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ANALYTIC FLOWS ON THE UNIT DISK: ANGULAR
DERIVATIVES AND BOUNDARY FIXED POINTS

MANUEL D. CONTRERAS AND SANTIAGO DÍAZ-MADRIGAL

We use the concept of angular derivative and the hyperbolic metric in the
unit disk D, to study the dynamical aspects of the equilibrium points belong-
ing to ∂D of some complex-analytic dynamical systems on D. Our results
show a deep connection between the dynamical properties of those equilib-
rium points and the geometry of certain simply connected domains of C.
As a consequence, and in the context of semigroups of analytic functions,
we give some geometric insight to a well-known inequality of Cowen and
Pommerenke about the angular derivative of an analytic function.

1. Introduction

A (one-parameter) semigroup of analytic functions is any continuous homomor-
phism 8 : t 7→ 8(t) = ϕt from the additive semigroup of nonnegative real numbers
into the composition semigroup of all analytic functions which map D into D. That
is, 8 satisfies the following three conditions:

(a) ϕ0 is the identity in D,

(b) ϕt+s = ϕt ◦ ϕs , for all t, s ≥ 0,

(c) ϕt(z) tends to z as t tends to 0, uniformly on compact subsets of D.

It is well-known that condition (c) can be replaced by

(c’) For every z ∈ D, limt→0 ϕt(z) = z.

Semigroups of this type appear in many areas of analysis, such as the theory
of composition operators, the theory of Markov stochastic processes, optimization
theory and the theory of planar vector fields. In this paper, we are interested in this
last aspect, which we discuss in detail for completeness.
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Given a semigroup 8= (ϕt), it can be proved (see [Shoikhet 2001; Berkson and
Porta 1978]) that there exists a unique analytic function G : D → C such that, for
each z ∈ D, the trajectory

γz : [0, +∞) → R2, t 7→ γz(t) := ϕt(z)

is the solution of the Cauchy problem{
ẋ = f (x, y), ẏ = g(x, y),

(x(0), y(0)) = z,

where f = Re G and g = Im G. Usually, this planar dynamical system is written
in the form ẇ = G(w), that is, as a complex-analytic dynamical system in D. We
call G the vector field, and ẇ = G(w) the dynamical system, associated with 8.
In operator theory, G is also known as the infinitesimal generator of 8. There
is a very nice representation, due to Berkson and Porta [1978], of those analytic
functions on the disk which are generated in this way:

An analytic function G : D → C is the vector field of a semigroup of analytic
functions 8 if and only if there is a point b ∈ D and an analytic function p : D → C

with Re p ≥ 0 such that

G(z) = (b − z)(1 − b̄z)p(z), z ∈ D.

Moreover, such a representation is unique. The point b is called the Denjoy–Wolff
point (DW-point) of 8 and p is called the Carathéodory function associated to 8.

Looking at this representation, we see that, whenever b ∈ D, the associated
dynamical system has a critical point. However, G never vanishes if b ∈ ∂D.
Moreover, it is well known that complex-analytic dynamical systems in simply
connected domains cannot have limit cycles [Needham and King 1994], so it is
natural to wonder about the “elements” which govern (and how they do it) the
dynamics of this system without critical points and without limit cycles. In the
rest of this section, we will see that the key for understanding this dynamics is
the study of some “critical points” belonging to ∂D. Since, in our setting, G and
the functions (ϕt) are only defined in D, that comment requires a clarification and
this leads us to recall some concepts from complex function theory [Pommerenke
1975; 1992; Shapiro 1993].

Let ϕ : D → C be an analytic function and take a ∈ ∂D. We say that L ∈ C∞ is
the angular limit of ϕ in a when z tends to a if, for every α ∈ (0, π/2),

lim
z∈S(a,α)

z→a

ϕ(z) = L ,

where S(a, α) denotes the Stolz angle with center at a and opening α. The number
L is commonly denoted by 6 limz→a ϕ(z). When 6 limz→a ϕ(z) = a, the point a
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is called a boundary fixed point of ϕ. If we suppose additionally that ϕ(D) ⊂ D,
the angular limit

6 lim
z→a

ϕ(z) − a
z − a

always exists and belongs to (0, +∞) ∪ {∞}. This value is denoted by ϕ′(a)

and we refer to it as the multiplier of ϕ in a. When ϕ′(a) ∈ (0, +∞), the limit
6 limz→a ϕ′(z) exists and is equal to ϕ′(a). Following the more or less standard
usage in iteration theory, we will say that a is attractive if ϕ′(a)∈ (0, 1]; repulsive if
ϕ′(a) ∈ (1, +∞) and superrepulsive if ϕ′(a) = ∞. These definitions are consistent
with the intuitive geometric meaning of a repulsive or attractive point, thanks to
the celebrated Denjoy–Wolff Theorem [Shapiro 1993, Section 5.1].

Now, we come back to the semigroup 8 = (ϕt) and the associated vector field
G with DW-point b ∈ ∂D. A point a ∈ ∂D is a boundary fixed point of 8 if a
is a boundary fixed point for each ϕt , where t ≥ 0. It is a nontrivial fact due to
Cowen [1981, Theorem 5.2] that “for each ϕt ” can be replaced by “for some ϕt ”.
Moreover, the DW-point b is a boundary fixed point of 8 and, indeed, the Denjoy–
Wolff Theorem admits the following version for semigroups (see [Berkson and
Porta 1978; Siskakis 1985]):

The point b is the unique boundary fixed point of 8 with ϕ′
t(b) ≤ 1 for some

(hence for all) t > 0. Moreover, for every z ∈ D, we have limt→+∞ ϕt(z) = b.

Combining the results of [Siskakis 1985] and [Cowen 1981], it is possible to
deduce that the dynamical character of the multipliers of all the functions ϕt is the
same. That is, a point ξ ∈ ∂D is attractive (or repulsive, or superrepulsive) for some
t if and only if the same happens for all t .

Our study of the system ẇ = G(w) will be carried out by considering a model
flow where the trajectories become straight lines but they fill in a more involved
planar domain �. In other words, our results will explain the dynamics of ẇ =

G(w) in terms of the geometry of �. This domain � is constructed using the theory
of univalent functions [Berkson and Porta 1978; Heins 1981; Siskakis 1985]: there
is a unique univalent function h : D → C with h(0) = 0 whose image � := h(D)

satisfies,
� + t ⊂ � for each t > 0

and such that
ϕt(z) = bh−1(h(b̄z) + t) for t ≥ 0, z ∈ D.

We call � := h(D)⊂ C the associated planar domain of 8. Clearly, if we fix z ∈ D

and consider the trajectory t → γz(t) = ϕt(z) with respect to the vector field G,
the corresponding trajectory in the model flow is t → h(z) + t .

Our dynamical approach to ẇ = G(w) deals with the following topics: types
of trajectories, their ω-limits and α-limits and their relationship with the boundary
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fixed points; the multipliers of these points and their dynamic meaning; the slope of
the trajectories along which they arrive at such a fixed point. We recall that a point
ξ ∈ C∞ is called an ω-limit point of a curve 0 : (s1, s2)→ C (−∞≤ s1 < s2 ≤+∞)

if there exists a strictly increasing sequence (tn) ⊂ (s1, s2) converging to s2 such
that 0(tn) → ξ . The set of all ω-limit points of 0 is called the ω-limit set and
denoted by ω(0). The definitions of α-limit and α(0) can be given in a similar
way but now the role of s2 is played by the point s1.

From the point of view of ω-limits, and in our context, the result of Berkson and
Porta cited above reads as follows:

Let 8 be a semigroup of analytic functions with boundary DW-point b, planar
domain � and vector field G. Moreover, let γz be a trajectory of the vector field
G. Then γz is defined for every t ≥ 0, limt→+∞ γz(t) = b and its largest possible
interval of definition is (T, +∞) with −∞ ≤ T < 0.

The article contains four sections after this introduction. In Section 2 we state
the main results of the paper. With the aim of making the paper more readable, we
have grouped in Section 3 some facts about the hyperbolic distance on the unit disk.
In Section 4 we obtain new results about the relationship among boundary fixed
points, nontangential convergence and angular derivate. Some of these results may
have some interest of their own, but here we think of them as necessary ingredients
for the proof of the main results. In Section 5 we give the proofs of all the results
stated in Section 2.

2. Statement of the main results

For the analysis of the multipliers of ϕt at the DW-point b, we introduce a geometric
quantity associated to the planar domain �. Namely, let us denote by ν(�) the
supremum of all positive numbers β such that there is c ∈ C with{

c + ti : −
1
2β < t < 1

2β
}

⊂ �.

We point out that this is a well-defined concept since � is open and nonvoid.
Clearly, ν(�) ∈ (0, +∞]. It is an exercise to show that, whenever ν(�) < +∞,
the number ν(�) coincides with the infimum of all positive β such that, there is
c ∈ R with

� ⊆
{
z ∈ C : c −

1
2β < Im z < c +

1
2β
}
.

Bearing in mind the property �+t ⊂�, we see that ν(�) represents the “narrowest”
width of an open strip parallel to the real axis and completely enclosing �.

The following theorem explains the relation between ν(�) and the multipliers
of ϕt in the DW-point b, when ν(�) < ∞.
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Theorem 2.1. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b and planar domain �. The following statements are equivalent.

(1) ν(�) < ∞.

(2) For all t > 0, we have ϕ′
t(b) < 1.

(3) There is t > 0 such that ϕ′
t(b) < 1.

Moreover, when ν(�) < ∞, it follows that ϕ′
t(b) = exp

(
−

π

ν(�)
t
)

for all t ≥ 0.

From Theorem 2.1 and the fact that ϕ′
t(b) ≤ 1 for some (and therefore all) t > 0,

we readily deduce:

Corollary 2.2. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b and planar domain �. The following statements are equivalent.

(1) ν(�) = ∞.

(2) For all t > 0, we have ϕ′
t(b) = 1.

(3) There is t > 0 such that ϕ′
t(b) = 1.

The relation between boundary fixed points and the backward evolution of the
trajectories is expressed in the next proposition.

Proposition 2.3. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b, planar domain h(D) = � and vector field G. Moreover, let γz be a
trajectory of the vector field G with the maximum possible interval of definition
(T, +∞) being −∞ ≤ T < 0.

(1) If −∞ < T , the limit

a := lim
s→T

γz(s) ∈ ∂D,

exists, a is not a boundary fixed point of 8, and h(z) + T ∈ ∂�.

(2) If T = −∞, the limit

a := lim
s→−∞

γz(s) ∈ ∂D

exists and a is a boundary fixed point of 8.

In our analysis of backward trajectories, a crucial step will be to develop tools
in order to detect when different trajectories go to the same boundary fixed point.
For this, we introduce the planar subset

V (�) := int
(⋂

t≥0

(� + t)
)

.

