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INTEGER POINTS ON ELLIPTIC CURVES

WEN-CHEN CHI, KING FAI LAT AND KI-SENG TAN

We study Lang’s conjecture on the number of S-integer points on an ellip-
tic curve over a number field. We improve the exponent of the bound of
Gross and Silverman from quadratic to linear by using the S-unit equation
method of Evertse and a formula on 2-division points.

1. Introduction

Let E be an elliptic curve defined over an algebraic number field k of degree d. For
a finite set S of places of k containing all the archimedean ones, we denote the ring
of S-integers of k by Og. Serge Lang conjectured that if the Weierstrass equation
of E is quasiminimal, then the cardinality of the set E£(Og) of Og-integer points of
E should be bounded in terms of the field &, the cardinality of S and the rank of
the group E (k) of k-rational points of E [Lang 1978, p. 140]. Silverman [1987]
proved Lang’s conjecture when E has integral j-invariant. In general, if j(E) is
nonintegral for at most § places of k, then a bound was also given with § involved.
However he did not compute the constants involved. Gross and Silverman [1995]
used Roth’s theorem to obtain an explicit bound. To state their theorem, let us
write the Weierstrass equation of the elliptic curve E as

(1-1) Y2=X>+AX+B,

where o1, B € Og5. Put A = 4543 +27%B%. Write j(E) for the j-invariant of E.
Let Dy and Ry be the discriminant and the regulator of k. Let My be the set of all
places of k. For a place v € My, let k, be the completion of k at v and let | |, be

such that, for z € Q,

[ky:Qp/[k:Q]
1z]y = |Z|p g )

MSC2000: primary 11D45; secondary 11G0S, 14K12.

Keywords: elliptic curves, S-integers, integer points, S-unit equations, 2-division points, Lang’s
conjecture.

Chi and Tan were supported in part by the National Science Council of Taiwan, grants NSC91-2115-

M-003-006 and NSC89-2115-M-002-003 respectively.

237


http://pjm.berkeley.edu
http://pjm.berkeley.edu/vol/222
http://pjm.berkeley.edu/vol/222/2
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=11D45,(11G05, 14K12)

238 WEN-CHEN CHI, KING FAI LAI AND KI-SENG TAN

where p is the place of @ lying under v and | |, is the usual absolute value. We
use i to denote the multiplicative height. Namely, for x € k

hi(x) = [ max(lx],, 1).

veMy
We shall write s for the cardinality of the set S.

Theorem 1.1 [1995]. Suppose that (1-1) is quasiminimal and that

6d (60d> log 6d)¢ (l)d(d_l)/z -max(Ry, log | Dkl, 1).
V3
is at most
max {log hi(j(E)), log [INormy /q(A)| }
Then

#E(Og) <2- 1011 -d- 83d -(32- 109)r5+s‘

In this paper, we take a completely different approach. By using a formula on
2-division points from [2002], we associate to an S-integer point an unit equation
over an extension of k. Then we use the machinery developed by J.-H. Evertse
[1984] to obtain a quantitative bound for the number of S-integer points. Let D g/«
be the ideal of the minimal discriminant of £/k. Then we have

(1-2) (A =Tg- [ [P
v

where P, is the prime ideal corresponding to the place v and x, € Z. For v € S,
Xv = 0. We factor the cubic over the algebraic closure k of k as

X+ AX+B=(X—a)(X —B)(X —yp).

Let k1 = k(a, B, y) and m = [k; : k]. Further, let My o be the set of all nonar-
chimedean places in k.

Definition 1.2. Let w be a nonarchimedean place over a field extension K /k. If
the valuations w(x — ), w(B — y), w(y — «) are all equal, we say that E has
G-type reduction at w; otherwise, we say that E has M-type reduction at w.

