Pacific Journal of Mathematics

INTEGER POINTS ON ELLIPTIC CURVES

WEN-CHEN CHI, KING FAI LAI AND KI-SENG TAN

Volume 222 No. 2

December 2005

INTEGER POINTS ON ELLIPTIC CURVES

WEN-CHEN CHI, KING FAI LAI AND KI-SENG TAN

We study Lang's conjecture on the number of *S*-integer points on an elliptic curve over a number field. We improve the exponent of the bound of Gross and Silverman from quadratic to linear by using the *S*-unit equation method of Evertse and a formula on 2-division points.

1. Introduction

Let *E* be an elliptic curve defined over an algebraic number field *k* of degree *d*. For a finite set *S* of places of *k* containing all the archimedean ones, we denote the ring of *S*-integers of *k* by \mathbb{O}_S . Serge Lang conjectured that if the Weierstrass equation of *E* is quasiminimal, then the cardinality of the set $E(\mathbb{O}_S)$ of \mathbb{O}_S -integer points of *E* should be bounded in terms of the field *k*, the cardinality of *S* and the rank of the group E(k) of *k*-rational points of *E* [Lang 1978, p. 140]. Silverman [1987] proved Lang's conjecture when *E* has integral *j*-invariant. In general, if *j*(*E*) is nonintegral for at most δ places of *k*, then a bound was also given with δ involved. However he did not compute the constants involved. Gross and Silverman [1995] used Roth's theorem to obtain an explicit bound. To state their theorem, let us write the Weierstrass equation of the elliptic curve *E* as

(1-1)
$$Y^2 = X^3 + \mathscr{A}X + \mathscr{B},$$

where $\mathcal{A}, \mathcal{B} \in \mathbb{O}_S$. Put $\Delta = 4\mathcal{A}^3 + 27\mathcal{B}^2$. Write j(E) for the *j*-invariant of *E*. Let D_k and R_k be the discriminant and the regulator of *k*. Let M_k be the set of all places of *k*. For a place $v \in M_k$, let k_v be the completion of *k* at *v* and let $| |_v$ be such that, for $z \in \mathbb{Q}$,

$$|z|_v = |z|_p^{[k_v:\mathbb{Q}_p]/[k:\mathbb{Q}]},$$

MSC2000: primary 11D45; secondary 11G05, 14K12.

Keywords: elliptic curves, *S*-integers, integer points, *S*-unit equations, 2-division points, Lang's conjecture.

Chi and Tan were supported in part by the National Science Council of Taiwan, grants NSC91-2115-M-003-006 and NSC89-2115-M-002-003 respectively.

where p is the place of \mathbb{Q} lying under v and $||_p$ is the usual absolute value. We use h_k to denote the multiplicative height. Namely, for $x \in k$

$$h_k(x) = \prod_{v \in M_k} \max(|x|_v, 1).$$

We shall write *s* for the cardinality of the set *S*.

Theorem 1.1 [1995]. Suppose that (1-1) is quasiminimal and that

$$6d(60d^2\log 6d)^d \left(\frac{2}{\sqrt{3}}\right)^{d(d-1)/2} \cdot \max(R_k, \log |D_k|, 1).$$

is at most

 $\max \{ \log h_k(j(E)), \log |\operatorname{Norm}_{k/\mathbb{Q}}(\Delta)| \}.$

Then

$$#E(\mathbb{O}_{S}) \le 2 \cdot 10^{11} \cdot d \cdot \delta^{3d} \cdot (32 \cdot 10^{9})^{r\delta + s}.$$

In this paper, we take a completely different approach. By using a formula on 2-division points from [2002], we associate to an *S*-integer point an unit equation over an extension of *k*. Then we use the machinery developed by J.-H. Evertse [1984] to obtain a quantitative bound for the number of *S*-integer points. Let $\mathcal{D}_{E/k}$ be the ideal of the minimal discriminant of E/k. Then we have

(1-2)
$$(\Delta) = \mathfrak{D}_{E/k} \cdot \prod_{v} P_{v}^{12\chi_{v}}$$

where P_v is the prime ideal corresponding to the place v and $\chi_v \in \mathbb{Z}$. For $v \in S$, $\chi_v \ge 0$. We factor the cubic over the algebraic closure \bar{k} of k as

$$X^{3} + \mathscr{A}X + \mathscr{B} = (X - \alpha)(X - \beta)(X - \gamma).$$

Let $k_1 = k(\alpha, \beta, \gamma)$ and $m = [k_1 : k]$. Further, let $M_{k,0}$ be the set of all nonarchimedean places in k.

Definition 1.2. Let w be a nonarchimedean place over a field extension K/k_1 . If the valuations $w(\alpha - \beta)$, $w(\beta - \gamma)$, $w(\gamma - \alpha)$ are all equal, we say that E has *G*-type reduction at w; otherwise, we say that E has *M*-type reduction at w.

In fact, if w' is another place of K such that both w and w' are sitting over a place $v \in M_{k,0}$, then the reductions of E at w and w' are of the same type. Therefore, we will say that at v, the reduction of E is also of that type. Furthermore, in the case where v(2) = 0, E has G-type reduction if and only if it has good or potential good reduction (see Lemma 3.1).

Define

$$S_{0} = \{ v \in M_{k,0} \setminus S \mid v(2) = 0, \, \chi_{v} = 0, \, v(\Delta) > 0, \, v(j(E)) \ge 0 \},$$

$$S_{1} = \{ v \in M_{k,0} \mid \chi_{v} > 0, \, v(j(E)) \ge 0 \},$$

$$S_{m} = \{ v \in M_{k,0} \mid E \text{ has M-type reduction at } v \},$$

$$S' = S \setminus (S_{0} \cup S_{1} \cup S_{m}).$$

Let s_1 , s_m , s' be the cardinality of S_1 , S_m , S'. Then s_m is at most $\delta + d$.