We will check that V (�) + t = V (�), for every t ∈ R, so we call it the invariant
set associated to �. It is worth mentioning that V (�) can be empty. But, if V (�)
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is nonvoid and since it is obviously open, we can write V (�) as the union of the
countable (finite or infinite) family of its different connected components. These
components will be denoted by V j (�) ( j ∈ J ) and, depending on the case, J = N

or J = {1, . . . , n} for some n ∈ N.
It can be proved that every component V j (�) of the invariant set V (�) is an

open strip or a half-plane parallel to the real axis in both cases.

Theorem 2.4. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b and planar domain � = h(D).

(1) If a component V j (�) of V (�) is a half-plane, then for every z ∈ h−1(V j (�)),
the corresponding trajectory γz is defined for all t ∈ (−∞, 0] and the α-limit
α(γz) = {b}.

(2) If there is z ∈ D such that the corresponding trajectory γz is defined for all
t ∈ (−∞, 0] and α(γz) = {b}, then there exists a component V j (�) of the
invariant set of � which is a half-plane and h(z) ∈ V j (�).

There can be one or two half-open components of V (�) related to b. In either
case, we have ν(�) = ∞ and, therefore, by Corollary 2.2, ϕ′

t(b) = 1, for all t > 0.
Those components of the invariant set which are strips are closely related to the

collection of the repulsive boundary fixed points of 8 = (ϕt), that is, those points
a ∈ ∂D such that ϕ′

t(a) ∈ (1, +∞), for every t > 0.

Theorem 2.5. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b and planar domain � = h(D).

(1) Let the component V j (�) of V (�) be an open strip. There is a unique repul-
sive boundary fixed point ξ(V j (�)) of 8 such that, for every z ∈ h−1(V j (�)),
the corresponding trajectory γz is defined for all t ∈ (−∞, 0] and α(γz) =

{ξ(V j (�))}.

(2) The map ξ thus defined between open strip components of the invariant set
and repulsive boundary fixed points is bijective.

(3) If there is z ∈ D such that the corresponding trajectory γz is defined for all
t ∈ (−∞, 0] and α(γz) is a repulsive boundary fixed point ξ(V j (�)), then
h(z) ∈ V j (�).

Now, we study the multipliers of the functions ϕt at boundary fixed points ξ

which are α-limits of trajectories of the system ẇ = G(w). Clearly, we have three
possibilities: ξ is the DW-point, ξ is repulsive or ξ is superrepulsive. The repulsive
case will be analyzed again by means of the strip components of the invariant set.
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Theorem 2.6. Let 8 = (ϕt) be a semigroup of analytic functions with planar
domain �. If ξ ∈ ∂D is a repulsive boundary fixed point of 8, then

ϕ′

t(ξ) = exp
(

π

β j (�)
t
)

, for all t ≥ 0,

where β j (�) is the width (necessarily finite) of the strip V j (�) of the invariant set
of � associated to ξ .

These results can be translated to the context of the angular derivative of an
analytic function. Cowen and Pommerenke [1982, Theorem 6.1] showed that if
ϕ is an analytic and univalent function in D with ϕ(D) ⊂ D, Denjoy–Wolff point
b ∈ ∂D, ϕ′(b) < 1 and ξ1, ξ2, . . . , ξn are distinct fixed points of ϕ (different from
b), then

n∑
j=1

1
log ϕ′(ξ j )

≤ −
1

log ϕ′(b)

and, if equality holds, ϕ can be embedded in a semigroup of analytic functions and
D\ϕ(D) consists of n−1 analytic arcs. Indeed, some geometric motivation of this
inequality can be read in that paper.

Now, if we suppose that ϕ can be embedded in a semigroup of analytic functions,
by Theorems 2.1 and 2.6, we can guarantee that, for some t > 0,

ϕ′(b) = exp
(

−
π

ν(�)
t
)

and ϕ′(ξ j ) = exp
(

π

β j (�)
t
)

.

Therefore, we can always rewrite the inequality above as

n∑
j=1

β j (�) ≤ ν(�).

This inequality reflects the geometric fact that the narrowest strip including � must
contain the family of the disjoint strips V j (�).

Finally, we treat the superrepulsive case.

Theorem 2.7. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b and planar domain � = h(D) as in the introduction. If there is a point
z ∈ D such that

h(z) ∈

(⋂
t≥0

(� + t)
)

\

(⋃
j∈J

V j (�)

)
and the corresponding trajectory γz is defined for all t ∈ (−∞, 0] and α(γz) = {ξ},
then ξ is a superrepulsive boundary fixed point of 8 and γz is the unique trajectory
of the planar dynamical system with α(γz) = {ξ}.
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This does not necessarily account for all superrepulsive fixed points: there are
semigroups with a superrepulsive point ξ where there is no trajectory γz with
α(γz) = {ξ}. One example is the following: Consider the planar subset

� :=
{
z ∈ C : −

1
2 < Im z < exp(Re z) −

1
2

}
,

and take a Riemann map h from D onto � with h(0) = 0. Now, the semigroup we
are looking for is

ϕt(z) := h−1(h(z) + t), z ∈ D.

The inequality of Cowen and Pommerenke mentioned above implies that the
number of repulsive fixed points on the boundary of the unit disk is denumerable.
However, the number of boundary fixed points can be uncountable (of course,
most of them must be superrepulsive). To build such an example, consider the set
of rational numbers of the interval (−1, 1), say {α(n) :n ∈ N}, and the planar subset

� := {z ∈ C : −1 < Im z < 1} \

(⋃
n∈N

((−∞, −n] + α(n)i)
)

and take a Riemann map h from D onto � with h(0) = 0. Now, by Theorem 2.7,
the semigroup of analytic functions given by

ϕt(z) := h−1(h(z) + t), z ∈ D

has a nondenumerable set of boundary fixed points. This example was suggested to
the authors by Ricardo Pérez-Marco. We thank him for this example and other in-
teresting remarks concerning this paper. Additional information about the amount
of fixed points of analytic self-maps on D can be read in [Cowen and Pommerenke
1982, Section 2].

Our next step is the analysis of the slopes of the trajectories of the system.
As before, this requires recalling some notation first and distinguishing between
several cases. These cases are related to the evolution of the distance of a fixed
point to the boundary of the domain � and it suggests to introduce the following
notation:

δ�(w) = inf {|w − z| : z ∈ ∂�} , w ∈ �.

Given a curve 0 : t ∈ (s1, s2) → 0(t) ∈ D with a singleton ω-limit ω (0) = {ζ } ⊂

∂D, the set of the slopes of 0 when arriving at ζ will be denoted by Slope+(0)

and it is defined as the ω-limit of the curve

t ∈ (s1, s2) → Arg(1 − ζ̄ 0(t)) ∈
(
−

π
2 , π

2

)
,

where Arg(z) denotes the principal argument of z. It is well-known that Slope+(0)

is a nonempty, compact, and connected subset of
[
−

π
2 , π

2

]
and we talk about the
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slope of 0 at ζ if Slope+(0) is a single point. Something similar can be done with
α-limits and the definition of Slope−(0) is self-explanatory.

In view of the continuous version of the Denjoy–Wolff Theorem, we know that
limt→+∞ γz(t) → b, so we may ask about the slope of the forward trajectory γz

when arriving at b. Our next theorem answers precisely this question when ν(�)

is finite.

Theorem 2.8. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b and planar domain �. If ν(�) < ∞, then, for each z ∈ D, the set
Slope+(γz) is a single point and it belongs to

(
−

π
2 , π

2

)
. That is, the (forward)

trajectory γz tends to b with a fixed slope and never tangentially. Moreover, given
α ∈

(
−

π
2 , π

2

)
, there is z ∈ D such that Slope+(γz) = {α}.

The next theorem treats the case ν(�) = +∞. We notice that, given w ∈ �, the
limit lims→+∞ δ�(w + s) always exists and belongs to (0, +∞].

Theorem 2.9. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b, planar domain � and ν(�) = +∞.

(1) If there is w ∈ � such that lims→+∞ δ�(w + s) = +∞, then all the sets
Slope+(γz) are identical, when z runs the whole D.

(2) If there is w ∈ � such that lims→+∞ δ�(w+s) ∈ (0, +∞), then all the trajec-
tories γz (z ∈ D) tends tangentially to b. That is, Slope+(γz) is a single point
and it is equal to −

π
2 or π

2 .

We conjecture that, in case (1) of this theorem, all the subsets Slope+(γz) are
indeed singletons, so it would be possible to speak about the common slope of the
trajectories of the system.

We now study the slopes of backward trajectories. The analysis of the sets
Slope−(γz) will be done first, when the α-limit of γz is the DW-point.

Theorem 2.10. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b and planar domain �.

(1) If the α-limit of a trajectory γz is b, then the set Slope−(γz) is a single point
and it is equal to −

π
2 or π

2 . That is, the backward trajectory γz tends tangen-
tially to b.

(2) Given two trajectories γz1 and γz2 where b is their α-limit and such that h(z1)

and h(z2) belong to the closure of the same half-plane component of V (�),
then Slope−(γz1) = Slope−(γz2).

Finally, we study the slopes of the backward trajectories reaching a repulsive
boundary fixed point.

Theorem 2.11. Let 8 = (ϕt) be a semigroup of analytic functions with boundary
DW-point b and planar domain � and ξ(V j (�)) a repulsive boundary fixed point.
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(1) For every z ∈ h−1(V j (�)), the set Slope−(γz) is a single point and it belongs
to
(
−

π
2 , π

2

)
. That is, the backward trajectory γz tends to ξ(V j (�)) with a

fixed slope and never tangentially. Moreover, given α ∈
(
−

π
2 , π

2

)
, there is

z ∈ h−1(V j (�)) such that Slope−(γz) = {α}.

(2) If there is z ∈ D such that the trajectory γz is defined for all t ∈ (−∞, 0],
α(γz) = {ξ(V j (�))} and h(z) ∈ V j (�) \ V j (�), then Slope−(γz) is a single
point and it is equal to −

π
2 or π

2 . That is, the backward trajectory γz tends
tangentially to ξ(V j (�)).

3. The hyperbolic metric

We recall here some facts and notations about the hyperbolic metric; for detailed
exposition and proofs, see [Shapiro 1993; Milnor 1999].

Definition 3.1. Given p and q two points of D and γ : [a, b] → D a piecewise C1

function with γ (a) = p and γ (b) = q, we define the hyperbolic length of γ as

lD(γ ) = 2
∫ b

a

|γ ′(t)| dt
1 − |γ (t)|2

.

The hyperbolic distance or Poincaré distance from p to q is the length of the
shortest curve from p to q , that is,

ρD(p, q) = inf
γ

lD(γ )

where γ runs through all piecewise C1 curves from p to q.

It is not difficult to see that the hyperbolic distance is an unbounded complete
metric on D and that it induces its usual Euclidean topology. Moreover, there is a
curve in D where the infimum that appears in the definition is attained.

Proposition 3.2. Let p and q be two points of the unit disk D. Then the following
assertions are true.

