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INTEGER POINTS ON ELLIPTIC CURVES

WEN-CHEN CHI, KING FAI LAI AND KI-SENG TAN

We study Lang’s conjecture on the number of S-integer points on an ellip-
tic curve over a number field. We improve the exponent of the bound of
Gross and Silverman from quadratic to linear by using the S-unit equation
method of Evertse and a formula on 2-division points.

1. Introduction

Let E be an elliptic curve defined over an algebraic number field k of degree d . For
a finite set S of places of k containing all the archimedean ones, we denote the ring
of S-integers of k by OS . Serge Lang conjectured that if the Weierstrass equation
of E is quasiminimal, then the cardinality of the set E(OS) of OS-integer points of
E should be bounded in terms of the field k, the cardinality of S and the rank of
the group E(k) of k-rational points of E [Lang 1978, p. 140]. Silverman [1987]
proved Lang’s conjecture when E has integral j-invariant. In general, if j (E) is
nonintegral for at most δ places of k, then a bound was also given with δ involved.
However he did not compute the constants involved. Gross and Silverman [1995]
used Roth’s theorem to obtain an explicit bound. To state their theorem, let us
write the Weierstrass equation of the elliptic curve E as

(1–1) Y 2
= X3

+ AX + B,

where A, B ∈ OS . Put 1 = 4A3
+ 27B2. Write j (E) for the j-invariant of E .

Let Dk and Rk be the discriminant and the regulator of k. Let Mk be the set of all
places of k. For a place v ∈ Mk , let kv be the completion of k at v and let | |v be
such that, for z ∈ Q,

|z|v = |z|[kv :Qp]/[k:Q]

p ,
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where p is the place of Q lying under v and | |p is the usual absolute value. We
use hk to denote the multiplicative height. Namely, for x ∈ k

hk(x) =

∏
v∈Mk

max(|x |v, 1).

We shall write s for the cardinality of the set S.

Theorem 1.1 [1995]. Suppose that (1–1) is quasiminimal and that

6d(60d2 log 6d)d
( 2
√

3

)d(d−1)/2
· max(Rk, log |Dk |, 1).

is at most

max
{
log hk( j (E)), log |Normk/Q(1)|

}
.

Then

#E(OS) ≤ 2 · 1011
· d · δ3d

· (32 · 109)rδ+s .

In this paper, we take a completely different approach. By using a formula on
2-division points from [2002], we associate to an S-integer point an unit equation
over an extension of k. Then we use the machinery developed by J.-H. Evertse
[1984] to obtain a quantitative bound for the number of S-integer points. Let DE/k

be the ideal of the minimal discriminant of E/k. Then we have

(1–2) (1) = DE/k ·

∏
v

P12χv
v ,

where Pv is the prime ideal corresponding to the place v and χv ∈ Z. For v ∈ S,
χv ≥ 0. We factor the cubic over the algebraic closure k̄ of k as

X3
+ AX + B = (X − α)(X − β)(X − γ ).

Let k1 = k(α, β, γ ) and m = [k1 : k]. Further, let Mk,0 be the set of all nonar-
chimedean places in k.

Definition 1.2. Let w be a nonarchimedean place over a field extension K/k1. If
the valuations w(α − β), w(β − γ ), w(γ − α) are all equal, we say that E has
G-type reduction at w; otherwise, we say that E has M-type reduction at w.

In fact, if w′ is another place of K such that both w and w′ are sitting over a place
v ∈ Mk,0, then the reductions of E at w and w′ are of the same type. Therefore,
we will say that at v, the reduction of E is also of that type. Furthermore, in the
case where v(2) = 0, E has G-type reduction if and only if it has good or potential
good reduction (see Lemma 3.1).
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Define

S0 = {v ∈ Mk,0 \ S | v(2) = 0, χv = 0, v(1) > 0, v( j (E)) ≥ 0},

S1 = {v ∈ Mk,0 | χv > 0, v( j (E)) ≥ 0},

Sm = {v ∈ Mk,0 | E has M-type reduction at v},

S′
= S \ (S0 ∪ S1 ∪ Sm).