In fact, if w’ is another place of K such that both w and w’ are sitting over a place
v € My o, then the reductions of E at w and w’ are of the same type. Therefore,
we will say that at v, the reduction of E is also of that type. Furthermore, in the
case where v(2) =0, E has G-type reduction if and only if it has good or potential
good reduction (see Lemma 3.1).
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Define
So={veMo\S|v(2)=0, xy =0,v(A)>0,v(j(E)) =0},
S1={ve Mol xo>0,v(j(E)) =0},
Sm = {v € My | E has M-type reduction at v},
S =8\ (SoUS1US,).

Let s1, s, s’ be the cardinality of Sy, S,,, §’. Then s, is at most § +d.
With the notations above, we can now state our main result.

Theorem 1.3.

#E(@S) < 11 X 71.64}‘-‘,—2.27(3‘,-}-3‘1)+3.7S,,,+10.3md‘

Note that we do not require the equation (1-1) to be quasiminimal. If we did
so, then, by [Silverman 1984, p. 238], we would have

6
< |Dxl”,

‘ Normy, /Q 1_[ PXv
veS]
and hence
s1 < 6log|Dy|.

The exponent in the Gross—Silverman bound is quadratic in § and r, while ours
is linear, and our constants are smaller. Also, if the ABC Conjecture holds, our
method can be applied to get a bound only in terms of r and k, in which the
exponent is linear in s and r and differs from that obtained in [Hindry and Silverman
1988]. In fact, this has been achieved in [Chi et al. 2004] for the case where k is
a function field of characteristic zero. Also, the method can be modified to bound
the number of integer solutions to Y” = F(X); see [Chi et al. > 2006].

2. A formula for 2-division points

The following result can be proved by straightforward calculations. For details,
see [Tan 2002] or [Chi et al. 2004, Section 2.2].

Lemma 2.1. In the notations preceding Theorem 1.3 a point P = (a, b) € E (k)
determines an extension

K=ki(wWa—a,Ja—B,J/a—7y)

depending only on the class | P] € E(k)/2E (k). Given a choice of signs for \/Ja—a,
va—B, and Ja—y such that

b=+a—a a—BJa—y,
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the point Q := (f, g) € E(K) defined by
f—a=Wa—a+ya-p)Va—a+Ja—y),

and

g=Wa-a+ya-p)a—p+Ja-y)a—y+va—a),

satisfies
20=P.

Furthermore, l.f{Oll,Olz,OB} = {0[”3, ]/}, D,‘ = (O[,',O) S E(kl), i = 1, 2, 3, and
0O = (fD, ¢y = Q+ Dy, then

(2-1) (f —a)(fD =) = (i — o)) (i —atjr),
where {j, j'} = {1, 2,3} \ {i}.

3. Local calculations

Given a point P € E(k), let K be the field determined by P as in Lemma 2.1. For
v € My, let Ky, be the completion of K with respect to a place w lying over v.
Then K, /k, is a Galois extension. Let [,, be the inertia subgroup of Gal(K,, /k,).
In this section, we assume that w is nonarchimedean and view it as an valuation
from K, onto Z U {oo}.

Lemma 3.1. Suppose E has potential good reduction at a place v of k such that
v(2) = 0. Then for any place w of K lying over v, we have

wa—-p)=wB-y)=wly —a).
Proof. Suppose on the contrary that
w(y —a) >wl—p)=wB—-y).

We can find a field extension K of K such that 3(« — B) = 2m, m € Z, where ¥
is a place of K lying over w. By our assumption, we have v(8 — y) = 2m and
v(y —a) > 2m. Consider the elliptic curve E defined by

E: Y’=XX-B(X-7),

which was obtained from (1-1) by the change of variables

t

~h
Il

h<
~
=)

(98]
U S
I

(X —a)/m*",
B=B—a)/x™, 7=F—a)r",
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where 7 is a uniformizer of the prime ideal associated to ¥ in K. Then ﬁ(ﬁ) =0
and v(y) > 0. This implies that E has multiplicative reduction at v. Consequently,
v(jg) = v(jz) < 0 which contradicts our hypothesis. O

Now assume that the equation for E is minimal at v. Let F, be the residue field
of v and let E be the reduction of E at v. As usual, for P € E (k,), we denote its
image under the reduction map E (k,) — E(F,) by P . Put

Eo(ky) ={P € E(ky) | P € E\5(F,)},

where E,,; is the set of nonsingular points of £. We have the following key lemma.
Here we retain the notations in Lemma 2.1.