(1) The hyperbolic distance can be calculated using the pseudo-hyperbolic dis-
tance, namely

ρD(p, q) = log
1 + d(p, q)

1 − d(p, q)

where d(p, q) is the pseudo-hyperbolic distance between p and q given by

d(p, q) =

∣∣∣∣ p − q
1 − p̄q

∣∣∣∣.
(2) If ϕ is an automorphism of the unit disc, then

ρD(ϕ(p), ϕ(q)) = ρD(p, q).
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(3) Every holomorphic self-map ϕ of D is a contraction in the hyperbolic metric,
that is,

ρD(ϕ(p), ϕ(q)) ≤ ρD(p, q).

The key points in the study of angular derivative using the hyperbolic distance
are the following two results. The first one is a slight generalization of [Shapiro
1993, p. 159, equality (8)].

Proposition 3.3. Let ϕ be a holomorphic self-map of D. If ξ ∈ ∂D is a fixed point
of ϕ with ϕ′(ξ) 6= ∞ and (zn) is a sequence in D such that limn Arg(1 − ξ̄ zn) =

θ ∈
(
−

π
2 , π

2

)
, then

lim
n→∞

ρD (zn, ϕ (zn)) = log

∣∣ϕ′(ξ) + e−2iθ
∣∣+ ∣∣ϕ′(ξ) − 1

∣∣∣∣ϕ′(ξ) + e−2iθ
∣∣− |ϕ′(ξ) − 1|

.

In particular, limn→∞ ρD (zn, ϕ (zn))≥
∣∣log

(
ϕ′(ξ)

)∣∣ and if limn Arg(1− ξ̄ zn)= 0,
then

lim
n→∞

ρD (zn, ϕ(zn)) =
∣∣log ϕ′(ξ)

∣∣ .
Proposition 3.4. Let ϕ be a holomorphic self-map of D. If b ∈ ∂D is the Denjoy–
Wolff point of ϕ, and z, z0 two points of D such that the sequence (zn), given by
zn+1 = ϕ(zn) for all n, converges to b nontangentially, then

lim
n→∞

ρD(z, zn)

n
=
∣∣log ϕ′(b)

∣∣ .
Proof. We know that

lim
n→∞

ϕ(zn) = b and lim
n→∞

ϕ(zn) − b
zn − b

= ϕ′(b) ∈ (0, 1].

So,

lim
n→∞

|zn+1 − b|

|zn − b|
= lim

n→∞

∣∣∣∣ϕ (zn) − b
zn − b

∣∣∣∣= ϕ′(b).

Therefore,
lim

n→∞
|zn − b|

1/n
= ϕ′(b).

Since (zn) converges nontangentially to b, there is k > 1 such that |zn − b| ≤

k(1 − |zn|) for all n ∈ N. Hence

|zn − b|
1/n

≤ k1/n(1 − |zn|)
1/n

≤ k1/n(|zn − b|)1/n

for all n. Now, we have limn→∞(1 − |zn|)
1/n

= ϕ′(b). Moreover

lim
n→∞

(
1 + |zn|

1 − |zn|

)1/n

=
1

ϕ′(b)
∈ [1, ∞)
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and we obtain

lim
n→∞

ρD(0, zn)

n
= lim

n→∞

ρD(0, |zn|)

n
= lim

n→∞

1
n

log
1 + |zn|

1 − |zn|

= log
1

ϕ′(b)
=
∣∣log ϕ′(b)

∣∣.
Finally, bearing in mind that

ρD(0, zn) − ρD(0, z)
n

≤
ρD(z, zn)

n
≤

ρD(0, z) + ρD(0, zn)

n
,

we obtain

lim
n→∞

ρD(z, zn)

n
= lim

n→∞

ρD(0, zn)

n
=
∣∣log ϕ′(b)

∣∣ . �

Remark. A result similar to the proposition can be given for backward iteration
sequences for ϕ that converge to a fixed point.

Let h be an univalent function of the unit disk D onto a simply connected domain
�  C. We shall use the function h to transfer the notion of hyperbolic distance
from D to �. More precisely, we define the hyperbolic distance on � by

ρ�(h(p), h(q)) := ρD(p, q)

for all p, q ∈ D. Moreover, given 0 a piecewise C1 curve in �, the hyperbolic
length of 0 is given by l�(0) := lD(h−1(0)). Thus, the hyperbolic metric in � is
invariant under the action of conformal automorphisms of � and induces the usual
Euclidean topology.

A first approach to the relation between the geometry of the domain � and the
hyperbolic distance involves the inequalities

1
2

∫
0

|dw|

δ�(w)
≤ l�(0) ≤ 2

∫
0

|dw|

δ�(w)
.

The first inequality leads to an estimate of how the hyperbolic distance increase as
one moves toward the boundary.

Proposition 3.5 (Distance Lemma [Shapiro 1993, p. 157]). If �  C is a simply
connected domain, then for P, Q ∈ �, we have

ρ�(P, Q) ≥
1
2

log
(

1 +
|P − Q|

min{δ�(P), δ�(Q)}

)
.

If we have two simply connected domains �1 and �2 such that �1 ⊂�2(C, we
have a relation between their corresponding hyperbolic metrics. Take h1 a Riemann



ANALYTIC FLOWS ON THE UNIT DISK 265

map of �1 and h2 a Riemann map of �2. Then ϕ = h−1
2 ◦h1 is an analytic self-map

of D. So, it is a contraction in the hyperbolic metric, that is,

ρD(ϕ(p), ϕ(q)) ≤ ρD(p, q)

for all p, q ∈ D. In particular, given P, Q ∈ �1, we have

ρ�2(P, Q) = ρD

(
h−1

2 (P), h−1
2 (Q)

)
= ρD

(
ϕ ◦ h−1

1 (P), ϕ ◦ h−1
1 (Q)

)
≤ ρD

(
h−1

1 (P), h−1
1 (Q)

)
= ρ�1(P, Q).

So we have the following well-known result.

Proposition 3.6. Given two simply connected domains �1 and �2 such that �1 ⊂

�2 ( C and P, Q ∈ �1, we have

ρ�2(P, Q) ≤ ρ�1(P, Q).

4. Fixed points and nontangential convergence

In this section we present a first approach to the relationship between fixed points
of the semigroup (ϕt) and the geometry of the domain �. Roughly speaking, each
horizontal half-line in � induces a curve in the unit disc whose end point is a
fixed point of the functions of the semigroup, and the distance from the points
of the half-line to the boundary of � determines whether or not convergence is
tangential.

The starting point is the following well-known result: if 0 : [0, ∞) → � is
any curve with lims→∞ 0(s) = ∞ (and h is an univalent function on D such that
� = h(D)), then there exists w ∈ ∂D such that lims→∞ h−1(0(s)) = w [Shapiro
1993, p. 162]. Our first result is a necessary condition to guarantee that, given two
different curves in �, the corresponding curves in the unit disk have the same end
point.

Lemma 4.1. Suppose h is a univalent function on D and � = h(D) and that
0i : [0, ∞) → �, i = 1, 2, are two Jordan arcs with 01(s) 6= 02(s ′) for all (s, s ′) 6=

(0, 0), 01(0)=02(0), lims→∞ 01(s)= lims→∞ 02(s)=∞, and that one of the two
connected components of the complement of 01[0, ∞)∪02[0, ∞) in C is included
in �. Then lims→∞ h−1(01(s)) = lims→∞ h−1(02(s)).

Proof. Denote by 2 the connected component of the complement of 01[0, ∞) ∪

02[0, ∞) that is included in � and

ω(2) :=
{
b ∈ D : there is {wn} ⊂ 2, with |wn| ↗ ∞ and h−1(wn) → b

}
.

Notice that ∂2 is a Jordan curve in the Riemann sphere whose boundary is

01[0, ∞) ∪ 02[0, ∞) ∪ {∞}.
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Since h is continuous on D, we have ω(2) ⊆ ∂D. Moreover, lims→∞ h−1(01(s))
and lims→∞ h−1(02(s)) are in ω(2). So the proof is finished if we obtain that
ω(2) is a single point. First of all, notice that ω(2) is closed.

Now we focus our attention on checking that ω(2) is connected. Suppose that
there are two closed, disjoint, and nonempty subsets A and B of ω(2) such that
ω(2) = A ∪ B. Let K = d(A, B) > 0. For each natural number n, we can take
an ∈ A, bn ∈ B, and wn, w̃n ∈ 2, such that∣∣an − h−1(wn)

∣∣< K/3,
∣∣bn − h−1(w̃n)

∣∣< K/3,

and |w̃n| > |wn| > max {|w̃n−1|, n}. In particular,

d(h−1(wn), A) < K/3 and d(h−1(w̃n), A) > 2K/3 for all n.

Claim. Given wn and w̃n in 2 with |wn| ↗ ∞ and |w̃n| ↗ ∞, there is a curve γn

in 2, for each n, from wn to w̃n such that minw∈γn |w| goes to ∞ as n goes to ∞.
(The claim will be proved after the proof of the lemma is complete.)

By the continuity of the function h and taking γn the curve given by the claim,
there is zn ∈ γn such that d(h−1(zn), A) = K/2 and |zn| → ∞. This is a contra-
diction since any point of accumulation of the sequence (h−1(zn)) is in ω(2) but
it is neither in A nor in B.

Summing up, ω(2) is nonempty, connected, and compact. Suppose that ω(2)

is not a single point. On the one hand, recall that h has radial limits a.e. on ∂D

[Shapiro 1993, p. 162]. On the other hand, using Lehto–Virtanen Theorem we
obtain that ω(2) ∂D. So, take a nontrivial subarc ϒ of ω(2) such that if b ∈ ϒ ,
then −b /∈ ω(2). Take wn and w̃n in 2 with |wn| ↗ ∞ and |w̃n| ↗ ∞ such
that h−1(wn) → b1 and h−1(w̃n) → b2, where b1 and b2 are the extreme points of
ω(2). By the claim, for each n, there is a curve γn in 2, from wn to w̃n, such that
minw∈γn |w| goes to ∞ as n goes to ∞. So, if b ∈ ϒ is different from the extreme
points of ω(2) and h has radial limit in b, there is rn → 1 such that h(rnb) ∈ γn .
Hence h(rnb) → ∞. Therefore, we have that limr→1 h(rb) = ∞. That is, h has a
radial limit equal to ∞ a.e. on ϒ . But this contradicts that this radial limit is not
a.e. constant on any subarc of ∂D [Shapiro 1993, p. 162]. �

Proof of the claim. Since 2 is a Jordan domain in the Riemann sphere, its Riemann
mapping µ has a bijective and bicontinuous extension to the closed unit disc [Mil-
nor 1999, Theorem 17.16]. Denote by γ̃n the segment [µ−1(wn), µ

−1(w̃n)] ⊂ D.

The curve we are looking for is γn = µ(γ̃n). In effect, take zn ∈ γn such that
|zn| = minw∈γn |w|. Then there is λn ∈ [0, 1] such that µ−1(zn) = λnµ

−1(wn) +

(1 − λn)µ
−1(w̃n). Since (wn) and (w̃n) converge to ∞, we see that (µ−1(zn))

converges to µ−1(∞). Therefore, (zn) goes to ∞ as n tends to ∞. �
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Now, it is time to introduce the relationship between half-lines in � and fixed
points of the functions ϕt .

