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We develop a general framework for the study of strong Morita equivalence
in which C∗-algebras and hermitian star products on Poisson manifolds
are treated in equal footing. We compare strong and ring-theoretic Morita
equivalences in terms of their Picard groupoids for a certain class of unital
∗-algebras encompassing both examples. Within this class, we show that
both notions of Morita equivalence induce the same equivalence relation but
generally define different Picard groups. For star products, this difference
is expressed geometrically in cohomological terms.

1. Introduction

This paper investigates several similarities between two types of algebras with
involution: hermitian star products on Poisson manifolds and C∗-algebras. Their
connection is suggested by their common role as “quantum algebras” in mathemat-
ical physics, despite the fact that the former is a purely algebraic notion, whereas
the latter has important analytical features. Building on [Bursztyn and Waldmann
2001a; 2001b], we develop in this paper a framework for their unified study, fo-
cusing on Morita theory; in particular, the properties shared by C∗-algebras and
star products allow us to develop a general theory of strong Morita equivalence in
which they are treated in equal footing.

Our set-up is as follows. We consider ∗-algebras over rings of the form C=R(i),
where R is an ordered ring and i2 = −1. The main examples of R that we will
have in mind are R, with its natural ordering, and R[[λ]], with ordering induced by
“asymptotic positivity”, i.e., a =

∑
∞

r=0 arλ
r > 0 if and only if ar0 > 0, where ar0 is

the first nonzero coefficient of a. This general framework encompasses complex
∗-algebras, such as C∗-algebras, as well as ∗-algebras over the ring of formal power
series C[[λ]], such as hermitian star products. We remark that the case of ∗-algebras
over C has been extensively studied; see [Schmüdgen 1990], for example, and
[Waldmann 2004] for a comparison of notions of positivity.
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In our general framework, we define a purely algebraic notion of strong Morita
equivalence. The key ingredient in this definition is the notion of completely posi-
tive inner products, which we use to refine Ara’s ∗-Morita equivalence [Ara 1999].
One of our main results is that completely positive inner products behave well un-
der the internal and external tensor products, and, as a consequence, strong Morita
equivalence defines an equivalence relation within the class of nondegenerate and
idempotent ∗-algebras. This class of algebras includes both star products and C∗-
algebras as examples. We prove that important constructions in the theory of C∗-
algebras, such as Rieffel’s induction of representations [Rieffel 1974a], carry over
to this purely algebraic setting, recovering and improving many of our previous
results [Bursztyn and Waldmann 2001a; 2001b].

In the ordinary setting of unital rings, Morita equivalence coincides with the
notion of isomorphism in the category whose objects are unital rings and mor-
phisms are isomorphism classes of bimodules, composed via tensor product. The
invertible arrows in this category form the Picard groupoid Pic [Bénabou 1967],
which is a “large” groupoid (in the sense that its collection of objects is not a
set) encoding the essential aspects of Morita theory: the orbit of a ring in Pic

is its Morita equivalence class, whereas the isotropy groups in Pic are the usual
Picard groups of rings. Analogously, we show that our purely algebraic notion of
strong Morita equivalence coincides with the notion of isomorphism in a category
whose objects are nondegenerate and idempotent ∗-algebras over a fixed ring C;
morphisms and their compositions are given by more elaborate bimodules and
tensor products, and the invertible arrows in this category form the strong Picard
groupoid Picstr. When restricted to C∗-algebras, we show that Picstr defines an
equivalence relation which turns out to coincide with Rieffel’s (analytical) notion
of strong Morita equivalence [Rieffel 1974b], and its isotropy groups are the Picard
groups of C∗-algebras as in [Brown et al. 1977]; these results are proven along the
lines of [Ara 2001; Bursztyn and Waldmann 2001b].

In the last part of the paper, we compare strong and ring-theoretic Morita equiv-
alences for unital ∗-algebras over C by analyzing the canonical groupoid morphism

(1–1) Picstr
−→ Pic.

We prove that, for a suitable class of unital ∗-algebras, including both unital C∗-
algebras and hermitian star products, Picstr and Pic have the same orbits, i.e., the
two notions of Morita equivalence define the same equivalence relation. This is a
simultaneous extension of Beer’s result [Beer 1982], in the context of C∗-algebras,
and [Bursztyn and Waldmann 2002, Thm. 2], for deformation quantization. De-
spite the coincidence of orbits, we show that, for both unital C∗-algebras and her-
mitian star products, the isotropy groups of Pic and Picstr are generally different.
We note that the obstructions to (1–1) being an equivalence can be described in



COMPLETELY POSITIVE INNER PRODUCTS. STRONG MORITA EQUIVALENCE 203

a unified way for both classes of ∗-algebras, due to common properties of their
automorphism groups. A key ingredient for this discussion in the context of formal
deformation quantization is the fact that hermitian star products are always (com-
pletely) positive deformations, in the sense that positive measures on the manifold
can be deformed into positive linear functionals of the star product; see [Bursztyn
and Waldmann 2000b; 2004b].

The paper is organized as follows: In Section 2 we recall the basic definitions
and properties of ∗-algebras over ordered rings and pre-Hilbert spaces. Section
3 is devoted to completely positive inner products, a central notion throughout
the paper. In Section 4 we define various categories of representations and prove
that internal and external tensor products of completely positive inner products are
again completely positive. In Section 5 we define strong Morita equivalence, prove
that it is an equivalence relation within the class of nondegenerate and idempotent
∗-algebras and show that strong Morita equivalence implies the equivalence of
the categories of representations introduced in Section 4. In Section 6 we define
the strong Picard groupoid and relate our algebraic definition to the C∗-algebraic
Picard groupoid, proving their equivalence. In Section 7 we study the map (1–1)
for a suitable class of unital ∗-algebras. Finally, in Section 8, we consider hermitian
deformations, and, in particular, hermitian star products.

Conventions. Throughout this paper C will denote a ring of the form R(i), where
R is an ordered ring and i2 = −1. Unless otherwise stated, algebras and modules
will always be over a fixed ring C. For a manifold M , C∞(M) denotes its algebra
of complex-valued smooth functions.

2. ∗-Algebras, positivity and pre-Hilbert spaces

A ∗-algebra over C is a C-algebra equipped with an anti-linear involutive anti-
automorphism. If A is a ∗-algebra over C, then there are natural notions of positivity
induced by the ordering structure on R: A positive linear functional is a C-linear
map ω : A → C satisfying ω(a∗a)≥ 0 for all a ∈ A, and an algebra element a ∈ A

is called positive if ω(a) ≥ 0 for all positive linear functionals ω of A. Elements
of the form

(2–1) r1a∗

1a1 + · · · + rna∗

nan,

ri ∈ R+, ai ∈ A are clearly positive. The set of positive algebra elements is denoted
by A+; see [Bursztyn and Waldmann 2001a, Sec. 2] for details. These definitions
recover the standard notions of positivity when A is a C∗-algebra; for A=C∞(M),
positive linear functionals coincide with positive Borel measures on M with com-
pact support, and positive elements are positive functions [Bursztyn and Waldmann
2001a, App. B].
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A linear map φ : A → B, where A and B are ∗-algebras over C, is called positive
if φ(A+)⊆ B+, and completely positive if the canonical extensions φ : Mn(A)→

Mn(B) are positive for all n ∈ N.

Example 2.1. Consider the maps tr : Mn(A)→ A and τ : Mn(A)→ A defined by

(2–2) tr(A)=

n∑
i=1

Ai i , and τ(A)=

n∑
i, j=1

Ai j ,

where A = (Ai j )∈ Mn(A). A direct computation shows that both maps are positive.
Replacing A by MN (A) and using the identification Mn(MN (A)) ∼= MNn(A), it
immediately follows that tr and τ are completely positive maps.

A pre-Hilbert space H over C is a C-module with a C-valued sesquilinear inner
product satisfying

(2–3) 〈φ,ψ〉 = 〈ψ, φ〉 and 〈φ, φ〉> 0 for φ 6= 0;

see [Bursztyn and Waldmann 2001a]. We use the convention that 〈 · , · 〉 is linear in
the second argument. These are direct analogues of complex pre-Hilbert spaces. A
∗-representation of a ∗-algebra A on a pre-Hilbert space H is a ∗-homomorphism
from A into the adjointable endomorphisms B(H) of H [Bursztyn and Waldmann
2001a; 2001b]; the main examples are the usual representations of C∗-algebras on
Hilbert spaces and the formal representations of star products. See, for instance,
[Bordemann and Waldmann 1998; Waldmann 2002].

3. Completely positive inner products

3A. Inner products and complete positivity. Let A be a ∗-algebra over C and con-
sider a right A-module E. Throughout this paper, A-modules are always assumed
to have a compatible C-module structure.

Remark 3.1. When A is unital, we adopt the convention that x · 1 = x for x ∈ E;
morphisms between unital algebras are assumed to be unital.

An A-valued inner product on E is a C-sesquilinear (linear in the second argu-
ment) map 〈 · , · 〉 : E × E → A so that, for all x, y ∈ E and a ∈ A,

(3–1) 〈x, y〉 = 〈y, x〉
∗ and 〈x, y · a〉 = 〈x, y〉a.

The definition of an A-valued inner product on a left A-module is analogous, but
we require linearity in the first argument. We call an inner product 〈 · , · 〉 nonde-
generate if 〈x, y〉 = 0 for all y implies that x = 0, and strongly nondegenerate if
the map E → HomA(E,A), x 7→ 〈x, · 〉 is a bijection. Two inner products 〈 · , · 〉1

and 〈 · , · 〉2 on E are called isometric if there exists a module automorphism U with
〈U x,U y〉1 = 〈x, y〉2.
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An endomorphism T ∈ EndA(E) is adjointable with respect to 〈 · , · 〉 if there
exists T ∗

∈ EndA(E) (called an adjoint of T ) such that

(3–2) 〈x, T y〉 = 〈T ∗x, y〉

for all x, y ∈ E. The algebra of adjointable endomorphisms is denoted by BA(E),
or simply B(E). If 〈 · , · 〉 is nondegenerate, then adjoints are unique and BA(E)

becomes a ∗-algebra over C. One defines the C-module BA(E,F) of adjointable
homomorphisms E → F analogously.

An inner product 〈 · , · 〉 on E is positive if 〈x, x〉 ∈ A+ for all x ∈ E, and positive
definite if 0 6= 〈x, x〉 ∈ A+ for x 6= 0.

