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We prove that an achiral alternating link can be decomposed in a strong
sense as a Murasugi sum of a link and its mirror image. The proof relies
on our theory of Murasugi atoms. We introduce a notion of a bond between
atoms, called adjacency. This relation is expressed by a graph, the adjacency
graph, which is an isotopy invariant. A well-defined link type, called a mol-
ecule, is associated to any connected subgraph of the adjacency graph. The
Flyping Theorem of Menasco and Thistlethwaite is the main tool used to
prove the isotopy invariance of atoms, molecules and the adjacency graph.
The action of flypes on the adjacency graph and the invariance of the collec-
tion of molecules under flypes are the main ingredients of the proof of the
decomposition theorem.

1. Introduction

A cheap way to produce an achiral knot is to construct the connected sum of a knot
K with its mirror image; but it is certainly not true that all achiral knots arise in
this way! The main result of this article is that it is true that all alternating achiral
knots (in fact, links) come from this procedure, if the notion of connected sum is
replaced by the more general notion of Murasugi sum.

As Mikami Hirasawa has kindly pointed out, we must clarify which kind of
Murasugi sum we work with. The classical definition of Murasugi sum involves
two oriented links L ′ and L ′′ in S3. An arbitrary choice is made of Seifert surfaces
S′ and S′′ for each link. Then on each surface a 2n-gon is chosen: P ′ in S′ and
P ′′ in S′′. We select a 2-sphere S2 in S3 inducing a decomposition of S3 in two
hemispheres. Then S′ is moved into one hemisphere and S′′ into the other in such
a way that, among other conditions,

P ′
= S′

∩ S2
= S′′

∩ S2
= P ′′.
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See [Gabai 1983] for more details. The abundance of possible choices has several
consequences, most of them unwanted. For instance, Thompson [1994] has given
an example of two nontrivial knots which can be summed along adequately selected
Seifert surfaces (not of minimal genus) to produce the trivial knot. Hirasawa has
announced, in a talk given in Geneva in February 2003, that given three oriented
knots K0, K1 and K2 it is always possible to exhibit K0 as a Murasugi sum of
K1 and K2. On the other hand, Gabai [1983] has shown that if incompressible
(or minimal genus) Seifert surfaces are used, then the resulting surface is again in-
compressible (or of minimal genus). But even if one decides to restrict the choices
by imposing conditions on the Seifert surfaces, too many possibilities remain. It
seems hopeless to look for a uniqueness result for Murasugi decompositions in this
context. This is why, when we were working on our paper [Quach Hongler and
Weber 2004], we decided to depart from Seifert surfaces and to deal with reduced
alternating diagrams instead.

A diagrammatic Murasugi sum using these diagrams is defined in the beginning
of Section 5, and we denote it by D′

∗ D′′. If we apply the Seifert construction, we
obtain Seifert surfaces which have (among others) the property of being of minimal
genus. We take the liberty of writing L ′

∗ L ′′ for a sum of oriented links obtained
from reduced alternating diagrams. In this paper, we shall use only this refined
version of Murasugi sums, and phenomena like those discovered by Thompson
and Hirasawa are thus impossible.

Notation. If L is an oriented link, L̂ denotes the mirror image of L as an oriented
link. We write −L for the oriented link obtained from L by reversing the orienta-
tions of all its components. An oriented link L is positively achiral if it is isotopic
to L̂ , and negatively achiral if it is isotopic to −L̂ .

Theorem 5.2. (1) If L is positively achiral, then there exists a link L ′ such that
L = L ′

∗ L̂ ′.

(2) If L is negatively achiral, then there exists a link L ′ such that L = L ′
∗ −L̂ ′.

The proof rests on our theory of Murasugi atoms [Quach Hongler and Weber
2004]. In Section 2, we quickly recall basic facts about atoms, and then introduce
a notion of bond between atoms, which we call adjacency. Adjacency is a binary
relation among atoms of a given link L which can be expressed by the adjacency
graph 5(L). Its vertices are labeled by the various atoms of L and an edge connects
two vertices if the corresponding atoms are adjacent. The graph is constructed
from a reduced diagram D representing L , and the key point is to prove that the
adjacency relation does not depend on the choice of D. The Flyping Theorem of
Menasco and Thistlethwaite [1993] is crucial here. As a consequence, the graph
5(L) is an isotopy invariant. This is proved in Theorem 2.7 and Corollary 2.8.
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Moreover, in Section 3, we associate to any connected subgraph of 5(L) a well
defined link type, which we call a molecule of L . We prove that the collection (a
set with repetitions allowed) of molecules is an isotopy invariant. This collection
is a powerful tool for classification questions. In Section 4 we give applications
of these concepts to reversibility and chirality questions. Theorem 5.2 is proved in
Section 5. The proof uses the action of flypes on the adjacency graph studied in
Section 2 and the invariance of molecules proved in Section 3.

Unless otherwise stated, by a link we mean an oriented, alternating, unsplittable,
prime link in S3, and by a diagram we mean an oriented, alternating, connected,
reduced, prime diagram in the 2-sphere S2 (not in the plane R2).