With the notations above, we can now state our main result.

Theorem 1.3.

$$#E(\mathbb{O}_{s}) \le 11 \times 7^{1.64r + 2.27(s'+s_1) + 3.7s_m + 10.3md}$$

Note that we do not require the equation (1-1) to be quasiminimal. If we did so, then, by [Silverman 1984, p. 238], we would have

$$\left|\operatorname{Norm}_{k/\mathbb{Q}}\prod_{v\in S_1}P^{\chi_v}\right| \leq |D_k|^6,$$

and hence

$$s_1 \le 6 \log |D_k|.$$

The exponent in the Gross–Silverman bound is *quadratic* in δ and r, while ours is *linear*, and our constants are smaller. Also, if the ABC Conjecture holds, our method can be applied to get a bound only in terms of r and k, in which the exponent is linear in s and r and differs from that obtained in [Hindry and Silverman 1988]. In fact, this has been achieved in [Chi et al. 2004] for the case where k is a function field of characteristic zero. Also, the method can be modified to bound the number of integer solutions to $Y^n = F(X)$; see [Chi et al. \geq 2006].

2. A formula for 2-division points

The following result can be proved by straightforward calculations. For details, see [Tan 2002] or [Chi et al. 2004, Section 2.2].

Lemma 2.1. In the notations preceding Theorem 1.3 a point $P = (a, b) \in E(k)$ determines an extension

$$K = k_1(\sqrt{a-\alpha}, \sqrt{a-\beta}, \sqrt{a-\gamma})$$

depending only on the class $[P] \in E(k)/2E(k)$. Given a choice of signs for $\sqrt{a-\alpha}$, $\sqrt{a-\beta}$, and $\sqrt{a-\gamma}$ such that

$$b = \sqrt{a - \alpha} \sqrt{a - \beta} \sqrt{a - \gamma},$$

the point $Q := (f, g) \in E(K)$ defined by

$$f - \alpha = (\sqrt{a - \alpha} + \sqrt{a - \beta})(\sqrt{a - \alpha} + \sqrt{a - \gamma}),$$

and

$$g = (\sqrt{a-\alpha} + \sqrt{a-\beta})(\sqrt{a-\beta} + \sqrt{a-\gamma})(\sqrt{a-\gamma} + \sqrt{a-\alpha}),$$

satisfies

2Q = P.

Furthermore, if $\{\alpha_1, \alpha_2, \alpha_3\} = \{\alpha, \beta, \gamma\}$, $D_i = (\alpha_i, 0) \in E(k_1)$, i = 1, 2, 3, and $Q^{(i)} = (f^{(i)}, g^{(i)}) = Q + D_i$, then

(2-1)
$$(f - \alpha_i)(f^{(i)} - \alpha_i) = (\alpha_i - \alpha_j)(\alpha_i - \alpha_{j'}),$$

where $\{j, j'\} = \{1, 2, 3\} \setminus \{i\}.$

3. Local calculations

Given a point $P \in E(k)$, let *K* be the field determined by *P* as in Lemma 2.1. For $v \in M_k$, let K_w be the completion of *K* with respect to a place *w* lying over *v*. Then K_w/k_v is a Galois extension. Let I_w be the inertia subgroup of $\text{Gal}(K_w/k_v)$. In this section, we assume that *w* is nonarchimedean and view it as an valuation from K_w onto $\mathbb{Z} \cup \{\infty\}$.

Lemma 3.1. Suppose *E* has potential good reduction at a place v of *k* such that v(2) = 0. Then for any place w of *K* lying over v, we have

$$w(\alpha - \beta) = w(\beta - \gamma) = w(\gamma - \alpha).$$

Proof. Suppose on the contrary that

$$w(\gamma - \alpha) > w(\alpha - \beta) = w(\beta - \gamma).$$

We can find a field extension \tilde{K} of K such that $\tilde{v}(\alpha - \beta) = 2m, m \in \mathbb{Z}$, where \tilde{v} is a place of \tilde{K} lying over w. By our assumption, we have $\tilde{v}(\beta - \gamma) = 2m$ and $\tilde{v}(\gamma - \alpha) > 2m$. Consider the elliptic curve \tilde{E} defined by

$$\tilde{E}: \quad \tilde{Y}^2 = \tilde{X}(\tilde{X} - \tilde{\beta})(\tilde{X} - \tilde{\gamma}),$$

which was obtained from (1-1) by the change of variables

$$\begin{split} \tilde{Y} &= Y/\pi^{3m}, \qquad \tilde{X} &= (X-\alpha)/\pi^{2m}, \\ \tilde{\beta} &= (\beta-\alpha)/\pi^{2m}, \quad \tilde{\gamma} &= (\gamma-\alpha)/\pi^{2m}, \end{split}$$

where π is a uniformizer of the prime ideal associated to \tilde{v} in \tilde{K} . Then $\tilde{v}(\tilde{\beta}) = 0$ and $\tilde{v}(\tilde{\gamma}) > 0$. This implies that \tilde{E} has multiplicative reduction at \tilde{v} . Consequently, $\tilde{v}(j_E) = \tilde{v}(j_{\tilde{E}}) < 0$ which contradicts our hypothesis.

Now assume that the equation for E is minimal at v. Let \mathbb{F}_v be the residue field of v and let \overline{E} be the reduction of E at v. As usual, for $P \in E(k_v)$, we denote its image under the reduction map $E(k_v) \to \overline{E}(\mathbb{F}_v)$ by \overline{P} . Put

$$E_0(k_v) = \{ P \in E(k_v) \mid \overline{P} \in \overline{E}_{ns}(\mathbb{F}_v) \},\$$

where \bar{E}_{ns} is the set of nonsingular points of \bar{E} . We have the following key lemma. Here we retain the notations in Lemma 2.1.