Definition 3.2. Consider En as a right Mn(A)-module, and let 〈 · , · 〉(n) be the
Mn(A)-valued inner product on En defined by

(3–3) 〈x, y〉
(n)
i j = 〈xi , y j 〉,

where x = (x1, . . . , xn) and y = (y1, . . . , yn)∈ En . We say that 〈 · , · 〉 is completely
positive if 〈 · , · 〉(n) is positive for all n.

Remark 3.3. Although the direct sum of nondegenerate (resp. positive, completely
positive) inner products is nondegenerate (resp. positive, completely positive), this
may not hold for positive definiteness: Consider A = Z2 as ∗-algebra over Z(i)
[Bursztyn and Waldmann 2001b, Sec. 2]; then the canonical inner product on A is
positive definite but on A2 the vector (1, 1) satisfies 〈(1, 1), (1, 1)〉 = 1+ 1 = 0.

The following observation provides a way to detect algebras A for which posi-
tive A-valued inner products on arbitrary A-modules are automatically completely
positive.

Proposition 3.4. Let A be a ∗-algebra satisfying the following property: for any
n ∈ N, if (Ai j ) ∈ Mn(A) satisfies

∑
i j a∗

i Ai j a j ∈ A+ for all (a1, . . . , an) ∈ An ,
then A ∈ Mn(A)

+. Then any positive A-valued inner product on an A-module is
automatically completely positive.

Proof. Let E be an A-module with positive inner product 〈 · , · 〉, and let x1, . . . , xn ∈

E. For a1, . . . , an ∈ A, the matrix A = (〈xi , x j 〉) satisfies∑
i j

a∗

i 〈xi , x j 〉a j =

∑
i j
〈xi · ai , x j · a j 〉 =

〈 ∑
i

xi · ai ,
∑

j
x j · a j

〉
∈ A+.

So the matrix (〈xi , x j 〉) is positive and 〈 · , · 〉 is completely positive. �

The converse also holds, e.g., if A is unital.
Note that, although a positive definite inner product is always nondegenerate, a

positive inner product which is nondegenerate may fail to be positive definite. This
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is due to the fact that the degeneracy space of an A-module E with inner product
〈 · , · 〉, defined by

(3–4) E⊥
= {x ∈ E | 〈x, ·〉 = 0},

might be strictly contained in the space

(3–5) {x ∈ E | 〈x, x〉 = 0}.

Example 3.5. Let A=
∧

•
(Cn) be the Grassmann algebra over Cn , with ∗-involution

defined by e∗

i = ei , where e1, . . . , en is the canonical basis for Cn . Regard A as
a right module over itself, equipped with inner product 〈x, y〉 = x∗

∧ y. Then
〈ei , ei 〉 = 0. However, A⊥

= {0}, since 〈1, x〉 = x .

Any A-valued inner product on E induces a nondegenerate one on the quotient
E
/

E⊥. Moreover, (completely) positive inner products induce (completely) posi-
tive inner products. In case E⊥

= {x ∈ E | 〈x, x〉 = 0}, the quotient inner product
is positive definite.

∗-Algebras possessing a “large” amount of positive linear functionals, such as
C∗-algebras and formal hermitian deformation quantizations [Bursztyn and Wald-
mann 2001a; 2001b], are such that (3–4) and (3–5) coincide.

Example 3.6. Let A be a ∗-algebra over C with the property that, for any nonzero
hermitian element a ∈ A, there exists a positive linear functional ω with ω(a) 6= 0.
Under the additional assumption that 2 ∈ R is invertible, any A-module E with
A-valued inner product is such that (3–4) and (3–5) coincide. The proof follows
from the arguments in [Bursztyn and Waldmann 2001a, Sect. 5].

3B. Examples of completely positive inner products. Inner products on complex
pre-Hilbert spaces are always completely positive. This result extends in two di-
rections: on one hand, one can replace C by arbitrary rings C; on the other hand,
C can be replaced by more general C∗-algebras.

Example 3.7 (Pre-Hilbert spaces over C). If A = C, then [Bursztyn and Waldmann
2001a, Prop. A.4] shows that the condition in Proposition 3.4 is satisfied. So a
positive C-valued inner product on any C-module H is completely positive. This is
the case, in particular, for inner products on pre-Hilbert spaces over C (which are
nondegenerate).

Example 3.8 (Pre-Hilbert C∗-modules). Let A be a C∗-algebra over C = C.
Then the condition in Proposition 3.4 holds; see [Raeburn and Williams 1998,
Lem. 2.28]. So a positive A-valued inner product 〈 · , · 〉 on any A-module E is
completely positive (see also [Raeburn and Williams 1998, Lem. 2.65]). When
〈 · , · 〉 is positive definite, (E, 〈 · , · 〉) is called a pre-Hilbert C∗-module over A.
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Example 3.7 uses the quotients fields of R and C, whereas Example 3.8 uses the
functional calculus of C∗-algebras, so neither immediately extend to inner products
with values in arbitrary ∗-algebras. Nevertheless, one can still show the complete
positivity of particular inner products.

Example 3.9 (Free modules). Consider AN as a right A-module with respect to
right multiplication, equipped with the canonical inner product

(3–6) 〈x, y〉 =

N∑
i=1

x∗

i yi ,

where x = (x1, . . . , xN ), y = (y1, . . . , yN )∈ AN . This inner product is completely
positive since, for x (1), . . . , x (n) ∈ AN , the matrix X =

(
〈x (α), x (β)〉

)
∈ Mn(A) can

be written as

(3–7) X =

∑
i

X∗

i X i , where X i =


x (1)i · · · x (n)i

0 · · · 0
...

...

0 · · · 0

 .

Note, however, that the inner product (3–6) need not be positive definite as there
may exist elements a ∈ A with a∗a = 0. If A is unital then (3–6) is strongly
nondegenerate; in the nonunital case it may be degenerate.

Remark 3.10. Let E be an A-module with inner product 〈 · , · 〉 which can be
written as

(3–8) 〈x, y〉 =

m∑
i=1

Pi (x)∗ Pi (y), for x, y ∈ E,

where Pi : E → A are A-linear maps. By replacing x (α)i with Pi (x (α)) in Example
3.9, one immediately sees that (3–8) is completely positive.

A direct computation shows that completely positive inner products restrict to
completely positive inner products on submodules.

Example 3.11 (Hermitian projective modules). The restriction of the canonical
inner product (3–6) to any submodule of An is completely positive. In particular,
hermitian projective modules, i.e., modules of the form E = PAn , where P ∈

Mn(A), P = P2
= P∗, have an induced completely positive inner product (this

also follows from Remark 3.10). If A is unital, then this inner product is strongly
nondegenerate.

The following simple observation concerns uniqueness.
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Lemma 3.12. Let E be an A-module equipped with a strongly nondegenerate A-
valued inner product 〈 · , · 〉. Let 〈 · , · 〉′ be another inner product on E. Then there
exists a unique hermitian element H ∈ B(E) such that

(3–9) 〈x, y〉
′
= 〈x, H y〉,

and 〈 · , · 〉′ is isometric to 〈 · , · 〉 if there exists an invertible U ∈ B(E) with H =

U∗U .

Example 3.13 (Hermitian vector bundles). Let A = C∞(M) be the algebra of
smooth complex-valued functions on a manifold M . As a result of the Serre–Swan
theorem [Swan 1962], hermitian projective modules PAN correspond to (sections
of) vector bundles over M (since in this case idempotents are always equivalent to
projections — see Section 7A), and A-valued inner products correspond to hermit-
ian fiber metrics.

As noticed in Example 3.11, there is a strongly nondegenerate inner product
〈 · , · 〉 on PAN . For any other inner product 〈 · , · 〉′, there exists a unique hermitian
element H ∈ P MN (A)P such that 〈x, y〉

′
= 〈x, H y〉. Since any positive invertible

element H ∈ P MN (C∞(M))P can be written as H = U∗U for an invertible U ∈

P MN (C∞(M))P , it follows from Lemma 3.12 that there is only one fiber metric
on a vector bundle over M up to isometric isomorphism. We will generalize this
example in Section 7A.

Example 3.14 (Nontrivial inner products). Even if the algebra A is a field, one
can have nontrivial inner products. For example, consider R = Q and C = Q(i).
Then 3 ∈ C is a positive invertible element but there is no z ∈ C with zz = 3
(write z = a + ib with a = r/n, b = s/n with r, s, n ∈ N, then take the equation
3n2

= r2
+s2 modulo 4). Hence 〈z, w〉

′
= 3zw is completely positive and strongly

nondegenerate but not isometric to the canonical inner product 〈z, w〉 = zw.

4. Representations and tensor products

4A. Categories of ∗-representations. We now discuss the algebraic analogues of
Hilbert C∗-modules; see [Lance 1995], for example. Let D be a ∗-algebra over C.

Definition 4.1. A (right) inner-product D-module is a pair (H, 〈 · , · 〉), where H is
a (right) D-module and 〈 · , · 〉 is a nondegenerate D-valued inner product. If 〈 · , · 〉

is completely positive, we call (H, 〈 · , · 〉) a pre-Hilbert D-module.

Whenever there is no risk of confusion, we will denote an inner-product module
(or pre-Hilbert module) simply by H.

We now consider ∗-representations of ∗-algebras on inner-product modules, ex-
tending the discussion in [Bursztyn and Waldmann 2001a; Bursztyn and Waldmann
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2001b; Bordemann and Waldmann 1998]. Let A be a ∗-algebra over C, and let H

be an inner-product D-module.

Definition 4.2. A ∗-representation of A on H is a ∗-homomorphism π : A →

BD(H).

An intertwiner between two ∗-representations (H, π) and (K, %) is an isometry
T ∈ BD(H,K) such that, for all a ∈ A,

(4–1) Tπ(a)= %(a)T .

We denote by ∗-modD(A) the category whose objects are ∗-representations of
A on inner-product modules over D and morphisms are intertwiners. The sub-
category whose objects are ∗-representations on pre-Hilbert modules is denoted
by ∗-repD(A). Since both categories contain trivial representations of A, we will
consider the following further refinement: A ∗-representation (H, π) is strongly
nondegenerate if

(4–2) π(A)H = H,

(by Remark 3.1, this is always the case if A is unital). The category of strongly non-
degenerate ∗-representations of A on inner-product (resp. pre-Hilbert) D-modules
is denoted by ∗-ModD(A) (resp. ∗-RepD(A)).