Lemma 4.2. Fix t > 0 and a ∈ �. Take κ ∈ {−1, 1}. Suppose that the curve
0(s) = a + κst , with s ≥ 0, is in �. Then there is a point ξ ∈ ∂D such that
lims→∞ h−1(a + κst) = ξ and ξ is a fixed point of ϕt .

Proof. We know that there is a point ξ ∈ ∂D such that lims→∞ h−1(a + κst) = ξ .
Notice that

lim
s→∞

ϕt(h−1(a + κst)) = lim
s→∞

h−1(a + κst + t) = lim
s→∞

h−1(a + κ(s + κ)t)

= lim
s→∞

h−1(a + κst) = ξ.

Therefore, by Lindelöf’s Theorem, ξ is a fixed point of ϕt and 6 limz→ξ ϕt(z) = ξ .
�

To calculate the derivative at a fixed point we use Propositions 3.3 and 3.4. We
have to estimate ρD

(
z1, ϕt(z2)

)
as ϕt(z2) converges to ξ nontangentially. If we take

zi = h−1(a + κsi t), we have

ρD

(
h−1(a + κs1t), ϕt(h−1(a + κs2t))

)
= ρ�(a + κs1t, a + κs2t + t).

The way to calculate this hyperbolic distance depends on the type (repulsive or
attractive) of fixed point we have. But first we have to check that h−1(a + κst)
converges nontangentially to ξ . On the one hand, when κ = 1 and the derivative
ϕ′

t(ξ) is less than 1, this will be done using the following result:

Lemma 4.3 [Cowen 1981, Lemma 2.1]. Suppose ϕ be a holomorphic self-map of
D, and has Denjoy–Wolff point b ∈ ∂D with ϕ′(b) < 1. Then, for any z in D, the
sequence (ϕn(z)) converges nontangentially to b.

On the other hand, nontangential convergence will be characterized in terms of
the euclidean distance from the point a + κst to the boundary of �. First we need
the following lemma that, roughly speaking, says that to each fixed point with finite
derivative corresponds a “tube” in �.

Lemma 4.4. Let ϕ be a holomorphic self-map of D, with ϕ(z) = h−1(h(z) + λ), h
univalent, λ > 0, � = h(D), and ξ ∈ ∂D a fixed point of ϕ with ϕ′(ξ) 6= ∞. Then
there is a positive number ε = ε(ξ) such that δ�(h(rξ)) ≥ ε for all r ∈ [0, 1).

Proof. To simplify the notation, we set

d = ϕ′(ξ) = lim
r→1−

ξ − ϕ(rξ)

ξ − rξ
∈ (0, ∞).
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Thus there is r0 < 1, such that r0 < r < 1 implies |ξ −ϕ(rξ)| ≤ (d +1)(1−r). So,
we have

|rξ − ϕ(rξ)| ≤ |ξ − ϕ(rξ)| + |ξ − rξ | ≤ (d + 2)(1 − r),

whenever r > r0. Hence, estimating the hyperbolic distance by integrating along
the segment [rξ, ϕ(rξ)], we get

ρD(rξ, ϕ(rξ)) ≤ 2
∫

[rξ,ϕ(rξ)]

ds(x)

δD(x)
.

We have to distinguish two cases. On the one hand, if |ϕ(rξ)| ≤ r , we have

ρD(rξ, ϕ(rξ)) ≤ 2
∫

[rξ,ϕ(rξ)]

ds(x)

δD(x)
≤ 2

|rξ − ϕ(rξ)|

1 − r
≤ 2(d + 2).

On the other hand, if |ϕ(rξ)| > r , we have

ρD

(
rξ, ϕ(rξ)

)
≤ 2

∫
[rξ,ϕ(rξ)]

ds(x)

δD(x)
≤ 2

|rξ − ϕ(rξ)|

1 − |ϕ(rξ)|
≤ 2(d + 2)

1 − r
1 − |ϕ(rξ)|

,

where the second inequality follows from Julia’s Lemma [Cowen and MacCluer
1995, p. 49]; from this we then get

ρD

(
rξ, ϕ(rξ)

)
≤ 2(d + 2)d

1 + |ϕ(rξ)|

1 + r
(1 − r)2

|ξ − ϕ(rξ)|2
≤ 4(d + 2)d

∣∣∣∣ ξ − rξ

ξ − ϕ(rξ)

∣∣∣∣2.
Since

lim
r→1−

ξ − rξ

ξ − ϕ(rξ)
=

1
d

,

we see that

lim
r→1

4(d + 2)d
∣∣∣∣ ξ − rξ

ξ − ϕ(rξ)

∣∣∣∣2 = 4
d + 2

d
.

Hence, there is r0 ≤ r1 < 1 such that ρD

(
rξ, ϕ(rξ)

)
is bounded for r ∈ (r1, 1).

So far, we have found that there is a constant M > 0 such that

ρ�

(
h(rξ), h(rξ) + λ

)
= ρD

(
rξ, ϕ(rξ)

)
≤ M for all r ∈ [0, 1).

Now, by the Distance Lemma (Proposition 3.5),

2M ≥ log
(

1 +
|h(rξ) − h(rξ) − λ|

min {δ�(h(rξ)), δ�(h(rξ) + λ)}

)
≥ log

(
1 +

λ

δ�(h(rξ))

)
.

That is, δ�(h(rξ)) ≥ λ/(e2M
− 1) > 0 for all r . �

It is worth mentioning that this lemma implies that if ξ ∈ ∂D is a fixed point of
ϕ with ϕ′(ξ) 6= ∞, then limr→1− h(rξ) = ∞.
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Now we can give a sufficient condition to get the nontangential convergence.
Since ϕt(rξ) converges nontangentially (as r → 1) to the fixed point ξ , we will
compare the curve r 7→ ϕt(rξ) with the curve s 7→ h−1(a + κst).

Proposition 4.5. Let (ϕt) be a semigroup of analytic functions with planar domain
� = h(D). Let ξ ∈ ∂D be a nonsuperrepulsive (ϕ′

t(ξ) 6= ∞ for all t > 0) fixed point
of (ϕt). Take κ ∈ {−1, 1}. Suppose that there is s0 such that

(1) there is α > 0 such that δ�(a + κst) ≥ α for all s ≥ s0;

(2) there is β < ∞ such that for each s ≥ s0, there is r(s) such that Re h(r(s)ξ) =

a + κst ,
[
a + κts, h(r(s)ξ) + t

]
⊂ �, and |h(r(s)ξ) − (a + κst)| ≤ β.

Then h−1(a + κst) converges nontangentially to ξ as s goes to ∞.

Proof. Bearing in mind [Shapiro 1993, p. 171, Exercise 4], it is enough to find a
constant M such that ρD

(
h−1(a + κts), γ

)
≤ M for all s large enough where γ is

the segment (−ξ, ξ). Fix s > 0. We have

ρD

(
h−1(a + κts), γ

)
≤ inf

0≤r<1
ρD

(
h−1(a + κts), rξ

)
≤ inf

0≤r<1

(
ρD(rξ, ϕt(rξ)) + ρD(h−1(a + κts), ϕt(rξ))

)
.

Since ϕt(rξ) converges nontangentially (as r → 1) to the fixed point ξ , there is
a constant m such that ρD(rξ, ϕt(rξ)) ≤ m. So we just have to control

inf
0≤r<1

ρD

(
h−1(a + κts), ϕt(rξ)

)
as s tends to ∞. Notice that

inf
0≤r<1

ρD

(
h−1(a + κts), ϕt(rξ)

)
= inf

0≤r<1
ρ�

(
a + κts, h(rξ) + t

)
≤ 2 inf

0≤r<1
inf
0

∫
0

ds(x)

δ�(x)
,

where the last infimum is taken over all curves that goes from a +κts to h(rξ)+ t
in �. Take r(s) such that Re h(r(s)ξ)+ t = κst . Now we estimate the hyperbolic
distance by integrating along the segment [a + κts, h(r(s)ξ) + t]:

inf
0≤r<1

ρD(h−1(a + κts), ϕt(rξ))

≤ 2 inf
0≤r<1

inf
0

∫
0

ds(x)

δ�(x)
≤ 2

∫
[a+κts,h(r(s)ξ)+t]

ds(x)

δ�(x)

≤ 2
|a + κts − h(r(s)ξ) − t |

min{δ�(a + κts), δ�(h(r(s)ξ) + t)}
≤ 2

|a + κts − h(r(s)ξ) − t |
min{δ�(a + κts), δ�(h(r(s)ξ))}

.
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Now, by Lemma 4.4, there is ε = ε(ξ) such that δ�(h(rξ)) ≥ ε for all r ∈ [0, 1).
Therefore

ρD

(
h−1(a + κts), γ

)
≤ 2

β + t
min

{
α, ε

}
for s ≥ s0. Therefore, ρD

(
h−1(a + κts), γ

)
is bounded as s goes to ∞. �

Lemma 4.6. Let ϕ be a holomorphic self-map of D, with ϕ(z) = h−1(h(z) + λ), h
univalent, λ > 0 and � = h(D) with Denjoy–Wolff point equal to b ∈ ∂D and such
that ϕ′(b) = 1. If (pn) is a sequence in D which converges nontangentially to b,
then

lim
n→∞

δ�(h(pn)) = ∞.

Proof. Take a subsequence (pnk ) of (pn) such that limk Arg(1 − b̄ pnk ) = θ . Then
θ ∈

(
−

π
2 , π

2

)
and, by Proposition 3.3,

lim
n→∞

ρ�

(
h(pnk ), h(pnk ) + λ

)
= lim

n→∞
ρD

(
pnk , ϕ(pnk )

)
= log

∣∣ϕ′(b) + e−2iθ
∣∣+ ∣∣ϕ′(b) − 1

∣∣∣∣ϕ′(b) + e−2iθ
∣∣− |ϕ′(b) − 1|

= log 1 = 0.

Because the choice of a subsequence was arbitrary we can deduce from this that
limn→∞ ρ�

(
h(pn), h(pn)+λ

)
=0. Moreover, by the Distance Lemma (Proposition

3.5), we have

ρ�

(
h(pn), h(pn) + λ

)
≥

1
2

log
(

1 +
|h(pn) − h(pn) − λ|

min {δ�(h(pn)), δ�(h(pn) + λ)}

)
≥

1
2

log
(

1 +
λ

δ�(h(pn))

)
.

Hence, limn→∞ δ�(h(pn)) = ∞. �

5. Proofs of the main results

Proof of Theorem 2.1. Siskakis [1985, Theorem 1.7] proved that there is a number
0 < r ≤ 1 such that ϕ′

t(b) = r t for all t > 0. Therefore, it is clear that (2) is
equivalent to (3).

(1) ⇒ (2). By assumption, there is a real number a such that

� ⊆ 2 :=
{
z ∈ C : a −

1
2ν(�) < Im z < a +

1
2ν(�)

}
.