Lemma 3.2. Assume that at v, where v(2) = 0, the Weierstrass equation (1–1) is minimal and E has potential good reduction. For P_1 , $P_2 \in E(\mathbb{O}_v)$, let $Q_i = (f_i, g_i) \in E(K_w)$, for i = 1, 2, be such that $2Q_i = P_i$. If $Q_1 - Q_2 \in E_0(k_v)$, then

$$w(f_1 - \alpha) = w(f_2 - \alpha)$$
 and $w(f_1 - \beta) = w(f_2 - \beta)$.

Before we give the proof of Lemma 3.2, we recall some basic facts on the formal group associated to an elliptic curve.

Suppose $w(\alpha - \beta) = 2a + \epsilon$, where $a \in \mathbb{N} \cup \{0\}$ and $\epsilon = 0$ or 1. By Lemma 3.1, $w(\beta - \gamma) = w(\gamma - \alpha) = 2a + \epsilon$. Consider the change of variables

$$\begin{split} \tilde{Y} &= Y/\pi^{3a}, \qquad \tilde{X} &= (X-\alpha)/\pi^{2a}, \\ \tilde{\beta} &= (\beta-\alpha)/\pi^{2a}, \quad \tilde{\gamma} &= (\gamma-\alpha)/\pi^{2a}, \end{split}$$

where π is a uniformizer of the prime ideal associated to w. Then

$$\tilde{E}: \quad \tilde{Y}^2 = \tilde{X}(\tilde{X} - \tilde{\beta})(\tilde{X} - \tilde{\gamma}),$$

is a minimal Weierstrass equation for E over K_w . For i = 1, 2, let $\tilde{Q}_i = (\tilde{f}_i, \tilde{g}_i)$, be the points on \tilde{E} corresponding to Q_i . Let \hat{E} be the formal group associated to \tilde{E}/K_w . For $m \ge 0$, set

$$\hat{E}_m = \begin{cases} \tilde{E}_0(K_w) & \text{if } m = 0, \\ \hat{E}(\pi^m \mathbb{O}_{K_w}) & \text{if } m > 0. \end{cases}$$

Then we have the filtration

$$\cdots \subset \hat{E}_{m+1} \subset \hat{E}_m \subset \cdots \subset \hat{E}_1 \subset \hat{E}_0.$$

Also, recall that we have the exact sequence

$$0\longrightarrow \hat{E}_1\longrightarrow \hat{E}_0\longrightarrow \bar{\tilde{E}}_{ns}\longrightarrow 0,$$

where \tilde{E}_{ns} is the nonsingular part of the reduction of \tilde{E} .

For a point $R = (\tilde{X}, \tilde{Y})$ in $\tilde{E}(K_w)$, let $\tilde{t} = -\tilde{X}/\tilde{Y}$. The following lemma follows easily from [Silverman 1986, Chapter IV].

Lemma 3.3. Let notations be as above.

(1) *If* m > 0, *then*

$$R \in \hat{E}_m \setminus \hat{E}_{m+1} \Longleftrightarrow w(\tilde{t}) = m \iff \left(w(\tilde{X}) = -2m \text{ and } w(\tilde{Y}) = -3m\right)$$

(2) If m = 0 and $\epsilon = 0$, then

$$R \in \hat{E}_0 \setminus \hat{E}_1 \iff w(\tilde{t}) \le 0 \iff \left(w(\tilde{X}) \ge 0 \text{ and } w(\tilde{Y}) \ge 0\right)$$

(3) If m = 0 and $\epsilon = 1$, then

$$R \in \hat{E}_0 \setminus \hat{E}_1 \iff w(\tilde{t}) = 0 \iff \left(w(\tilde{X}) = 0 \text{ and } w(\tilde{Y}) = 0\right).$$

Note that if $\epsilon = 0$, then \tilde{E} has good reduction at w. In this case, $\hat{E}_0 = \tilde{E}(K_w)$.

Lemma 3.4. Under the hypothesis of Lemma 3.2, suppose that $w(\alpha - \beta) = 2a + \epsilon$ and $Q = (f, g) \in E_0(k_v)$. Then $\tilde{Q} \in \hat{E}_a \subset \hat{E}_0$.

Proof. Recall that the reduction of E is

$$\bar{E}: \ \bar{Y}^2 = (\bar{X} - \bar{\alpha})(\bar{X} - \bar{\beta})(\bar{X} - \bar{\gamma}).$$

The singularity of \overline{E} is $(\overline{\alpha}, 0)$.

If $Q = (f, g) \in E_0(k_v)$, then $w(f - \alpha) \le 0$. Since $\tilde{f} = (f - \alpha)/\pi^{2a}$, $\tilde{g} = g/\pi^{3a}$, we have $w(\tilde{f}) \le -2a$. By Lemma 3.3, we have $\tilde{Q} \in \hat{E}_a \subset \hat{E}_0$.

Proof of Lemma 3.2. We apply Lemma 2.1 with $\alpha_1 = \alpha$, $\alpha_2 = \beta$, and $\alpha_3 = \gamma$. Then $Q'_1 = Q_1 + (\alpha, 0)$, and so on. By (2–1), we have

$$(f_1 - \alpha)(f'_1 - \alpha) = (\alpha - \beta)(\alpha - \gamma).$$

This and Lemma 3.1 imply

$$w(f_1 - \alpha) + w(f_1' - \alpha) = 2(2a + \epsilon),$$

and

(3-1)
$$w(\tilde{f}_1) + w(\tilde{f}'_1) = 2\epsilon.$$

Similarly,

(3-2)
$$w(\tilde{f}_2) + w(\tilde{f}_2') = 2\epsilon.$$

First we consider the case where

$$w(f_1 - \alpha) \le 2a + \epsilon.$$

Then $w(\tilde{f}_1) \leq \epsilon$. If $w(\tilde{f}_1) > 0$, then $w(\tilde{f}_1) = \epsilon = 1$. In this situation, \tilde{E} has additive reduction at w and (0, 0) is the singularity of the reduction. Therefore, $\tilde{Q}_1 \notin \tilde{E}_0(K_w)$. By Lemma 3.4, $\tilde{Q}_1 - \tilde{Q}_2 \in \hat{E}_a \subset \hat{E}_0$, and consequently \tilde{Q}_2 is not in $\tilde{E}_0(K_w)$. Hence $w(\tilde{f}_2) > 0$. By (3–1), we also have $w(\tilde{f}_1') = 1$. Repeating the above argument, we also conclude that $w(\tilde{f}_2') > 0$. Then (3–2) implies that $w(\tilde{f}_2) = w(\tilde{f}_2') = 1$.