Definition 4.3. An inner-product D-module H together with a strongly nondegen-
erate ∗-representation of A will be called an (A,D)-inner-product bimodule; it is
an (A,D)-pre-Hilbert bimodule if H is a pre-Hilbert module.

These are algebraic analogues of Hilbert bimodules as e.g. in [Landsman 2001,
Def. 3.2]. This terminology differs from the one in [Ara 2001].

An isomorphism of inner-product (bi)modules (or pre-Hilbert (bi)modules) is
just a (bi)module homomorphism preserving inner products.

More generally, suppose AHD is a bimodule equipped with an arbitrary D-valued
inner product 〈 · , · 〉. We say that 〈 · , · 〉 is compatible with the A-action if

(4–3) 〈a · x, y〉 = 〈x, a∗
· y〉,

for all a ∈ A and x, y ∈ H. Clearly, any ∗-representation of A on an inner-product
module H over D makes H into a bimodule for which 〈 · , · 〉 and the A-action are
compatible. Unless otherwise stated, inner products on bimodules are assumed to
be compatible with the actions.

4B. Tensor products and Rieffel induction of representations. Let A and B be
∗-algebras over C. Let FB be a right B-module equipped with a B-valued inner
product 〈 · , · 〉F

B, and let BEA be a bimodule equipped with an A-valued inner prod-
uct 〈 · , · 〉E

A compatible with the B-action. Following Rieffel [1974a; 1974b], there
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is a well-defined A-valued inner product
〈
· , ·

〉F⊗E

A
on the tensor product FB⊗B BEA

completely determined by

(4–4)
〈
y1 ⊗B x1, y2 ⊗B x2

〉F⊗E

A
=

〈
x1, 〈y1, y2〉

F
B · x2

〉E

A

for x1, x2 ∈ BEA and y1, y2 ∈ FB (we extend it to arbitrary elements using C-
sesquilinearity). An analogous construction works for left modules carrying inner
products.

If (FB ⊗B BEA)
⊥ is the degeneracy space associated with

〈
· , ·

〉F⊗E

A
, then the

quotient
(FB ⊗B BEA)

/
(FB ⊗B BEA)

⊥

acquires an induced inner product, also denoted by
〈
· , ·

〉F⊗E

A
, which is nondegen-

erate by Section 3A. Thus the pair

(4–5) FB ⊗̂B BEA :=

(
(FB ⊗B BEA)

/
(FB ⊗B BEA)

⊥,
〈
· , ·

〉F⊗E

A

)
is an inner-product A-module called the internal tensor product of (FB, 〈 · , · 〉F

B)

and ( BEA, 〈 · , · 〉E
A). As we will see, in many examples the degeneracy space of

(4–4) is already trivial.

Lemma 4.4. If C is a ∗-algebra and CFB is a bimodule so that 〈 · , · 〉F
B is compatible

with the C-action, then FB ⊗̂B BEA carries a canonical left C-action, compatible
with

〈
· , ·

〉F⊗E

A
.

The proof of this lemma is a direct computation. It is also simple to check that
internal tensor products have associativity properties similar to those of ordinary
(algebraic) tensor products: Let GC be a C-module with C-valued inner product,
and let CFB (resp. BEA) be a bimodule with B-valued (resp. A-valued) inner prod-
uct compatible with the C-action (resp. B-action).

Lemma 4.5. There is a natural isomorphism

(4–6) ( GC ⊗̂C CFB) ⊗̂B BEA
∼= GC ⊗̂C ( CFB ⊗̂B BEA)

induced from the usual associativity of algebraic tensor products.

Internal tensor products also behave well with respect to maps.

Lemma 4.6. Let CFB, CF′
B be equipped with compatible B-valued inner products,

and let BEA, BE′
A be equipped with compatible A-valued inner products. Let

S ∈ B( CFB, CF′
B) and T ∈ B( BEA, BE′

A) be adjointable bimodule morphisms.
Then their algebraic tensor product S ⊗B T induces a well-defined adjointable
bimodule morphism S ⊗̂B T : CFB ⊗̂B BEA → CF′

B ⊗̂B BE′
A with adjoint given by

S∗
⊗̂B T ∗. If S and T are isometric then S ⊗̂B T is isometric as well.
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Hence, for a fixed triple of ∗-algebras A, B and C, we obtain a functor

(4–7) ⊗̂B :
∗-modB(C)×

∗-modA(B)−→
∗-modA(C).

In the case of unital algebras, one can replace ∗-mod by ∗-Mod in (4–7).
A central question is whether one can restrict the functor ⊗̂B to representations

on pre-Hilbert modules, or whether the tensor product (4–4) of two positive inner
products remains positive. This is the case, for example, in the realm of C∗-
algebras, but the proof uses the functional calculus; see [Raeburn and Williams
1998, Prop. 2.64], for instance. Fortunately, a purely algebraic result can be ob-
tained if one requires the inner products to be completely positive.

Theorem 4.7. If the inner products 〈 · , · 〉F
B on FB and 〈 · , · 〉E

A on BEA are com-
pletely positive, then the inner product

〈
· , ·

〉F⊗E

A
on FB ⊗B BEA defined by (4–4) is

also completely positive.

Proof. Let 8(1), . . . 8(n) ∈ FB ⊗B BEA. We must show that the matrix

A =
(〈
8(α),8(β)

〉F⊗E

A

)
is a positive element in Mn(A). Without loss of generality, we can write 8(α) =∑N

i=1 y(α)i ⊗B x (α)i , where N is the same for all α. Consider the map

(4–8) f : Mn(MN (B))−→ Mn(MN (A)), (Bαβi j ) 7→
(〈

x (α)i , Bαβi j · x (β)j

〉E

A

)
,

1 ≤ i, j ≤ N , 1 ≤ α, β ≤ n. We claim that f is a positive map. Indeed, as a
consequence of the definition of positive maps in Section 2, it suffices to show that
f (B∗B) is positive for any B ∈ Mn(MN (B)). A direct computation shows that,
for B = (Bαβi j ),

f (B∗B)=

N∑
k=1

n∑
γ=1

Cγ

k with
(
Cγ

k

)αβ
i j =

〈
Bγαki x (α)i , Bγβk j x (β)j

〉E

A
,

which is positive since 〈 · , · 〉E
A is completely positive. Since the matrix(〈
y(α)i , y(β)j

〉F

B

)
∈ MnN (B)

is positive, for 〈 · , · 〉F
B in F is completely positive, it follows that the matrix(〈

x (α)i ,
〈
y(α)i , y(β)j

〉F

B
· x (β)j

〉E

A

)
is a positive element in MnN (A). Since summation over i, j defines a positive map
τ : MnN (A)→ Mn(A), see Example 2.1, the matrix

(4–9)
N∑

i, j=1

(〈
x (α)i ,

〈
y(α)i , y(β)j

〉F

B
· x (β)j

〉E

A

)
=

(〈
8(α),8(β)

〉F⊗E

A

)
= A
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is positive. This concludes the proof. �

As pointed out in Section 3A, if 〈 · , · 〉F⊗E
A is completely positive, so is the in-

duced inner product on FB ⊗̂B BEA.

Corollary 4.8. If FB and BEA have completely positive inner products, then
FB ⊗̂B BEA is a pre-Hilbert module.

It follows that the functor ⊗̂B in (4–7) restricts to a functor

(4–10) ⊗̂B :
∗-repB(C)×

∗-repA(B)−→
∗-repA(C),

and, from (4–10), we obtain two functors by fixing each one of the two arguments.

Example 4.9 (Rieffel induction). Let A, B and D be ∗-algebras, and fix a (B,A)-
bimodule BEA ∈

∗-repA(B). We then have a functor

(4–11) RE = BEA ⊗̂A · :
∗-repD(A)−→

∗-repD(B);

on objects, RE( AHD) = BEA ⊗̂A AHD, and, on morphisms, RE(T ) = id ⊗̂AT , for
T ∈ B(H,H′).

This functor is called Rieffel induction and relates the representation theories of
A and B on pre-Hilbert modules over a fixed ∗-algebra D.

Example 4.10 (Change of base ring). Similarly, we can change the base algebra D

in ∗-repD(A): Let A, D and D′ be ∗-algebras and let DGD′ ∈
∗-repD′(D). Then ⊗̂D

induces a functor

(4–12) SG = · ⊗̂D DGD′ :
∗-repD(A)−→

∗-repD′(A)

defined analogously to (4–11).

A direct consequence of Lemma 4.5 is that the following diagram commutes up
to natural transformations:

(4–13)

∗-repD(A)
SG- ∗-repD′(A)

∗-repD(B)

RE

?
SG- ∗-repD′(B)

RE

?

Remark 4.11 (Rieffel induction for C∗-algebras). In the original setting of C∗-
algebras, Rieffel’s construction [1974a; 1974b] relates categories of ∗-representa-
tions on Hilbert spaces (in particular, D = C = C), so one needs to consider an
extra completion of BEA ⊗̂A AHD with respect to the norm induced by (4–4). Since
∗-representations of C∗-algebras on pre-Hilbert spaces are necessarily bounded,
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this completion is canonical, so one recovers Rieffel’s original construction from
this algebraic approach; see [Bursztyn and Waldmann 2001b]. More generally, in
this setting, D could be an arbitrary C∗-algebra.

Examples of algebraic Rieffel induction of ∗-representations in the setting of
formal deformation quantization can be found in [Bursztyn and Waldmann 2000a;
2002], for instance.

Remark 4.12 (External tensor products). Let Ai and Bi be ∗-algebras over C,
i = 1, 2. The tensor products A = A1 ⊗C A2 and B = B1 ⊗C B2 are naturally
∗-algebras. Let Ei be (Bi ,Ai )-bimodules for i = 1, 2 and consider the (B,A)-
bimodule E = E1 ⊗C E2. If each Ei is endowed with an Ai -valued inner product
〈 · , · 〉i , compatible with the Bi -action, then we have an inner product 〈 · , · 〉 on E,
compatible with the B-action, uniquely defined by

(4–14) 〈x1 ⊗C x2, y1 ⊗C y2〉 = 〈x1, y1〉1 ⊗C 〈x2, y2〉2

for xi , yi ∈ Ei . We call the inner product defined by (4–14) the external tensor
product of 〈 · , · 〉1 and 〈 · , · 〉2. Just as for internal tensor products, if 〈 · , · 〉i are
completely positive, then so is 〈 · , · 〉. The construction is also functorial in a sense
analogous to Lemma 4.6.