A Riemann map of 2 is given by 8(z) = (ν(�)/π) Log((1 − z)/(1 + z)) + ai .
Fix t > 0. Take c ∈ R such that ai + c ∈ �. Consider the points wn = ai + c + nt .
Notice that wn ∈ �. We will apply Proposition 3.4 with zn = h−1(wn) and ϕ = ϕt .
So we have to check that (zn) converges nontangentially to b. To obtain this we
will apply Proposition 4.5 with ξ = 1 and κ = 1. Recall that 0 < ϕ′

t(b) ≤ 1. On
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the one hand, in our case, the function s 7→ δ�(ai + c + st) is nondecreasing. So,
there is α > 0 such that δ�(ai +c+ st) ≥ α for all s ≥ 0. On the other hand, h(rb)

converges to ∞ and, bearing in mind that b is attractive and that �⊆2, we see that
Re h(rb) converges to +∞ as r tends to 1. So, the assumption (2) of Proposition
4.5 is satisfied for s large enough. Hence we can apply this proposition and obtain
that (zn) converges nontangentially to b. Now we are ready to apply Proposition
3.4:

− log ϕ′

t(b) = lim
n→∞

ρD

(
h−1(ai + c), ϕt(h−1(wn))

)
n

= lim
n→∞

ρ�(ai + c, ai + c + nt + t)
n

.

By Proposition 3.6, we have

lim
n→∞

ρ�(ai + c, ai + c + nt + t)
n

≥ lim
n→∞

ρ2(ai + c, ai + c + nt + t)
n

.

Therefore

− log ϕ′

t(b) ≥ lim
n→∞

ρ2(ai + c, ai + c + nt + t)
n

= lim
n→∞

ρD

(
8−1(ai + c), 8−1(ai + c + nt + t)

)
n

= lim
n→∞

1
n
ρD

(
1 − exp(cπ/ν(�))

1 + exp(cπ/ν(�))
,

1 − exp((c + nt + t)π/ν(�))

1 + exp((c + nt + t)π/ν(�))

)

= lim
n→∞

1
n

log

1 +

∣∣∣∣1 − exp((nt + t)π/ν(�))

1 + exp((nt + t)π/ν(�))

∣∣∣∣
1 −

∣∣∣∣1 − exp((nt + t)π/ν(�))

1 + exp((nt + t)π/ν(�))

∣∣∣∣


= lim
n→∞

1
n

log exp
( π t
ν(�)

(n + 1)
)

=
π

ν(�)
t.

That is, ϕ′
t(b) ≤ exp(−π t/ν(�)) < 1 for all t > 0.

(2) ⇒ (1) Fix t > 0 and take an arbitrary λ < ν(�). We will prove shortly that
ϕ′

t(b) ≥ exp(−π t/λ), that is, λ ≤ π t/(− log ϕ′
t(b)). Therefore,

ν(�) ≤
π t

− log ϕ′
t(b)

< ∞.

Moreover, once we have obtained this inequality and bearing in mind the proof of
the implication (1) ⇒ (2), we will have shown that ν(�) < ∞ implies ϕ′

t(b) =

exp(−π t/ν(�)).
To obtain that ϕ′

t(b)≥exp(−π t/λ), we again apply Proposition 3.4. Take a point
a such that

[
a −

1
2λi, a +

1
2λi

]
⊂ �. Bearing in mind the geometric properties of
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�, we have

2 = {z ∈ C : Re z > Re a and Im a −
1
2λ < Im z < Im a +

1
2λ} ⊆ �.

Recall that a Riemann map of 2 is given by

9(z) = −i
λ

π
sin−1

(
i
1 − z
1 + z

)
+ a.

In fact,

9−1(w) =
1 + i sin(iπ(w − a)/λ)

1 − i sin(iπ(w − a)/λ)
.

Consider the points wn = a + nt ∈ 2 ⊂ �. We will apply Proposition 3.4 with
zn = h−1(wn) and ϕ = ϕt . First of all, since ϕ′

t(b) < 1, Lemma 4.3 says that (zn)

converges nontangentially to b. Hence

− log ϕ′

t(b) = lim
n→∞

ρD

(
h−1(a + t), ϕt(h−1(a +nt))

)
n

= lim
n→∞

ρ�(a + t, a +nt + t)
n

.

By Proposition 3.6, ρ�(a + t, a + nt + t) ≤ ρ2(a + t, a + nt + t). Therefore,

− log ϕ′

t(b) ≤ lim
n→∞

ρ2

(
a + t, a + (n + 1)t

)
n

= lim
n→∞

ρD

(
9−1(a + t), 9−1(a + (n + 1)t)

)
n

= lim
n→∞

1
n
ρD

(
1 + i sin(iπ t/λ)

1 − i sin(iπ t/λ)
,

1 + i sin(iπ t (n + 1)/λ)

1 − i sin(iπ t (n + 1)/λ)

)
= lim

n→∞

1
n
ρD

(
2 + e−π t/λ

− eπ t/λ

2 − e−π t/λ + eπ t/λ ,
2 + e−π t (n+1)/λ

− eπ t (n+1)/λ

2 − e−π t (n+1)/λ + eπ t (n+1)/λ

)
= lim

n→∞

1
n

log
(

eπ t (n+1)/λ
− e−π t (n+1)/λ

eπ t/λ − e−π t/λ

)
=

π t
λ

.

That is, ϕ′
t(b) ≥ exp(−π t/λ). �

Proof of Proposition 2.3. Notice that γ (s) = h−1(h(γ (0)) + s) for all s > T . By
[Shapiro 1993, p. 162], for almost every ς ∈ ∂D the (possibly infinite) radial limit
h∗(ς) = limr→1 h(rς) exists and it is not a.e. constant on any subarc of ∂D.

If T > −∞, we know that the α-limit α(γ ) is a nonempty, compact, connected
subset of ∂D. We want to show that it is a single point. If this were not the
case, α(γ ) would be a nontrivial subarc of ∂D. Hence, for each a ∈ α(γ ) apart
from the endpoints, the radius from 0 to a would intersect γ infinitely often. Thus
there would exist sn ↘ T such that γ (sn) = rna. The existence of the radial limit
h∗(a) = limr→1 h(ra) implies

h∗(a) = lim
n

h(rna) = lim
n

h(γ (sn)) = lim
n

(h(z) + sn) = h(z) + T .
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So h∗ would be a.e. constant on α(γ ), a contradiction. Therefore, α(γ ) must be a
single point; that is, the limit a := lims→T γ (s) ∈ ∂D exists.

Now we have to show that, given t > 0, a is not a fixed point. Notice that
lims→T + ϕt(γ (s)) = lims→T + h−1(h(z) + s + t) = h−1(h(z) + T + t) ∈ D. So,
by Lindelöf’s Theorem, limr→1 ϕt(ra) = h−1(h(z) + T + t) ∈ D. In particular,
limr→1 ϕt(ra) 6= a and a cannot be a fixed point. Clearly, h(z) + T ∈ ∂�.

If T = −∞, the existence of the limit a := lims→−∞ γ (s) ∈ ∂D is guaranteed
by [Shapiro 1993, p. 162] and we showed in Lemma 4.2 that a is a fixed point. �

Recall that the invariant set of � is

V (�) = int
(⋂

t≥0

(� + t)
)

,

and that its connected components are denoted by V j (�), for j ∈ J . We now
summarize the basic properties of the invariant set and its connected components.

Lemma 5.1. (1) If s ∈ R, then V (�) + s = V (�).

(2) V j (�) + s = V j (�) for all s ∈ R and all j ∈ J . In particular, each V j (�)

is a strip or a half-plane. Therefore, in the first case, there exist unique real
numbers a j and β j (�) such that

V j (�) =
{
z ∈ C : a j −

1
2β j (�) < Im z < a j +

1
2β j (�)

}
,

and, in the second case, there is a real number a j such that

V j (�) = {z ∈ C : a j < Im z} or V j (�) = {z ∈ C : a j > Im z}.

Proof. (1) First suppose that s > 0. Then(⋂
t≥0

(� + t)
)

+ s =

⋂
t≥0

(� + t + s) =

⋂
t≥s

(� + t) =

⋂
t≥0

(� + t).

Therefore,

V (�) + s = int
((⋂

t≥0

(� + t)
)

+ s
)

= V (�).

Now, if s < 0, we have V (�) − s = V (�). So, V (�) + s = V (�).

(2) By the first part of this lemma, we have V j (�) + s ⊆ V (�) + s = V (�).
Moreover, V j (�) + s is connected. So, there is k such that V j (�) + s ⊆ Vk(�).
Similarly, there is l such that Vk(�) − s ⊆ Vl(�). Therefore,

V j (�) + s ⊆ Vk(�) ⊆ Vl(�) + s.

So, V j (�) = Vl(�) and V j (�) + s = Vk(�). Why is k = j? Fix z ∈ V j (�) and
consider the curve τ ∈ [0, s] → σ(τ) = z + τ ∈ V (�). Clearly, σ([0, s]) is an arc
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in V (�) (and so it is included in one connected component) that begins in V j (�)

and ends in Vk(�). Therefore V j (�) = Vk(�). �

Proof of Theorem 2.4. We notice that γz is defined for all t ∈ (−∞, 0] if and only
if h(z) + R ⊂ �.

(1) Take z such that h(z) + R is in a half-plane V j (�) and consider the curves
01(s) = h(z) − s and 02(s) = h(z) + s for s > 0. We know, by the Denjoy–Wolff
Theorem, that lims→∞ h−1(02(s)) = b. By Lemma 4.1, we have

lim
s→∞

h−1(01(s)) = lim
s→∞

h−1(02(s)) = b.

(2) Let z be a point of D such that 3 := h(z) + R ⊂ �. Since, by assumption,
lims→−∞ h−1(h(z) + s) = b, the union γz ∪ {b} is a Jordan curve contained in
D ∪ {b} and satisfying ϕt(γz) = γz for all t ≥ 0. The curve γz divides the unit disk
into two connected components 21 and 22, where ∂21 = γz ∪ {b} and ∂22 =

∂D ∪ γz . Transferring this situation to � we have 3 = ∂h(21) ∩ �. Therefore,
3⊂ ∂(h(21)+t)∩� for all t ≥ 0. That is, γz ⊂ ∂ϕt(21) for all t ≥ 0. On the other
hand, the restriction of ϕt to 21 (with the obvious extension to the point b) is a
homeomorphism. So, ϕt(21) is a Jordan domain whose boundary contains the set
γz . Therefore, ϕt(21) = 21. Again, going over to �, we have h(21)+ t = h(21)

for all positive t , and a posteriori, for all t ∈ R. That is, h(21) is a strip or a
half-plane and it is contained in V .