Let s1, sm , s ′ be the cardinality of S1, Sm , S′. Then sm is at most δ + d .
With the notations above, we can now state our main result.

Theorem 1.3.

#E(OS) ≤ 11 × 71.64r+2.27(s′
+s1)+3.7sm+10.3md .

Note that we do not require the equation (1–1) to be quasiminimal. If we did
so, then, by [Silverman 1984, p. 238], we would have∣∣∣∣ Normk/Q

∏
v∈S1

Pχv

∣∣∣∣ ≤ |Dk |
6,

and hence
s1 ≤ 6 log |Dk |.

The exponent in the Gross–Silverman bound is quadratic in δ and r , while ours
is linear, and our constants are smaller. Also, if the ABC Conjecture holds, our
method can be applied to get a bound only in terms of r and k, in which the
exponent is linear in s and r and differs from that obtained in [Hindry and Silverman
1988]. In fact, this has been achieved in [Chi et al. 2004] for the case where k is
a function field of characteristic zero. Also, the method can be modified to bound
the number of integer solutions to Y n

= F(X); see [Chi et al. ≥ 2006].

2. A formula for 2-division points

The following result can be proved by straightforward calculations. For details,
see [Tan 2002] or [Chi et al. 2004, Section 2.2].

Lemma 2.1. In the notations preceding Theorem 1.3 a point P = (a, b) ∈ E(k)

determines an extension

K = k1(
√

a − α,
√

a − β,
√

a − γ )

depending only on the class [P] ∈ E(k)/2E(k). Given a choice of signs for
√

a−α,
√

a−β, and
√

a−γ such that

b =
√

a−α
√

a−β
√

a−γ ,
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the point Q := ( f, g) ∈ E(K ) defined by

f − α = (
√

a − α +
√

a − β)(
√

a − α +
√

a − γ ),

and

g = (
√

a − α +
√

a − β)(
√

a − β +
√

a − γ )(
√

a − γ +
√

a − α),

satisfies

2Q = P.

Furthermore, if {α1, α2, α3} = {α, β, γ }, Di = (αi , 0) ∈ E(k1), i = 1, 2, 3, and
Q(i)

= ( f (i), g(i)) = Q + Di , then

(2–1) ( f − αi )( f (i)
− αi ) = (αi − α j )(αi − α j ′),

where { j, j ′
} = {1, 2, 3} \ {i}.

3. Local calculations

Given a point P ∈ E(k), let K be the field determined by P as in Lemma 2.1. For
v ∈ Mk , let Kw be the completion of K with respect to a place w lying over v.
Then Kw/kv is a Galois extension. Let Iw be the inertia subgroup of Gal(Kw/kv).
In this section, we assume that w is nonarchimedean and view it as an valuation
from Kw onto Z ∪ {∞}.

Lemma 3.1. Suppose E has potential good reduction at a place v of k such that
v(2) = 0. Then for any place w of K lying over v, we have

w(α − β) = w(β − γ ) = w(γ − α).

Proof. Suppose on the contrary that

w(γ − α) > w(α − β) = w(β − γ ).

We can find a field extension K̃ of K such that ṽ(α − β) = 2m, m ∈ Z, where ṽ

is a place of K̃ lying over w. By our assumption, we have ṽ(β − γ ) = 2m and
ṽ(γ − α) > 2m. Consider the elliptic curve Ẽ defined by

Ẽ : Ỹ 2
= X̃(X̃ − β̃)(X̃ − γ̃ ),

which was obtained from (1–1) by the change of variables

Ỹ = Y/π3m, X̃ = (X − α)/π2m,

β̃ = (β − α)/π2m, γ̃ = (γ − α)/π2m,
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where π is a uniformizer of the prime ideal associated to ṽ in K̃ . Then ṽ(β̃) = 0
and ṽ(γ̃ ) > 0. This implies that Ẽ has multiplicative reduction at ṽ. Consequently,
ṽ( jE) = ṽ( jẼ) < 0 which contradicts our hypothesis. �

Now assume that the equation for E is minimal at v. Let Fv be the residue field
of v and let Ē be the reduction of E at v. As usual, for P ∈ E(kv), we denote its
image under the reduction map E(kv) → Ē(Fv) by P̄ . Put

E0(kv) = {P ∈ E(kv) | P̄ ∈ Ēns(Fv)},

where Ēns is the set of nonsingular points of Ē . We have the following key lemma.
Here we retain the notations in Lemma 2.1.