5. Strong Morita equivalence

5A. Definition. An A-valued inner product 〈 · , · 〉E
A on an A-module E is called

full if

(5–1) C-span{〈x, y〉
E
A | x, y ∈ E} = A.

Let A and B be ∗-algebras over C.

Definition 5.1. Let BEA be a (B,A)-bimodule with an A-valued inner product
〈 · , · 〉E

A and a B-valued inner product B〈 · , · 〉E. We call
(

BEA, B〈 · , · 〉E, 〈 · , · 〉E
A

)
a

∗-equivalence bimodule if

(1) 〈 · , · 〉E
A (resp. B〈 · , · 〉E) is nondegenerate, full and compatible with the B-

action (resp. A-action);

(2) For all x, y, z ∈ E one has x · 〈y, z〉E
A = B〈x, y〉

E
· z;

(3) B · E = E and E · A = E.

If 〈 · , · 〉E
A and B〈 · , · 〉E are completely positive, then BEA is called a strong equiv-

alence bimodule.

Whenever the context is clear, we will refer to strong or ∗-equivalence bimodules
simply as equivalence bimodules.
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Definition 5.2. Two ∗-algebras A and B are ∗-Morita equivalent (resp. strongly
Morita equivalent) if there exists a ∗- (resp. strong) (B,A)-equivalence bimodule.

The definition of ∗-Morita equivalence goes back to [Ara 1999]. Since this
notion does not involve positivity, its definition makes sense for ground rings not
necessarily of the form C = R(i).

Remark 5.3 (Formal Morita equivalence of ∗-algebras). In [Bursztyn and Wald-
mann 2001a] we had a more technical formulation of strong Morita equivalence
for ∗-algebras over C, called formal Morita equivalence. Definition 5.2, based on
completely positive inner products, is conceptually clearer (though, at least for
unital algebras, it is equivalent to the one in [Bursztyn and Waldmann 2001a]) and
yields refinements of the results in that paper.

Remark 5.4 (Strong Morita equivalence of C∗-algebras). The definition given in
[Rieffel 1974b] for a strong equivalence bimodule of C∗-algebras (see also [Rae-
burn and Williams 1998]) is a refinement of Definition 5.1 involving topological
completions which do not make sense in a purely algebraic setting. Nevertheless,
one recovers Rieffel’s notion as follows [Ara 2001], [Bursztyn and Waldmann
2001b, Lem. 3.1]: Two C∗-algebras are strongly Morita equivalent in Rieffel’s
sense if and only if their minimal dense ideals are strongly Morita equivalent (or
∗-Morita equivalent) in the sense of Definition 5.1. In particular, for minimal dense
ideals of C∗-algebras, ∗- and strong Morita equivalences coincide (see Section 6B).

As we now discuss, ∗- and strong Morita equivalences are in fact equivalence
relations for a large class of ∗-algebras.

Lemma 5.5. The notions of ∗- and strong Morita equivalences define a symmetric
relation.

For the proof, we just note that if BEA is a ∗- (resp. strong) (B,A)-equivalence bi-
module, then its conjugate bimodule AEB is an ∗- (resp. strong) (A,B)-equivalence
bimodule. See [Bursztyn and Waldmann 2001a, Sect. 5].

For reflexivity and transitivity, one needs to be more restrictive. Recall that an
algebra A is nondegenerate if a ∈ A, A ·a = 0 or a ·A = 0 implies that a = 0, and
it is idempotent if elements of the form a1a2 span A. The following observation
indicates the importance of these classes of algebras.

Let A be a ∗-algebra, and let AAA be the natural bimodule induced by left and
right multiplications, equipped with the canonical inner products A〈a, b〉 =ab∗ and
〈a, b〉A = a∗b.

Lemma 5.6. The bimodule AAA is a ∗- or strong equivalence bimodule if and only
if A is nondegenerate and idempotent.
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The proof is simple: idempotency is equivalent to the canonical inner products
being full and the actions by multiplication being strongly nondegenerate; non-
degeneracy is equivalent to the inner products being nondegenerate. The inner
products are completely positive by Example 3.9.

We therefore restrict ourselves to the class of nondegenerate and idempotent
∗-algebras (which contains, in particular, all unital ∗-algebras). Within this class,
∗-Morita equivalence is transitive [Ara 1999], hence it is an equivalence relation.
We will show that the same holds for strong Morita equivalence.

The next result follows from arguments analogous to those in [Bursztyn and
Waldmann 2001b, Lem. 3.1].

Lemma 5.7. Let A, B be nondegenerate and idempotent ∗-algebras, and let BEA

be a bimodule with inner products 〈 · , · 〉E
A and B〈 · , · 〉E satisfying all the proper-

ties of Definition 5.1, except for nondegeneracy. Then their degeneracy spaces
coincide, and the quotient bimodule E

/
E⊥, with the induced inner products, is a

∗-equivalence bimodule. If 〈 · , · 〉E
A and B〈 · , · 〉E are completely positive, then the

quotient bimodule is a strong equivalence bimodule.

As a result, within the class of nondegenerate and idempotent ∗-algebras, one
obtains a refinement of the internal tensor product ⊗̂ for equivalence bimodules
taking into account both inner products.

Lemma 5.8. Let A, B, C be nondegenerate and idempotent ∗-algebras and let
BEA and CFB be ∗- (resp. strong) equivalence bimodules. Then the triple

(5–2) CFB ⊗̃B BEA :=
(
( CFB ⊗B BEA)

/
( CFB ⊗B BEA)

⊥ , B〈 · , · 〉F⊗E, 〈 · , · 〉F⊗E
A

)
is a ∗- (resp. strong) equivalence bimodule.

Clearly ⊗̃ satisfies functoriality properties analogous to those of ⊗̂. Combining
Lemmas 5.5, 5.6 and 5.8, we obtain:

Theorem 5.9. Strong Morita equivalence is an equivalence relation within the
class of nondegenerate and idempotent ∗-algebras over C.

5B. General properties. Let A and B be nondegenerate, idempotent ∗-algebras,
and let 8 : A → B be a ∗-isomorphism. A simple check reveals that B, seen as an
(A,B)-bimodule via

(5–3) a ·8 b · b1 =8(a)bb1

and equipped with the obvious inner products, is a strong equivalence bimodule.
Hence ∗-isomorphism implies strong Morita equivalence.
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On the other hand, [Ara 1999] shows that ∗-Morita equivalence (so also strong
Morita equivalence) implies ∗-isomorphism of centers. As a result, for commuta-
tive (nondegenerate and idempotent) ∗-algebras, strong and ∗-Morita equivalences
coincide with the notion of ∗-isomorphism.

Remark 5.10 (Finite-rank operators). Let (EA, 〈 · , · 〉E
A) be an inner-product mod-

ule. The set of “finite-rank” operators on EA, denoted by F(EA), is the C-linear
span of operators θx,y ,

θx,y(z) := x · 〈y, z〉E
A,

for x, y, z ∈ E. Note that θ∗
x,y = θy,x and F(EA)⊆ B(EA) is an ideal.

Within the class of nondegenerate, idempotent ∗-algebras, an alternative de-
scription of ∗-Morita equivalence is given as follows [Ara 1999]: if EA is a full
inner-product module so that EA ·A = EA, then F(E)EA is a ∗-equivalence bimodule,
with F(EA)-valued inner product

(5–4) (x, y) 7→ θx,y .

On the other hand, if BEA is a ∗-equivalence bimodule, then the B-action on BEA

provides a natural ∗-isomorphism

(5–5) B ∼= F(EA).

Under this identification, the ∗-equivalence bimodule BEA becomes F(E)EA. As
a consequence, if EA is a pre-Hilbert module with EA · A = EA and (5–4) is
completely positive, then F(E)EA is a strong equivalence bimodule.

The following is a standard example in Morita theory; see also [Bursztyn and
Waldmann 2001a, Sect. 6].

Example 5.11 (Matrix algebras). Let A be a nondegenerate and idempotent ∗-
algebra over C. We claim that A and Mn(A) are ∗- and strongly Morita equivalent.

First note that Cn is a strong (Mn(C),C)-equivalence bimodule. In fact, since
F(Cn) = Mn(C) and Cn

· C = Cn , by Remark 5.10 it only remains to check that
(5–4) is completely positive. But if x, y ∈ Cn , then we can write

θx,y = θx,e1θ
∗

y,e1
,

where e1 = (1, 0, . . . , 0)∈ Cn . So this inner product is of the form (3–8) (for m = 1
and P1(x)= θx,e1), so it is completely positive.

By tensoring the equivalence bimodule AAA with Cn , it follows from Remark
4.12 that the canonical inner products on An are completely positive. It then easily
follows that An is a (Mn(A),A)-equivalence bimodule.

For unital ∗-algebras over C, it follows from the definitions that strong Morita
equivalence implies ∗-Morita equivalence, which in turn implies ring-theoretic
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Morita equivalence. In particular, (∗- or strong) equivalence bimodules are finitely
generated and projective with respect to both actions. Using the nondegeneracy of
inner products, their compatibility and fullness, one can verify this property directly
by checking that any ∗-equivalence bimodule admits a finite hermitian dual bases.
As a consequence:

Corollary 5.12. If A, B and C are unital ∗-algebras and CFB and BEA are (∗-
or strong) equivalence bimodules, then the inner product (4–4) on CFB ⊗B BEA is
nondegenerate.

It follows that the quotient in (5–2) is irrelevant. This is always the case for (not
necessarily unital) C∗-algebras [Lance 1995, Prop. 4.5].

5C. Equivalence of categories of representations. It is shown in [Ara 1999] that
∗-Morita equivalence implies equivalence of categories of (strongly nondegener-
ate) representations on inner-product modules. We now recover this result and
show that an analogous statement holds for strong Morita equivalence, generalizing
[Bursztyn and Waldmann 2001a, Thm. 5.10].

The next lemma follows from Lemmas 4.5 and 5.7.

Lemma 5.13. Let A, B, C and D be nondegenerate and idempotent ∗-algebras.
Let CFB and BEA be ∗-equivalence bimodules, and let (H, π)∈ ∗-ModD(A). Then
there are natural isomorphisms of inner-product bimodules:

( CFB ⊗̃B BEA) ⊗̂A AHD
∼= CFB ⊗̂B ( BEA ⊗̂A AHD),(5–6)

AAA ⊗̂A AHD
∼= AHD

∼= AHD ⊗̂D DDD.(5–7)

As a result, when CFB and BEA are strong equivalence bimodules, there is a natu-
ral equivalence

(5–8) RF ◦ RE
∼= RF⊗̃E.