2. Adjacency

We recall briefly how atoms are obtained. For more details, see [Quach Hongler
and Weber 2004], henceforth abbreviated [QW]. Let L be a link and let D be a
diagram representing L . We perform a Seifert surgery at each crossing point of D
and obtain a bunch B of disjoint oriented circles in S2 called Seifert circles. The
site of a surgery is indicated by an arc called the scar of the surgery. If each scar
is endowed with a ± sign, it is easy to reconstruct D from B and the signed scars.
This operation (inverse to surgery) is called suturing the scars. Each circle γ ∈ B

bounds two open discs 1′ and 1′′ in S2, called the Seifert discs determined by γ .
The set of all Seifert discs determined by the various γ ∈ B is denoted by F. This
set is ordered by inclusion, and a descending chain

10 ⊃ 11 ⊃ . . . ⊃ 1k

is said to be of length k and to begin at 10.

Definition 2.1. A disc 1 ∈ F is of depth k if

(1) there exists a descending chain of length k beginning at 1, and

(2) there is no descending chain of length l beginning at 1 with l > k.

According to this definition, innermost discs correspond to discs of depth zero.
Following Murasugi [1965], we call a Seifert bunch B special if each γ ∈B bounds
an innermost disc.

We now define the Murasugi special components Di (for i = 1, 2, . . . , n) of D.
First we look at the Seifert discs which are of depth one. Suturing the scars in each
such disc, we obtain disjoint, not necessarily prime, special diagrams D1, . . . , Dt .
Then we remove from each disc of depth one the Seifert discs and scars it contains
(we call this operation cleaning). We obtain a new diagram D′, a new bunch B′ and
a new set of Seifert discs F′. From the Seifert discs of depth one in F′, we obtain
new special diagrams Dt+1, . . . , Ds . After cleaning, we obtain a new diagram
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D′′, and so on. Finally the process comes to an end and we obtain the family
D1, . . . , Dn of Murasugi special components of D.

Although D is supposed to be prime, it may well be that Di is not. To make
things clear, recall that a Menasco circle for a diagram E is a Jordan curve 0 in S2

which cuts E transversally in two points, and such that each disc of S2 bounded by
0 contains crossing points of E . By definition, a diagram is prime if there exists
no Menasco circle for it. A beautiful theorem of Menasco [1984] says that if E
is prime then the link represented by E is also prime. The reason why there may
exist Menasco circles for Di is that Di has been obtained by cleaning many discs,
thus allowing the Jordan curve 0 to have only two intersection points with Di , but
many more with D.

We define the prime factors Di
1, . . . , Di

k of Di to be the subdiagrams of Di

which are maximal (with respect to inclusion) and prime. See Figure 1 for an
example.

We write D1, . . . , Ds for the diagrams of the prime factors of the various Mura-
sugi components of D (the order is not important). We think of them as being
subdiagrams of D and we call them the atom diagrams of D.

Definition 2.2. Let Da and Db be two atom diagrams of D. We say that they are
adjacent if their union Da ∪ Db is again a diagram. As this union is necessarily
oriented and alternating, the condition is that it is connected and prime.

Lemma 2.3. The two atom diagrams Da and Db are adjacent if and only if :

(1) Da ∩ Db consists of exactly one Seifert circle γ ∈ B.

(2) Along γ the extremities of the scars of Da are interlaced with those of Db.

The proof is easy, once the following definition is stated.

Definition 2.4. Let X and Y be two disjoint, finite subsets of the circle S1. We say
that they are interlaced if there exist no disjoint intervals I ⊃ X and J ⊃ Y in S1.

Remark 2.5. Let 1′ and 1′′ be the two Seifert discs bounded by γ . Lemma 2.3
and Definition 2.4 imply that Da ⊂ 1′ and Db ⊂ 1′′.

Definition 2.6. The adjacency graph 5(D) is the graph of the adjacency relation
on the set of atom diagrams of D.

The graph 5(D) is simplicial. Its vertices are labeled by the atom diagrams of
D and two vertices are connected by an edge if the corresponding atom diagrams
are adjacent. The process is illustrated in Figure 1; in this example the adjacency
graph 5(D) is

D1 D2 D3 D4.
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D1

D2

D3

D4

Figure 1. Top left: the initial knot. Top right: the bunch with
scars. Bottom: the corresponding atom diagrams.

Theorem 2.7. Let D and D∗ be two diagrams representing the same link L and
suppose that they differ by exactly one flype f . Then there exists a canonical iso-
morphism ϕ f : 5(D) → 5(D∗) such that, for each atom diagram Da of D, the
atom diagrams Da and ϕ(Da) represent the same link.

Proof. We shall go back to the proof of the topological invariance of atoms given
in [QW] and extract from it the fact that the adjacency relation is preserved under
a flype. Recall that a flype starts from a tangle decomposition like this:

A B
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Let α denote the Jordan curve which is the boundary of the tangle A.
We ask the following question: How does α cut the Seifert bunch B associated

to the given diagram D?
The answer is as follows. A Jordan curve α in S2 is the boundary of tangle A

giving rise to a tangle situation in exactly two cases.

Case 1. (i) α cuts one scar σ of B transversally,

(ii) α cuts transversally twice some Seifert circle γ of B and α does not cut B

somewhere else, and

(iii) α is nontrivial: each disc of S2 bounded by α contains some scars distinct
from σ .