Lemma 3.2. Assume that at v, where v(2) = 0, the Weierstrass equation (1-1)
is minimal and E has potential good reduction. For P, P, € E(0,), let Q; =
(fi, i) € E(Ky), fori =1,2, be such that2Q; = P;. If Q1 — Q> € Ey(ky), then

w(fi —a)=w(fa—a) and w(fi—p)=w(f2—pH).

Before we give the proof of Lemma 3.2, we recall some basic facts on the formal
group associated to an elliptic curve.

Suppose w(x — ) =2a+¢€, where a e NU{0} and e =0 or 1. By Lemma 3.1,
w(B —y) =w(y —a) =2a+ €. Consider the change of variables

Y =v/%, X=X—-a)/x%,
B=B-a)/r™, 7= -/t
where 7 is a uniformizer of the prime ideal associated to w. Then
E: V*=X(X-BHX-7),

is a minimal Weierstrass equation for £ over K,,. For i =1, 2, let Q,- =( ﬁ, gi),
be the points on E corresponding to Q;. Let E be the formal group associated to
E/Kw. For m > 0, set

. Eo(Ky) if m=0,
E,=1.
E(@"0k,) if m>0.

Then we have the filtration
i CEpy1 CEpnC---CEjCEy.
Also, recall that we have the exact sequence
O—>E1—>Eo—>§ns—>0,

where E,, is the nonsingular part of the reduction of E.
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For a point R = ()N(, 17) in E(Kw), letf = —)?/17. The following lemma follows
easily from [Silverman 1986, Chapter IV].
Lemma 3.3. Let notations be as above.
(1) If m > 0, then
ReEp\Epns1 &= w@) =m < (w(X) = —2m and w(¥Y) = —3m).
) If m=0and e =0, then
Re Eg\E) <= w(®) <0< (w(X)>0and w(¥) > 0).
3) Ifm=0and e =1, then
Re Ey\E) <= w(®) =0+ (w(X) =0and w(¥)=0).
Note that if € = 0, then E has good reduction at w. In this case, EO = E(Kw).

Lemma 3.4. Under the hypothesis of Lemma 3.2, suppose that w(o — ) =2a+¢€
and Q = (f, g) € Eo(ky). Then Q € E, C Ey.

Proof. Recall that the reduction of E is
E: Y’=X-a)X-8)(X—-7).
The singularity of E is (a, 0).

If Q = (f, ) € Eo(k,), then w(f —a) <0. Since f = (f —a)/7%, g=g/7,
we have w(f) < —2a. By Lemma 3.3, we have Q € E, C Ej. [l

Proof of Lemma 3.2. We apply Lemma 2.1 with oy = o, o = 8, and a3 = y. Then
Q] = 01+ (, 0), and so on. By (2-1), we have

(fi—a)(fi —a) = (@ = P)a—y).
This and Lemma 3.1 imply

w(fi —o) +w(f] —a) =2Q2a+e),

and

(-1 w(fi) +w(f]) =2e.
Similarly,

(3-2) w(f2) +w(fy) = 2.

First we consider the case where

w(fi —a) <2a+e.
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Then w(fl) <e. If w(fl) > 0, then w(fl) = € = 1. In this situation, E has
additive reduction at w and (O, 0) is the smgularlty of the reduction. Therefore,
0 9{ Eo(Ky). By Lemma 3.4, Q1 — Qs € E, C Ey, and consequently 0, is not
in EO(Kw). Hence w(fz) > (0. By (3-1), we also have w(fl) = 1. Repeating
the above argument, we also conclude that w( fz/) > 0. Then (3-2) implies that
w(f) =w(fy) =1

Now, assume that w(ﬁ) = —2m < 0. Note that by Lemma 2.1 Q; € E(0,),
i =1,2 and we have w( f; —«) > 0. Hence,

(3-3) w(fi) = —2a.