Using the idempotency and nondegeneracy of A and B, one shows:

Lemma 5.14. Let BEA be a (∗- or strong) equivalence bimodule. If AEB is its con-
jugate bimodule, then the following maps are (∗- or strong) equivalence bimodule
isomorphisms:

AEB ⊗̃B BEA → AAA, x ⊗̃B y 7→ 〈x, y〉
E
A,(5–9)

BEA ⊗̃A AEB → BBB, x ⊗̃A y 7→ B〈x, y〉
E.(5–10)

Corollary 5.15. Let A, B and D be nondegenerate and idempotent ∗-algebras, and
let BEA be a strong equivalence bimodule. Then

(5–11) RE :
∗-RepD(A)−→

∗-RepD(B)
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is an equivalence of categories, with inverse given by RE.

Remark 5.16. Clearly, the functors SG satisfy a property analogous to (5–8); simi-
larly to Corollary 5.15, an equivalence bimodule DGD′ establishes an equivalence of
categories SG :

∗-RepD(A)→
∗-RepD′(A). All these properties are direct analogs

of the previous constructions by replacing tensor products on the left by those on
the right.

Corollary 5.15 recovers the well-known theorem [Rieffel 1974b] on equivalence
of categories of nondegenerate ∗-representations of strongly Morita equivalent C∗-
algebras on Hilbert spaces; see [Bursztyn and Waldmann 2001b; Ara 2001].

6. Picard groupoids

In this section, we introduce the Picard groupoid associated with strong Morita
equivalence, in analogy with the groupoid Pic [Bénabou 1967] of invertible bimod-
ules in ring-theoretic Morita theory [Morita 1958; Bass 1968]. (See [Landsman
2001; Bursztyn and Weinstein 2004] for related constructions.)

6A. The strong Picard groupoid. Let ∗-Alg (resp. ∗-Alg+) be the category whose
objects are nondegenerate and idempotent ∗-algebras over a fixed C, morphisms are
isomorphism classes of inner-product (resp. pre-Hilbert) bimodules and composi-
tion is internal tensor product (4–5). (The composition is associative by Lemma
4.5.) We call an inner-product (resp. pre-Hilbert) bimodule BEA over A invertible
if its isomorphism class is invertible in ∗-Alg (resp. ∗-Alg+). Note that BEA is
invertible if and only if there exists an inner-product (resp. pre-Hilbert) bimodule
AE′

B over B together with isomorphisms

(6–1) AE′
B ⊗̂B BEA

∼
−→ AAA, BEA ⊗̂A AE′

B

∼
−→ BBB.

Theorem 6.1. An inner-product (resp. pre-Hilbert) bimodule ( BEA, 〈 · , · 〉E
A) is

invertible if and only if there exists a B-valued inner product B〈 · , · 〉E making
( BEA, 〈 · , · 〉E

A, B〈 · , · 〉E) into a ∗-(resp. strong) equivalence bimodule. In partic-
ular, ∗-(resp. strong) Morita equivalence coincides with the notion of isomorphism
in ∗-Alg (resp. ∗-Alg+).

This is an algebraic version of a similar result in the framework of C∗-algebras
[Landsman 2001; Schweizer 1999], which we will recover in Section 6B. We need
three main lemmas to prove the theorem.

Lemma 6.2. Let ( BEA, 〈 · , · 〉E
A) be an invertible inner-product bimodule. Then

〈 · , · 〉E
A is full and E·A = E. (By Remark 5.10, F(E)EA is a ∗-equivalence bimodule.)

Proof. Let AE′
B be an inner-product bimodule such that (6–1) holds. The fullness

of 〈 · , · 〉E
A is a simple consequence of the idempotency of A and the first isomor-

phism of (6–1).
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For the second assertion, note that BEA · A ⊆ BEA is a (B,A) inner-product
bimodule. Moreover, using the idempotency of A and the fact that A· AE′

B = AE′
B,

it is simple to check that AE′
B is still an inverse for BEA · A. By uniqueness of

inverses (up to isomorphism), we get BEA = BEA · A. �

Lemma 6.3. Let BEA be an invertible inner-product bimodule and let FB be an
inner-product B-module. Then the natural map

SE : B(FB)−→ B(FB ⊗̂B BEA), T 7→ T ⊗̂B id,

is an isomorphism.

Proof. Let AE′
B be as in (6–1). Then we have an induced map

SE′ : B(FB ⊗̂B BEA)−→ B((FB ⊗̂B BEA) ⊗̂A AE′
B)∼= B(FB),

since (FB ⊗̂B BEA) ⊗̂A AE′
B

∼= FB ⊗̂B ( BEA ⊗̂A AE′
B)∼= FB ⊗̂B BBB

∼= FB. One
can check that SE and SE′ are inverses of each other. �

The next result is an algebraic analog of [Lance 1995, Prop. 4.7].

Lemma 6.4. Let FB be an inner-product B-module so that FB · B = F. Let EA

be an inner-product A-module and π : B → B(EA) be a ∗-homomorphism so that
π(B)⊆ F(EA). Then

SE(F(FB))⊆ F(FB ⊗̂B BEA).

Proof. Suppose y1, y2 ∈ FB and b ∈ B. Let y ⊗̂B x ∈ FB ⊗̂B BEA, and let θy1·b,y2 ∈

F(FB). Then

(6–2) SE(θy1·b,y2)(y ⊗̂B x)= θy1·b,y2 y ⊗̂B x = y1 · b〈y2, y〉
F
B ⊗̂B x

= y1 ⊗̂B π(b〈y2, y〉
F
B)x .

For each y ∈ FB, consider the map

ty : BEA −→ FB ⊗̂B BEA, ty(x)= y ⊗̂B x .

Then ty ∈ B( BEA, FB ⊗̂B BEA), with adjoint t∗
y (y

′
⊗̂B x ′)= π(〈y, y′

〉
F
B)x

′. We can
rewrite (6–2) as

SE(θy1·b,y2)(y ⊗̂B x)= ty1π(b)t
∗

y2
(y ⊗̂B x).

Since π(b) ∈ F(EA), it follows that SE(θy1·b,y2) ∈ F(FB ⊗̂B BEA).
For a general θy1,y2 , we use the condition that FB · B = FB to write y1 =∑k
α=1 yα1 · bα and we repeat the argument above. �

We now prove Theorem 6.1 following [Landsman 2001; Schweizer 1999].
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Proof. The fact that an equivalence bimodule BEA is invertible is a direct conse-
quence of (5–9) and (5–10).

To prove the other direction, suppose that BEA is an invertible inner-product
bimodule, with inverse AE′

B. By Lemma 6.3, we have two isomorphisms

(6–3) B(B)
SE
→ B(EA)

SE′

→ B(B),

whose composition is the identity. Recall that B = F(B)⊆ B(B). We claim that

SE′(F(EA))⊆ B.

Indeed, for x1, x2 ∈ BEA and b ∈B, we have SE′(θb·x1,x2)=bSE′(θx1,x2), which must
be in B since B ⊂ B(B) is an ideal. For a general θx1,x2 , we use the condition
B ·E = E to write x1 =

∑k
α=1 bα · xα1 and apply the same argument. By symmetry,

it then follows that

(6–4) SE(F(E
′

B))⊆ A.

We now claim that

(6–5) SE(B)⊆ FA(E).

By Lemma 6.2, F(E′)EB is a ∗-equivalence bimodule. Consider its conjugate BE′
F(E′).

Then

BBB
∼= BE′

F(E′) ⊗̂F(E′) F(E′)EB,

and, as a consequence,

(6–6) BEA
∼= BBB ⊗̂B BEA

∼= BE′
F(E′) ⊗̂F(E′) ( F(E′)EB ⊗̂B BEA)∼= BE′

F(E′) ⊗̂F(E′) A,

where we regard A as a left F(E′)-module via (6–4).
Since BE′

F(E′) is a ∗-equivalence bimodule, it follows that (see Remark 5.10)
there is a natural identification

(6–7) B ∼= F(E′
F(E′)).

Now consider the map

SA : B( BE′
F(E′))−→ B( BE′

F(E′) ⊗̂F(E′) A).

By (6–4), F(E′
B) acts on A via finite-rank operators; since BE′

F(E′) · F( F(E′)EB) =

BE′
F(E′), we can apply Lemma 6.4 and use (6–6) and (6–7) to conclude that (6–5)

holds. We can restrict the isomorphisms in (6–3) to

B
RE
→ F(EA)

RE′

→ B,
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which implies that RE′(F(EA))= B; since RE′ is injective (see Lemma 6.3), there is
a natural ∗-isomorphism B ∼= F( BEA), so BEA is a ∗-equivalence bimodule, again
by Remark 5.10.

If BEA and AE′
B are pre-Hilbert bimodules, by uniqueness of inverses it follows

that

AEB
∼= AE′

B

as pre-Hilbert bimodules, so the B-valued inner product on BEA must be com-
pletely positive. So BEA is a strong equivalence bimodule. �

The invertible arrows in ∗-Alg (resp. ∗-Alg+) form a “large” groupoid Pic∗ (resp.
Picstr), called the ∗-Picard groupoid (resp. strong Picard groupoid). By Theo-
rem 6.1, orbits of Pic∗ (resp. Picstr) are ∗-Morita equivalence (resp. strong Morita
equivalence) classes and isotropy groups are isomorphism classes of self-∗-Morita
equivalences (resp. self-strong Morita equivalences), called ∗-Picard groups (resp.
strong Picard groups).

If we restrict Pic, Pic∗ and Picstr to unital ∗-algebras over C, we obtain natural
groupoid homomorphisms

(6–8) Picstr
−→ Pic∗

−→ Pic,

covering the identity on the base. On morphisms, the first arrow “forgets” the
complete positivity of inner products, while the second just picks the bimodules
and “forgets” all the extra structure.

In Section 7, we will discuss further conditions on unital ∗-algebras under which
the canonical morphism

(6–9) Picstr
−→ Pic

is injective and surjective.

Remark 6.5. The first arrow in (6–8) is generally not surjective since a bimodule
may have inner products with different signatures. For the same reason, the second
arrow is not injective in general.