A priori there are two possibilities:

(1) No extremity of the the scar σ lies on γ .

(2) One extremity of the scar σ lies on γ .

Recall that the extremities of a scar always lie on different Seifert circles.
Cases 1, 2, and 3 of [QW] correspond to the first possibility, while case 4 cor-

responds to the second one.

Case 2. The curve α contains a scar σ and cuts transversally two Seifert circles of
the Seifert bunch B.

Case 5 of [QW] corresponds to this case.

The analysis carried out in [QW] reveals that, in all five cases examined there,
the scar σ belongs to some special component, called the supporting component
of the flype. This component was denoted D0 but will be written E here, for
convenience.

We now proceed to analyse the prime components of E and their behaviour
under the flype. We shall do this by considering case 1 of [QW], but the arguments
are essentially the same in all five cases. We slightly modify Figure 10 of [QW]
by sliding α along the scar σ to obtain the following:

A B
0

I II

III IV V

VI

VII

VIII

Claim. If E is not prime, Menasco circles for E are entirely contained either in A
or in B.
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Proof of claim. Think first of the preceding figure before any cleaning has been
done. By the definition of a flype, there are no scars outside tangles A and B except
for σ . Hence zones VI, VII and VIII are empty. Zones III, IV and V may each
contain some scars and some Seifert circles. These have been removed during the
cleaning process which leads to the picture of E . Therefore, each of zones III, IV
and V may contain atom diagrams which are adjacent to a prime factor of E . We
now look at zones I and II, as sketched in the figure. Both zones must contain discs
and scars of E . This is because zone 0 and zone III must be connected through
zone I by scars and discs of E , or else the crossing of D which corresponds to the
scar σ would be nugatory. For the same reason, zones IV and V must be connected
through zone II. �

We deduce from the above argument that the prime factors of E (namely the
atom diagrams produced by E) are as follows:

(1) The atom diagram E0 which contains the scar σ , the two Seifert circles to
which σ is attached, the Seifert circle which is the boundary of (zone III ∪

zone IV ∪ zone VII), and some of the boundaries of colored discs and scars
which are in zone I and in zone II.

(2) Maybe some other prime factors, each of them entirely contained in tangle A
or in tangle B. Denote these possible atom diagrams by Ei for i = 1, . . . , t .

We look again at the figure on the previous page and search for the atom diagrams
which are adjacent to E0 or to some Ei for i = 1, . . . , t . To do this, we consider
the initial bunch B and we perform cleaning operations in the coloured discs of
depth 1 or greater, until they become exactly of depth 1. We thus obtain a bunch
B′ and a corresponding diagram D′. We write G for an atom diagram of D′ which
is contained in a coloured disc.

Question. Which are the Gs adjacent to E0?

Answer. The Gs which are adjacent to E0 are:

(i) Those contained in zone 0, zone III, zone IV or zone V.

(ii) Some of the Gs contained in the coloured discs situated in A or B.

Question. Where are the G’s adjacent to some Ei for i = 1, . . . , t ?

Answer. (iii) They are in some coloured disc situated in A or in B.

What makes the difference between (ii) and (iii) depends on the position of the
atom diagram G with respect to the Menasco circles for E . For each such Menasco
circle µ j consider the disc M j bounded by µ j in tangle A or in tangle B. Now
G is adjacent to E0 if it is outside all the M j and it is adjacent to some Ei if it is
inside some M j .
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We now consider the situation after the flype. The new diagram is D∗ with
its corresponding bunch B∗. The supporting diagram is now the Murasugi spe-
cial component of D∗ which contains the scar σ ∗. In [QW] we proved that this
supporting component is the image by the flype of the supporting component of
D. This is the equality (D∗)0 = (D0)

∗ of [QW]. We write here E∗ for the new
supporting component. The situation after the flype is this:

A
B

0r

Ir II

IIIr IV V

VI

VII′ VII′′

VIII

We see that:

(1) Zone VII has disappeared, giving birth to zones VII′ and VII′′. This is of no
consequence because they are empty.

(2) The scar σ has, of course, disappeared. Zone 0 has undergone a 180-degree
rotation and been connected to the big Seifert disc which contains the point
at infinity.

(3) Zones I and II have been turned.

We define (E∗)0 to be the prime factor of E∗ which contains the scar σ ∗.

Claim. The equality (E∗)0 = (E0)
∗ holds, which allows us to write simply E0

∗.

Proof of claim. The equality can be seen by comparing the two preceding figures.
Here are some details. In the figure above, E0

∗ is the atom diagram which contains

(a) the huge circle bounding the Seifert disc which contains the point at infinity,

(b) the boundary of (turned zone III) ∪ zone VII′,

(c) the boundary of zone IV ∪ zone VII′,

(d) the part of E0 which is in zone II, and

(e) the part of E0 which was in zone I, turned by a 180 degree rotation.

The key points from which the equality (E∗)0 = (E0)
∗ can be deduced are:

(1) The Menasco circles which were in tangle B before the flype have not been
moved.