This means that Ql ¢ Ea+1 and Q1 € Em \ Em+1. If @ > m, then by Lemma 3.3
and Lemma 3.4, we also have

QZ € Em \ Em-ﬁ-l

and hence w(f~2) = —2m. If a =m, then we have Q2 € Ea and hence w(fz) <-2a.
By (3-3), we have w( f>) = —2m, too.
For the case where

w(fi —a) > 2a+e,
we consider f{, which, according to (2-1), satisfies
w(ff —a) <2a+e.

Then the argument above can be applied to verify that

w(fy —a) =w(f] —a).
We complete the proof by applying (2-1). |

Let K be as given in Lemma 2.1 and let w be a nonarchimedean place of K. A
point Q = (f, g) € E(K,,) is called special if

w(f —a) <minfw(a —B), w(B —y), w(y —a)}.
If Q is special, then

w(f —a)=w(f =) =w(f —y).
Put {&, a2, a3} = {a, B, v}, and let Q) be as in Lemma 2.1.

Lemma 3.5. Suppose that Q©) = Q € E(K,) and E has G-type reduction at w
with

w(ay —a) = w(ay —a3) = w(az —ay) =«€.



244 WEN-CHEN CHI, KING FAI LAI AND KI-SENG TAN
(1) If Q is special and w(f —ay) =€ —e < €, then for j =1,2,3, QY is not
special and
e+e ifi=j,
ifi#].
(2) Ifevery QWY is not special for j =0, 1,2, 3, then, for every i and j,

w(fV —a) =

w(fV —a;) =e.
Proof. Suppose that Q is special. By (2-1),
w(fV —aj) =2wl@—p)—w(f —a)=€+e.
If i # j, then
w(f(j) —o;) = w(f(j) —aj+a;—a;) =min(e +e, €) =e.

If every QV), j =0, 1,2, 3, is not special, then for every i, w(fV) —a;) > €.
By (2-1) again, we must have w(f) —a;) <e. O

Lemma 3.6. Suppose that Q € E(K,,) and E has M-type reduction with
€1 =w(o) —az) =w(w —a3) < w(oe —a3) = €.

(1) If Q is special and w(f — 1) = €] —e < €1, then, for j =1,2,3, QY is not
special and

€1+e ifi=j=1,

&+e ifi=j=23,

€1 fG=1Li#Dor (i=1,j#D),

€ ifi,j=2,3,j#Ii.

w(fP —a) =

(2) If every oW, j=0,1,2,3, is not special and w(f — ay) = €| + e, then
ee=w(f—o) <ete=w(f—a3) <e.

Moreover, fori, j =1,2,3,

er1te ifj=1,i#1
w(fY —a) =1{¢ ifi=1
e—e ifi#l j#l

Proof. Most of the proof is similar to that of Lemma 3.5. Only the valuations
of fU —a;, i # 1, need special calculation. But, since Q) = Q® + D3 and
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0 = 0O 4+ Ds, by (2-1), we have

w(fP —a)+w(fV —a) =€ +e,
w(f® —a3) +w(fV —a3) =€ +e. O

4. Unit equations

Let
€={(P,0)| PeEQs), 20=P}.

For (P, Q1), (P2, O2) € 6, we define an equivalence relation as follows:
(P1, Q1) ~ (P2, Qp) if and onlyif Q; — Q, € 12E (k).
Let (P1, Q1), ..., (P, Q.) represent all the equivalence classes in €. Then
c<4x E(k)/24E (k) <4 x 242,

Now, we fix an equivalence class represented by (P, Q;). If (P, Q) ~ (P, Qy)
and Q = (f, g), Q1 = (fi, &), then the quantities

x=(f-a)/(fi—a), y=(—=B/i—B),

(4-1)

A=(fi—a)/(B—a), u=0B—-f)/(B—-a)
satisfy
(4-2) Ax+py =1

Note that Q and Q; determine the same field extension K /k. Let
S={w|we Mg and w|v, for some v € §'US; US,,}.