Lemma 3.2. Assume that at v, where v(2) = 0, the Weierstrass equation (1–1)
is minimal and E has potential good reduction. For P1, P2 ∈ E(Ov), let Qi =

( fi , gi ) ∈ E(Kw), for i = 1, 2, be such that 2Qi = Pi . If Q1 − Q2 ∈ E0(kv), then

w( f1 − α) = w( f2 − α) and w( f1 − β) = w( f2 − β).

Before we give the proof of Lemma 3.2, we recall some basic facts on the formal
group associated to an elliptic curve.

Suppose w(α −β) = 2a + ε, where a ∈ N∪{0} and ε = 0 or 1. By Lemma 3.1,
w(β − γ ) = w(γ − α) = 2a + ε. Consider the change of variables

Ỹ = Y/π3a, X̃ = (X − α)/π2a,

β̃ = (β − α)/π2a, γ̃ = (γ − α)/π2a,

where π is a uniformizer of the prime ideal associated to w. Then

Ẽ : Ỹ 2
= X̃(X̃ − β̃)(X̃ − γ̃ ),

is a minimal Weierstrass equation for E over Kw. For i = 1, 2, let Q̃i = ( f̃i , g̃i ),
be the points on Ẽ corresponding to Qi . Let Ê be the formal group associated to
Ẽ/Kw. For m ≥ 0, set

Êm =

{
Ẽ0(Kw) if m = 0,

Ê(πmOKw
) if m > 0.

Then we have the filtration

· · · ⊂ Êm+1 ⊂ Êm ⊂ · · · ⊂ Ê1 ⊂ Ê0.

Also, recall that we have the exact sequence

0 −→ Ê1 −→ Ê0 −→
¯̃Ens −→ 0,

where ¯̃Ens is the nonsingular part of the reduction of Ẽ .
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For a point R = (X̃ , Ỹ ) in Ẽ(Kw), let t̃ = −X̃/Ỹ . The following lemma follows
easily from [Silverman 1986, Chapter IV].

Lemma 3.3. Let notations be as above.

(1) If m > 0, then

R ∈ Êm \ Êm+1 ⇐⇒ w(t̃) = m ⇐⇒
(
w(X̃) = −2m and w(Ỹ ) = −3m

)
.

(2) If m = 0 and ε = 0, then

R ∈ Ê0 \ Ê1 ⇐⇒ w(t̃) ≤ 0 ⇐⇒
(
w(X̃) ≥ 0 and w(Ỹ ) ≥ 0

)
.

(3) If m = 0 and ε = 1, then

R ∈ Ê0 \ Ê1 ⇐⇒ w(t̃) = 0 ⇐⇒
(
w(X̃) = 0 and w(Ỹ ) = 0

)
.

Note that if ε = 0, then Ẽ has good reduction at w. In this case, Ê0 = Ẽ(Kw).

Lemma 3.4. Under the hypothesis of Lemma 3.2, suppose that w(α −β) = 2a + ε

and Q = ( f, g) ∈ E0(kv). Then Q̃ ∈ Êa ⊂ Ê0.

Proof. Recall that the reduction of E is

Ē : Ȳ 2
= (X̄ − ᾱ)(X̄ − β̄)(X̄ − γ̄ ).

The singularity of Ē is (ᾱ, 0).
If Q = ( f, g) ∈ E0(kv), then w( f −α) ≤ 0. Since f̃ = ( f −α)/π2a , g̃ = g/π3a ,

we have w( f̃ ) ≤ −2a. By Lemma 3.3, we have Q̃ ∈ Êa ⊂ Ê0. �

Proof of Lemma 3.2. We apply Lemma 2.1 with α1 = α, α2 = β, and α3 = γ . Then
Q′

1 = Q1 + (α, 0), and so on. By (2–1), we have

( f1 − α)( f ′

1 − α) = (α − β)(α − γ ).