(2) The Menasco circles which were in tangle A before the flype have simply
been turned. �
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We now construct the promised isomorphism

ϕ : 5(D) → 5(D∗)

We define the image of E0 by ϕ to be E0
∗. As they differ by a flype, they represent

the same atom.
Any other atom diagram of D is entirely contained in either tangle A or in tangle

B. If it is contained in B, then ϕ sends it to itself. If it is in A, then ϕ sends it to its
image under the rotation. From this, we immediately deduce that if two adjacent
atom diagrams of D are entirely contained in A or in B, the adjacency relation is
preserved by ϕ.

It remains to see what happens to atom diagrams of D which are adjacent to
E0. For those which are contained in B (that is, in zones II, IV and V) their image
under ϕ will be adjacent to E0

∗ because nothing changes in B under the flype.
Those which are contained in A are turned by the flype. For those in zones 0 and
III, their image will clearly be adjacent to E0

∗. This is also true for those in zone
I, because their image under the rotation lies outside the image of all the Menasco
circles. This completes the proof of Theorem 2.7. �

Corollary 2.8. Let D and D′ be two diagrams representing the same link type L .
Then 5(D) and 5(D′) are isomorphic.

Proof. The main result of [Menasco and Thistlethwaite 1993] asserts that D and
D′ differ by a finite sequence of flypes and homeomorphisms of S2. �

Remark. Corollary 2.8 says that there exists an isomorphism 9 between 5(D)

and 5(D′) such that, for each vertex Da of 5(D), the atom diagrams Da and
9(Da) represent isotopic links. It would be pleasing to have a canonical isomor-
phism between the two adjacency graphs, but in general this is not possible because
diagrams can have nontrivial automorphisms. To amend this state of affairs, we
can categorize. Here are some brief details.

Let 0 and 0′ be two graphs embedded in S2. A map 8 : (S2, 0) → (S2, 0′) is a
homeomorphism 8 : S2

→ S2 of degree +1 such that 8(0) = 0′. An isotopy is a
continuous family 8t of maps (S2, 0) → (S2, 0′) for t ∈ [0, 1]. An isotopy class
of maps will be called a spherical equivalence.

The difficulty about the non-canonicity of 9 is that the group of spherical equiv-
alences of a diagram in S2 can be nontrivial. The following easily proved lemma
will help.

Lemma 2.9. Let 0 be a connected graph in S2 and let e be an oriented edge of 0.
Then a spherical equivalence 8 : (S2, 0) → (S2, 0) such that 8(e) = e keeping
the orientation of e fixed, is the identity.

As an application of the lemma, consider a diagram D and its image D∗ by a
flype. Now, D∗ is actually not a well defined graph embedded as a subspace of S2,
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as several choices are involved. But any two representatives for D∗ are canonically
isomorphic, because a flype is the identity on some part of D.

With this in hand, we can consider the category whose objects are diagrams in
S2 and whose morphisms are flypes. Then the adjacency graph is a functor 5 from
this category to the category of simplicial graphs, with labeled vertices. The labels
are the atom diagrams. This is a sophisticated way to state that the adjacency graph
is an isotopy invariant.

However, we shall often dare to speak of the adjacency graph 5(L) of a link L .
The vertices of 5(L) are then labeled by the atoms of L .

Proposition 2.10. The adjacency graph 5(L) of a link L is bipartite: adjacent
vertices represent prime special links of opposite sign.

Proof. Let D be a special diagram. Then all crossings of D have the same Conway
sign. We have seen above (see Remark 2.5) that if Da and Db are two adjacent
atom diagrams, there exists a Seifert circle γ such that Da ∩ Db = γ . If 1′ and 1′′

are the two Seifert discs bounded by γ , then Da ⊂ 1′ and Db ⊂ 1′′. As Da ∪ Db

is alternating, this implies that the sign of Da is the opposite of the sign of Db.
Now, the sign of a special diagram is preserved by a flype. Hence the iso-

morphism ϕ f : 5(D) → 5(D′), associated to a flype f , preserves the signs of
the vertices. As a consequence, atoms have signs and two atoms which are the
extremities of an edge have opposite signs. �

We wish to produce some examples. This raises a problem of notation, because
the knots pictured in the tables are not oriented. This is not too consequential for
the examples given below, because the knots we shall use have few crossings and
hence are usually reversible. The situation is worse for links. We shall deal more
extensively with these matters in Section 4. We write the sign as an exponent,
hence 31

+ denotes a trefoil with positive Conway signs.

Example 2.11. The knots 1042 and 1043 have the same collection{
22

1
+
, 22

1
−
, 3+

1 , 3−

1

}
of atoms. Their unlabeled adjacency graph is

A B C D

in both cases. The vertices are labeled

A = 3+

1 , B = 3−

1 , C = 22
1
+
, D = 22

1
−

for the knot 1042, and

A = 3+

1 , B = 22
1
−
, C = 22

1
+
, D = 3−

1

for the knot 1043.
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We see that the graphs with vertices labeled by the atoms are non-isomorphic.
Incidentally, this shows that the two knots are distinct.

Not surprisingly, the adjacency graph is too weak to distinguish knots. For
instance, the knots 10115 and 1043 have the same adjacency graph. The smallest
such examples are provided by the graph 3+

1 3−

1 which corresponds to the knot
63 but also to the link 63

2 and by the graph 22
1
+ 42

1
− which corresponds to the

knot 62 and to the link 63
1 for some orientation.