Using (2-1), we see that x and y are units at every place w not sitting over S U
SoUS1USy,. For v e Sy, E has additive reduction at v. Therefore,

12E(ky) C Eo(ky).

Applying Lemma 3.2 to Q and Q;, we see that (4-2) is an S-unit equation.

Now we apply the theory of [Evertse 1984] to bound the cardinality of the equiv-
alence class of (P, Q;). We will follow the setting in that paper. Fix a primitive
third root p of 1 and put L = K(p). Given (P, Q) in the equivalence class of
(P, Q1), we define x, y, A, u by (4-1) and put

E=E(x,y) =Ax —puy, n=n(x,y) =Ax — p*uy, ¢ = {(x, y) =&/1.

We denote by V¥ the set of those ¢ € L for which an S-unit solution (x, y) of
(4-2) exists with Ax/uy not a root of one and such that ¢ = ¢(x, y). We denote
by V! the subset consisting of those ¢ (x, y) such that x and y are defined by (4—1)
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using a point (P, Q) in the equivalence class of (P;, Q;). We can recover x and y
from ¢. Therefore, it is enough to bound the number of elements in !
Let T be the set of places of L sitting over S and put

A= ( I1 |3|v)1/2 I1 va( [ T max(aly - mm)

VeT VeT V¢T

3

Definition 4.1. For V € M}, ¢ € L, put
my (&)= min (1, max(|1 = p'tly, |1=p~'¢ " Iv).
Lemma 4.2 [Evertse 1984, Lemma 3]. We have

[]mv©@) <8Ar@&)™ for¢ e .

VeT

The next lemma follows by direct calculation.
Lemma 4.3. Suppose that V € M; is nonarchimedean and ¢ = ¢ (x, y) € V0.
(1) If luylv <1, then
my(§) = [I=¢ly =1 —p)uyly
< |[1—=p%|v, fori#0.
) If |Ax|y < 1, then

my(¢) = [1—=p¢ly =|(1—p)Ax|y
< |[1=p¢ly, fori#l.

3) If Irxx]y,! < 1, then
my (&) = |[1=p*¢ly == p)x)"'y
< |1=p'¢ly, fori #2.
) If Ixxly = |uylv = 1, then

my(§) = |[1=Cly =[1=ptly
= [1=p%ly =I1-ply.

Definition 4.4. For a ¢ in V% and V € T, we choose a py € {1, p, p?} such that
my (¢) = min(1, max(|1 = pv¢lv, 11— py ' ¢ V).

If V is nonarchimedean and we are in case (4) of the preceding lemma, we choose
oy =1.
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For a nonarchimedean place v € S'U S| U S, let
T,={VeT|V|}.

Recall that if ¢ € V!, there is an associated (P, Q) € 6.
From now on, we fix the indices so that ¢} = &, 0y = 8, a3 =y, D; = (¢4, 0),
and as before, we put Q) = Q + D;.

Definition 4.5. Let ¢ be in ! and let V be a nonarchimedean place. We say that
¢ is of type i, where i =0, 1,2, 3, if Q) is special at V. If none of the Q) is
special, we say that ¢ is of type 4.

Consider the set of numbers
|(fY —aj) /(@) —ap)l|,

and their inverses, where we take j =0,1,2,3, ji, j,=1,2,3, and j; # j». By
the conductor of ¢ at V we mean the set Cy (¢) consisting of all those numbers
in this set which are at most one. We list the elements of Cy(¢) as cy; with
i=0,1,2,... and cyo = 1. If E has G-type reduction at V, then Lemma 3.5
implies that

_ {1,cy 1} if ¢ isoftype O, 1,2, 3;
"7l if ¢ is of type 4.

Also, if E has M-type reduction at V, then Lemma 3.6 implies that
L eva, eyl if ¢ isof type 0, 1, 2, 3;
" ev) or (1, ey, eyl if ¢ s of type 4.