6B. Strong Picard groupoids of C∗-algebras. Let C∗ be the category whose ob-
jects are C∗-algebras and morphisms are isomorphism classes of Hilbert bimodules
(see [Landsman 2001], for example); the composition is given by Rieffel’s internal
tensor product in the C∗-algebraic sense. The groupoid of invertible morphisms in
this context will be denoted by Picstr

C∗ . The isotropy groups of Picstr
C∗ are the Picard

groups of C∗-algebras as in [Brown et al. 1977].
It is shown in [Schweizer 1999; Landsman 2001; Connes 1994] that Rieffel’s

notion of strong Morita equivalence of C∗-algebras coincides with the notion of



222 HENRIQUE BURSZTYN AND STEFAN WALDMANN

isomorphism in C∗. We will show how this result can be recovered from Theorem
6.1.

For a C∗-algebra A, let P(A) be its minimal dense ideal, also referred to as its
Pedersen ideal; see [Pedersen 1979]. Just as A itself, P(A) is nondegenerate and
idempotent. If A and B are C∗-algebras, let BÊA be a Hilbert bimodule (in the
C∗-algebraic sense, see [Landsman 2001, Def. 3.2]) with inner product 〈 · , · 〉Ê

A,
and consider the (P(B),P(A))-bimodule

P( BÊA) := P(B) · BÊA · P(A).

Lemma 6.6. The bimodule P( BÊA), together with the restriction of 〈 · , · 〉Ê
A, is a

pre-Hilbert (P(B),P(A))-bimodule (as in Definition 4.3).

Proof. It is clear that P(B) ·P( BÊA)= P( BÊA), and
〈
P( BÊA),P( BÊA)

〉Ê

A
⊆ P(A),

since 〈 · , · 〉Ê
A is A-linear and P(A)⊆ A is an ideal.

For any n ∈ N, P(Mn(A)) = Mn(P(A)). So, by [Bursztyn and Waldmann
2001b, Lem. 3.2], A ∈ Mn(P(A))

+ (in the algebraic sense of Section 2) if and
only if A ∈ Mn(A)

+. Since 〈 · , · 〉Ê
A is completely positive, so is its restriction to

P( BÊA) taking values in P(A). �

The next example shows that P( BÊA) ⊆ BÊA · P(A) is essential to guarantee
that the restriction of the inner product takes values in P(A).

Example 6.7. Let X be a locally compact Hausdorff space, and consider A =

C∞(X), the algebra of continuous functions vanishing at ∞, and B = C. Then
E = C∞(X) is naturally a (B,A)-Hilbert bimodule. Since B is unital, B = P(B)

and P(B) · E = E. But P(A) = C0(X) is the algebra of compactly supported
functions. If X is not compact, then 〈E,E〉

E
A * P(A).

Let A,B and C be C∗-algebras. For Hilbert bimodules CF̂B and BÊA, we denote
their Rieffel internal tensor product in the C∗-algebraic sense by CF̂B⊗B BÊA; see
[Rieffel 1974a; 1974b; Raeburn and Williams 1998]. A direct verification gives:

Lemma 6.8. There is a canonical isomorphism P( CF̂B⊗B BÊA) ∼= P( CF̂B) ⊗̂B

P( BÊA).

Write ∗-Alg(+) for either ∗-Alg or ∗-Alg+. With some abuse of notation, it follows
from Lemmas 6.6 and 6.8 that we can define a functor

(6–10) P : C∗
−→

∗-Alg(+)

as follows: on objects, A 7→ P(A); on morphisms, P([ BÊA]) = [P( BÊA)]. Here
[ ] denotes the isomorphism class of a (pre-)Hilbert bimodule.

Any pre-Hilbert bimodule of the form E = P( BÊA) must satisfy E · P(A)= E.
So the maps on morphisms induced by (6–10), P : Mor(A,B)→ Mor(PA,PB),
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are not surjective in general. However, as we will see, the situation changes if we
restrict P to morphisms which are invertible.

Our main analytical tool is the next result; see [Ara 2001].

Proposition 6.9. Let A and B be C∗-algebras.

(i) If PB
EPA

is a strong (or ∗-)equivalence bimodule (as in Definition 5.1), then it
can be completed to a C∗-algebraic strong equivalence bimodule BÊA in such
a way that P( BÊA)∼= PB

EPA
.

(ii) If BF̂A and BÊA are C∗-algebraic strong equivalence bimodules such that
P( BF̂A)∼= P( BÊA), then BF̂A

∼= BÊA.

Proof. The proof of (i) follows from the results in [Ara 2001]. Note that EP(A)

can be completed to a full Hilbert A-module ÊA (see [Lance 1995, p. 5]), so that

K(ÊA)
ÊA is a strong equivalence bimodule. Here K(ÊA) denotes the “compact”

operators on ÊA. Note that E is naturally an A-module and sits in ÊA as a dense A-
submodule. So P(B)= F(EA) is dense in K(ÊA), and B is naturally ∗-isomorphic
to K(ÊA). So BÊA is a C∗-algebraic strong equivalence bimodule. It follows from
[Ara 2001, Thm. 2.4] that any (P(B),P(A))-∗-equivalence bimodule is already a
strong equivalence bimodule, so the same results hold.

It follows from [Ara 2001] that

P(B) · BÊA = BÊA · P(A)= P(B) · BÊA · P(A).

Since P(B) · PB
EPA

· P(A) = PB
EPA

, we have PB
EPA

⊆ P(B) · BÊA · P(A). On
the other hand, since P(B) ⊂ B(ÊA) is an ideal, it follows that E ⊂ Ê is B(ÊA)-
invariant. By [Ara 2001, Prop. 1.5], P(B) · BÊA · P(A) ⊆ E. This implies that
P( BÊA)= PB

EPA
.

Part (ii) follows from the fact that BÊA is a completion of P( BÊA) and any two
completions must be isomorphic. �

Corollary 6.10. A Hilbert bimodule BÊA is invertible in C∗ if and only if there
exists a B-valued inner product B〈 · , · 〉Ê so that ( BÊA, B〈 · , · 〉Ê, 〈 · , · 〉Ê

A) is a (C∗-
algebraic) strong equivalence bimodule. Thus, in particular, two C∗-algebras are
strongly Morita equivalent if and only if they are isomorphic in C∗.

Proof. If BÊA is invertible in C∗, then P( BÊA) is invertible in ∗-Alg+. By Theorem
6.1, there exists a B-valued inner product making P( BÊA) into an equivalence
bimodule. By Proposition 6.9(i), we can complete it to a C∗-algebraic strong
equivalence bimodule, isomorphic to BÊA as a Hilbert bimodule. �

Corollary 6.11. For C∗-algebras A and B,

(6–11) P : Picstr
C∗(B,A)−→ Picstr(P(B),P(A))
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is a bijection. As a result, Picstr
C∗ is equivalent to Picstr (or Pic∗) restricted to Peder-

sen ideals.

It follows that the entire strong Morita theory of C∗-algebras is encoded in the
algebraic Picstr. Note that, for unital C∗-algebras, P is just the identity on objects.

7. Strong versus ring-theoretic Picard groupoids

It is shown in [Beer 1982] that unital C∗-algebras are strongly Morita equivalent
if and only if they are Morita equivalent as rings. In [Bursztyn and Waldmann
2002], we have shown that the same is true for hermitian star products. In terms
of Picard groupoids, these results mean that Picstr and Pic, restricted to unital C∗-
algebras or to hermitian star products, have the same orbits. In this section, we
study the morphism Picstr

→Pic restricted to unital ∗-algebras satisfying additional
properties, recovering and refining these results in a unified way.

7A. A restricted class of unital ∗-algebras. We consider algebraic conditions that
capture some important features of the functional calculus of C∗-algebras. Let A

be a unital ∗-algebra over C. The first property is

(I) For all n ∈ N and A ∈ Mn(A), 1+ A∗ A is invertible.

As a first remark we see that (I) also implies that elements of the form

1+
∑k

r=1 A∗
r Ar

are invertible in Mn(A), simply by applying (I) to Mnk(A). The relevance of this
property is illustrated by the following result [Kaplansky 1968, Thm. 26]:

Lemma 7.1. Suppose A satisfies (I). Then any idempotent e = e2
∈ Mn(A) is

equivalent to a projection P = P2
= P∗

∈ Mn(A).

We also need the following property.

(II) For all n ∈ N, let Pα ∈ Mn(A) be pairwise orthogonal projections, i.e. PαPβ =

δαβ Pα, with 1 =
∑

α Pα and let H ∈ Mn(A)
+ be invertible. If [H, Pα] = 0,

then there exists an invertible U ∈ Mn(A) with H = U∗U and [Pα,U ] = 0.

Most of our results will follow from a condition slightly weaker than (II):

(II−) For all n ∈ N, invertible H ∈ Mn(A)
+, and projection P with [P, H ] = 0,

there exists a U ∈ Mn(A) with H = U∗U and [P,U ] = 0.

On the other hand, our main examples satisfy a stronger version of (II):

(II+) For all n ∈N and H ∈ Mn(A)
+ invertible there exists an invertible U ∈ Mn(A)

such that H = U∗U , and if [H, P] = 0 for a projection P then [U, P] = 0.
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Any unital C∗-algebra fulfills (I) and (II+) by their functional calculus. In Sec-
tion 8C we show that the same holds for hermitian star products. The importance
of condition (II) and its variants lies in the next result.

Lemma 7.2. Let A satisfy (II−) and let P = P2
= P∗

∈ Mn(A). Then any com-
pletely positive and strongly nondegenerate A-valued inner product on PAn is
isometric to the canonical one.

Proof. Given such inner product 〈 · , · 〉′ on PAn , we extend it to the free module An

by taking (1− P)An as orthogonal complement with the canonical inner product
of An restricted to it. Then the result follows from Lemma 3.12 and the fact that
the isometry on An commutes with P . �

Let R be an arbitrary unital ring. An idempotent e = (ei j ) ∈ Mn(R) is called
full if the ideal in R generated by ei j coincides with R. One of the main results
of Morita theory for rings [Bass 1968] is that two unital rings R and S are Morita
equivalent if and only if S ∼=eMn(R)e for some full idempotent e. The next theorem
is an analogous result for strong Morita equivalence.

For a projection P ∈ Mn(A), we consider PAn equipped with its canonical
completely positive inner product. Note that P is full if and only if this inner
product is full in the sense of (5–1).

Theorem 7.3. Let A, B be unital ∗-algebras and let ( BEA, B〈 · , · 〉E, 〈 · , · 〉E
A) be a

∗-equivalence bimodule such that 〈 · , · 〉E
A is completely positive. If A satisfies (I)

and (II−) then:

(1) There exists a full projection P = P2
= P∗

∈ Mn(A) such that EA is isomet-
rically isomorphic to PAn as a right A-module.