3. Molecules

Proposition 3.1. Let L be a link and let D and D′ be two diagrams for L differing
by a flype f . Let H ⊂ 5(D) be a connected subgraph of 5(D) and let L(H) be
the link represented by the union of the atom diagrams which correspond to the
vertices of H . Let ϕ f : 5(D) → 5(D′) be the canonical isomorphism induced by
the flype f . Then L(H) and L(ϕ(H)) represent the same link type.

As a consequence, again thanks to the Menasco–Thistlethwaite Flyping Theo-
rem, if L is a given link, we can associate to any connected subgraph of 5(L) a
well defined link type. The collection of links obtained this way from the set of
connected subgraphs of 5(L) will be called the collection of molecules of L and
we shall denote it by M(L). As for the collection of atoms, we remark that a given
link type may appear several times in the list. Notice that molecules are prime
links, as they correspond to connected adjacency subgraphs.

Warning. If we want to point out to a particular molecule, “the” graph 5(L)

may be too imprecise. This is especially the case when “the” adjacency graph has
nontrivial automorphisms (as a labeled graph). Then it is better to use the more
elaborate categorical setting sketched above.

Example 3.2. A necessary condition for two links L and L ′ to be isotopic is that
M(L) = M(L ′). Consider the knots 1045 and 1088. Both have the same adjacency
graph (and hence the same atoms)

22
1
+

3−

1 3+

1 22
1
−
.

However the collection of molecules distinguishes the two knots, because the mol-
ecule associated to the subgraph 3−

1 3+

1 is the knot 63 for 1045 and “the” link
63

2 for 1088.

Proof of Proposition 3.1. The detailed proof of Theorem 2.7 contains all the ingre-
dients necessary to prove Proposition 3.1. Two possibilities can occur:

If H contains a prime factor of the supporting diagram of the flype f , then
L(ϕ(H)) is represented by H∗, the image of H under the flype.



328 CAM VAN QUACH HONGLER AND CLAUDE WEBER

If H does not contain a prime factor of the supporting diagram, then its image
is translated and/or turned. �

We now consider the molecules which are built up from two adjacent atom
diagrams. In fact, the existence of an edge between two vertices says that some
bond exists between the two corresponding atoms. The edge in itself says nothing
about the nature of the bond, but the two-atom molecule reveals what this bond is.
We call such molecules edge-molecules.

One can then add a weight on the edges of the adjacency graph, the weight being
the edge-molecules; we call the resulting graph the bond graph. It is very tempting
to conjecture that a link is determined by its bond-graph, but this is (alas?) wrong.
An example is provided by the graph

22
1
+

3−

1 22
1
+
.

The edge-molecules are the knot 52. But the knot 77 and the link 73
1 (for some

orientation) both have this weighted graph as bond graph.
Another temptation is to look at the vertex stars. By definition, if P is a vertex

in a simplicial graph 5, the star st(P) is the subgraph of 5 which is the union of
the edges (and their extremities) which have P as a vertex. Accordingly, if L i is
the atom which corresponds to a vertex of 5(L) the molecule associated to the star
st(L i ) describe a kind of neighborhood of L i in L .

Question. Let L and L ′ be two links and suppose that there exists an isomorphism
ϕ : 5(L) → 5(L ′) such that, for any atom L i of L , st(L i ) and st(ϕ(L i )) are
isotopic. Are L and L i isotopic?

The answer is, in general, no (mutations can be used to construct counter-
examples) but the answer might be yes if the graph is 2-connected.

4. Applications to chirality and reversibility

If L is a link, we denote by L̂ the mirror image of L as an oriented link. We denote
by −L the oriented link obtained by changing the orientation of all the components
of L . The same notations will be used for diagrams.

If 5(L) is the adjacency graph of L , the graph obtained from 5(L) by replacing
the label L i at each vertex by the label L̂ i will be written 5̂(L). Clearly 5(L̂) =

5̂(L). Analogously −5(L) denotes the adjacency graph obtained from 5(L) by
replacing each vertex label L i by −L i . Obviously one has −5(L) = 5(−L). We
recall now the usual definitions.

Definition 4.1. A link L is positively achiral if it is isotopic to L̂ , negatively achiral
if it is isotopic to −L̂ , and reversible if it is isotopic to −L .
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Theorem 4.2. If the link L is positively achiral, the graph 5(L) is isomorphic to
5̂(L). If it is negatively achiral, the graph 5(L) is isomorphic to −5̂(L). If it is
reversible, the graph 5(L) is isomorphic to −5(L).

Proof. The proof is an immediate consequence of the isotopy invariance of the
adjacency graph, loosely stated. �

We write M̂(L) for the collection of molecules of the link L̂ . Analogously, we
write −M(L) and −M̂(L) for the molecule collection of, respectively, −L and −L̂ .

Corollary 4.3. (1) If L is positively achiral, then M(L) = M̂(L).

(2) If L is negatively achiral, then M(L) = −M̂(L).

(3) If L is reversible, one has M(L) = −M(L).