Now, assume that $w(\tilde{f}_1) = -2m \le 0$. Note that by Lemma 2.1 $Q_i \in E(\mathbb{O}_w)$, i = 1, 2 and we have $w(f_i - \alpha) \ge 0$. Hence,

$$(3-3) w(\tilde{f}_i) \ge -2a.$$

This means that $\tilde{Q}_1 \notin \hat{E}_{a+1}$ and $\tilde{Q}_1 \in \hat{E}_m \setminus \hat{E}_{m+1}$. If a > m, then by Lemma 3.3 and Lemma 3.4, we also have

$$\tilde{Q}_2 \in \hat{E}_m \setminus \hat{E}_{m+1}$$

and hence $w(\tilde{f}_2) = -2m$. If a = m, then we have $\tilde{Q}_2 \in \hat{E}_a$ and hence $w(\tilde{f}_2) \leq -2a$. By (3–3), we have $w(\tilde{f}_2) = -2m$, too.

For the case where

$$w(f_1 - \alpha) > 2a + \epsilon,$$

we consider f'_1 , which, according to (2–1), satisfies

$$w(f_1'-\alpha) < 2a+\epsilon.$$

Then the argument above can be applied to verify that

$$w(f_2' - \alpha) = w(f_1' - \alpha).$$

We complete the proof by applying (2-1).

Let *K* be as given in Lemma 2.1 and let *w* be a nonarchimedean place of *K*. A point $Q = (f, g) \in E(K_w)$ is called *special* if

$$w(f-\alpha) < \min\{w(\alpha-\beta), w(\beta-\gamma), w(\gamma-\alpha)\}.$$

If Q is special, then

$$w(f - \alpha) = w(f - \beta) = w(f - \gamma).$$

Put $\{\alpha_1, \alpha_2, \alpha_3\} = \{\alpha, \beta, \gamma\}$, and let $Q^{(i)}$ be as in Lemma 2.1.

Lemma 3.5. Suppose that $Q^{(0)} = Q \in E(K_w)$ and E has G-type reduction at w with

$$w(\alpha_1 - \alpha_2) = w(\alpha_2 - \alpha_3) = w(\alpha_3 - \alpha_1) = \epsilon.$$

 \square

(1) If Q is special and $w(f - \alpha_1) = \epsilon - e < \epsilon$, then for $j = 1, 2, 3, Q^{(j)}$ is not special and

$$w(f^{(j)} - \alpha_i) = \begin{cases} \epsilon + e & \text{if } i = j, \\ \epsilon & \text{if } i \neq j. \end{cases}$$

(2) If every $Q^{(j)}$ is not special for j = 0, 1, 2, 3, then, for every *i* and *j*,

$$w(f^{(j)} - \alpha_i) = \epsilon$$

Proof. Suppose that Q is special. By (2-1),

$$w(f^{(j)} - \alpha_j) = 2w(\alpha - \beta) - w(f - \alpha) = \epsilon + e.$$

If $i \neq j$, then

$$w(f^{(j)} - \alpha_i) = w(f^{(j)} - \alpha_j + \alpha_j - \alpha_i) = \min(\epsilon + e, \epsilon) = \epsilon.$$

If every $Q^{(j)}$, j = 0, 1, 2, 3, is not special, then for every i, $w(f^{(j)} - \alpha_i) \ge \epsilon$. By (2–1) again, we must have $w(f^{(j)} - \alpha_i) \le \epsilon$.

Lemma 3.6. Suppose that $Q \in E(K_w)$ and E has M-type reduction with

 $\epsilon_1 = w(\alpha_1 - \alpha_2) = w(\alpha_1 - \alpha_3) < w(\alpha_2 - \alpha_3) = \epsilon_2.$

(1) If Q is special and $w(f - \alpha_1) = \epsilon_1 - e < \epsilon_1$, then, for $j = 1, 2, 3, Q^{(j)}$ is not special and

$$w(f^{(j)} - \alpha_i) = \begin{cases} \epsilon_1 + e & \text{if } i = j = 1, \\ \epsilon_2 + e & \text{if } i = j = 2, 3, \\ \epsilon_1 & \text{if } (j = 1, i \neq 1) \text{or } (i = 1, j \neq 1), \\ \epsilon_2 & \text{if } i, j = 2, 3, j \neq i. \end{cases}$$

(2) If every $Q^{(j)}$, j = 0, 1, 2, 3, is not special and $w(f - \alpha_2) = \epsilon_1 + e$, then

$$\epsilon_1 = w(f - \alpha_1) \le \epsilon + e = w(f - \alpha_3) \le \epsilon_2.$$

Moreover, for i, j = 1, 2, 3,

$$w(f^{(j)} - \alpha_i) = \begin{cases} \epsilon_1 + e & \text{if } j = 1, i \neq 1\\ \epsilon_1 & \text{if } i = 1\\ \epsilon_2 - e & \text{if } i \neq 1, j \neq 1. \end{cases}$$

Proof. Most of the proof is similar to that of Lemma 3.5. Only the valuations of $f^{(1)} - \alpha_i$, $i \neq 1$, need special calculation. But, since $Q^{(1)} = Q^{(2)} + D_3$ and

 $Q^{(1)} = Q^{(3)} + D_2$, by (2–1), we have

$$w(f^{(2)} - \alpha_2) + w(f^{(1)} - \alpha_2) = \epsilon_1 + \epsilon_2,$$

$$w(f^{(3)} - \alpha_3) + w(f^{(1)} - \alpha_3) = \epsilon_1 + \epsilon_2.$$

4. Unit equations

Let

$$\mathscr{C} = \{ (P, Q) \mid P \in E(\mathbb{O}_S), \ 2Q = P \}.$$

For $(P_1, Q_1), (P_2, Q_2) \in \mathcal{C}$, we define an equivalence relation as follows:

$$(P_1, Q_1) \sim (P_2, Q_2)$$
 if and only if $Q_1 - Q_2 \in 12E(k)$.