This and Lemma 3.1 imply

w( f1 − α) + w( f ′

1 − α) = 2(2a + ε),

and

(3–1) w( f̃1) + w( f̃ ′

1) = 2ε.

Similarly,

(3–2) w( f̃2) + w( f̃ ′

2) = 2ε.

First we consider the case where

w( f1 − α) ≤ 2a + ε.
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Then w( f̃1) ≤ ε. If w( f̃1) > 0, then w( f̃1) = ε = 1. In this situation, Ẽ has
additive reduction at w and (0, 0) is the singularity of the reduction. Therefore,
Q̃1 6∈ Ẽ0(Kw). By Lemma 3.4, Q̃1 − Q̃2 ∈ Êa ⊂ Ê0, and consequently Q̃2 is not
in Ẽ0(Kw). Hence w( f̃2) > 0. By (3–1), we also have w( f̃ ′

1) = 1. Repeating
the above argument, we also conclude that w( f̃ ′

2) > 0. Then (3–2) implies that
w( f̃2) = w( f̃ ′

2) = 1.
Now, assume that w( f̃1) = −2m ≤ 0. Note that by Lemma 2.1 Qi ∈ E(Ow),

i = 1, 2 and we have w( fi − α) ≥ 0. Hence,

(3–3) w( f̃i ) ≥ −2a.

This means that Q̃1 /∈ Êa+1 and Q̃1 ∈ Êm \ Êm+1. If a > m, then by Lemma 3.3
and Lemma 3.4, we also have

Q̃2 ∈ Êm \ Êm+1

and hence w( f̃2)=−2m. If a = m, then we have Q̃2 ∈ Êa and hence w( f̃2)≤−2a.
By (3–3), we have w( f̃2) = −2m, too.

For the case where
w( f1 − α) > 2a + ε,

we consider f ′

1, which, according to (2–1), satisfies

w( f ′

1 − α) < 2a + ε.

Then the argument above can be applied to verify that

w( f ′

2 − α) = w( f ′

1 − α).

We complete the proof by applying (2–1). �

Let K be as given in Lemma 2.1 and let w be a nonarchimedean place of K . A
point Q = ( f, g) ∈ E(Kw) is called special if

w( f − α) < min{w(α − β), w(β − γ ), w(γ − α)}.

If Q is special, then

w( f − α) = w( f − β) = w( f − γ ).

Put {α1, α2, α3} = {α, β, γ }, and let Q(i) be as in Lemma 2.1.

Lemma 3.5. Suppose that Q(0)
= Q ∈ E(Kw) and E has G-type reduction at w

with

w(α1 − α2) = w(α2 − α3) = w(α3 − α1) = ε.
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(1) If Q is special and w( f − α1) = ε − e < ε, then for j = 1, 2, 3, Q( j) is not
special and

w( f ( j)
− αi ) =

{
ε + e if i = j,

ε if i 6= j.

(2) If every Q( j) is not special for j = 0, 1, 2, 3, then, for every i and j ,

w( f ( j)
− αi ) = ε.

Proof. Suppose that Q is special. By (2–1),

w( f ( j)
− α j ) = 2w(α − β) − w( f − α) = ε + e.

If i 6= j , then

w( f ( j)
− αi ) = w( f ( j)

− α j + α j − αi ) = min(ε + e, ε) = ε.

If every Q( j), j = 0, 1, 2, 3, is not special, then for every i , w( f ( j)
− αi ) ≥ ε.

By (2–1) again, we must have w( f ( j)
− αi ) ≤ ε. �

Lemma 3.6. Suppose that Q ∈ E(Kw) and E has M-type reduction with

ε1 = w(α1 − α2) = w(α1 − α3) < w(α2 − α3) = ε2.

(1) If Q is special and w( f − α1) = ε1 − e < ε1, then, for j = 1, 2, 3, Q( j) is not
special and

w( f ( j)
− αi ) =


ε1 + e if i = j = 1,

ε2 + e if i = j = 2, 3,

ε1 if ( j = 1, i 6= 1)or (i = 1, j 6= 1),

ε2 if i, j = 2, 3, j 6= i.