We now produce some examples. As far as chirality questions are concerned, it
is easy to produce many, because atoms are chiral. For instance, consider the knot
1042 whose adjacency graph

3+

1 3−

1 22
1
+

22
1
−

was introduced in Example 2.11. We see that the atoms can be grouped in pairs
(D, D̂) so that the knot passes the first test for achirality. However, the graph 5(D)

is not isomorphic to 5̂(D) and hence 1042 is chiral.
Reversibility questions are more delicate to handle, because atoms can be re-

versible or non-reversible. In each case, an ad hoc proof is needed. Here is an
example of a diagram D for a 3-component link:

The adjacency graph 5(D) is

22
1
+

42
1
−

42
1
+

22
1
−
.

The edge molecule associated to the middle bond is the knot 817 which is known
to be non-reversible. This implies that the link is also non-reversible.
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5. Decomposition of achiral links as a Murasugi sum

Definition 5.1. Let L be a link and {M1, . . . , Ms} be a collection of molecules
whose atoms constitute a partition of the collection of atoms of L . Let D be a dia-
gram for L and let D1, . . . , Ds be the subdiagrams of D representing the molecules
M1, . . . , Ms . Suppose that all the Di have the same Seifert circle γ in common.
Then we say that the molecule diagrams D1, . . . , Ds form a decomposition of D
as a diagrammatic Murasugi sum.

The pioneering work of Murasugi shows that the link L is a Murasugi sum, in
the classical sense, of the links M1, . . . , Ms . The Seifert circle γ will be called
a plumbing (Seifert) circle. Traditionally one considers Murasugi sums with two
factors, and this can easily be achieved at the cost of dealing with possibly non-
prime link factors. For instance, one can choose an integer k such that 1 < k < s
and consider the subdiagrams D′

=
⋃

i=1,...,k Di and D′′
=

⋃
i=(k+1),...,s Di . If L ′

is the link represented by D′ and if L ′′ is the link represented by D′′, then L is a
Murasugi sum L = L ′

∗ L ′′ with two factors.
The aim of this section is to prove the following theorem.

Theorem 5.2. (1) If L is positively achiral, there exists a link L ′ such that L =

L ′
∗ L̂ ′.

(2) If L is negatively achiral, there exists a link L ′ such that L = L ′
∗ −L̂ ′.

Remark. The decomposition is not necessarily unique and the link L ′ is not nec-
essarily prime. How this can happen is explained below; see the proof of Theorem
5.2 when 5(D) is 2-connected.

Proof. We prove the theorem when L is positively achiral. If L is negatively
achiral, it suffices to replace 5̂(D) by −5̂(D) in the proof given below.

Let D be a diagram for L . We consider the graphs 5(D) and 5̂(D). By
[Menasco and Thistlethwaite 1993] and Theorem 2.7 there exists a sequence of
flypes which induces an isomorphism from 5̂(D) to 5(D). As such a sequence is
not necessarily unique, we choose one and write

8 : 5̂(D) → 5(D)

for the induced isomorphism.
We now write 5̆(D) for the graphs 5(D) or 5̂(D) with no label at the vertices.

Then 8 induces an isomorphism of (plain) graphs

8̆ : 5̆(D) → 5̆(D).

Remark 5.3. No vertex of 5̆(D) is fixed by 8̆, as 8 sends a vertex of 5̂(D) to
a vertex of 5(D) with the same label. As a consequence, no edge of 5̆(D) is
pointwise fixed by 8̆.
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Proof of Theorem 5.2 when 5̆(D) is a tree. By the Hopf–Lefschetz fixed point
theorem, 8̆ has fixed points. Remark 5.3 implies that 8̆ has a unique fixed point,
and that this fixed point is located in the middle of an edge e. Now remove the
interior of e. Then 5(D) is split into two subtrees 5(D)′ and 5(D)′′. Similarly,
5̂(D) is split into 5̂(D)′ and 5̂(D)′′. As 8̆ exchanges the extremities of the edge
e, 8 induces an isomorphism of 5̂(D)′ onto 5(D)′′, and of 5̂(D)′′ onto 5(D)′.
The topological invariance of molecules proved in Proposition 3.1 implies that the
molecule L ′ associated to 5(D)′ is the mirror image L̂ ′ of the molecule associated
to 5(D)′′.

On the other hand, the edge e has two vertices V ′
∈5(D)′ and V ′′

∈5(D)′′. The
edge between V ′ and V ′′ indicates a Murasugi sum between the atom represented
by V ′ and the atom represented by V ′′. Indeed, the adjacency relation represented
by e says precisely that the two atoms have a common Seifert circle γ . But this
argument also shows that we have a diagrammatic Murasugi sum between 5(D)′

and 5(D)′′. As a consequence, L is a Murasugi sum of the molecule L ′ and the
molecule L̂ ′. �

In order to be able to argue when 5(D) is not a tree, we need some facts about
simplicial graph theory. A general reference for the results we need is provided by
the book [Diestel 2000]. A circuit is a graph which is homeomorphic to a circle. A
graph G is 2-connected if it contains at least three vertices and if any two distinct
vertices are situated on at least one circuit. By Menger’s theorem, a connected G is
2-connected if and only if it contains no cut vertex and is not the connected graph
with only one vertex or only one edge.

