
Pacific
Journal of
Mathematics

DUALITY IN EQUIVARIANT KK -THEORY

KLAUS THOMSEN

Volume 222 No. 2 December 2005



PACIFIC JOURNAL OF MATHEMATICS
Vol. 222, No. 2, 2005

DUALITY IN EQUIVARIANT KK -THEORY

KLAUS THOMSEN

Let A and B be separable C∗-algebras with actions of a locally compact
second countable group by automorphisms. We construct a C∗-algebra,
Aπ , such that the equivariant KK -groups, KK ∗

G(A, B), of Kasparov is iso-
morphic to the K -theory groups of Aπ .

1. Introduction

Duality results for KK -theory started with the work of W. Paschke [1981], who ob-
tained a description of the BDF-extension group Ext−1(A) (for which see [Brown
et al. 1977]) as the K0-group of the C∗-algebra

π(A)′ ∩ Q = {q ∈ Q : qπ(a)= π(a)q, a ∈ A} ,

where Q is the Calkin algebra and π : A → Q is a certain “large” ∗-homomorphism.
This showed that K -homology can be described by K -theory, which is sometimes
thought of as the dual of K -homology. The work of Paschke has been general-
ized by others; see [Valette 1983; Skandalis 1988; Higson 1995; Thomsen 2001].
The general duality result obtained in this last reference formed the basis for the
progress on the calculation of the KK -theory and the E-theory of amalgamated free
products obtained in [Thomsen 2003]. Thus sufficiently general results of this kind
can be very useful, and need not be justified solely by their great theoretical appeal.
It is the purpose of the present paper to obtain duality results for the equivariant
KK -theory of Kasparov [1988]. Specifically, we shall show that the notion of an
absorbing ∗-homomorphism, which is the key to all the above-mentioned duality
results, makes perfect sense in the equivariant setting and that there always exist
(sufficiently nice) absorbing ∗-homomorphisms, also in this case. As a result we
are able to associate to any pair of separable G-algebras, A and B, a C∗-algebra
AG
π such that

K0
(
AG
π

)
= KK 1

G(A, B)
and

K1
(
AG
π

)
= KK 0

G(A, B).
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As the notation should suggest, AG
π is the fixed point algebra of a C∗-algebra

Aπ with an action of G by automorphisms. The π is here a ∗-homomorphism
which is absorbing in an appropriate way, and it can be chosen such that the
canonical forgetful maps KK i

G (A, B)→ KK i (A, B) , i = 0, 1, become the maps
Ki
(
AG
π

)
→ Ki (Aπ ) , i = 0, 1, induced by the embedding AG

π ⊆ Aπ .

2. G-algebras and Hilbert G-modules

This section introduces the basic definitions, and sets up notation and terminology
by describing some fundamental results on Hilbert modules over G-algebras that
are crucial for the following. They are all more or less known, and we omit the
proofs. The main result, Theorem 2.8, which is due to R. Meyer, is the cornerstone
for the results of the paper; it gives us access to genuinely equivariant stabilization
results for Hilbert bimodules over G-algebras, provided the algebra acting from
the left has been suitably stabilized.

When B is a C∗-algebra and E, F are Hilbert B-modules (see [Kasparov 1980a;
1980b; 1988; Lance 1995; Jensen and Thomsen 1991]), we let LB(E, F) denote
the Banach space of adjointable maps from E to F , and by KB(E, F) the ideal
in LB(E, F) consisting of the “compact” operators, i.e. KB(E, F) is the closed
subspace generated by {θx,y : x ∈ F, y ∈ E}, where θx,y(z) = x〈y, z〉. When
E = F , LB(E, F) is a C∗-algebra which we denote by LB(E). Similarly, the ideal
KB(E, F) is denoted by KB(E) in this case. Moreover, when E is the Hilbert
B-module B itself, we will write M(B) for the multiplier algebra M(B)= LB(B)
and B for KB(B).

Let G be a locally compact second countable group.

Definition 2.1. A G-algebra is a pair (A, α) where A is a σ -unital C∗-algebra and
α : G → Aut A is a homomorphism such that G 3 g 7→ αg(a) is norm-continuous
for all a ∈ A.

In the following we shall often drop the explicit reference to α and denote the
G-algebra (A, α) simply by A. We write then g · a for αg(a). By a C∗-algebra
we mean in the following a G-algebra for which the G-action is trivial. Given two
G-algebras, A and B, the minimal tensor product A⊗ B will be considered, unless
explicitly stated otherwise, as a G-algebra with what is usually referred to as “the
diagonal action”: g · (a ⊗ b)= g · a ⊗ g · b.

Definition 2.2. Let (B, β) be a G-algebra. A Hilbert B,G-module is a pair (E, v),
where E be a Hilbert B-module and v is a representation of G as operators on E
such that the map G × E 3 (g, e) 7→ vg(e) is continuous, and

〈vg(e), vg( f )〉 = βg(〈e, f 〉),(2–1)

for e, f ∈ E , and g ∈ G.
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Although the operators vt are not adjointable in general, they do give rise to a
representation of G as automorphisms of LB(E) since vgmvg−1 is adjointable when
m is, and (vgmvg−1)∗ = vgm∗vg−1 . Although g 7→ vgmvg−1 is not always norm-
continuous, it is when m ∈ KB(E). More generally, there is also a natural action of
G on LB(E, F) given by t ·L =wt Lvt−1 . Again this action is only norm-continuous
on KB(E, F), in general.