(2) If every Q( j), j = 0, 1, 2, 3, is not special and w( f − α2) = ε1 + e, then

ε1 = w( f − α1) ≤ ε + e = w( f − α3) ≤ ε2.

Moreover, for i, j = 1, 2, 3,

w( f ( j)
− αi ) =


ε1 + e if j = 1, i 6= 1

ε1 if i = 1

ε2 − e if i 6= 1, j 6= 1.

Proof. Most of the proof is similar to that of Lemma 3.5. Only the valuations
of f (1)

− αi , i 6= 1, need special calculation. But, since Q(1)
= Q(2)

+ D3 and
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Q(1)
= Q(3)

+ D2, by (2–1), we have

w( f (2)
− α2) + w( f (1)

− α2) = ε1 + ε2,

w( f (3)
− α3) + w( f (1)

− α3) = ε1 + ε2. �

4. Unit equations

Let
C = {(P, Q) | P ∈ E(OS), 2Q = P}.

For (P1, Q1), (P2, Q2) ∈ C, we define an equivalence relation as follows:

(P1, Q1) ∼ (P2, Q2) if and only if Q1 − Q2 ∈ 12E(k).

Let (P1, Q1), . . . , (Pc, Qc) represent all the equivalence classes in C. Then

c ≤ 4 × E(k)/24E(k) ≤ 4 × 24r+2.

Now, we fix an equivalence class represented by (Pl, Ql). If (P, Q) ∼ (Pl, Ql)

and Q = ( f, g), Ql = ( fl, gl), then the quantities

(4–1)
x = ( f − α)/( fl − α), y = ( f − β)/( fl − β),

λ = ( fl − α)/(β − α), µ = (β − fl)/(β − α)

satisfy

(4–2) λx + µy = 1.

Note that Q and Ql determine the same field extension K/k. Let

S̃ = {w | w ∈ MK and w|v, for some v ∈ S′
∪ S1 ∪ Sm}.

Using (2–1), we see that x and y are units at every place w not sitting over S ∪

S0 ∪ S1 ∪ Sm . For v ∈ S0, E has additive reduction at v. Therefore,

12E(kv) ⊂ E0(kv).

Applying Lemma 3.2 to Q and Ql , we see that (4–2) is an S̃-unit equation.
Now we apply the theory of [Evertse 1984] to bound the cardinality of the equiv-

alence class of (Pl, Ql). We will follow the setting in that paper. Fix a primitive
third root ρ of 1 and put L = K (ρ). Given (P, Q) in the equivalence class of
(Pl, Ql), we define x, y, λ, µ by (4–1) and put

ξ = ξ(x, y) = λx − ρµy, η = η(x, y) = λx − ρ2µy, ζ = ζ(x, y) = ξ/η.

We denote by V0 the set of those ζ ∈ L for which an S̃-unit solution (x, y) of
(4–2) exists with λx/µy not a root of one and such that ζ = ζ(x, y). We denote
by V1 the subset consisting of those ζ(x, y) such that x and y are defined by (4–1)
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using a point (P, Q) in the equivalence class of (Pl, Ql). We can recover x and y
from ζ . Therefore, it is enough to bound the number of elements in V1.

Let T be the set of places of L sitting over S̃ and put

A =

( ∏
V ∈T

|3|V

)1/2 ∏
V ∈T

|λµ|V

( ∏
V /∈T

max(|λ|V · |µ|V )

)3

.

Definition 4.1. For V ∈ ML , ζ ∈ L , put

mV (ζ ) = min
i=0,1,2

(1, max(|1 − ρiζ |V , |1 − ρ−iζ−1
|V ).

Lemma 4.2 [Evertse 1984, Lemma 3]. We have∏
V ∈T

mV (ζ ) ≤ 8Ah(ζ )−3 for ζ ∈ V0.

The next lemma follows by direct calculation.

Lemma 4.3. Suppose that V ∈ ML is nonarchimedean and ζ = ζ(x, y) ∈ V0.