Suppose that h(21) is a strip bounded by two lines. One of them is 3. Let ϒ

denote the other line of the boundary of h(21). There exist β > 0 and a ∈ Ri such
that the map

σ(w) =
1 − ew/βe−a/β

1 + ew/βe−a/β

is a bijection from h(21) onto the unit disc. Notice that σ has a continuous exten-
sion σ̂ to h(21) (with image D\ {−1, 1}). By the Carathéodory Theorem (see, for
example, [Milnor 1999, Theorem 17.16]) and since 21 is a Jordan domain, we have
σ ◦h|21. can be extended to a homeomorphism from 21 onto D. Given w ∈ ϒ and
taking a sequence (wn) in h(21) that converges to w, it is not difficult to prove that
(h−1(wn)) converges to b. So, σ ◦ h|21(h

−1(wn)) converges to σ ◦ h|21(b) ∈ ∂D.
On the other hand, σ ◦ h|21(h

−1(wn)) = (σ (wn)) converges to σ̂ (w). That is,
σ̂ is constant on ϒ . This is a contradiction, since w 7→ ew/β is not constant on
any horizontal line. Therefore, h(21) is a half-plane contained in V (�) and we
conclude that there is a half-plane V j (�) such that h(21) ⊂ V j (�). In particular,
h(z) ∈ h(21) ⊂ V j (�). �

Proof of Theorem 2.5. (1) When we have a strip V j (�) and two half-lines in
V j (�), say h(z1)+(−∞, 0] and h(z2)+(−∞, 0], we can apply Lemma 4.1 (join-
ing the points h(z1) and h(z2) by a segment) to get lims→−∞ h−1(h(z1) + s) =
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lims→−∞ h−1(h(z2) + s). So, the fixed point ξ(V j (�)) associated to V j (�) is
well-defined.

We now check that ξ(V j (�)) is repulsive. We have to verify that

1 < ϕ′

t(ξ(V j (�))) < +∞.

Take zn = h−1(a j i − n). Then

ρD(zn, ϕt(zn)) = ρ�(a j i − n, a j i − n + t) ≤ 2
∫

[a j i−n,a j i−n+t]

|dw|

δ�(w)
≤

4t
β j (�)

.

Therefore, there is a constant σ < 1 such that the pseudo-hyperbolic distance be-
tween zn and ϕt(zn) is uniformly bounded by σ . That is,∣∣∣∣ zn − ϕt(zn)

1 − z̄nϕt(zn)

∣∣∣∣≤ σ for all n.

Moreover, for n large enough we have |zn| ≥ σ . From this, and using [Shapiro
1993, Exercise 1, p. 73], we conclude that

1 − |ϕt(zn)|

1 − |zn|
≤

1 + σ

1 − σ
.

Hence,

lim infz→ξ(V j (�))

1 − |ϕt(z)|
1 − |z|

≤
1 + σ

1 − σ
.

The Julia–Carathéodory Theorem implies that ϕ′
t(ξ(V j (�))) ≤ (1 +σ)/(1 −σ) <

+∞. To prove that 1 < ϕ′
t(ξ(V j (�))), we will show that ξ(V j (�)) is not the

Denjoy–Wolff point of the semigroup (ϕt). If this were the case, we would have
α(h−1(0)) = b, where 0 = {a j i}+R. By Theorem 2.4, 0 would lie in the closure
of one of the half-planes of V (�): a contradiction because 0 is in one of the strips
of V (�).

(2) We begin by showing that the map ξ that sends a strip to its associated fixed
point is injective. Consider two components V j (�) and Vl(�) such that ξ(V j (�))=

ξ(Vl(�)) = ξ and assume that V j (�) 6= Vl(�). Take 0 j = {a j i} + R and 0l =

{al i}+R. Set γ j = h−1(0 j ) and γl = h−1(0l). The curves γ j and γl are disjoint in
D and connect ξ to the Denjoy–Wolff point b; thus they bound a simply connected
region 2 ⊂ D such that ∂2 = γ j ∪ γl ∪ {b, ξ}. Fix t > 0. We have ϕt(γ j ) = γ j

and ϕt(γl) = γl . Going over to � we have 0 j ∪ 0l ⊂ ∂(h(2) + t) ∩ �; that is,
γ j ∪γl ⊂ ∂ϕt(2). On the other hand, the restriction of ϕt to 2 (with the obvious ex-
tensions to the points b and ξ ) is a homeomorphism. So, ϕt(2) is a Jordan domain
whose boundary contains the Jordan curve γ j ∪γl ∪{b, ξ}. Therefore, ϕt(2) = 2.
In particular, h(2) lies in V (�) and is included in a connected component of V ,
which is a contradiction since h(2)∩V j (�) 6=∅ and h(2)∩Vl(�) 6=∅. Therefore,
the map ξ is injective.
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Now, we will see that the map ξ is onto. Let ξ ∈ ∂D be a fixed point of ϕt with
1 <ϕ′

t(ξ)<∞. Take ε as the positive constant associated to the fixed point ξ given
in Lemma 4.4.

First, we are going to show that there are a strip V j (�) and 0 < r0 < 1 such that⋃
r≥r0

B(h(rξ), ε) ⊂ V j (�).

Let 3 = h([0, 1)ξ) and 3n = 3+n. The curve 3 connects h(0) to ∞. Moreover,
there are two constants M1 and M2 such that M1 ≤ Im h(rξ) ≤ M2 for all r and
limr→1− Re h(rξ) = −∞ (otherwise, by Lemma 4.1, ξ would be the Denjoy–
Wolff point). So, for each n, there is ηn = h(rnξ)+ n ∈ 3n such that Re ηn = −1.
Let (ηnk ) be a subsequence of (ηn) converging to a number η, with Re η = −1,
M1 ≤ Im η ≤ M2 and |ηnk − η| < ε/2 for all k. The choice of ε implies that

δ�(h(rξ) + n) ≥ δ�(h(rξ)) ≥ ε

for all r . In particular,

B(η, ε/2) ⊆ B(ηnk , ε) = B(h(rnk ξ), ε)+ nk ⊂ � + nk

for all k. Therefore, B(η, ε/2) ⊂ V (�). Let V j (�) be the connected component
of V (�) containing B(η, ε/2). Notice that ηnk ∈ B(η, ε/2) ⊂ V j (�). Suppose that
there is no r0 such that ⋃

r≥r0

B(h(rξ), ε) ⊂ V j (�).

Then, for infinitely many k, we can find zk with inf{|zk − w| : w ∈ 3nk } < ε/2,
Re zk <−1 and zk ∈∂V j (�). Take wk =h(skξ)+nk ∈3nk such that |wk−zk |<ε/2.
We have

B(zk, ε/2) ⊆ B(wk, ε) = B(h(skξ), ε)+ nk ⊂ � + nk

for all k. Now choose mk such that z̃k = zk + mk satisfies −2 ≤ Re(z̃k) ≤ −1 and,
passing to a subsequence (still written the same), we consider that (z̃k) converges
to a point ζ . Of course, we can also suppose that |z̃k − ζ | < ε/4 for all k, so

B(ζ, ε/4) ⊆ B(z̃k, ε/2) ⊂ B(h(skξ), ε)+ nk + mk ⊂ � + nk + mk

for all k. Therefore, B(ζ, ε/4) ⊂ V (�). Let Vl(�) be the connected component of
V (�) containing B(ζ, ε/4). Then z̃k ∈ Vl(�), which contradicts the fact that z̃k is
in ∂V j (�). That is, ⋃

r≥r0

B(h(rξ), ε) ⊂ V j (�)

for r0 sufficiently close to 1.
Next, we show that V j (�) is a strip. Suppose V j (�) is a half-plane, say V j (�)=

{z ∈ C : a j < Im z}, and take 01(s) = (a j + 1)i − s and 02(s) = (a j + 1)i + s for
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s > 0. Then, by Lemma 4.1, lims→∞ h−1(01(s))= lims→∞ h−1(02(s))= b, which
contradicts the inequality 1 < ϕ′

t(ξ) (recall that b is the Denjoy–Wolff point of ϕt ).
Now we prove that ξ(V j (�)) = ξ . Take 01(s) = a j i − s for s > 0 and 02(r) =

h(rξ) for r < 1. We know that

lim
s→∞

h−1(01(s)) = ξ(V j (�)) and lim
r→1

h−1(02(r)) = ξ.

We check that the limits coincide. If there is a sequence (wn) in 01[0, ∞)∩02[0, 1)

such that wn → ∞, clearly lims→∞ h−1(01(s)) = limr→1 h−1(02(r)). Otherwise,
using Lemma 4.1 again and bearing in mind that 01 and 02(r) belong to V j (�)

for r large enough, we deduce that lims→∞ h−1(01(s)) = limr→1 h−1(02(r)). �

The following lemma is well-known.

Lemma 5.2. Given ξ ∈ ∂D and a sequence (zn) in D that converges to ξ , the
following assertions are equivalent.

(1) There exists α = limn Arg(1 − ξ̄ zn).

(2) There exists m = limn
1−ξ̄ zn
|1−ξ̄ zn|

.

(3) There exists µ = limn
Im ξ̄ zn

1−Re ξ̄ zn
.

Moreover, if these assertions are satisfied, eiα
= m and µ = −tan α.

Lemma 5.3. Suppose given ξ ∈ ∂D, a repulsive boundary fixed point of the
semigroup of analytic functions (ϕt) with associated strip V j (�), and z ∈ D with
h(z) ∈ V j (�). Then Slope−(γz) is a single point of

(
−

π
2 , π

2

)
.

Proof. Given s > t > 0, by the Invariant Schwarz–Pick Lemma [Shapiro 1993,
p. 60] applied to the function ϕs−t , we have∣∣∣∣ ϕs+1(w) − ϕs(w)

1 − ϕs+1(w)ϕs(w)

∣∣∣∣≤ ∣∣∣∣ ϕt+1(w) − ϕt(w)

1 − ϕt+1(w)ϕt(w)

∣∣∣∣
for all w ∈ D. In particular, taking the point w = h−1(h(z) − s − t) (which is
well-defined because h(z) ∈ V j (�)) we obtain∣∣∣∣ h−1(h(z) − t + 1) − h−1(h(z) − t)

1 − h−1(h(z) − t + 1)h−1(h(z) − t)

∣∣∣∣≤ ∣∣∣∣ h−1(h(z) − s + 1) − h−1(h(z) − s)

1 − h−1(h(z) − s + 1)h−1(h(z) − s)

∣∣∣∣.
That is, the function f defined by

f (t)=
∣∣∣∣ h−1(h(z)−t+1)−h−1(h(z)−t)

1−h−1(h(z)−t+1)h−1(h(z)−t)

∣∣∣∣= ∣∣∣∣ ξ̄h−1(h(z)−t+1)−ξ̄h−1(h(z)−t)

1−ξ̄h−1(h(z)−t+1)ξ̄h−1(h(z)−t)

∣∣∣∣
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is increasing. Let l = limt→∞ f (t). Since

h−1(h(z) − t + 1) − h−1(h(z) − t)

1 − h−1(h(z) − t + 1)h−1(h(z) − t)
∈ D,

for all t , we have l ≤ 1.
Consider the curve

γ (t) =
Im ξ̄h−1(h(z) − t)

1 − Re ξ̄h−1(h(z) − t)
,

with t > 0, and take a sequence (tn) increasing to infinity such that γ (tn) goes to
µ. By Proposition 4.5, the sequence (h−1(h(z)− tn)) converges nontangentially to
the point ξ . So, by Lemma 5.2, there exists α = limn Arg(1 − ξ̄h−1(h(z) − tn)) ∈(
−

π
2 , π

2

)
and µ=− tan α∈R. Set un =Re ξ̄h−1(h(z)−tn), vn = Im ξ̄h−1(h(z)−tn),

an = Re ξ̄h−1(h(z) − tn + 1), and bn = Im ξ̄h−1(h(z) − tn + 1). We know that
vn/(1 − un) converges to µ. Notice that un → 1 and vn → 0. Moreover,

lim
t→∞

1 − ξ̄ϕ1(h−1(h(z) − tn))
1 − ξ̄h−1(h(z) − tn)

= ϕ′

1(ξ).