Given a G-algebra B and a Hilbert B,G-module (E, v) we make L2(G, E) into
a Hilbert B,G-module (L2(G, E), v⊗ λ), where

(v⊗ λ)t f (s)= vt f (t−1s).(2–2)

Let E be a Hilbert B,G-module. In the following we will denote by E∞ the
Hilbert B,G-module which is the direct sum of a sequence of copies of E , i.e. E∞

consists of the sequences (e1, e2, e3, . . . ) of elements in E for which
∑

∞

i=1〈ei , ei 〉

converges in norm in B, and the G-action is the obvious one:

t · (e1, e2, e3, . . . )= (t · e1, t · e2, t · e3, . . . ).

We say that a Hilbert B,G-module E is countably generated when it is countably
generated as a Hilbert B-module, i.e. when there is a countable set M ⊆ E such
that the span of M B is dense in E . Since B is required to be σ -unital it is countably
generated as a Hilbert B,G-module.

In the following we let K denote the C∗-algebra of compact operators on the
Hilbert space l2. A G-algebra B is stable when B ⊗ K ' B as G-algebras.

We denote by KG the C∗-algebra of compact operators on L2(G), which we
consider as a G-algebra; we have KG = (KG,Ad λ), where λ is the left-regular
representation of G.

Theorem 2.3 [Kasparov 1980b; Mingo and Phillips 1984]. Let B be a G-algebra
and E a countably generated Hilbert B,G-module. Then

L2(G, E)⊕ L2(G, B∞)' L2(G, B∞)

as Hilbert B,G-modules.

Corollary 2.4. Let B be a G-algebra and E a countably generated Hilbert B,G-
module. Assume B is stable. Then L2(G, E)⊕ L2(G, B) ' L2(G, B) as Hilbert
B,G-modules.

We denote by KG the G-algebra (K ⊗ KG, idK ⊗ Ad λ).

Definition 2.5. A G-algebra A will be called G-stable when A⊗KG is isomorphic
to A as G-algebras.

Note that A ⊗ KG is always G-stable.
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Lemma 2.6. Let A be a G-algebra. The following are equivalent:

(1) A is G-stable.

(2) A is stable and A ' A ⊗ KG as G-algebras.

(3) A is stable and A ' L2(G, A) as Hilbert A,G-modules.

Lemma 2.7. Let (B, β) be a G-stable G-algebra, and let u be a unitary represen-
tation of G on l2. Then (B⊗K, β⊗Ad u) is ∗-isomorphic to (B, β) as G-algebras.

Theorem 2.8 [Meyer 2000]. Let A and B be G-algebras. Assume that A is
G-stable. Let E be a countably generated Hilbert B,G-module and ϕ : A →

LB(E) an equivariant ∗-homomorphism such that ϕ(A)E = E . It follows that
E ⊕ L2 (G, B∞)' L2(G, B∞) as Hilbert B,G-modules.

Corollary 2.9. Let A and B be G-stable G-algebras. Let E be a countably gen-
erated Hilbert B,G-module and ϕ : A → LB(E) an equivariant ∗-homomorphism
such that ϕ(A)E = E . It follows that E ⊕ B ' B as Hilbert B,G-modules.

3. Stabilizing equivariant KK -theory: The even case

In this section we take the main steps towards a simplification in the definition of
equivariant KK -theory for G-algebras that are also G-stable. We concentrate on
the even case, i.e. on KK 0

G , since this is actually the most difficult case. The odd
case is easier and will be dealt with in the next section. What we do corresponds
in the nonequivariant case to the substitution of general Hilbert C∗-modules by a
single canonical one; see for example [Blackadar 1986, Proposition 17.4.1]. To
some extend, all we do is to show how R. Meyer’s construction [2000, Lemma
3.3] can be made to work modulo operator homotopy and addition by degenerate
elements, rather than homotopy.

Throughout this section A and B are G-algebras, A separable, B stable. A
graded Hilbert B,G-module is a graded Hilbert B-module E which is also a Hilbert
B,G-module with the same “inner product” such that the G-action of G on E com-
mutes with the grading. An even Kasparov triple (E, ϕ, F) for A and B consists of
a graded Hilbert B,G-module E , an equivariant ∗-homomorphism ϕ : A → LB(E)
mapping into the degree 0 elements of LB(E) and a degree 1 element F ∈ LB(E)
such that

(F∗
− F)ϕ(a), (F2

− 1)ϕ(a), Fϕ(a)−ϕ(a)F, (g · F − F)ϕ(a) ∈ KB(E)

for all a ∈ A and all g ∈ G. The even Kasparov triple (E, ϕ, F) is degenerate when

(F∗
− F)ϕ(a)= (F2

− 1)ϕ(a)= Fϕ(a)−ϕ(a)F = (g · F − F)ϕ(a)= 0

for all g, a. Two even Kasparov triples (E0, ϕ0, F0) and (E1, ϕ1, F1) are operator
homotopic when there is a family (E, ϕ,G t), t ∈ [0, 1], of even Kasparov triples
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for A and B such that t 7→ G t is norm-continuous, (E, ϕ,G0) is isomorphic to
(E0, ϕ0, F0) and (E, ϕ,G1) is isomorphic to (E1, ϕ1, F1).