Let $(P_1, Q_1), \ldots, (P_c, Q_c)$ represent all the equivalence classes in \mathscr{C} . Then

$$c \le 4 \times E(k)/24E(k) \le 4 \times 24^{r+2}$$

Now, we fix an equivalence class represented by (P_l, Q_l) . If $(P, Q) \sim (P_l, Q_l)$ and $Q = (f, g), Q_l = (f_l, g_l)$, then the quantities

(4-1)
$$x = (f - \alpha)/(f_l - \alpha), \quad y = (f - \beta)/(f_l - \beta),$$
$$\lambda = (f_l - \alpha)/(\beta - \alpha), \quad \mu = (\beta - f_l)/(\beta - \alpha)$$

satisfy

$$\lambda x + \mu y = 1.$$

Note that Q and Q_l determine the same field extension K/k. Let

$$S = \{w \mid w \in M_K \text{ and } w \mid v, \text{ for some } v \in S' \cup S_1 \cup S_m\}.$$

Using (2–1), we see that x and y are units at every place w not sitting over $S \cup S_0 \cup S_1 \cup S_m$. For $v \in S_0$, E has additive reduction at v. Therefore,

$$12E(k_v) \subset E_0(k_v).$$

Applying Lemma 3.2 to Q and Q_l , we see that (4–2) is an \tilde{S} -unit equation.

Now we apply the theory of [Evertse 1984] to bound the cardinality of the equivalence class of (P_l, Q_l) . We will follow the setting in that paper. Fix a primitive third root ρ of 1 and put $L = K(\rho)$. Given (P, Q) in the equivalence class of (P_l, Q_l) , we define x, y, λ, μ by (4–1) and put

$$\xi = \xi(x, y) = \lambda x - \rho \mu y, \ \eta = \eta(x, y) = \lambda x - \rho^2 \mu y, \ \zeta = \zeta(x, y) = \xi/\eta.$$

We denote by \mathcal{V}^0 the set of those $\zeta \in L$ for which an \tilde{S} -unit solution (x, y) of (4–2) exists with $\lambda x/\mu y$ not a root of one and such that $\zeta = \zeta(x, y)$. We denote by \mathcal{V}^1 the subset consisting of those $\zeta(x, y)$ such that x and y are defined by (4–1)

using a point (P, Q) in the equivalence class of (P_l, Q_l) . We can recover x and y from ζ . Therefore, it is enough to bound the number of elements in \mathcal{V}^1 .

Let T be the set of places of L sitting over \tilde{S} and put

$$A = \left(\prod_{V \in T} |3|_V\right)^{1/2} \prod_{V \in T} |\lambda \mu|_V \left(\prod_{V \notin T} \max(|\lambda|_V \cdot |\mu|_V)\right)^3.$$

Definition 4.1. For $V \in M_L$, $\zeta \in L$, put

$$m_V(\zeta) = \min_{i=0,1,2} (1, \max(|1-\rho^i \zeta|_V, |1-\rho^{-i} \zeta^{-1}|_V)).$$

Lemma 4.2 [Evertse 1984, Lemma 3]. We have

$$\prod_{V \in T} m_V(\zeta) \le 8Ah(\zeta)^{-3} \quad for \ \zeta \in \mathcal{V}^0.$$

The next lemma follows by direct calculation.

Lemma 4.3. Suppose that $V \in M_L$ is nonarchimedean and $\zeta = \zeta(x, y) \in \mathcal{V}^0$.

(1) If $|\mu y|_V < 1$, then

$$m_V(\zeta) = |1 - \zeta|_V = |(1 - \rho)\mu y|_V < |1 - \rho^i \zeta|_V, \text{ for } i \neq 0.$$

(2) *If* $|\lambda x|_V < 1$, *then*

$$m_V(\zeta) = |1 - \rho\zeta|_V = |(1 - \rho)\lambda x|_V$$

$$< |1 - \rho^i \zeta|_V, \text{ for } i \neq 1.$$

(3) If $|\lambda x|_V^{-1} < 1$, then

$$m_V(\zeta) = |1 - \rho^2 \zeta|_V = |(1 - \rho)(\lambda x)^{-1}|_V$$

< $|1 - \rho^i \zeta|_V$, for $i \neq 2$.

(4) If $|\lambda x|_V = |\mu y|_V = 1$, then

$$m_V(\zeta) = |1 - \zeta|_V = |1 - \rho\zeta|_V$$

= $|1 - \rho^2 \zeta|_V = |1 - \rho|_V$

Definition 4.4. For a ζ in \mathcal{V}^0 and $V \in T$, we choose a $\rho_V \in \{1, \rho, \rho^2\}$ such that

$$m_V(\zeta) = \min(1, \max(|1 - \rho_V \zeta|_V, |1 - \rho_V^{-1} \zeta^{-1}|_V)).$$

If V is nonarchimedean and we are in case (4) of the preceding lemma, we choose $\rho_V = 1$.

For a nonarchimedean place $v \in S' \cup S_1 \cup S_m$, let

$$T_v = \{ V \in T \mid V | v \}.$$

Recall that if $\zeta \in \mathcal{V}^1$, there is an associated $(P, Q) \in \mathcal{C}$.