In particular,

lim
n

1 − (an + ibn)

1 − (un + ivn)
= ϕ′

1(ξ) > 1.

A brief calculation shows that limn(1−an)/(1−un)=ϕ′

1(ξ) and limn bn/(1−un)=

µϕ′

1(ξ). On the other hand, using the definition of f (t), we have∣∣1 − (an − ibn)(un + ivn)
∣∣ f (tn) =

∣∣(an + ibn) − (un + ivn)
∣∣.

Dividing by 1 − un , we get∣∣∣∣1+un
1−an

1−un
−

bn

1−un
vn−

vn

1−un
ani +

bn

1−un
uni
∣∣∣∣ f (tn)

=

∣∣∣∣1−
1−an

1−un
+

bn

1−un
i −

vn

1−un
i
∣∣∣∣.

Taking limits, we have
∣∣1+ϕ′

1(ξ)−µi +µϕ′

1(ξ)i
∣∣ l =

∣∣1−ϕ′

1(ξ)+µϕ′

1(ξ)i −µi
∣∣,

that is, ∣∣∣∣1 + ϕ′

1(ξ)

1 − ϕ′

1(ξ)
− µi

∣∣∣∣ l = |1 − µi |.

Therefore,

µ2(1 − l2) =

(
1 + ϕ′

1(ξ)

1 − ϕ′

1(ξ)

)2

l2
− 1.

Since the fraction in parentheses lies in (−∞, −1), we see that l 6= 1 and µ has
at most two values. Therefore, by Lemma 5.2, the set Slope−(γz) has at most two
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points, and being an interval, it must be a single point, which must be the number
α found above. So, Slope−(γz) is a single point of

(
−

π
2 , π

2

)
. �

Proof of Theorem 2.6. Fix t > 0. By Proposition 3.3, we have

log ϕ′

t(ξ) = lim
r→1

ρD(rξ, ϕt(rξ))

= min
θ∈(− π

2 , π
2 )

{
lim

n
ρD(zn, ϕt(zn)) : zn → ξ, lim

n
Arg(1 − ξ̄ zn) = θ

}
.

By [Poggi-Corradini 2000, Corollary 1.5], given θ ∈
(
−

π
2 , π

2

)
, there is a sequence

(zn) in D such that zn =ϕt(zn+1), zn → ξ and Arg(1− ξ̄ zn)→ θ . By Theorem 2.5,
given such a sequence, there is a point c ∈ V j (�) such that zn = h−1(c − nt). We
check that c ∈ V j (�). If this were not so, clearly lims→+∞ δ�(c − s) = 0, leading
to a contradiction, since on the one hand

ρD(zn, ϕt(zn)) = ρ�(c − nt, c − nt + t)

≥
1
2 log

(
1 +

t
min{δ�(c − nt), δ�(c − nt + t)}

)
,

which tends to ∞, while on the other, by Proposition 3.3 and since θ ∈
(
−

π
2 , π

2

)
,

we have

lim
n→∞

ρD(zn, ϕt(zn)) = log
|ϕ′

t(ξ) + e−2iθ
| + |ϕ′

t(ξ) − 1|

|ϕ′
t(ξ) + e−2iθ | − |ϕ′

t(ξ) − 1|
< ∞.

Conversely, given c ∈ V j (�) and taking zn = h−1(c − nt) for all n, by Lemma
5.3, there is θ ∈

(
−

π
2 , π

2

)
such that limn Arg(1 − ξ̄ znk ) = θ . Therefore,

log(ϕ′

t(ξ)) = min
θ∈(− π

2 , π
2 )

{
lim

n
ρD(zn, ϕt(zn)) : zn → ξ, lim

n
Arg(1 − ξ̄ zn) = θ

}
= min

c∈V j (�)

{
lim

n
ρD(zn, ϕt(zn)) : zn = h−1(c − nt)

}
.

Thus, to calculate log ϕ′
t(ξ), we will take c ∈ V j (�), evaluate limn ρD(zn, ϕt(zn)),

where zn = h−1(c − nt), and take the minimum of that limit. So fix an arbitrary c
in V j (�). For all n ∈ N, set pn = h−1(c − nt) and let αpn be an automorphism of
the unit disc such that αpn (0) = pn . Consider the function fn(z) = h ◦αpn (z)+nt .
Then fn(0)= c and fn(D)= h(D)+nt =�+nt ⊆�, for all n. Thus { fn : n ∈ N} is
a normal family, and so has a subsequence fnk converging uniformly on compact
subsets of D to an analytic function f on D. Also, fn+1(D) ⊂ fn(D) for all n, so
f (D) ⊂ ∩n fn(D) = ∩n(�+nt) ⊂ V (�). Since f (0) = c, we have f (D) ⊆ V j (�).
Moreover, f −1

nk
: V j (�) → D is also a normal family. So, it has a subsequence

(still written the same) that converges uniformly on compact subsets of V j (�) to
an analytic function g : V j (�) → D. Since g(c) = 0, we have g(V j (�)) ⊆ D. If
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z ∈ D and k0 is large enough, then

{ fnk (z) : k ≥ k0} ∪ { f (z)}

is a compact subset of V j . Thus z = f −1
nk

( fnk (z)) → g( f (z)); that is, z = g( f (z)).
Similarly, w = f (g(w)) for all w ∈ V j (�). Thus, f is one-to-one, f (D) = V j (�),
f −1

= g, and f −1
nk

converges uniformly on compact subsets of V j (�) to f −1. A
simple calculation shows that

f −1
n (w) = α−1

pn
(h−1(w − nt))

for all w. So, given z ∈ D,

f −1
n ( fn(z) + t) = α−1

pn
(h−1( fn(z) + t − nt))

= α−1
pn

(h−1(h ◦ αpn (z) + t)) = α−1
pn

◦ ϕt ◦ αpn (z).

In particular, taking z = 0, we have αpn ( f −1
n (c + t)) = ϕt(pn).

Recall that

9(z) =
β j

π
Log

1 − z
1 + z

+ (Re c + a j i)

is another Riemann map of V j (�). Thus, there is θ ∈ [0, 2π ] and d ∈ D such that
f −1

◦ 9(z) = eiθ (z − d)/(1 − d̄z) for all z ∈ D. Since 9(d) = f (0) = c, we get

d =
1 − e(π/β j (�)) Im ci e−(π/β j (�)) a j i

1 + e(π/β j (�)) Im ci e−(π/β j (�)) a j i
.

Now set u = e(π/β j (�)) Im ci e−(π/β j (�)) a j i and v = e(π/β j (�)) t . We obtain

lim
n→∞

ρD(pnk , ϕt(pnk ))

= lim
n→∞

ρD(αpnk
(0), αpnk

( f −1
nk

(c + t)))

= lim
n→∞

ρD(0, f −1
nk

(c + t)) = ρD(0, f −1(c + t))

= ρD

(
0, eiθ 9−1(c + t) − d

1 − d̄9−1(c + t)

)
= ρD

(
0,

9−1(c + t) − d
1 − d̄9−1(c + t)

)
= ρD

(
0,

1−uv
1+uv

−
1−u
1+u

1 −
u−1
u+1

1−uv
1+uv

)
= ρD

(
0, u

1 − v

1 + u2v

)
= ρD

(
0,

1 − v

1 + u2v

)
.

Bearing in mind that

d
(

0,
1−v

1+u2v

)
=

∣∣∣∣ 1−v

1+u2v

∣∣∣∣= v−1
|1+u2v|

=
v−1√

1+v2+2v cos(2π(Im c−a j )/β j (�))
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and that v does not depend on c, we have

log ϕ′

t(ξ) = min
c∈V j (�)

{
lim

n
ρD(zn, ϕt(zn)) : zn = h−1(c − nt)

}
= min

c∈V j (�)
ρD(0,

1 − v

1 + u2v
) = log

1 + minc∈V j (�) d
(

0,
1−v

1+u2v

)
1 − minc∈V j (�) d

(
0,

1−v

1+u2v

)

= log

1 + minc∈V j (�)

v − 1√
1 + v2 + 2v cos(2π(Im c − a j )/β j (�))

1 − minc∈V j (�)

v − 1√
1 + v2 + 2v cos(2π(Im c − a j )/β j (�))

= log
1 +

v−1
v+1

1 −
v−1
v+1

=
π

β j (�)
t.

That is, ϕ′
t(ξ(V j (�))) = exp(π t/β j (�)). �

Proof of Theorem 2.7. Take z such that

h(z) ∈
(⋂

t≥0(� + t)
)
\
(⋃

j∈J V j (�)
)
.

Then, by Proposition 2.3, α(γz) is a single point ξ which is a fixed point. By
Theorems 2.4 and 2.5, ξ is neither attractive nor repulsive. So, it must be a super-
repulsive boundary fixed point of 8.

Suppose that there is another point z̃ such that γz̃ 6= γz and α(γz̃) = {ξ}. Then
γz̃ and γz are disjoint curves in D connecting ξ to b. So, they bound a simply
connected region 2 ⊂ D such that ∂2 = γz̃ ∪ γz ∪ {ξ, b}. Let us fix t > 0. We
have that ϕt(γz̃) = γz̃ and ϕt(γz) = γz . Passing to �, we have h(γz) ∪ h(γz̃) ⊂

∂(h(2) + t) ∩ �; that is, γz̃ ∪ γz ⊂ ∂ϕt(2). On the other hand, the restriction of
ϕt to 2 (with the obvious extensions to the points ξ and b) is a homeomorphism.
Thus ϕt(2) is a Jordan domain whose boundary contains the Jordan curve γz̃ ∪γz ∪

{ξ, b}. Therefore, ϕt(2) = 2. In particular, h(2) lies in V (�) and is included in a
connected component of V (�), which is a contradiction since h(z) /∈

⋃
j∈J V j (�).

�

Lemma 5.4. Suppose (zn) and (wn) are two sequences in the unit disk that con-
verge to ξ ∈ ∂D and such that

(1) Arg(1 − ξ̄ zn) → α and Arg(1 − ξ̄wn) → β with α, β ∈
[
−

π
2 , π

2

]
and

(2) ρD(zn, wn) → 0.