By definition [Kasparov 1988] KK 0
G(A, B) consists of the homotopy classes

of even Kasparov triples. It was pointed out in [Baaj and Skandalis 1989] that
KK 0

G(A, B), in line with more general equivariant KK -theory groups, can also
be defined as the equivalence classes of even Kasparov triples for A and B, when
the equivalence is operator homotopy after addition by degenerate elements, rather
than homotopy as in [Kasparov 1988]. As in the nonequivariant case the equality
between the two definitions follows from the fact that the Kasparov product can
be defined modulo the apparently strongest of the two equivalence relations. To
obtain the description of KK 0

G(A, B) as the K1-group of a C∗-algebra we need to
work entirely with the latter notion of equivalence for even Kasparov triples.

The Hilbert B,G-module B ⊕ B graded by the map (x, y) 7→ (x,−y) will be
denoted by Be. An even Kasparov triple (E, ϕ, F) for A and B will be called
elementary when E = Be and essential when ϕ(A)E = E . Note that the direct
sum of two elementary and/or essential even Kasparov triples are isomorphic to an
elementary and/or essential even Kasparov triple.

Definition 3.1. An even Kasparov triple (E, ϕ, F) will be called homogeneous
when it has the form E = E0 ⊕ E0, graded by (x, y) 7→ (x,−y), for some Hilbert
B,G-module E0, and ϕ = (ψ,ψ), where ψ : A → LB(E0) is an equivariant ∗-
homomorphism.

Given a homogeneous even Kasparov triple (E, ϕ, F) = (E0 ⊕ E0, ϕ, F) as
above, there is a canonical way to form a homogeneous and degenerate even Kas-
parov triple; namely, (E, ϕ, 1̂), where 1̂ ∈ LB(E) is

1̂ =
(0

1
1
0

)
.

Lemma 3.2. Let E = (E, ϕ, F) be an even Kasparov triple. There is then a degen-
erate even Kasparov triple D such that E⊕D is isomorphic to a homogeneous even
Kasparov triple. When E is elementary we can choose D to be both elementary and
degenerate.

Proof. Let D0 = (Be, 0, 1̂). It follows from Kasparov’s stabilization theorem
[1980b] that E ⊕ D0 is isomorphic to an even Kasparov triple of the form

(E0 ⊕ E0, (ψ+, ψ−), F0) ,

where E0 ⊕ E0 = B ⊕ B is graded by (x, y) 7→ (x,−y), and each of the two
B-summands carry an action by G which gives it the structure of a Hilbert B,G-
module (not necessarily the canonical such structure). By adding to D0 the degen-
erate even Kasparov triple (B ⊕ B, 0, 0) with the two G-actions interchanged we
may assume that the G-actions on the two B-summands agree (but not that they
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are the canonical one). The infinite direct sum
⊕

∞

1 E0 is a Hilbert B,G-module,
and the triples

E+ =
((⊕

∞

1 E0
)
⊕
(⊕

∞

1 E0
)
,
(⊕

∞

1 ψ+

)
⊕
(⊕

∞

1 ψ+

)
,
( 0

1
1
0

))
and

E− =
((⊕

∞

1 E0
)
⊕
(⊕

∞

1 E0
)
,
(⊕

∞

1 ψ−

)
⊕
(⊕

∞

1 ψ−

)
,
( 0

1
1
0

))
are both degenerate even Kasparov triples. The direct sum E ⊕ D0 ⊕ E+ ⊕ E− is
isomorphic to an even Kasparov triple of the form

(3–1)
((⊕

∞

−∞
E0
)
⊕
(⊕

∞

−∞
E0
)
,8+ ⊕8−, F ′

)
,

where

8+ = (. . . . . . , ψ+, ψ+, ψ+, ψ−, ψ−, . . . . . . )

8− = (. . . . . . , ψ+, ψ+, ψ−, ψ−, ψ−, . . . . . . ).

Let S ∈ LB
(⊕

∞

−∞
E0
)

be the two-sided shift; specifically, when e = (ei )i∈Z ∈⊕
∞

−∞
E0, S(e) is given by S(e)i = ei+1. Then

T =
( 1

0
0
S

)
∈ LB

((⊕
∞

−∞
E0
)
⊕
(⊕

∞

−∞
E0
))

is a G-invariant unitary of degree 0 such that Ad T ◦(8+⊕8−)=8+⊕8+. Thus
T is an isomorphism between the Kasparov triple (3–1) and((⊕

∞

−∞
E0
)
⊕
(⊕

∞

−∞
E0
)
,8+ ⊕8+, T F ′T ∗

)
,

which is a homogeneous even Kasparov triple. It follows that D = D0 ⊕ E+ ⊕ E−

has the required property. When E is an elementary even Kasparov triple we can
take D0 =0, and then D will be (isomorphic to) an elementary even Kasparov triple
since B is stable. �

Let E be a Hilbert B,G-module. Let ϕ : A → LB(E) be an equivariant ∗-
homomorphism. Since A is a Hilbert A-module in itself, we can form the internal
tensor product A ⊗ϕ E which is a graded Hilbert B-module E ′; see, for instance,
[Jensen and Thomsen 1991, 2.1.4]. Since ϕ is equivariant, E ′ is actually a graded
Hilbert B,G-module in a canonical way; compare the proof of Theorem 2.8. Fol-
lowing [Connes and Skandalis 1984], we introduce the notion of connections in
this setting. For every a ∈ A we can define an adjointable map Ta ∈ LB(E, E ′)

such that Ta(y) = a ⊗ϕ y. The adjoint T ∗
a is determined by the condition that

T ∗
a (b ⊗ϕ e)= ϕ(a∗b)e, and we set

T̃a =

(
0 T ∗

a
Ta 0

)
∈ LB

(
E ⊕ E ′

)
.
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Let F ∈ LB(E). An F-connection is an element F ′
∈ LB

(
E ′
)

such that

[T̃a, F ⊕ F ′
] ∈ KB

(
E ⊕ E ′

)
for all a ∈ A.

This condition is equivalent to

(3–2) Ta F − F ′Ta ∈ KB(E, E ′),

and

(3–3) FT ∗

a − T ∗

a F ′
∈ KB(E ′, E)

for all a ∈ A. In particular, there is an F-connection, by [Connes and Skandalis
1984]. When E is graded and F has degree 1 there is an F-connection of degree 1.

Lemma 3.3 [Meyer 2000, Lemma 3.1]. In the setting above, assume that A is
G-stable, that ϕ(A)E = E , and that

[ϕ(a), F], (F∗
− F)ϕ(a), (g · F − F) ϕ(a) ∈ KB(E)

for all a ∈ A and all g ∈ G. There is then a G-invariant F-connection. �

Lemma 3.4. In the setting above, assume that E = (E, ϕ, F) is an even Kasparov
triple. Define ϕ′

: A → LB
(
E ′
)

by ϕ′(a)(a1 ⊗ϕ e)= aa1 ⊗ϕ e, and let F ′
∈ LB

(
E ′
)

be an F-connection of degree 1. It follows that (E ′, ϕ′, F ′) is an even Kasparov
triple.

Proof. This is stated as part of [Meyer 2000, Lemma 3.3], but is really one of
the fundamental steps in the construction of the Kasparov product of [E, ϕ, F] ∈

KK 0
G(A, B) with [idA] ∈ KK 0

G(A, A). The details of the argument can be found
in [Jensen and Thomsen 1991, Lemma 2.2.6], for example. �

Note that the even Kasparov triple (E ′, ϕ′, F ′) of Lemma 3.4 is essential, and
that E ′ is isomorphic, as a graded Hilbert B,G-module, to Eess =ϕ(A)E under the
map given by a ⊗ϕ e 7→ ϕ(a)e. Under this isomorphism F ′ turns into a degree 1
operator which we denote by Fess. The defining relations for F ′, (3–2) and (3–3),
turn into the conditions

(3–4) ϕ(a)F − Fessϕ(a) ∈ KB(E, Eess)

and

(3–5) Fϕ(a)−ϕ(a)Fess ∈ KB(Eess, E).

In particular we see that Fess is determined up to “a compact perturbation”, in the
sense that ϕ(a)

(
Fess − F ′′

)
∈ KB(Eess) for all a ∈ A, when F ′′ is another operator

in LB(Eess) which satisfies (3–5).
Set ϕess(a)= ϕ(a)|Eess , and note that (E ′, ϕ′, F ′) is then isomorphic, as an even

Kasparov triple, to the essential even Kasparov triple Eess = (Eess, ϕess, Fess). Note
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also that Eess is both essential and homogeneous when E is homogeneous. It was
shown by Meyer [2000, Lemma 3.3] that E and Eess are homotopic and hence
define the same element of KKG(A, B). We can therefore conclude that the even
Kasparov triples E and Eess are operator homotopic after addition by degenerate
even Kasparov triples. Since we need to know what the involved degenerate triples
look like, we have to obtain a more explicit proof of this fact. For this we need the
following lemma.

Lemma 3.5. Let A and B be a σ -unital G-algebras and ϕ : A → B an equivariant
surjection. Consider a separable closed self-adjoint subspace F ⊆ M(B) and a
finite subgroup G0 ⊆ G. Then canonical extension ϕ : M(A) → M(B) maps
{m ∈ M(A) :m f − f m ∈kerϕ, f ∈F, g·m−m ∈kerϕ, g ∈ G, g0·m =m, g0 ∈ G0}

onto M(B)G ∩ϕ(F)′.

Proof. This is an equivariant version of a result from [Olsen and Pedersen 1989].
The proof presented in [Jensen and Thomsen 1991, Theorem 1.1.26] can be easily
adopted to the equivariant case by use of an asymptotically G-invariant approxi-
mate unit. We leave the details to the reader. �

Lemma 3.6. Let E = (E, ϕ, F) be a homogeneous even Kasparov triple. Set
Z1 = (Eess, 0, Fess)⊕ (E, ϕ, 1̂)⊕ (Eess, 0, 1̂)⊕ (E, 0, 1̂)⊕ (Eess, ϕess, 1̂) and Z2 =

(E, 0, F)⊕(E, ϕ, 1̂)⊕(Eess, 0, 1̂)⊕(E, ϕ, 1̂)⊕(Eess, 0, 1̂). Then E⊕Z1 is operator
homotopic to Eess ⊕ Z2.