Proposition 5.4. Suppose that 5̆(D) is 2-connected. Then all atom diagrams of D
have one Seifert circle γ in common.

Proof of Proposition 5.4. For the moment, let D be any diagram (not necessarily
prime) and let γ be a Seifert circle of D. Let 1′ and 1′′ be the two open discs of
S2 bounded by γ , and let 1′ and 1′′ be their closure. We define the depth dγ of
γ to be the pair of integers

(
k ′
γ , k ′′

γ

)
where k ′

γ is the depth of 1′ and k ′′
γ the one of

1′′. After a possible change of notation we can assume that 0 ≤ k ′
γ ≤ k ′′

γ .

Remark. If k ′
γ = 0 for all γ in the bunch B, then k ′′

γ = 1 for all γ ∈ B and, in fact,
the diagram D is special. In this case, the graph 5(D) has no edge. It is a disjoint
union of vertices, one vertex for each atom diagram. However, if there are more
than one atom present, one can consider that D is a diagrammatic Murasugi sum,
as it is a connected sum.

As a consequence, if 5(D) is 2-connected, there must exist Seifert circles γ

with k ′
γ ≥ 1.

Claim. If 5(D) is 2-connected, and if γ ∈ B such that k ′
γ ≥ 1 then k ′

γ = k ′′
γ = 1.
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Proof of claim. Suppose that k ′′
γ ≥ 2. Choose a descending sequence

1′′

γ ⊃ 11 ⊃ · · · ⊃ 1n

of Seifert discs, with n ≥ 2. Let γi be the boundary of 1i . Consider the unique
atom diagram D0 which has γ and γ1 as Seifert circles. (It is easy to see that
given any two Seifert circles of a Seifert bunch, there is at most one atom diagram
which contains these two circles.) As k ′

γ ≥ 1, there are atom diagrams in 1′, and
by construction there are atom diagrams in 11. As D0 is unique, if one removes
the vertex D0 from the graph 5(D), there is no way to connect, in the remaining
graph, atom diagrams in 1′ to atom diagrams in 11. In other words, D0 is a cut-
vertex of 5(D), which contradicts the assumption that 5(D) is 2-connected. �

Now we observe that, in any connected diagram, there cannot exist more than
one Seifert circle γ with dγ = (1, 1). Let γ be the unique such Seifert circle for
D. All atom diagrams contain γ . This completes the proof of Proposition 5.4. �

Proof of Theorem 5.2 when 5̆(D) is 2-connected. We know from Proposition 5.4
that there exists exactly one Seifert circle γ with dγ = (1, 1). We claim that γ is
the plumbing circle we seek. Let 1′ and 1′′ be the two open discs bounded by γ

in S2. Let D1
′, . . . , Ds

′ be the atom diagrams which are in 1′ and have γ as one of
their Seifert circles, and let D1

′′, . . . , Dt
′′ be those which are in 1′′. In fact, there

are no more atoms in D, otherwise γ would not be of depth (1, 1). The atoms in 1′

have all the same sign (say +) and those in 1′′ have all the opposite sign (say −).

Note. This argument shows that every 2-connected adjacency graph is a subgraph
of the complete bipartite graph on (s, t) vertices. We do not know which subgraphs
can actually be obtained this way. It is easy to realize the complete graphs.

Now, the isomorphism 8 exchanges the atoms which are in 1′ with those which
are in 1′′, and hence s = t . Let L ′

i be the link represented by D′

i and, similarly,
let L ′′

j be the link represented by D′′

j , for i = 1, . . . , s and j = 1, . . . , s. After a
possible change of numbering we can assume that 8

(
D̂′

i

)
= D′′

i for i = 1, . . . , s.
As 8 is induced by flypes, L̂ ′

i is isotopic to L ′′

i for i = 1, . . . , s. Write L ′ for the
connected sum of the L ′

i for i = 1, . . . , s, and L ′′ for the connected sum of the L ′′

i
for i = 1, . . . s. Then L̂ ′ is isotopic to L ′′ and L is a Murasugi sum of L ′ and L ′′. �

We now need a slight modification of the block decomposition of a graph. To
avoid confusion we shall use the word “brick”.

Definition 5.5. A brick of a connected graph G is a subgraph of G which is 2-
connected and maximal (with respect to inclusion) for this property.

Let {B1, . . . , Bs} be the bricks of the connected graph G. If a 6= b then Ba ∩ Bb

is either empty or consists of just one vertex. Let
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A = G \

s⋃
i=1

Int(Bi ).

A is a forest, that is, a disjoint union of trees. Let

A =

t∐
j=1

A j ,

where each A j is a tree. We now perform the following enlargement on G.
Let Ba be a brick. Then the intersection Ba ∩ A is a finite set of vertices

{P1, . . . , Pu}. Consider the disjoint union

(G \ Int Ba) q Ba.

