric proof of Rochlin’s Theorem.

Definition. For a knot k in S3, let D be any properly immersed 2-disk immersed in
S3

× I admitting a Whitney tower W of order 1, with k = ∂ D ⊂ S3
×{0}. Define the

Arf invariant of k, Arf k ∈ Z2, to be the number (modulo 2) of order 1 intersection
points in W.
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By Lemma 4, such a W always exists. A direct combinatorial proof that this
definition of Arf k is well-defined can be found in [Freedman and Quinn 1990,
10.8].

3.1. The trefoil. That the trefoil knot has nontrivial Arf invariant can be seen in
Figure 8, where changing the crossings labelled p+ and p− creates a cancelling pair
of order 0 intersections in a null-homotopy D. This cancelling pair has a framed
embedded Whitney disk W which intersects D in a single intersection point of
order 1.

p+

p−

W

Figure 8. The trefoil has nontrivial Arf invariant.

4. Half-gropes and simple Whitney towers

We next prove Lemma 2, after first defining half-gropes and simple Whitney tow-
ers, two geometric analogues of a simple (right- or left-normed) commutator of
elements in a group [Magnus et al. 1976]. It should be noted that the fact that we
are working with half -gropes and simple Whitney towers is crucial in the proof of
Lemma 2. In the setting of general gropes and Whitney towers, showing the corre-
spondence between class and order involves more subtle geometric constructions;
see [Schneiderman ≥ 2005]. Basic operations on gropes used in this section, such
as surgery, are described in detail in [Freedman and Quinn 1990].

4.1. Half-gropes. In general, gropes are 2-complexes consisting of surfaces joined
along certain essential curves; see [Conant and Teichner 2004b; Freedman and
Quinn 1990; Teichner 2004]. Requiring that the curves form a “half-basis” yields
the “half-gropes”:

Definition. A half-grope of class 2 is a compact connected orientable surface A
with a single boundary circle. To form a half-grope of class n > 2, start with an
orientable surface A with a single boundary circle and choose a symplectic basis
{ai , bi }, that is, the ai and bi are embedded curves which represent a basis for
H1(A) and the only intersections among them occur when ai meets bi in a single
point. Now attach half-gropes of class n − 1 along their boundary circles to a
1
2 -symplectic basis for A, i.e., a maximal pairwise disjoint subset of {ai , bi }, for
instance {ai }.
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Figure 9. A half-grope of class 4.

The surface A is called the bottom stage of the half-grope and the boundary circle
of A is the boundary of the half-grope. Half-gropes with more than one boundary
component are formed by removing disks from the bottom stage of a half-grope.
The attached punctured surfaces are also called higher stages, or simply stages.
Basis curves having no attached higher stages are the tips of the half-grope.

A half-grope H is properly embedded in a 4-manifold X if the boundary of H
is embedded in ∂ X and the rest of H is embedded in X̊ . It is also required that H
satisfy the following normal framing condition: A regular neighborhood of H in
X must factor as a standard embedding of H into 3-space followed by taking the
product with an interval.

4.2. Simple Whitney towers. A Whitney tower is simple if all of its Whitney disks
have disjointly embedded interiors. Thus, every intersection point of order m in a
simple Whitney tower is an intersection between a surface of order 0 and a surface
of order m.

4.3. Proof of Lemma 2. Let H be a half-grope of class n properly embedded in X
and bounded by L . Since X is simply connected, the tips of H bound immersed 2-
disks called caps and the plan is to create the desired Whitney tower by surgering
the caps. Each cap has a normal framing determined by pushing its boundary
along H and after boundary twisting the cap (just as in 2.3.2) this framing can be
made to vanish. We may also arrange, by repeatedly pushing down intersections as
for Whitney disks (2.3.4), that the caps of H are disjointly embedded (except for
the single boundary point intersections between dual caps in the top stages) with
interiors disjoint from all stages of H except for perhaps the bottom stage. Assume
first that the bottom stage intersects the interior of each cap in at most a single point.
Let A be the result of surgering those caps attached to the bottom stage surface of
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A
A

S

Figure 10. Intersections created by surgering caps can be paired
by Whitney disks constructed from surgered higher stages of the
half-grope. Surgering a cap bounded by the dotted circle (tip) on
S creates a Whitney disk.