(1) If |µy|V < 1, then

mV (ζ ) = |1 − ζ |V = |(1 − ρ)µy|V

< |1 − ρiζ |V , for i 6= 0.

(2) If |λx |V < 1, then

mV (ζ ) = |1 − ρζ |V = |(1 − ρ)λx |V

< |1 − ρiζ |V , for i 6= 1.

(3) If |λx |
−1
V < 1, then

mV (ζ ) = |1 − ρ2ζ |V = |(1 − ρ)(λx)−1
|V

< |1 − ρiζ |V , for i 6= 2.

(4) If |λx |V = |µy|V = 1, then

mV (ζ ) = |1 − ζ |V = |1 − ρζ |V

= |1 − ρ2ζ |V = |1 − ρ|V .

Definition 4.4. For a ζ in V0 and V ∈ T , we choose a ρV ∈ {1, ρ, ρ2
} such that

mV (ζ ) = min(1, max(|1 − ρV ζ |V , |1 − ρ−1
V ζ−1

|V )).

If V is nonarchimedean and we are in case (4) of the preceding lemma, we choose
ρV = 1.
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For a nonarchimedean place v ∈ S′
∪ S1 ∪ Sm , let

Tv = {V ∈ T | V |v}.

Recall that if ζ ∈ V1, there is an associated (P, Q) ∈ C.
From now on, we fix the indices so that α1 = α, α2 = β, α3 = γ , Di = (αi , 0),

and as before, we put Q(i)
= Q + Di .

Definition 4.5. Let ζ be in V1 and let V be a nonarchimedean place. We say that
ζ is of type i , where i = 0, 1, 2, 3, if Q(i) is special at V . If none of the Q(i) is
special, we say that ζ is of type 4.

Consider the set of numbers∣∣( f ( j)
− α j1)/(α j1 − α j2)

∣∣
V

and their inverses, where we take j = 0, 1, 2, 3, j1, j2 = 1, 2, 3, and j1 6= j2. By
the conductor of ζ at V we mean the set CV (ζ ) consisting of all those numbers
in this set which are at most one. We list the elements of CV (ζ ) as cV,i with
i = 0, 1, 2, . . . and cV,0 = 1. If E has G-type reduction at V , then Lemma 3.5
implies that

CV =

{
{1, cV,1} if ζ is of type 0, 1, 2, 3;

{1} if ζ is of type 4.

Also, if E has M-type reduction at V , then Lemma 3.6 implies that

CV =

{
{1, cV,1, cV,2} if ζ is of type 0, 1, 2, 3;

{1, cV } or {1, cV,1, cV,2} if ζ is of type 4.

Set G = Gal(L/k). Then G acts transitively on Tv and for z ∈ L , σ ∈ G, we have

(4–3) |z|σ(V ) = |σ−1(z)|V .

For z = ( f − α)/(α − β), or z = ( f − β)/(α − β), we have

σ−1(z) ∈ {( f ( j)
− αi )/(αi − αi ′) | j = 0, 1, 2, 3, i, i ′

= 1, 2, 3}.

From these facts and Lemma 4.3, we can deduce the next result:

Lemma 4.6. Let v ∈ S′
∪ S1 ∪ Sm be a nonarchimedean place and let V0 be a place

in Tv. Then, for a given ζ ∈ V1, the map Tv → {1, ρ, ρ2
}, V 7→ ρV , depends only

on the type of ζ at V0. Moreover, if E has G-type reduction at v and CV0 = {1} or
{1, cV0,1}, there is a decomposition

Tv = T 0
v ∪ T 1

v ,
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which depends only on the type of ζ such that

mV =

{
1 if V ∈ T 0

v

cV0,1 if V ∈ T 1
v .

Also, if E has M-type reduction at v, there is a decomposition

Tv = T 0
v ∪ T 1

v ∪ T 2
v ,

which depends only on the type of ζ such that

mV =


1 if V ∈ T 0

v ,

cV0,1 if V ∈ T 1
v ,

cV0,2 if V ∈ T 2
v .

Let v ∈ S′
∪ S1 ∪ Sm be a nonarchimedean place. We fix a place V0 in Tv, and

put t i
v = #T i

v . If E has G-type reduction at v, define

mv = ct1
v

V0,1.