Proof. Consider the even Kasparov triple (Ẽ, ψ, H) for M2(A) and B, where
Ẽ = E ⊕ Eess, H = F ⊕ Fess, and

ψ : M2(A)→ LB(E ⊕ Eess)=

(
LB(E) LB(Eess, E)

LB(E, Eess) LB(Eess)

)
is given by

ψ

(
a11 a12

a21 a22

)
=

(
ϕ(a11) ϕ(a12)

ϕ(a21) ϕ(a22)

)
.

For t ∈ [0, 1], set

Rt =

(
−t

√
1 − t2

√
1 − t2 t

)
,

which we consider as a unitary multiplier of M2(A) in the obvious way. Set ψt =

ψ◦Ad Rt and ι(a)=
(a

0

)
. Then (Ẽ, ψt◦ι, H), t ∈[0, 1], is a path of even Kasparov

triples connecting (E, ϕ, F)⊕(Eess, 0, Fess) and (E, 0, F)⊕(Eess, ϕ, Fess). Since

(Ẽ,ψ1 ◦ ι,H)⊕ (Ẽ,ψ ◦ ι, 1̂)⊕ (Ẽ,ψ0 ◦ ι, 1̂)

= (E,ϕ,F)⊕ (Eess,0,Fess)⊕ (E,ϕ, 1̂)⊕ (Eess,0, 1̂)⊕ (E,0, 1̂)⊕ (Eess,ϕess, 1̂)
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and

(Ẽ,ψ0 ◦ ι,H)⊕ (Ẽ,ψ ◦ ι, 1̂)⊕ (Ẽ,ψ1 ◦ ι, 1̂)

= (E,0,F)⊕ (Eess,ϕess,Fess)⊕ (E,ϕ, 1̂)⊕ (Eess,0, 1̂)⊕ (E,ϕ, 1̂)⊕ (Eess,0, 1̂),

it suffices to show that (Ẽ, ψ1, H)⊕ (Ẽ, ψ, 1̂)⊕ (Ẽ, ψ0, 1̂) is operator homotopic
to (Ẽ, ψ0, H)⊕ (Ẽ, ψ, 1̂)⊕ (Ẽ, ψ1, 1̂). Let p : LB(Ẽ) → LB(Ẽ)/KB(Ẽ) be the
quotient map. Let X be the C∗-subalgebra of LB(Ẽ) generated by

KB(Ẽ)∪ψ(M2(A))
⋃
n∈N

H nψ(M2(A)).

Then H∗X ∪ X H∗
∪ H X ∪ X H ⊆ X . We can therefore consider H as a multiplier

of X . Note that p(X) is generated by p ◦ψ(M2(A))
⋃

n∈N p(H n)p ◦ψ(M2(A))
and that p ◦ψ(M2(A))p(X) = p(X). In particular, it follows that p ◦ψ extends
to a unital ∗-homomorphism of the multiplier algebras:

p ◦ψ : M(M2(A))→ M(p(X)).

We set T t = p ◦ψ(Rt) ∈ M(p(X)), which is a symmetry for each t ∈ [0, 1].
Observe that each T t is invariant under the action of Z2 ⊕ G, coming from the
grading of Ẽ and the representation of G, and that

T t p(H)p ◦ψ(a)= T t p ◦ψ(a)p(H)= p ◦ψ(Rt a)p(H)

= p(H)p ◦ψ(Rt a)= p(H)T t p ◦ψ(a)

for all t ∈ [0, 1], a ∈ M2(A). It follows that T t and p(H) commute in M(p(X)).
Since T t , t ∈ [0, 1], is a norm-continuous path of unitaries in the connected com-
ponent of 1 in the unitary group of M(p(X))G ∩ p(H)′, it follows from Lemma
3.5 that we can find a norm-continuous path Tt , t ∈ [0, 1], of degree 0 unitaries in
M(X) such that p(Tt)= T t , while g ·Tt −Tt , Tt H − H Tt ∈ KB(Ẽ) for all t ∈ [0, 1]

and all g ∈ G. Since KB(Ẽ) is an essential ideal in X there is a unique degree
0 unitary St ∈ M(KB(Ẽ)) = LB(Ẽ) such that St x = Tt x for all x ∈ X . Since Tt

depends norm-continuously on t so does St , and

(3–6) St H − H St ∈ KB(Ẽ),

since this is true for Tt . In addition

(3–7) ψ(a)St −ψ(a Rt), Stψ(a)−ψ(Rt a) ∈ KB(Ẽ)

and

(3–8) g · St − St ∈ KB(Ẽ)
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for all t ∈ [0, 1], g ∈ G and a ∈ M2(A). It follows that

(3–9) (Ẽ, ψ, S∗

t H St), t ∈ [0, 1],

is an operator homotopy. Let ∼OH denote an operator homotopy. By (3–8) and
(3–7) there is an operator homotopy

(3–10) (Ẽ, ψ, S∗

t H St)⊕ (Ẽ, ψt , 1̂) ∼OH (Ẽ, ψ, 1̂)⊕ (Ẽ, ψt , H)

for all t ∈ [0, 1], obtained by rotating
( H

1̂

)
to
( 1̂

H

)
. Then

(Ẽ,ψ0,H)⊕ (Ẽ,ψ,1̂)⊕ (Ẽ,ψ1,1̂)

∼OH (Ẽ,ψ,S∗

0 H S0)⊕ (Ẽ,ψ0,1̂)⊕ (Ẽ,ψ1,1̂) (by (3–10) applied with t = 0)

∼OH (Ẽ,ψ,S∗

1 H S1)⊕ (Ẽ,ψ0,1̂)⊕ (Ẽ,ψ1,1̂) (by (3–9))

∼OH (Ẽ,ψ0,1̂)⊕ (Ẽ,ψ,1̂)⊕ (Ẽ,ψ1,H) (by (3–10) applied with t = 1).