From now on, we fix the indices so that $\alpha_1 = \alpha$, $\alpha_2 = \beta$, $\alpha_3 = \gamma$, $D_i = (\alpha_i, 0)$, and as before, we put $Q^{(i)} = Q + D_i$.

Definition 4.5. Let ζ be in \mathcal{V}^1 and let V be a nonarchimedean place. We say that ζ is *of type i*, where i = 0, 1, 2, 3, if $Q^{(i)}$ is special at V. If none of the $Q^{(i)}$ is special, we say that ζ is *of type* 4.

Consider the set of numbers

$$\left|(f^{(j)}-\alpha_{j_1})/(\alpha_{j_1}-\alpha_{j_2})\right|_V$$

and their inverses, where we take $j = 0, 1, 2, 3, j_1, j_2 = 1, 2, 3$, and $j_1 \neq j_2$. By the *conductor* of ζ at V we mean the set $C_V(\zeta)$ consisting of all those numbers in this set which are at most one. We list the elements of $C_V(\zeta)$ as $c_{V,i}$ with i = 0, 1, 2, ... and $c_{V,0} = 1$. If E has G-type reduction at V, then Lemma 3.5 implies that

$$C_V = \begin{cases} \{1, c_{V,1}\} & \text{if } \zeta \text{ is of type } 0, 1, 2, 3\} \\ \{1\} & \text{if } \zeta \text{ is of type } 4. \end{cases}$$

Also, if E has M-type reduction at V, then Lemma 3.6 implies that

$$C_V = \begin{cases} \{1, c_{V,1}, c_{V,2}\} & \text{if } \zeta \text{ is of type } 0, 1, 2, 3; \\ \{1, c_V\} \text{ or } \{1, c_{V,1}, c_{V,2}\} & \text{if } \zeta \text{ is of type } 4. \end{cases}$$

Set $\mathcal{G} = \text{Gal}(L/k)$. Then \mathcal{G} acts transitively on T_v and for $z \in L$, $\sigma \in \mathcal{G}$, we have

(4-3)
$$|z|_{\sigma(V)} = |\sigma^{-1}(z)|_V.$$

For $z = (f - \alpha)/(\alpha - \beta)$, or $z = (f - \beta)/(\alpha - \beta)$, we have

$$\sigma^{-1}(z) \in \{ (f^{(j)} - \alpha_i) / (\alpha_i - \alpha_{i'}) \mid j = 0, 1, 2, 3, i, i' = 1, 2, 3 \}.$$

From these facts and Lemma 4.3, we can deduce the next result:

Lemma 4.6. Let $v \in S' \cup S_1 \cup S_m$ be a nonarchimedean place and let V_0 be a place in T_v . Then, for a given $\zeta \in \mathcal{V}^1$, the map $T_v \to \{1, \rho, \rho^2\}$, $V \mapsto \rho_V$, depends only on the type of ζ at V_0 . Moreover, if E has G-type reduction at v and $C_{V_0} = \{1\}$ or $\{1, c_{V_0, 1}\}$, there is a decomposition

$$T_v = T_v^0 \cup T_v^1,$$

which depends only on the type of ζ such that

$$m_V = \begin{cases} 1 & \text{if } V \in T_v^0 \\ c_{V_0,1} & \text{if } V \in T_v^1. \end{cases}$$

Also, if E has M-type reduction at v, there is a decomposition

$$T_v = T_v^0 \cup T_v^1 \cup T_v^2$$

which depends only on the type of ζ such that

$$m_{V} = \begin{cases} 1 & \text{if } V \in T_{v}^{0}, \\ c_{V_{0},1} & \text{if } V \in T_{v}^{1}, \\ c_{V_{0},2} & \text{if } V \in T_{v}^{2}. \end{cases}$$

Let $v \in S' \cup S_1 \cup S_m$ be a nonarchimedean place. We fix a place V_0 in T_v , and put $t_v^i = \#T_v^i$. If *E* has G-type reduction at *v*, define

$$m_v = c_{V_{0,1}}^{t_v^1}.$$

If E has M-type reduction at v, define

$$m_{v,1} = c_{V_{0,1}}^{t_v^1}$$
 and $m_{v,2} = c_{V_{0,2}}^{t_v^2}$.

Here we use the convention that if T_v^i is empty, the associated m_v or $m_{v,i}$ is 1.

The following lemma is similar to [Evertse 1984, Lemma 5]. Let S_{∞} and T_{∞} be respectively the set of all infinite places in k and L, also, let $s_{\infty} = \#S_{\infty}$ and $t_{\infty} = \#T_{\infty}$. Note that every place in T_{∞} is complex, and hence

$$t_{\infty} = [L:\mathbb{Q}]/2 \le 4md.$$

For a real number *B* with 0 < B < 1, put

$$R(B) = (1-B)^{-1} B^{B/(B-1)}$$

Lemma 4.7. Let B be a real number with $1/2 \le B < 1$. There exists a set W_1 of cardinality at most

$$5^{s'+s_1+s_m-s_\infty}\times 3^{t_\infty}\times R(B)^{s'+s_1+2s_m-s_\infty+t_\infty-1},$$

consisting of tuples $((\rho_V)_{V \in T}, (\Gamma_V)_{V \in T})$ with $\rho_V^3 = 1$ and $\Gamma_V \ge 0$ for $V \in T$ and $\sum_{V \in T} \Gamma_V = B$ with the following property: for every $\zeta \in \mathcal{V}^1$ there is a tuple $((\rho_V)_{V \in T}, (\Gamma_V)_{V \in T}) \in \mathcal{W}_1$ such that ζ satisfies

(4-4)
$$\min(1, |1 - \rho_V \zeta|_V) \le (8Ah(\zeta)^{-3})^{\Gamma_V}, \text{ for } V \in T.$$