H . Then A is a properly immersed planar surface with self-intersection points
coming in cancelling pairs which were created by surgering a cap whose interior
intersected the bottom stage surface. Such a cancelling pair has an embedded
(first order) Whitney disk W which is the union of a small band and the result of
surgering the caps on the next stage surface S, which was attached along the dual
curve to the boundary of the cap (Figure 10). The framing condition (see definition
on page 177) on the normal bundle of H in X ensures that W is correctly framed.
The only possible intersections between the interior of W and anything else are
intersections with A coming from intersections between A and the surgered caps
on S, hence occur in cancelling pairs with an embedded second order Whitney disk
gotten by similarly surgering the next surface stage. This construction terminates
at the top (n−1)-th stage surfaces, where only a half-basis of caps are surgered to
make the order (n−2) Whitney disks and the dual caps (together with bands) form
the order (n−1) Whitney disks yielding the desired simple Whitney tower.

The above assumption that each cap has at most a single interior intersection
with the bottom surface can always be arranged by Krushkal’s grope splitting
technique [2000]; alternatively, the above construction can still be carried out for
“nearby” cancelling pairs created by surgering caps containing multiple interior
intersections by using parallel disjoint copies (guaranteed by the normal framing
condition) of the higher surfaces stages of H to build the higher order Whitney
disks. This completes one direction of the proof of Lemma 2.

For the other direction, let W be a simple order n − 1 Whitney tower on a
properly immersed planar surface A in X bounded by L . Since W is simple, each
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A

Figure 11. A simple Whitney tower of order n − 1 yields a half-
grope of class n by “tubing along A”.

of its Whitney disks has (at least one) boundary arc lying in A (the order 1 Whitney
disks have both boundary arcs on A). The desired half-grope H of class n is
constructed by “tubing the Whitney disks of W along A” as illustrated in Figure
11: More specifically, let W be any order m Whitney disk (1 ≤ m ≤ n−1) for a pair
of cancelling order m−1 intersections between A and an order m−1 Whitney disk
V (if m = 1, then V is just the order zero surface A). Denote by ∂AW the part of the
boundary of W that lies in A (if m = 1, choose a boundary arc of ∂W ). Using the
boundary annulus of the normal disk bundle to A in X restricted to ∂AW to perform
0-surgery on V eliminates the cancelling pair of intersections between A and V .
If m = n −1, then W is discarded; if 1 ≤ m < n −1, then W (minus a small collar
near ∂AW ) becomes an (m + 1)-th stage surface of H by 0-surgering the interior
of W to eliminate any intersections with A. Applying this construction to all the
Whitney disks of W yields H , with the bottom stage surface of H consisting of
0-surgery (one for each first order Whitney disk) on A and each m-th stage surface
0-surgery on an (m−1)-th order Whitney disk. The normal framing condition on
H is satisfied since all the Whitney disks of W were framed. �

5. Proof of Lemma 3

The idea of the proof of Lemma 3 is that, for an order n simple Whitney tower
whose order 0 surface is connected, any order n intersection point can be cancelled
by boundary twisting its order n Whitney disk into the order 0 surface (in a simply
connected 4-manifold). The framing on the Whitney disk can then be recovered by
boundary twisting along the other boundary arc of the Whitney disk, which only
creates an intersection point of order n + (n−1), which is greater than n for n ≥ 2.
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Proof. Let A be a properly immersed connected surface in a simply connected
4-manifold X admitting an order 2 Whitney tower W. A simple order 2 Whit-
ney tower can be constructed from W by pushing down any intersections among
its Whitney disks into A: Pushing down (order 2) intersections among the first
order Whitney disks creates cancelling pairs of (order 1) intersections which can
be equipped with disjointly embedded second order Whitney disks having a single
interior (order 2) intersection with A (Figure 7). Pushing down intersections among
second order disks and between second and first order disks creates cancelling pairs
of second order intersections between the second order disks and A.