�

Lemma 3.7. Let A and B be G-algebras. Assume that B is G-stable and separa-
ble. There is an equivariant ∗-homomorphism ϕ : A→ M(B) such that ϕ(A)B = B.

Proof. Since B is stable, B ' B ⊗ K as G-algebras. Let (π, u) be a covariant
nondegenerate unitary representation of A on l2, i.e. π : A → B(l2) = M(K) is a
∗-homomorphism, u is a continuous unitary representation of G on l2, π(A)l2 = l2

and ugπ(a)u∗
g =π(g ·a) for all g, a. Such a pair (π, u) exists; see [Pedersen 1979],

for example. We can then define an equivariant ∗-homomorphism π0 : (A, α) →

(M(B⊗K), β⊗Ad u), where β is the canonical extension of the given action of G
on B, such that π0(a)(b ⊗ k)= b ⊗π(a)k. Note that π0(A)(B ⊗ K)= B ⊗ K. By
Lemma 2.7 there is an equivariant ∗-isomorphism θ : (B ⊗K, β⊗Ad u)→ (B, β).
Set ϕ = θ ◦π0, where θ : M(B ⊗ K)→ M(B) is the canonical extension of θ . �

Lemma 3.8. Let (E, ϕ, Ft) , t ∈ [0, 1], be an operator homotopy of even Kasparov
triples. It follows that there is an operator homotopy (Eess, ϕess, Ht) , t ∈ [0, 1],
such that H0 = (F0)ess and H1 = (F1)ess.

Proof. This follows from the construction of an Ft -connection (see [Connes and
Skandalis 1984] or [Jensen and Thomsen 1991, Proposition 2.2.5]), and the fact
that Fess is unique up to compact perturbation. �

Theorem 3.9. Let A and B be G-algebras, A separable. Assume that A and B are
G-stable.

(a) Every element of KK 0
G(A, B) is represented by an even Kasparov triple for A

and B which is both elementary and essential.
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(b) Two elementary and essential even Kasparov triples, E1 and E2, for A and
B, define the same element of KK 0

G(A, B) if and only if there are degenerate
even Kasparov triples, D1 and D2, for A and B which are both elementary
and essential, such that E1 ⊕ D1 is operator homotopic to E2 ⊕ D2.

Proof. (a) By Lemma 3.2 and Lemma 3.6 every element of KKG(A, B) is repre-
sented by an even Kasparov triple E = (E, ϕ, F) which is both homogeneous and
essential. By Lemma 3.7 there is a ∗-homomorphism π : A → M(B) such that
π(A)B = B. Then

(3–11) Z =
(
Be, π ⊕π,

( 0
1

1
0

))
is a degenerate even Kasparov triple for A and B. It follows from Corollary 2.9
that E ⊕ Be is isomorphic to Be as graded Hilbert B,G-modules. Thus E ⊕ Z is
isomorphic to an elementary and essential even Kasparov triple for A and B.

(b) Let Ei = 1, 2, be elementary and essential even Kasparov triples for A and B
representing the same element in KK 0

G(A, B). It follows that there are degenerate
even Kasparov triples Di , i = 1, 2, such that E1 ⊕ D1 is operator homotopic to
E2 ⊕ D2. It follows then from Lemma 3.8 that (E1 ⊕ D1)ess is operator homotopic
to (E2 ⊕ D2)ess. Since Ei is essential, (Ei ⊕ Di )ess is isomorphic to Ei ⊕(Di )ess , i =

1, 2. It follows from Corollary 2.9 that (Di )ess ⊕ Z is isomorphic to a degenerate
even Kasparov triple which is both elementary and essential. This completes the
proof. �

Theorem 3.10. Let A and B be G-algebras, A separable. Assume that A and B
are G-stable.

(a) Every element of KK 0
G(A, B) is represented by an elementary even Kasparov

triple.

(b) Two elementary even Kasparov triples, X and Y, for A and B, define the same
element of KK 0

G(A, B) if and only if there are degenerate and elementary
even Kasparov triples, D1 and D2, for A and B, such that X ⊕ D1 is operator
homotopic to Y ⊕ D2.

Proof. Part (a) follows from Theorem 3.9(a).