If E has M-type reduction at v, define

mv,1 = ct1
v

V0,1 and mv,2 = ct2
v

V0,2.

Here we use the convention that if T i
v is empty, the associated mv or mv,i is 1.

The following lemma is similar to [Evertse 1984, Lemma 5]. Let S∞ and T∞

be respectively the set of all infinite places in k and L , also, let s∞ = #S∞ and
t∞ = #T∞. Note that every place in T∞ is complex, and hence

t∞ = [L : Q]/2 ≤ 4md.

For a real number B with 0 < B < 1, put

R(B) = (1 − B)−1 B B/(B−1).

Lemma 4.7. Let B be a real number with 1/2 ≤ B < 1. There exists a set W1 of
cardinality at most

5s′
+s1+sm−s∞ × 3t∞ × R(B)s′

+s1+2sm−s∞+t∞−1,

consisting of tuples ((ρV )V ∈T , (0V )V ∈T ) with ρ3
V = 1 and 0V ≥ 0 for V ∈ T

and
∑

V ∈T 0V = B with the following property: for every ζ ∈ V1 there is a tuple
((ρV )V ∈T , (0V )V ∈T ) ∈ W1 such that ζ satisfies

(4–4) min(1, |1 − ρV ζ |V ) ≤ (8Ah(ζ )−3)0V , for V ∈ T .



INTEGER POINTS ON ELLIPTIC CURVES 249

Proof. Consider the index set

I = {(w, j) | ( j = 1, w ∈ (S′
∪ S1 ∪ T∞) \ (Sm ∪ S∞)) or ( j = 1, 2, w ∈ Sm)}.

Then #I ≤ q := s ′
+ s1 + 2sm − s∞ + t∞. For ζ ∈ V1 and (w, j) ∈ I , let

mw, j =


mv if w = v ∈ (S′

∪ S1) \ (Sm ∪ S∞),

mV if w = V ∈ T∞,

mv,1 if w = v ∈ Sm and j = 1,

mv,2 if w = v ∈ Sm and j = 2.

By Lemma 4.2, we have

(4–5)
∏

(w, j)∈I

mw, j ≤ 8Ah(ζ )−3, for ζ ∈ V1.

We know form [Evertse 1984, Lemma 4] that there exists a set W of cardinality
at most R(B)q−1 consisting of tuples (8w, j )(w, j)∈I such that for every ζ ∈ V1 there
is a tuple (8w, j )(w, j)∈I such that

mw, j ≤ (8Ah(ζ )−3)8w, j .

Here the tuples can be chosen such that if mw, j = 1, then 8w, j = 0. In particular,
if T j

v is empty, we put 8w, j/t j
v = 0. We define

0V =


0 if V ∈ T 0

v for some v ∈ S′
∪ S1 ∪ Sm \ S∞,

8w,1/t1
v if V ∈ T 1

v for some v ∈ (S′
∪ S1 ∪ Sm) \ S∞,

8w,2/t2
v if V ∈ T 2

v for some v ∈ Sm,

8w, j if V ∈ T∞.

Then inequality (4–4) holds. By Lemma 4.6, there are at most 5s′
+s1+sm−s∞ × 3t∞

choices of ρV ’s. �

Now take B = 0.846. The total number of ζ ∈ W1 that satisfy a fixed system
(4–4) and for which we have h(ζ )≥ e8/2 is at most 25 (see [Evertse 1984, p. 583]).
The cardinality of W1 is at most

5s′
+s1+sm−s∞ × 3t∞ × R(B)s′

+s1+2sm−s∞+t∞−1

≤ 5s′
+s1+sm−s∞ × 3t∞ × (49/3)s′

+s1+2sm−s∞+t∞−1

≤ 2/25 × (3/49) × (245/3)s′
+s1 × (12005/9)sm × (3/245)s∞ × (7)2t∞ .

We note that t∞ is at most 4md. A simple calculation shows that

#W1
≤ 2/25 × (3/49) × 72.27(s′

+s1)+3.7sm+8md
× (3/245)s∞
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By [Evertse 1984, (36)], we have h(λx/µy) ≤ 2h(ζ(x, y)). All of this yields the
following lemma.