Then α = β.
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Proof. We have zn = (1 − rneiθn )ξ and wn = (1 − sneiξn )ξ with θn, ξn ∈
(
−

π
2 , π

2

)
.

Notice that {n ∈ N : rn ≥ sn} or {n ∈ N : sn ≥ rn} is infinite. Without loss of
generality, we assume that rn ≥ sn for all n. Again, taking a subsequence (still
written the same), we suppose that sn/rn → λ ∈ [0, 1]. By Proposition 3.2, we
have ∣∣∣∣ zn − wn

1 − z̄nwn

∣∣∣∣→ 0.

Moreover,∣∣∣∣ zn − wn

1 − z̄nwn

∣∣∣∣= ∣∣∣∣ −rneiθn + sneiξn

rne−iθn + sneiξn − rnsnei(ξn−θn)

∣∣∣∣= ∣∣∣∣ (sn/rn) ei(ξn−θn)
− 1

1 + (sn/rn) ei(ξn+θn) − sneiξn

∣∣∣∣.
If α+β =±π , then α =β. Otherwise, 1+(sn/rn) ei(ξn+θn)

−sneiξn → 1+λei(β+α),
which is nonzero. So,∣∣∣∣ (sn/rn) ei(ξn−θn)

− 1
1 + (sn/rn) ei(ξn+θn) − sneiξn

∣∣∣∣→ ∣∣∣∣λei(β−α)
− 1

1 + λei(β+α)

∣∣∣∣= 0.

Therefore, we obtain that 1 = λei(β−α) and we conclude that α = β. �

Proof of Theorem 2.8. The proof that given z ∈ D, the set ω(Arg(1 − b̄ϕt(z))) is
a single point is similar to that of Lemma 5.3. So, Slope+(γz) is a single point.
Once we have obtained this, by Lemma 4.3, we see that Slope+(γz) ∈

(
−

π
2 , π

2

)
.

Now consider the map z 7→ k(z) = limt→∞ Arg(1 − b̄ϕt(z)). Assume for the
moment the following two claims (which we will prove below).

Claim 1. The function k is continuous. Therefore, k(D) is an interval.

Claim 2. If k(z1) = k(z2), then Im h(z1) = Im h(z2).

By Lemma 4.4, there is ε > 0 such that δ�(h(rξ)) ≥ ε for all r ∈ [0, 1). Take
the real number a such that

� ⊆ 2 :=
{
z ∈ C : a −

1
2ν(�) < Im z < a +

1
2ν(�)

}
.

Fix M > 0. Recall that the set {z ∈ D : ρD(z, (−1, 1)) ≤ M} is a lens associated to
a certain angle 0 < α < π

2 .
We show that there are points z such that the corresponding trajectory γz satisfy

that limt→+∞ ρD(γz(t), (−1, 1)) > M . Choose ε > δ > 0 with log(1+(ε−δ)/δ) >

4M , take z1, z2 ∈ D with Im h(z1) > a +
1
2ν(�)−δ and Im h(z2) < a −

1
2ν(�)+δ,

and take t > 0. Then δ�(h(zi ) + t) ≤ δ for i = 1, 2. By the Distance Lemma
(Proposition 3.5), we have
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ρD(ϕt(zi ), (−1, 1)) ≥ inf
0<r<1

ρ�(h(zi ) + t, h(r))

≥ inf
s>0

1
2 log

(
1 +

|h(zi ) + t − h(r)|

min{δ�(h(zi ) + t), δ�(r)}

)
≥

1
2 log

(
1 +

ε − δ

δ

)
≥ 2M.

Therefore, |Slope+(γzi )| > α for i = 1, 2. Moreover, Slope+(γz1) and Slope+(γz2)

have different signs, for the following reason: let c be a point of � such that
there is a sequence rn ↗ 1 with Im h(rnξ) → Im c. Then, by Lemma 5.4, k(c) =

Slope+(γc) = 0. Of course, we may assume that Re c = Re h(z1) = Re h(z2)

and that [h(z1), h(z2)] ⊂ �. By Claim 2, the map s ∈ [Im h(z2), Im h(z1)] 7→

k(h−1(Re c + is)) is monotone. Therefore, k(z1) ≥ k(0) ≥ k(z2) (or vice versa).
This and Claim 1 imply that (−α, α) ⊂ k(D) for all α. Thus k(D) =

(
−

π
2 , π

2

)
.

Proof of Claim 1. Take zn → z. We have to check that k(zn) → k(z). Since k is
constant on each trajectory, we may assume that, for n large enough, Re h(zn) =

Re h(z) and the segment [h(zn), h(z)] is in �. We have

ρD(ϕt(zn), ϕt(z))

= ρ�(h(zn) + t, h(z) + t) ≤ 2
∫

[h(zn)+t,h(z)+t]

ds(x)

δ�(x)

≤ 2
|h(zn) + t − h(z) − t |

min{δ�(h(zn) + t), δ�(h(z) + t)}
≤ 2

|h(zn) − h(z)|
min{δ�(h(zn)), δ�(h(z))}

.

Since h(zn) converges to h(z) and δ�(h(zn)) converges to δ�(h(z)), which is
nonzero, we obtain that ρD(ϕt(zn), ϕt(z)) → 0. Now, take tn → +∞ such that
ϕtn (zn) = (1 − rneiθn )b with rn ≤

1
n , and |θn − k(zn)| ≤

1
n for all n. Without

loss of generality, we may assume that k(zn) → β ∈
[
−

π
2 , π

2

]
. Now consider

ϕtn (z) = (1 − sneiξn )b. It is clear that sn → 0 and ξn → k(z). By Lemma 5.4, we
have β = k(z). That is, k(zn) → k(z). �

Proof of Claim 2. Take two orbits {ϕt(z1) : t ≥ 0} and {ϕt(z2) : t ≥ 0} and points
an = (1 − rneiθn )b on the orbit {ϕt(z1) : t ≥ 0} and bn = (1 − rneiξn )b on the orbit
{ϕt(z2) : t ≥ 0}, such that θn → α, ξn → α, α ∈

(
−

π
2 , π

2

)
, and rn → 0. Then∣∣∣∣ an − bn

1 − ānbn

∣∣∣∣= ∣∣∣∣ −eiθn + eiξn

e−iθn + eiξn − rnei(ξn−θn)

∣∣∣∣ →
n→∞

0.

That is, ρD(an, bn) tends to 0. Setting h(an) = h(z1) + tn and h(bn) = h(z2) + sn ,
we have

ρD(an, bn) = ρ�(h(an), h(bn)) = ρ�(h(z1) + tn, h(z2) + sn)

≥
1
2 log

(
1 +

|h(z1) + tn − h(z2) − sn|

min
{
δ�(h(z1) + tn), δ�(h(z2) + sn)

}).
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Moreover, min{δ�(h(z1)+ tn), δ�(h(z2)+ sn)} is bounded below, so the sequence(
|h(z1) + tn − h(z2) − sn|

)
must go to zero. But∣∣Im(h(z1) − h(z2))

∣∣≤ ∣∣h(z1) + tn − h(z2) − sn
∣∣.

Therefore, Im h(z1) = Im h(z2), proving the claim and Theorem 2.8. �

Proof of Theorem 2.9. (1) Take z1, z2 ∈ D and θ ∈ Slope+(γz1). Then there is
(tn) ↗ ∞ such that Arg

(
1− b̄h−1(h(z1)+ tn)

)
→ θ . Bearing in mind Lemma 5.4,

to obtain that θ ∈ Slope+(γz2), it is enough to show that

lim
n→∞

ρ�

(
h(z1) + tn, h(z2) + Re(h(z1) − h(z2)) + tn

)
= 0.

First notice we can assume that Re h(z1) = Re w. We estimate the hyperbolic
distance by integrating along the segment

S =
[
h(z1) + tn, h(z2) + Re(h(z1) − h(z2)) + tn

]
,

which is contained in � when n is large enough:

ρ�

(
h(z1) + tn, h(z2) + Re(h(z1) − h(z2)) + tn

)
≤ 2

∫
S

ds(z)
δ�(z)

≤ 2 |h(z1) − h(z2)| max
z∈S

1
δ�(z)

.

If we take n large enough, we have

max
z∈S

1
δ�(z)

=
1

min
{
δ�(h(z1) + tn), δ�(h(z2) + Re(h(z1) − h(z2)) + tn)

}
≤

1
min

{
δ�(w+tn) − |h(z1)−w|, δ�(w+tn) − |h(z2) + Re(h(z1)−h(z2)) − w|

}
=

1
δ�(w + tn) − max

{
|h(z1) − w|, |h(z2) + Re(h(z1) − h(z2)) − w|

} ,
which tends to 0 as n goes to ∞. That is,

lim
n→∞

ρ�

(
h(z1) + tn, h(z2) + Re(h(z1) − h(z2)) + tn

)
= 0.

(2) Since Slope+(γz) is an interval, it is enough to apply Lemma 4.6. �

Proof of Theorem 2.10. (1) Recall that Slope−(γz) is a nonempty, compact and
connected subset of

[
−

π
2 , π

2

]
. Moreover, it is clear that lims→−∞ δ�(h(z)−s)<∞.

So, by Lemma 4.6, Slope−(γz) is equal to −
π
2 or π

2 .
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(2) Arguing as in the proof of Theorem 2.8, the function

w 7→ k(w) = lim
s→∞

Arg(1 − b̄h−1(w − s))

is continuous as w runs over one of the half-planes of the invariant set. Since k(w)

is either −
π
2 or π

2 for all w, it must be constant. �

Proof of Theorem 2.11. (1) It is enough to apply Lemma 5.3 and [Poggi-Corradini
2000, Corollary 1.5].

(2) Recall that Slope−(γz) is a nonempty, compact, connected subset of
[
−

π
2 , π

2

]
.

Moreover, it is clear that lims→+∞ δ�(h(z) − s) = 0. On the one hand,

ρD

(
h−1(h(z) − s), ϕt(h−1(h(z) − s))

)
= ρ�

(
h(z) − s, h(z) − s + t

)
≥

1
2 log

(
1 +

t
min{δ�(h(z) − s), δ�(h(z) − s + t)}

)
,

which tends to ∞ with s. On the other hand, if there is (sn) ↗ ∞ such that

lim
n→∞

Arg
(
1 − ξ(V j (�))h−1(h(z) − sn)

)
= θ ∈

(
−

π
2 , π

2

)
,

by Proposition 3.3, we have

lim
n→∞

ρD(h−1(h(z) − sn), ϕt(h−1(h(z) − sn)))

= log
|ϕ′

t(ξ(V j (�))) + e−2iθ
| + |ϕ′

t(ξ(V j (�))) − 1|

|ϕ′
t(ξ(V j (�))) + e−2iθ | − |ϕ′

t(ξ(V j (�))) − 1|
< ∞,

yielding a contradiction. That is, Slope−(γz) is either π
2 or π

2 . �
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