Each vertex P1, . . . ,Pu appears once in (G \ Int Ba) and once in Ba . From the
disjoint union we construct a new graph by joining both appearances of Pi by a
new edge for i = 1, . . . , u. We perform the same operation for each brick Ba . At
the end, we get a connected graph Ǧ. Here is an example:

G

→

Ğ

Ǧ contains canonically each brick Bi and each tree A j . In Ǧ one has Bi ∩Bk =∅
if i 6= k and A j ∩ Bi = ∅ for all i = 1, . . . , s and all j = 1, . . . , t . In Ǧ we now
contract separately to a point each brick Bi . This quotient graph is written G:

G
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It is easy to prove that G is a tree. This tree has two kinds of vertices. Firstly,
the vertices of the forest A, which we call ancient vertices. Secondly, the vertices
which correspond to the smashed bricks, denoted by a star on the figure above, and
which we call brick vertices.

Suppose now that 9 : G → G is a graph automorphism. The construction of Ǧ
and of G is so natural that 9 induces automorphisms 9̌ : Ǧ → Ǧ and 9 : G → G.
The automorphism 9 sends a brick vertex to a brick vertex and an ancient vertex
to an ancient one.

Proof of Theorem 5.2 in the general case. We apply the bar construction above to
the graph G = 5̆(D). We write 5(D) for the graph thus obtained from 5̆(D). As
5(D) is a tree, the automorphism 8 has fixed points.

Claim. 8 has exactly one fixed point. It is either the mid-point of an edge whose
extremities are two ancient vertices or a brick vertex.

Proof of claim. By construction, the vertices of an edge of 5(D) are either two
ancient vertices or one brick vertex and one ancient vertex. As every ancient vertex
is moved by 8, no edge is pointwise fixed by 8. This implies that 8 has exactly
one fixed point and that this fixed point is of one of the two forms as stated. �

Suppose that the fixed point is the mid-point of an edge ē. Let e be the edge of
5̆(D) which projects onto ē. This edge e is a bridge of 5̆(D). The automorphism
8̆ : 5̆(D) → 5̆(D) has the mid-point of e as fixed point. From here, the proof
proceeds in the same way as when 5̆(D) is a tree. We remove the interior of e
from 5̆(D) which is thus split into two connected subgraphs permuted by 8̆ and
so on.

Suppose that the fixed point is a brick vertex. By construction, this means that
there is a brick Ba which is invariant by 8̆. Remove the fixed point from 5(D).
The remaining graph is a disjoint union of trees and these trees are permuted by
8. No tree is invariant, as there is only one fixed point. Hence, we can find a
partition

{
A1, 8(A1), . . . , An, 8(An)

}
of the set of trees. Now consider the graph

5̆(D) and remove from it the interior of the brick Ba . The remaining graph is a
disjoint union of subgraphs. We write G j for the subgraph which projects onto
A j (for j = 1, . . . , n). The remaining subgraph is indeed the disjoint union of{
G1, 8̆(G1), . . . , Gn, 8̆(Gn)

}
. The intersection G j ∩ Ba is a cut vertex Pj of

5̆(D).
We return to the proof of Theorem 5.2 when 5̆(D) is 2-connected. Consider

the brick Ba of 5̆(D). Let γ be the plumbing circle for Ba . Let 1′ and 1′′ be
the Seifert discs bounded by γ as above. After a possible change of notation, we
can assume that the diagram D j which corresponds to G j is contained in 1′ for
j = 1, . . . , n. Hence, the diagram which corresponds to 8̆(G j ) is contained in 1′′.
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The diagram which corresponds to the cut vertex Pj is one of the atom diagrams of
Ba which are in 1′. The rest of the proof now follows as in the case where 5̆(D)

is 2-connected. �

Example. Consider the following 3-component link L with its diagram D:

42+

1 22−

1

22+

142−

1

Its graph 5(D) is 2-connected. The link L can be considered as a Murasugi sum
of a 6-crossing link which is the connected sum of a 22

1
+ and a 42

1
+ with its mirror

image. It can be also considered as a Murasugi sum of the prime knot 6+

2 with its
mirror image.

Remark 5.6. The simplicity of the proof of Theorem 5.2 when 5(D) is a tree made
one of us (Quach) believe very early that the theorem could be true in general. But
if circuits are present in 5(D) it is possible that 8̆ has no fixed points. It is here
that graph theory comes to the rescue. Circuits are organized in bricks and the
graph of bricks is a tree. As the theorem is true when 5(D) is 2-connected, the
general case follows. A fixed point is absolutely needed in our proof, because it
indicates where the plumbing Seifert circle is to be found.
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SWITZERLAND

claude.weber@math.unige.ch

http://www.ams.org/mathscinet-getitem?mr=95g:57015
http://www.emis.de/cgi-bin/MATH-item?0809.57002
http://www.ams.org/mathscinet-getitem?mr=30:1506
http://www.emis.de/cgi-bin/MATH-item?0137.17903
http://www.ams.org/mathscinet-getitem?mr=2005h:57011
http://www.emis.de/cgi-bin/MATH-item?1057.57007
http://www.ams.org/mathscinet-getitem?mr=94k:57018
http://www.emis.de/cgi-bin/MATH-item?0809.57003
mailto:cam.quach@math.unige.ch
mailto:claude.weber@math.unige.ch

	1. Introduction
	2. Adjacency
	3. Molecules
	4. Applications to chirality and reversibility
	5. Decomposition of achiral links as a Murasugi sum
	Acknowledgements
	References