Proof. Consider the index set

$$I = \{(w, j) \mid (j = 1, w \in (S' \cup S_1 \cup T_\infty) \setminus (S_m \cup S_\infty)) \text{ or } (j = 1, 2, w \in S_m)\}.$$

Then $#I \le q := s' + s_1 + 2s_m - s_\infty + t_\infty$. For $\zeta \in \mathcal{V}^1$ and $(w, j) \in I$, let

$$m_{w,j} = \begin{cases} m_v & \text{if } w = v \in (S' \cup S_1) \setminus (S_m \cup S_\infty), \\ m_V & \text{if } w = V \in T_\infty, \\ m_{v,1} & \text{if } w = v \in S_m \text{ and } j = 1, \\ m_{v,2} & \text{if } w = v \in S_m \text{ and } j = 2. \end{cases}$$

By Lemma 4.2, we have

(4-5)
$$\prod_{(w,j)\in I} m_{w,j} \le 8Ah(\zeta)^{-3}, \text{ for } \zeta \in \mathcal{V}^1.$$

We know form [Evertse 1984, Lemma 4] that there exists a set \mathcal{W} of cardinality at most $R(B)^{q-1}$ consisting of tuples $(\Phi_{w,j})_{(w,j)\in I}$ such that for every $\zeta \in \mathcal{V}^1$ there is a tuple $(\Phi_{w,j})_{(w,j)\in I}$ such that

$$m_{w,j} \leq (8Ah(\zeta)^{-3})^{\Phi_{w,j}}.$$

Here the tuples can be chosen such that if $m_{w,j} = 1$, then $\Phi_{w,j} = 0$. In particular, if T_v^j is empty, we put $\Phi_{w,j}/t_v^j = 0$. We define

$$\Gamma_{V} = \begin{cases} 0 & \text{if } V \in T_{v}^{0} \text{ for some } v \in S' \cup S_{1} \cup S_{m} \setminus S_{\infty}, \\ \Phi_{w,1}/t_{v}^{1} & \text{if } V \in T_{v}^{1} \text{ for some } v \in (S' \cup S_{1} \cup S_{m}) \setminus S_{\infty}, \\ \Phi_{w,2}/t_{v}^{2} & \text{if } V \in T_{v}^{2} \text{ for some } v \in S_{m}, \\ \Phi_{w,j} & \text{if } V \in T_{\infty}. \end{cases}$$

Then inequality (4–4) holds. By Lemma 4.6, there are at most $5^{s'+s_1+s_m-s_\infty} \times 3^{t_\infty}$ choices of ρ_V 's.

Now take B = 0.846. The total number of $\zeta \in W^1$ that satisfy a fixed system (4–4) and for which we have $h(\zeta) \ge e^8/2$ is at most 25 (see [Evertse 1984, p. 583]). The cardinality of W^1 is at most

$$5^{s'+s_1+s_m-s_{\infty}} \times 3^{t_{\infty}} \times R(B)^{s'+s_1+2s_m-s_{\infty}+t_{\infty}-1}$$

$$\leq 5^{s'+s_1+s_m-s_{\infty}} \times 3^{t_{\infty}} \times (49/3)^{s'+s_1+2s_m-s_{\infty}+t_{\infty}-1}$$

$$\leq 2/25 \times (3/49) \times (245/3)^{s'+s_1} \times (12005/9)^{s_m} \times (3/245)^{s_{\infty}} \times (7)^{2t_{\infty}}.$$

We note that t_{∞} is at most 4md. A simple calculation shows that

$$\#\mathcal{W}^1 \le 2/25 \times (3/49) \times 7^{2.27(s'+s_1)+3.7s_m+8md} \times (3/245)^{s_\infty}$$

By [Evertse 1984, (36)], we have $h(\lambda x/\mu y) \le 2h(\zeta(x, y))$. All of this yields the following lemma.

Lemma 4.8. The total number of $(P, Q) \sim (P_l, Q_l)$ with Q = (f, g) such that $h((f - \alpha)/(f - \beta)) \ge e^8$ is at most

$$6/49 \times 7^{2.27(s'+s_1)+7.2s_m+8md} \times (3/245)^{s_{\infty}}$$

Proof of Theorem 1.3. We first fix the equivalence class of (P_l, Q_l) . We follow the argument in [Evertse 1984, p. 583]. Let $\tilde{s} = #\tilde{S}$. The group of \tilde{S} -units is the direct product of \tilde{s} multiplicative cyclic groups, one of which is finite. The fraction $(f - \alpha)/(f - \beta)$ is a \tilde{S} -unit. We assume that for each $v \in S' \cup S_1 \cup S_m \setminus S_\infty$, a place $V_v \in T_v$ is chosen. Consider the index set

$$\Phi := \{ (i_v)_v \mid i_v = 1, 2, 3, 4, 5, v \in S' \cup S_1 \cup S_m \setminus S_\infty \}.$$

For each $\phi = (i_v)_v \in \Phi$, let

$$\mathscr{V}_{\phi}^{1} = \{ \zeta \in \mathscr{V}^{1} \mid \zeta \text{ is of type } i_{v} \text{ at every } v \in S' \cup S_{1} \cup S_{m} \setminus S_{\infty} \}.$$