Set ¢ = Gal(L/k). Then  acts transitively on T, and for z € L, 0 €4, we have

(4-3) 2lov) = lo ™ @lv.
Forz =(f —a)/(a = p), or z=(f — B)/(a — B), we have
o '@ el(fY —a /(i —ai) | j=0,1,2,3,i,i' =1,2,3).
From these facts and Lemma 4.3, we can deduce the next result:

Lemma 4.6. Ler v € S"U S| US,, be a nonarchimedean place and let Vy be a place
in Ty. Then, for a given ¢ € V', the map T, — {1, p, p}, V — py, depends only
on the type of ¢ at Vy. Moreover, if E has G-type reduction at v and Cy, = {1} or
{1, cy,.1}), there is a decomposition

T,=T UT)],
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which depends only on the type of ¢ such that

1 if VerT?

m =
Y ifVer)
CVO,I 1 V-

Also, if E has M-type reduction at v, there is a decomposition
T,=T UT!UT?,
which depends only on the type of ¢ such that
1 ifVerT?,
my = 4 cy,,1 lf Ve Tvl,
CVp,2 lf Ve Tv2 .
Let v € S'U S| US,, be a nonarchimedean place. We fix a place Vj in T,, and
put ti = #T!. If E has G-type reduction at v, define
m, = C&O,l’

If E has M-type reduction at v, define

1 2
13 3
My, 1 = C\%,l and my, = 0\30,2-

Here we use the convention that if 7! is empty, the associated m,, or m,; is 1.

The following lemma is similar to [Evertse 1984, Lemma 5]. Let S and T
be respectively the set of all infinite places in k and L, also, let s = #S,, and
-0 = #1,. Note that every place in T is complex, and hence

too = [L:Q]/2 <4md.
For a real number B with 0 < B < 1, put
R(B) = (1— B)"'BB/(B=D,

Lemma 4.7. Let B be a real number with 1/2 < B < 1. There exists a set W'| of
cardinality at most

5S’+31+5m*5w % 3t ¢ R(B)S'+Sl+25mfsoc+loo*1
consisting of tuples ((ov)ver, (Cv)ver) with ,0‘3, =land Ty >0forVeT

and ZVeT 'y = B with the following property: for every ¢ € V1 there is a tuple
((pv)ver, Tv)ver) € W1 such that ¢ satisfies

(4-4) min(1, |1 — py<¢ly) < BARE) ™DV, forV eT.
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Proof. Consider the index set
I={w, NIG=1, weEUSIUT)\ (SnUSx)) or (j=1,2, we Sy}
Then #1 < q := 5"+ 51 + 28, — Soo + too. For £ € V! and (w, j) € I, let

m, ifw=ve(S"US)\(S,USx),
my if w=V eTy,

mw’j: . .
my1 ifw=ves, and j=1,

myy if w=vesS, and j=2.
By Lemma 4.2, we have
(4-5) [ mw, <84h)7, for ce¥'.
(w,j)el

We know form [Evertse 1984, Lemma 4] that there exists a set W’ of cardinality
at most R(B)4! consisting of tuples (P, j)w, j)er such that for every ¢ € ! there
is a tuple (P, j)(w, j)er such that

My j < (8AR() )P,

Here the tuples can be chosen such that if m,, ; = 1, then ®,, ; = 0. In particular,
if 7y is empty, we put @, ;/t; = 0. We define

0 if V eT? forsome veS US US,\ S,
®,.1/t) if V €T/ for some v e (S'US1USy)\ Seo,
CIDw,z/tS if Ve Tv2 for some v € §,,,

®, if Ve Tw.