Now assume inductively that A admits a simple Whitney tower Wn of order
n ≥ 2. Since the interiors of all Whitney disks in Wn are disjointly embedded, the
only possible unpaired intersection points are n-th order intersections between n-th
order Whitney disks and A.

Let p be such an intersection point between an n-th order Whitney disk W and
A. Since Wn is simple, W pairs intersections between A and an (n−1)-th order
Whitney disk (recall n ≥ 2). By performing a boundary twist around the arc of ∂W
that lies on A, we can create an intersection point q ∈ W̊ ∩ A of opposite sign as
p. Since A is connected (and the 4-manifold is simply connected), p and q can be
paired by an (n+1)-th order Whitney disk.

To restore the framing of W , perform a boundary twist along the (other) arc
of ∂W that lies on the (n−1)-th order Whitney disk, creating a (2n−1)-th order
intersection point between W and the (n−1)-th order Whitney disk. This (2n−1)-
th order intersection point can be eliminated by repeatedly pushing W̊ down into
Whitney disks of lower order as in Figure 12 until eventually reaching A, where

Figure 12
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2(n−2) cancelling pairs of order n intersections between W̊ and A will be created.
These cancelling pairs admit disjointly embedded order n Whitney disks (parallel
copies of the Whitney disk V pictured in Figure 7, right), each having a single
intersection of order n + 1 with A.

Since this modification of Wn takes place in a neighborhood of a 1-complex,
it may be repeated (in disjoint neighborhoods) until all order n intersections are
paired by order (n+1) Whitney disks. The boundaries of these (n+1)-th order
Whitney disks can be made disjointly embedded (and disjoint from all other Whit-
ney disk boundaries) by applying boundary push-off moves (2.3.3). Finally, inter-
sections between any Whitney disk and the (n+1)-th order Whitney disks can be
eliminated by repeatedly pushing the (n+1)-th order Whitney disks down (as in
Figure 12) until they only intersect A, yielding a simple Whitney tower of order
n+1. �

6. Proof of Theorem 1

(iii) ⇒ (i) Let A be an annulus admitting an order n ≥ 2 Whitney tower W as in
(iii). Then any 2-disk D0 admitting an order 1 Whitney tower W0 in S3

× I and
bounded by k0 can be extended by A to a 2-disk D1 = A ∪ D0 in S3

× I admitting
an order 1 Whitney tower W1 = W ∪ W0 and bounded by k1. Since n ≥ 2, all
order 1 intersection points in W occur in cancelling pairs, so W1 has the same
number (modulo 2) of order 1 intersection points as W0 and Arf k1 = Arf k0.

Figure 13
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(i) ⇒ (iii) Let Di , i = 0, 1, be disjoint properly immersed 2-disks in S3
× I , where

I =[0, 1], bounded by the knots ki ⊂ S3
×{i} and admitting order 1 Whitney towers

Wi . We may assume that the Wi are disjoint, so the Di can be tubed together by a
thin embedded annulus to get an annulus A cobounded by the ki such that A admits
an order 1 Whitney tower W whose Whitney disks are just the union of the Whitney
disks in Wi . The assumption that Arf k0 =Arf k1 means that W has an even number
of order 1 intersection points. By using the move illustrated in Figure 13 (details in
[Yamasaki 1979], also [Schneiderman and Teichner 2001]), which does not affect
framings, it can be arranged that each Whitney disk contains an even number of
order 1 intersection points. After introducing an even number of (like-signed)
boundary twists (2.3.2) on each Whitney disk, the order 1 intersection points on
each Whitney disk occur in cancelling pairs (have opposite signs) admitting second
order Whitney disks. If 2m boundary twists were done on a first order Whitney
disk W , then the framing of W can be recovered by performing m interior twists
(2.3.1), which create only second order intersection points (self-intersections of
W ). Having thus far constructed a second order Whitney tower, the proof of the
implication (i) ⇒ (iii) is completed by Lemma 3.

(ii) ⇔ (iii) By Lemma 3, we may assume that the Whitney tower in (iii) is simple,
thus the proof of (ii) ⇔ (iii) follows from Lemma 2. �
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