(b) It follows from Theorem 3.9(b) that it suffices to consider an elementary even
Kasparov triple E and show that there are degenerate and elementary even Kasparov
triples Di , i = 1, 2, such that E ⊕ D1 is operator homotopic to X ⊕ D2, where
X is an elementary and essential even Kasparov triple. After an application of
Lemma 3.2 we may assume that E is both elementary and homogeneous. We can
then consider the degenerate even Kasparov triples Zi , i = 1, 2, constructed from
E as in Lemma 3.6, so that E ⊕ Z1 is operator homotopic to Eess ⊕ Z2 by that
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lemma. Note that because E is elementary, Z2 is (up to isomorphism) the sum of
two degenerate even Kasparov triples — one which thanks to Corollary 2.9 can be
stabilized in an equivariant way, namely,

(
Eess, 0, 1̂

)
⊕
(
Eess, 0, 1̂

)
, and another

which is (isomorphic to) an elementary degenerate even Kasparov triple, namely,
(E, 0, F) ⊕ (E, ϕ, 1̂) ⊕ (E, ϕ, 1̂). It follows therefore from Corollary 2.9 that
Z2 ⊕ Z is isomorphic to an elementary degenerate even Kasparov triple, where
Z is the even Kasparov triple (3–11). Similarly, Z1 ⊕ Z is also isomorphic to an
elementary degenerate even Kasparov triple. Since E ⊕ Z2 ⊕ Z ⊕ Z is operator
homotopic to Eess ⊕ Z1 ⊕ Z ⊕ Z, and since Eess ⊕ Z is isomorphic to an essential
and elementary even Kasparov triple by Lemma 3.6, we can take D1 to be an
isomorphic copy of Z1 ⊕ Z ⊕ Z, X to be an isomorphic copy of Eess ⊕ Z, and D2

to be an isomorphic copy of Z2 ⊕ Z. �

4. Stabilizing equivariant KK -theory: The odd case

This section is the odd analog of the previous section. The development is basically
identical with the even case, but there are a few more shortcuts that we can exploit.
The first comes from the description of KK 1

G given in [Thomsen 2000].
Throughout this section A and B are G-algebras, A separable and B stable. An

odd Kasparov triple (E, ϕ, P) for A and B consists of a Hilbert B,G-module E ,
an equivariant ∗-homomorphism ϕ : A → LB(E) and an element P ∈ LB(E) such
that

(P∗
− P)ϕ(a), (P2

− P)ϕ(a), Pϕ(a)−ϕ(a)P, (g · P − P)ϕ(a) ∈ KB(E)

for all a ∈ A and all g ∈ G. The odd Kasparov triple (E, ϕ, P) is degenerate when

(P∗
− P)ϕ(a)= (P2

− P)ϕ(a)= Pϕ(a)−ϕ(a)P = (g · P − P)ϕ(a)= 0

for all g, a. Two odd Kasparov triples (E0, ϕ0, P0) and (E1, ϕ1, P1) are operator
homotopic when there is a family (E, ϕ,G t), t ∈ [0, 1], of odd Kasparov triples
for A and B such that t 7→ G t is norm-continuous, (E, ϕ,G0) is isomorphic to
(E0, ϕ0, P0) and (E, ϕ,G1) is isomorphic to (E1, ϕ1, P1).

The odd equivariant KK -group KK 1
G(A, B) consists of the homotopy classes

of odd Kasparov triples. As in the even case, KK 1
G(A, B) can also be defined as

the equivalence classes of odd Kasparov triples for A and B, when the equivalence
is operator homotopy after addition by degenerate elements. This description of
KK 1

G(A, B) differs from Kasparov’s original definition [1988], but it is not difficult
to see that they are equivalent. In fact, as shown in [Thomsen 2000], it suffices to
consider Hilbert B,G-modules E , which as a Hilbert B-module is B itself, but
with a “twisted” G-action.
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We say that an odd Kasparov triple (E, ϕ, F) is essential when ϕ(A)E = E and
elementary when E = B.

Let E = (E, ϕ, P) be an odd Kasparov triple. Set E ′
= A ⊗ϕ E , and define

ϕ′
: A → LB

(
E ′
)

by ϕ′(a)(a1 ⊗ϕ e) = aa1 ⊗ϕ e, and let P ′
∈ LB

(
E ′
)

be a P-
connection. It follows that (E ′, ϕ′, P ′) is an odd Kasparov triple. So see this, one
can for example apply Lemma 3.4 to the even Kasparov triple(

E ⊕ E, (ϕ, ϕ), (2P − 1, 1 − 2P)
)
,

where E ⊕ E is graded by (x, y) 7→ (y, x), or take a look at [Jensen and Thomsen
1991, Lemma 2.2.6]. Set Eess =ϕ(A)E, ϕess(a)=ϕ(a)|Eess , and let Pess ∈LB (Eess)

be the image of P ′ under the isomorphism A⊗ϕ E ' Eess given by a⊗ϕ e 7→ϕ(a)e.
Then (Eess, ϕess, Pess) is an essential odd Kasparov triple. The following lemma is
proved in the same way as Lemma 3.6.

Lemma 4.1. Let E = (E, ϕ, P) be an odd Kasparov triple. Set

Z1 = (Eess, 0, Pess)⊕ (E, ϕ, 0)⊕ (Eess, 0, 0)⊕ (E, 0, 0)⊕ (Eess, ϕess, 0),

Z2 = (E, 0, P)⊕ (E, ϕ, 0)⊕ (Eess, 0, 0)⊕ (E, ϕ, 0)⊕ (Eess, 0, 0).

Then E ⊕ Z1 is operator homotopic to Eess ⊕ Z2.