Then inequality (4—4) holds. By Lemma 4.6, there are at most 5° T51+5m 500  3foo
choices of py’s. O

Now take B = 0.846. The total number of ¢ € W' that satisfy a fixed system
(4—4) and for which we have h(¢) > €8/2 is at most 25 (see [Evertse 1984, p- 583]).
The cardinality of W' is at most

Ss/—l—sl—i-s,,,—soo > 3100 x R(B)s’—i-sl+2sm—soo+too—1

< 5S'+S1+Smfsoo x 3l % (49/3)S/+51+23m7500+10071
<2/25x (3/49) x (245/3)“/“l x (12005/9)%" x (3/245)%% x (7).
We note that ¢, is at most 4md. A simple calculation shows that

#owl < 2/25 % (3/49) % 72.27(S/+Sl)+3.7sm+8md % (3/245)500
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By [Evertse 1984, (36)], we have h(Ax/uy) < 2h(¢(x, y)). All of this yields the
following lemma.

Lemma 4.8. The total number of (P, Q) ~ (P, Q;) with Q = (f, g) such that
h(f —a)/(f —B)) = €% is at most

6/49 X 72.27(5/-‘,-3‘1)-‘,—7.2Sm+8md X (3/245)8‘00

Proof of Theorem 1.3. We first fix the equivalence class of (P;, Q7). We follow
the argument in [Evertse 1984, p. 583]. Let § = #S. The group of S-units is the
direct product of § multiplicative cyclic groups, one of which is finite. The fraction
(f—a)/(f—PB)isa S-unit. We assume that for each v € S'US; US,, \ Sx0, a place
V, € T, is chosen. Consider the index set

D :={(Gy)|iv=1,2,3,4,5veSUSUS,;,\ Soo}.
For each ¢ = (i), € O, let
Vé:{; eV ¢ is of type i, at every ve S US;US, \ Sl
Then by (2-1) and (4-3), under the map

v HVES'\S'OO Ky,
> ((f —a)/(f —B)v)v,

the image of each °Vé is in a coset of a subgroup which is a direct product of less
than s’ 4 51 + 5, — 500 multiplicative cyclic groups. This shows that, for a fixed ¢,
the set of all (f —a)/(f — B) for which ¢ € °V;> is in a coset of a subgroup which
is a direct product of less than s3 := 5, + 5" + 51 + 8 — S multiplicative cyclic
groups. Let n be a positive integer. Then there is an S-unit z and an element € K
belonging to a fixed set of cardinality at most #** which does not depend on f such
that (f —a)/(f — B) = wz". Let w be a fixed element of this set and let 6 be a
fixed n’th root of w. By [Evertse 1984, Lemma 1], the number of nonzero z in K
with h(0z) < €3/" is at most 5(2¢>*/")IK:Q1 " Also, the fraction (f — a)/(f — B)
determines ¢. Using these and taking n = 49/3, we see that the cardinality of the
subset of V! consisting of those ¢ with h((f —a)/(f — B)) < €3 is at most

5T o 5% (224 M) KT < (245/3) T 55 (49/3) x 8,784

<5x 72.27(s'+51+sm)+10.3md X (3/245)500



INTEGER POINTS ON ELLIPTIC CURVES 251

Therefore,

#6 <4 x |E(k)/24E (k)| x (3/245)° x (6/49 x 7227 Fs0)+3Tsn+8md
+ 3/49 X 72'27(5’/""31+Sm)+10.3md)

<4 X |E(K)tor/24E (K)ror X (3/245)% x 24" x 6 x 7> 03 T5 +10.3md
< 4%x6x% |E(k)t0r/24E(k)t0r| % (3/245)_?00 % 71.64r+2.27(s/+S1)+3.7sm+10.3md‘

The map € — E(Oy) given by (P, Q)+~ P is4to 1. If so > 2, then
6 X | E(K)ior/24E (k)ior| % (3/245)%> < 6 x 24% x (3/245)* <1,

and the theorem is proved. Otherwise, the number field k& has degree at most 2,
and the order of the torsion part of the multiplicative group k* is at most 6. In
this case, via Weil pairing, we see that if E (k)¢ contains a subgroup of the form
Z/NZ x Z/NZ then N < 6. Consequently, we have |E (k)ior/24E (k)wor] <24 x 6
and hence

6 X | E (k)tor/24E (k)or| X (3/245)* <36 x 24 x (3/245) < 11,

as we wished to show. O
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