(2) B is ∗-isomorphic to P Mn(A)P via the left action on EA and the B-valued
inner product is, under this isomorphism, given by the canonical P Mn(A)P-
valued inner product on PAn .

(3) B〈 · , · 〉E is completely positive and hence BEA is a strong equivalence bimod-
ule.

Conversely, if P is a full projection, then P Mn(A)P is strongly Morita equivalent
to A via PAn .

Proof. We know that EA is finitely generated and projective. By (I) we can find a
projection P with EA

∼= PAn and by (II−) we can choose the isomorphism to be
isometric to the canonical inner product, according to Lemma 7.2, proving the first
statement.

Since B〈 · , · 〉E is full, the left action map is an injective ∗-homomorphism of B

into B(EA). By compatibility, B〈 · , · 〉E has to be the canonical one and again by
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fullness we see that B is ∗-isomorphic to B(EA)∼= P Mn(A)P , proving the second
statement.

Since 〈 · , · 〉E
A is full we find Pxr , Pyr ∈ PAn with 1A =

∑k
r=1〈Pxr , Pyr 〉. Since

1A = 1
∗

A we have∑
r 〈Pxr + Pyr , Pxr + Pyr 〉 = 1A + 1A +

∑
r 〈Pxr , Pxr 〉 +

∑
r 〈Pyr , Pyr 〉.

By (I) and (II−) we find an invertible U ∈ A such that for Pzr = P(xr + yr )U−1
∈

PAn we have 1A =
∑

r 〈Pzr , Pzr 〉. By compatibility, we get

(7–1) B〈Px, Py〉
E
=

∑
r B〈Px, Pzr 〉

E
B〈Pzr , Py〉

E
;

the complete positivity of B〈 · , · 〉E now follows from Remark 3.10. This also shows
the last statement. �

We use Theorem 7.3 to show that condition (I) and (II) are natural from a Morita-
theoretic point of view.

Proposition 7.4. Conditions (I) and (II+) (resp. (II)), together, are strongly Morita
invariant.

Proof. Assume that A satisfies (I) and (II−) and B is strongly Morita equivalent to
A. Then B ∼= P Mn(A)P for some full projection P . If B ∈ B, then 1B + B∗B,
viewed as element in P Mn(A)P , can be extended “block-diagonally” to an element
of the form

(7–2) 1Mn(A) + A∗ A

by addition of 1Mn(A) − P . By (I), (7–2) has an inverse in Mn(A). By (II−), the
inverse is again block-diagonal and hence gives an inverse of 1B + B∗B. Passing
from Mn(A) to Mnm(A), one obtains the invertibility of 1Mm(B) + B∗B for B ∈

Mm(B). Hence B satisfies (I).
Assume that A satisfies (II+), and let H ∈ B+ be invertible. Then

H + (1Mn(A) − P) ∈ Mn(A)
+

is still positive and invertible. So there is an invertible V ∈ Mn(A) with H +

(1Mn(A)− P)= V ∗V , commuting with P since H + (1Mn(A)− P) commutes with
P . Thus U = PV P satisfies U∗U = H . Moreover, if Q ∈ B is a projection with
[H, Q] = 0, then P Q = Q = Q P and hence Q commutes with H + (1Mn(A)− P).
Thus V commutes with Q, and hence U commutes with Q as well. For Mm(B),
the reasoning is analogous. So B satisfies (II+).

An analogous but simpler argument shows the same result for (II). �
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7B. From Picstr to Pic. Consider the groupoid morphism

(7–3) Picstr
−→ Pic

from the strong Picard groupoid to the (ring-theoretic) Picard groupoid. The next
result follows from Theorem 7.3.

Theorem 7.5. Within the class of unital ∗-algebras satisfying (I) and (II−), the
groupoid morphism (7–3) is injective.

For surjectivity, first note that if we define the Hermitian K0-group of a ∗-algebra
A as the Grothendieck group K H

0 (A) of the semi-group of isomorphism classes of
finitely generated projective pre-Hilbert modules over A equipped with strongly
nondegenerate inner products, then Lemmas 7.1 and 7.2 imply that if A satisfies
(I) and (II−), then the natural group homomorphism K H

0 (A)→ K0(A) (forgetting
inner products) is an isomorphism. For Picard groupoids, however, we will see
that (7–3) is not generally surjective, even if (I) and (II) hold. In order to discuss
this surjectivity problem, we consider pairs of ∗-algebras satisfying the following
rigidity property:

(III) Let A and B be unital ∗-algebras, let P ∈ Mn(A) be a projection, and con-
sider the ∗-algebra P Mn(A)P . If B and P Mn(A)P are isomorphic as unital
algebras, then they are ∗-isomorphic.

The following are the motivating examples.

Examples 7.6. (1) For unital C∗-algebras, condition (III) is always satisfied: If A

is a C∗-algebra, then so is P Mn(A)P , and (III) follows from the fact that two
C∗-algebras which are isomorphic as algebras must be ∗-isomorphic [Sakai
1971, Thm. 4.1.20].

(2) Another class of unital ∗-algebras satisfying (III) is that of hermitian star
products on a Poisson manifold M ; see Section 8. In this case, condition (III)
follows from the more general fact that two equivalent star products which are
compatible with involutions of the form f 7→ f̄ + o(λ) must be ∗-equivalent;
see [Bursztyn and Waldmann 2002, Lem. 5].

For unital algebras A and B, let us consider the action of the automorphism
group Aut(B) on the set of morphisms Pic(B,A) by

(7–4) (8, [E]) 7→ [8E];

here E is a (B,A)-equivalence bimodule (in the ring-theoretic sense), 8∈ Aut(B)
and 8E coincides with E as a C-module, but its (B,A)-bimodule structure is given
by

b ·8 x · a :=8(b) · x · a;

see for example [Bass 1968; Bursztyn and Waldmann 2004a].
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Proposition 7.7. If A and B are unital ∗-algebras satisfying (III), and if A satisfies
(I) and (II−), then the composed map

(7–5) Picstr(B,A)−→ Pic(B,A)−→ Pic(B,A)
/

Aut(B)

is onto.

Proof. Let BEA be an equivalence bimodule for ordinary Morita equivalence. We
know that EA

∼=eAn , as right A-modules, for some full idempotent e=e2
∈ Mn(A),

and B ∼= eMn(A)e as associative algebras via the left action.
By properties (I) and (II−), we can replace e by a projection P = P2

= P∗

and consider the canonical A-valued inner product on PAn . Then P Mn(A)P and
A are strongly Morita equivalent via PAn; see Theorem 7.3. The identification
B ∼= P Mn(A)P induces a ∗-involution † on B, possibly different from the original
one. By assumption, there exists a ∗-isomorphism

8 : (B, ∗)−→ (B, †)

in such a way that 8E becomes a strong equivalence bimodule. �

Corollary 7.8. Within a class of unital ∗-algebras satisfying (I), (II) and (III), ring-
theoretic Morita equivalence implies strong Morita equivalence (so the two notions
coincide).

Proposition 7.7 is an algebraic refinement of Beer’s result for unital C∗-algebras
[Beer 1982], which is recovered by Corollary 7.8.

The question to be addressed is when (7–3) is surjective, and not only surjective
modulo automorphisms. The obstruction for surjectivity is expressed in the next
condition.

(IV) For any8∈Aut(A) there is an invertible U ∈A such that8∗8−1
=Ad(U∗U ),

where 8∗(a)=8(a∗)∗.

Lemma 7.9. Assume that a unital ∗-algebra A satisfies (I) and (II−), and let BEA

be a ring-theoretic equivalence bimodule whose class [ BEA] ∈ Pic(B,A) is in the
image of (7–3). Then its entire Aut(B)-orbit is in the image of (7–3) if and only if
B satisfies (IV).

Proof. If the isomorphism class of BEA is in the image of (7–3), then there is a full
completely positive A-valued inner product 〈 · , · 〉E

A which is uniquely determined
up to isometry by the right A-module structure.

If 8 ∈ Aut(B), then [8E] is in the image of (7–3) if and only if there is an A-
valued inner product 〈 · , · 〉′, necessarily isometric to 〈 · , · 〉E

A by Lemma 7.2, which
is compatible with the B-action modified by 8. In this case, the B-valued inner
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product is determined by compatibility, and its complete positivity follows from
Theorem 7.3. Since there exists an invertible U ∈ BA(E)= B such that

〈x, y〉
′
= 〈U · x,U · y〉

E
A,

condition (IV) easily follows from the nondegeneracy of 〈 · , · 〉E
A. �

Corollary 7.10. Let A and B be unital ∗-algebras satisfying (III), and suppose
that A satisfies properties (I) and (II−). Then the first map in (7–5) is surjective if
and only if B satisfies (IV).

Corollary 7.11. Within a class of unital ∗-algebras satisfying (I), (II−) and (III),
property (IV) is strongly Morita invariant.

Example 7.12 (The case of C∗-algebras). For a unital C∗-algebra A, any automor-
phism 8 ∈ Aut(A) can be uniquely decomposed as

(7–6) 8= eiD
◦9,

where 9 is a ∗-automorphism and D is a ∗-derivation, i.e., a derivation with
D(a∗) = D(a)∗; see [Okayasu 1974, Thm. 7.1] and [Sakai 1971, Cor. 4.1.21]. In
this case, (IV) is satisfied if and only if, for any ∗-derivation D, the automorphism
eiD is inner.

We discuss some concrete examples. If A is a simple C∗-algebra or a W ∗-
algebra, then any automorphism is inner; see [Sakai 1971, Thm. 4.1.19]. So (IV)
is automatically satisfied, and (7–3) is surjective.

In general, however, there may be automorphisms 8 with 8∗
= 8−1 such that

82 is not inner, in which case (7–3) is not surjective. For example, consider the
compact operators K(H) on a Hilbert space H with countable Hilbert basis en .
Define A = A∗

∈ B(H) by

Ae2n = 2e2n and Ae2n+1 = e2n+1.

Then Ad(A) induces an automorphism 8 of K(H)⊕C1 which satisfies 8∗
=8−1

but whose square is not inner: clearly Ad(A)2 = Ad(A2) and there is no B ∈

K(H)⊕ C1 with Ad(A2)= Ad(B∗B).