Then by (2-1) and (4-3), under the map

$$\begin{aligned} \mathcal{V}^1 &\to \prod_{V \in \tilde{S} \setminus \tilde{S}_{\infty}} K_V^* \\ \zeta &\mapsto (|(f - \alpha)/(f - \beta)|_V)_V \end{aligned}$$

the image of each \mathcal{V}_{ϕ}^{1} is in a coset of a subgroup which is a direct product of less than $s' + s_1 + s_m - s_{\infty}$ multiplicative cyclic groups. This shows that, for a fixed ϕ , the set of all $(f - \alpha)/(f - \beta)$ for which $\zeta \in \mathcal{V}_{\phi}^{1}$ is in a coset of a subgroup which is a direct product of less than $s_3 := t_{\infty} + s' + s_1 + s_m - s_{\infty}$ multiplicative cyclic groups. Let *n* be a positive integer. Then there is an \tilde{S} -unit *z* and an element $\omega \in K$ belonging to a fixed set of cardinality at most n^{s_3} which does not depend on *f* such that $(f - \alpha)/(f - \beta) = \omega z^n$. Let ω be a fixed element of this set and let θ be a fixed *n*'th root of ω . By [Evertse 1984, Lemma 1], the number of nonzero *z* in *K* with $h(\theta z) < e^{8/n}$ is at most $5(2e^{24/n})^{[K:\mathbb{Q}]}$. Also, the fraction $(f - \alpha)/(f - \beta)$ determines ζ . Using these and taking n = 49/3, we see that the cardinality of the subset of \mathcal{V}^1 consisting of those ζ with $h((f - \alpha)/(f - \beta)) < e^8$ is at most

$$5^{s'+s_1+s_m-s_\infty} \times 5n^{s_3} (2e^{24/n})^{[K:\mathbb{Q}]} \le (245/3)^{s'+s_1+s_m-s_\infty} \times 5 \times (49/3)^{t_\infty} \times 8.78^{4md} \le 5 \times 7^{2.27(s'+s_1+s_m)+10.3md} \times (3/245)^{s_\infty}.$$

Therefore,

$$\begin{aligned} \#\mathscr{C} &\leq 4 \times |E(k)/24E(k)| \times (3/245)^{s_{\infty}} \times (6/49 \times 7^{2.27(s'+s_1)+3.7s_m+8md} \\ &\quad + 3/49 \times 7^{2.27(s'+s_1+s_m)+10.3md}) \\ &\leq 4 \times |E(k)_{\text{tor}}/24E(k)_{\text{tor}}| \times (3/245)^{s_{\infty}} \times 24^r \times 6 \times 7^{2.27(s'+s_1)+3.7s_m+10.3md} \\ &\leq 4 \times 6 \times |E(k)_{\text{tor}}/24E(k)_{\text{tor}}| \times (3/245)^{s_{\infty}} \times 7^{1.64r+2.27(s'+s_1)+3.7s_m+10.3md}. \end{aligned}$$

The map $\mathscr{C} \to E(\mathbb{O}_S)$ given by $(P, Q) \mapsto P$ is 4 to 1. If $s_{\infty} \ge 2$, then

$$6 \times |E(k)_{\text{tor}}/24E(k)_{\text{tor}}| \times (3/245)^{s_{\infty}} \le 6 \times 24^2 \times (3/245)^2 < 1,$$

and the theorem is proved. Otherwise, the number field k has degree at most 2, and the order of the torsion part of the multiplicative group k^* is at most 6. In this case, via Weil pairing, we see that if $E(k)_{tor}$ contains a subgroup of the form $\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ then $N \leq 6$. Consequently, we have $|E(k)_{tor}/24E(k)_{tor}| \leq 24 \times 6$ and hence

$$6 \times |E(k)_{\text{tor}}/24E(k)_{\text{tor}}| \times (3/245)^{s_{\infty}} \le 36 \times 24 \times (3/245) < 11,$$

as we wished to show.

References

- [Chi et al. 2004] W.-C. Chi, K. F. Lai, and K.-S. Tan, "Integral points on elliptic curves over function fields", *J. Aust. Math. Soc.* **77**:2 (2004), 197–208. MR 2005g:11093 Zbl 02158910
- [Chi et al. \geq 2006] W.-C. Chi, P.-Y. Huang, and K.-S. Tan, "Uniform bounds for the number of integer solutions to $Y^n = f(X)$ ". In preparation.
- [Evertse 1984] J.-H. Evertse, "On equations in S-units and the Thue–Mahler equation", *Invent. Math.* **75**:3 (1984), 561–584. MR 85f:11048 Zbl 0521.10015
- [Gross and Silverman 1995] R. Gross and J. Silverman, "*S*-integer points on elliptic curves", *Pacific J. Math.* **167**:2 (1995), 263–288. MR 96c:11057 Zbl 0824.11038
- [Hindry and Silverman 1988] M. Hindry and J. H. Silverman, "The canonical height and integral points on elliptic curves", *Invent. Math.* **93**:2 (1988), 419–450. MR 89k:11044 Zbl 0657.14018
- [Lang 1978] S. Lang, *Elliptic curves: Diophantine analysis*, Grundlehren der Mathematischen Wissenschaften 231, Springer, Berlin, 1978. MR 81b:10009 Zbl 0388.10001
- [Silverman 1984] J. H. Silverman, "The S-unit equation over function fields", Math. Proc. Cambridge Philos. Soc. 95:1 (1984), 3–4. MR 85e:11018 Zbl 0533.10013
- [Silverman 1986] J. H. Silverman, *The arithmetic of elliptic curves*, Graduate Texts in Mathematics **106**, Springer, New York, 1986. MR 87g:11070 Zbl 0585.14026
- [Silverman 1987] J. H. Silverman, "A quantitative version of Siegel's theorem: integral points on elliptic curves and Catalan curves", *J. Reine Angew. Math.* **378** (1987), 60–100. MR 89g:11047 Zbl 0608.14021
- [Tan 2002] K.-S. Tan, "A 2-division formula for elliptic curves", National Taiwan University, January 2002.

Received April 19, 2004.

WEN-CHEN CHI DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN NORMAL UNIVERSITY TAIPEI TAIWAN

wchi@math.ntnu.edu.tw

KING FAI LAI SCHOOL OF MATHEMATICS AND STATISTICS UNIVERSITY OF SYDNEY SYDNEY, NSW 2006 AUSTRALIA

kflai@maths.usyd.edu.au

KI-SENG TAN Department of Mathematics National Taiwan University Taipei Taiwan

tan@math.ntu.edu.tw

252