Lemma 4.8. The total number of (P, Q) ∼ (Pl, Ql) with Q = ( f, g) such that
h(( f − α)/( f − β)) ≥ e8 is at most

6/49 × 72.27(s′
+s1)+7.2sm+8md

× (3/245)s∞ .

Proof of Theorem 1.3. We first fix the equivalence class of (Pl, Ql). We follow
the argument in [Evertse 1984, p. 583]. Let s̃ = #S̃. The group of S̃-units is the
direct product of s̃ multiplicative cyclic groups, one of which is finite. The fraction
( f −α)/( f −β) is a S̃-unit. We assume that for each v ∈ S′

∪ S1 ∪ Sm \ S∞, a place
Vv ∈ Tv is chosen. Consider the index set

8 := {(iv)v | iv = 1, 2, 3, 4, 5, v ∈ S′
∪ S1 ∪ Sm \ S∞}.

For each φ = (iv)v ∈ 8, let

V1
φ = {ζ ∈ V1

| ζ is of type iv at every v ∈ S′
∪ S1 ∪ Sm \ S∞}.

Then by (2–1) and (4–3), under the map

V1
→

∏
V ∈S̃\S̃∞

K ∗

V

ζ 7→ (|( f − α)/( f − β)|V )V ,

the image of each V1
φ is in a coset of a subgroup which is a direct product of less

than s ′
+ s1 + sm − s∞ multiplicative cyclic groups. This shows that, for a fixed φ,

the set of all ( f −α)/( f −β) for which ζ ∈ V1
φ is in a coset of a subgroup which

is a direct product of less than s3 := t∞ + s ′
+ s1 + sm − s∞ multiplicative cyclic

groups. Let n be a positive integer. Then there is an S̃-unit z and an element ω ∈ K
belonging to a fixed set of cardinality at most ns3 which does not depend on f such
that ( f − α)/( f − β) = ωzn . Let ω be a fixed element of this set and let θ be a
fixed n’th root of ω. By [Evertse 1984, Lemma 1], the number of nonzero z in K
with h(θ z) < e8/n is at most 5(2e24/n)[K :Q]. Also, the fraction ( f − α)/( f − β)

determines ζ . Using these and taking n = 49/3, we see that the cardinality of the
subset of V1 consisting of those ζ with h(( f − α)/( f − β)) < e8 is at most

5s′
+s1+sm−s∞ × 5ns3(2e24/n)[K :Q]

≤ (245/3)s′
+s1+sm−s∞ × 5 × (49/3)t∞ × 8.784md

≤ 5 × 72.27(s′
+s1+sm)+10.3md

× (3/245)s∞ .
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Therefore,

#C ≤ 4 × |E(k)/24E(k)| × (3/245)s∞ × (6/49 × 72.27(s′
+s1)+3.7sm+8md

+ 3/49 × 72.27(s′
+s1+sm)+10.3md)

≤ 4 × |E(k)tor/24E(k)tor| × (3/245)s∞ × 24r
× 6 × 72.27(s′

+s1)+3.7sm+10.3md

≤ 4 × 6 × |E(k)tor/24E(k)tor| × (3/245)s∞ × 71.64r+2.27(s′
+s1)+3.7sm+10.3md .

The map C → E(OS) given by (P, Q) 7→ P is 4 to 1. If s∞ ≥ 2, then

6 × |E(k)tor/24E(k)tor| × (3/245)s∞ ≤ 6 × 242
× (3/245)2 < 1,

and the theorem is proved. Otherwise, the number field k has degree at most 2,
and the order of the torsion part of the multiplicative group k∗ is at most 6. In
this case, via Weil pairing, we see that if E(k)tor contains a subgroup of the form
Z/NZ × Z/NZ then N ≤ 6. Consequently, we have |E(k)tor/24E(k)tor| ≤ 24 × 6
and hence

6 × |E(k)tor/24E(k)tor| × (3/245)s∞ ≤ 36 × 24 × (3/245) < 11,

as we wished to show. �
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