8. Hermitian deformation quantization

We now show that, just as C∗-algebras, hermitian star products can be treated in
the framework of Section 7. The key observation is that the properties considered
in Section 7 are rigid under deformation quantization.
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8A. Hermitian and positive deformations of ∗-algebras. Let A be a ∗-algebra
over C. Let A = (A[[λ]], ?) be an associative deformation of A, in the sense of
[Gerstenhaber 1964]. We call this deformation hermitian if

(a1 ? a2)
∗
= a∗

2 ? a∗

1 ,

for all a1, a2 ∈ A. In this case, ∗ can be extended to a ∗-involution making A into a
∗-algebra over C[[λ]]. Note that C[[λ]] = R[[λ]](i), and R[[λ]] has a natural ordering
induced from R, see Section 1, so all the notions of positivity of Section 2 make
sense for A. We assume λ to be real, so λ= λ > 0.

If ω =
∑

∞

r=0 λ
rωr : A[[λ]] → C[[λ]] is a positive C[[λ]]-linear functional with

respect to ?, then its classical limit ω0 : A → C is a positive C-linear functional
on A. We say that a hermitian deformation A = (A[[λ]], ?) is positive [Bursztyn
and Waldmann 2000b, Def. 4.1] if every positive linear functional on A can be
deformed into a positive linear functional of A. In the spirit of complete positivity,
we call a deformation A completely positive if, for all n ∈ N, the ∗-algebras Mn(A)

are positive deformations of Mn(A). We remark that not all hermitian deformations
are positive [Bursztyn and Waldmann 2004b].

In the following, we shall consider unital ∗-algebras and assume that hermitian
deformations preserve the units.

8B. Rigidity of properties (I) and (II). The next observation is a direct conse-
quence of the definitions.

Lemma 8.1. Let A be a positive deformation of A. If a = a +o(λ) ∈ A is positive,
then its classical limit a ∈ A is also positive.

A property of a ∗-algebra A is said to be rigid under a certain type of deformation
if any such deformation satisfies the same property. Clearly, property (I) is rigid
under hermitian deformations. More interestingly:

Proposition 8.2. Property (II) is rigid under completely positive deformations.

Proof. Let H = H + o(λ) ∈ Mn(A)
+ be positive and invertible, and let Pα =

Pα + o(λ) ∈ Mn(A) be pairwise orthogonal projections satisfying
∑

α Pα = 1

and [H, Pα]? = 0. By Lemma 8.1, H ∈ Mn(A) is positive and invertible. Since
[Pα, H ] = 0, by (II) there exists an invertible U ∈ Mn(A) with H = U∗U and
[Pα,U ] = 0. In particular, PαU Pα ∈ PαMn(A)Pα is invertible, with inverse
PαU−1 Pα; here we consider PαMn(A)Pα as a unital ∗-algebra with unit Pα as
before. Hence

(8–1) PαH Pα = PαU∗ PαPαU Pα.

But Pα ? Mn(A) ? Pα induces a hermitian deformation ?α of PαMn(A)Pα, so we
can apply [Bursztyn and Waldmann 2000a, Lem. 2.1] to deform (8–1), i.e., there
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exists an invertible Uα ∈ Pα ?Mn(A) ? Pα such that

(8–2) Pα ? H ? Pα = Pα ?U∗

α ? Pα ? Pα ?Uα ? Pα.

If we set U =
∑

α Uα, then it is easy to check that U commutes with the Pα, is
invertible and H = U∗ ?U . �

By only considering the projections P and (1− P), one can show that property
(II−) is rigid under completely positive deformations as well.

As a consequence, any completely positive deformation of a ∗-algebra A satis-
fying (I) and (II) (or (II−)) also satisfies these properties and those resulting from
them, as discussed in Section 7.

8C. Hermitian star products. A star product [Bayen et al. 1978a; 1978b] on a
Poisson manifold (M, {·, ·}) is a formal deformation ? of C∞(M),

f ? g = f g +

∞∑
r=1

λr Cr ( f, g),

for which each Cr is a bidifferential operator and

C1( f, g)− C1(g, f )= i{ f, g}.

Following Section 8A, a star product is hermitian if ( f ? g)= ḡ ? f̄ .
In [Bursztyn and Waldmann 2000b, Prop. 5.1], we proved that any hermitian

star product on a symplectic manifold is a positive deformation. This turns out to
hold much more generally.

Theorem 8.3. Any hermitian star product on a Poisson manifold is a completely
positive deformation.

The proof consists of showing that any hermitian star product can be realized as
a subalgebra of a formal Weyl algebra, and then use the results in the symplectic
case [Bursztyn and Waldmann 2000b], see [Bursztyn and Waldmann 2004b].

Since C∞(M) satisfies (I) and (II), we have

Corollary 8.4. Hermitian star products on Poisson manifolds satisfy properties (I)
and (II).

Corollary 8.5. Let E → M be a hermitian vector bundle. Then any hermitian
deformation of 0∞(End(E)) satisfies (I) and (II).

Proof. Any such deformation is strongly Morita equivalent to some hermitian star
product on M ; see [Bursztyn and Waldmann 2002; 2000a]. Thus the result follows
from Proposition 7.4. �
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Knowing that hermitian star products are completely positive deformations, we
can use the star exponential to show that they satisfy a property which is much
stronger than (II).

Proposition 8.6. Let ? be a hermitian star product on M . Then any positive
invertible H ∈ Mn(C∞(M)[[λ]])+ has a unique positive invertible ?-square root
?
√

H such that [
?
√

H , A]? = 0 if and only if [H, A]? = 0, A ∈ Mn(C∞(M)[[λ]]). In
particular, ? satisfies (II+).

Proof. If H = H0 + o(λ) then, by Lemma 8.1, H0 is positive in Mn(C∞(M)) and
invertible. This implies that H0 has a unique real logarithm ln(H0)∈ Mn(C∞(M)).
Using the star exponential as in [Bursztyn and Waldmann 2002; 2004a], extended
to matrix-valued functions, we conclude that there exists a unique real star loga-
rithm Ln H = ln H0 + o(λ) of H , whence Exp Ln H = H . It follows that ?

√
H =

Exp
( 1

2 Ln H
)

has the desired property. �

This shows that many important features of the functional calculus of C∗-algebras
are present in formal deformation quantization.

8D. The strong Picard groupoid for star products. Since hermitian star products
satisfy (I), (II+) and (III), it follows that Theorem 7.5 and Proposition 7.7 hold.

Corollary 8.7. For hermitian star products, Picstr and Pic have the same orbits and
the canonical morphism Picstr

→ Pic is injective.

Corollary 8.7 recovers [Bursztyn and Waldmann 2002, Thm. 2]. The orbits and
isotropy groups of the Picard groupoid in deformation quantization were studied
in [Bursztyn and Waldmann 2002; 2004a; Jurčo et al. 2002].

The next result reveals an interesting similarity between the structure of the au-
tomorphism group of C∗-algebras and hermitian star products; see Example 7.12.

Proposition 8.8. Let ? be a hermitian star product on a Poisson manifold M , and
let 8 ∈ Aut(?) be an automorphism of ?. Then there exists a unique ∗-derivation
D and a unique ∗-automorphism 9 such that

(8–3) 8= eiλD
◦9.

Proof. Writing 8 =
∑

∞

r=0 λ
r8r , we know that 80 = ϕ∗ is the pull-back by some

Poisson diffeomorphism ϕ : M → M . In particular, 80( f )=80( f ).
Define a new star product ?′ by f ?′ g = ϕ∗(ϕ∗ f ? ϕ∗g). Then ?′ is hermitian

and ∗-isomorphic to ? via ϕ∗. If we write 8 = T ◦ ϕ∗, then T = id +o(λ). Hence
? and ?′ are equivalent via T .

By [Bursztyn and Waldmann 2002, Cor. 4], there exists a ∗-equivalence T̃ be-
tween ? and ?′, so 9(1)

= ϕ∗
◦ T̃ is a ∗-automorphism of ? deforming ϕ∗. By

[Bursztyn and Waldmann 2002, Lem. 5], there is a unique derivation D(1) so that
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8 = eiλD(1)
◦9(1), and we can write D(1)

= D(1)
1 + iD(1)

2 , where each D(1)
i is a ∗-

derivation. Now the Baker–Campbell–Hausdorff formula defines a derivation D(2)

by eiλD
◦ eλD(1)

2 = eiλD(2)
, in such a way that the imaginary part of D(2) is of order

λ. By induction, we can split off the ∗-automorphisms eλD(k)
2 to obtain (8–3). A

simple computation shows the uniqueness of this decomposition. �

Using this result, we proceed in total analogy with the case of C∗-algebras. A
derivation of a star product ? is quasi-inner if it is of the form D = (i/λ) ad H for
some H ∈ C∞(M)[[λ]].

Theorem 8.9. Let ?, ?′ be Morita equivalent hermitian star products. Then

(8–4) Picstr(?, ?′)−→ Pic(?, ?′)

is a bijection if and only if all derivations of ? are quasi-inner.

Proof. We know that (8–4) is injective, and it is surjective if and only if any
automorphism 8 of ? satisfies

8 ◦8−1
= Ad(U ?U )

for some invertible function U ; see Corollary 7.10. Using (8–3), this is equivalent
to the condition that, for any ∗-derivation D, e−2iλD

= Ad(U ?U ).
Since U ?U = U 0U0 + o(λ) for some invertible U0, we can use the unique real

star logarithm Ln H of H = U ?U to write

e−2iλD
= Ad(Exp Ln H)= ead Ln H .

Hence we have the equivalent condition D = (i/λ) ad
(1

2 Ln H
)

for any ∗-derivation.
Since any derivation can be decomposed into real and imaginary parts, each being
a ∗-derivation, the statement follows. �

If ? is a hermitian star product for which Poisson derivations can be deformed
into ?-derivations in such a way that hamiltonian vector fields correspond to quasi-
inner derivations, then ?-derivations modulo quasi-inner derivations are in bijection
with formal power series with coefficients in the first Poisson cohomology; see, for
example, [Gutt and Rawnsley 1999; Bursztyn and Waldmann 2004a]. In this case,
(8–4) is an isomorphism if and only if the first Poisson cohomology group van-
ishes. We recall that any Poisson manifold admits star products with this property
[Cattaneo et al. 2002], and any symplectic star product is of this type.

Corollary 8.10. If ? is a hermitian star product on a symplectic manifold M , then
(8–4) is an isomorphism if and only if H1

dR(M,C)= {0}.
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