Similarly, the proofs of Theorem 3.9 and Theorem 3.10 carry over to the odd
case with only the obvious changes. E.g. the even Kasparov triple Z which plays
a prominent role in both proofs can be substituted by the odd Kasparov triple
(B, π, 0), where π : A → M(B) is an equivariant ∗-homomorphism such that
B = π(A)B; see Lemma 3.7.

Theorem 4.2. Let A and B be G-stable G-algebras, with A separable.

(a) Every element of KK 1
G(A, B) is represented by an odd Kasparov triple for A

and B which is both elementary and essential.

(b) Two elementary and essential odd Kasparov triples, E1 and E2, for A and B,
define the same element of KK 1

G(A, B) if and only if there are degenerate odd
Kasparov triples, D1 and D2, for A and B which are both elementary and
essential, such that E1 ⊕ D1 is operator homotopic to E2 ⊕ D2.

Theorem 4.3. Let A and B be G-stable G-algebras, with A separable.

(a) Every element of KK 1
G(A, B) is represented by an elementary odd Kasparov

triple.

(b) Two elementary odd Kasparov triples, X and Y, for A and B, define the same
element of KK 1

G(A, B) if and only if there are degenerate and elementary
odd Kasparov triples, D1 and D2, for A and B, such that X ⊕ D1 is operator
homotopic to Y ⊕ D2.
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5. Equivariantly absorbing homomorphisms

In this section we define and establish the existence of absorbing ∗-homomorphisms
in the equivariant case. The main tools are Kasparov’s methods [1980b; 1988], the
ideas from [Thomsen 2001], and Corollary 2.9 above.

When X is a normed vector space with an action of G by linear transformations
we will in the following say that a net {xα}⊆ X is asymptotically G-invariant when
limα g · xα− xα = 0, uniformly on compact subsets of G. Note that it follows from
[Kasparov 1988, page 152, lemma] that a G-algebra always contains an asymp-
totically G-invariant approximate unit with other convenient properties. We state
only the part that we shall need.

Lemma 5.1 [Kasparov 1988]. Let A be a G-algebra, and D ⊆ M(A) a separable
C∗-subalgebra. Then A contains an approximate unit {un} which is asymptotically
G-invariant and asymptotically commutes with D, i.e. limn→∞ und − dun = 0 for
all d ∈ D.

The multiplier algebra M(B) of a G-algebra is not always a G-algebra because
the action of G on M(B) is only continuous for the strict topology in general. The
set of elements on which the G-action is continuous is a C∗-subalgebra of M(B),
and it is a G-algebra. We denote this G-algebra by M(B)G . The image of M(B)G
in Q(B) will be denoted by Q(B)G . In contrast the fixed point algebra in M(B)
and Q(B) will be denoted by M(B)G and Q(B)G , respectively.

Let E be a Hilbert B-module. A ∗-homomorphism π : M(A) → LB(E) will
be called strictly continuous, when π is strictly continuous on norm-bounded sets.
A ∗-homomorphism π : A → LB(E) will be called quasi-unital when there is a
projection p ∈ LB(E) such that pE = π(A)E . It is known that π : A → LB(E) is
quasi-unital if and only if π admits a strictly continuous extension π : M(A) →

LB(E); see [Lance 1995].

Theorem 5.2. Let A and B be G-algebras, A separable and B G-stable. Let
s : A → M(B)G be a completely positive contraction. There is then a strictly
continuous equivariant ∗-homomorphism π : M(A) → M(B) and a sequence of
contractions {Wn} in M(B) such that limn→∞ W ∗

n π(a)Wn = s(a) for all a ∈ A.

Proof. Let α and β be the given actions of G on A and B, respectively. We begin
by constructing two Hilbert B,G-modules, E0 and E . Give the algebraic tensor
product A ⊗ Cc(G, B) a right B-module structure such that (a ⊗ f )b = a ⊗ f b
where f b(g)= f (g)βg(b) and make it into a semi-inner-product B-module in the
sense of [Lance 1995], such that

〈a ⊗ψ, a1 ⊗ψ1〉 =

∫
G

g−1
·
(
ψ(g)∗s(g · (a∗a1))ψ1(g)

)
dg.
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Let E0 denote the resulting Hilbert B-module, obtained by completion. Let r be
the right-regular representation of G, namely (rkψ) (g) = 1(k)1/2ψ(gk). Define
a representation T of G on E0 such that Tk = αk ⊗ rk on A ⊗ Cc(G, B). Then
E0 is a Hilbert B,G-module which is countably generated since A is separable,
G second countable and B σ -unital. Give next Cc(G, A)⊗ Cc(G, B) the right B-
module structure such that ( j ⊗ f )b = j ⊗ f b, and turn it into a semi-inner-product
B-module such that

〈 j ⊗ f, j1 ⊗ f1〉 =

∫
G

∫
G

g−1
·
(

f (g)∗s(g · ( j (g−1h)∗ j1(g−1h))) f1(g)
)

dg dh.

By completion we obtain a Hilbert B-module E . Set (α⊗λ)k j (g)= αk( j (k−1g)),
and define a representation S of G as linear operators on E such that

Sk( j ⊗ f )= (α⊗ λ)k ( j)⊗ rk( f ).

Define a linear map8 :Cc(G, A)⊗Cc(G, B)→Cc(G, E0) such that8( j⊗ f )(h)=
j (h)⊗ f . Then∫

G

〈
8( j ⊗ f )(h),8( j1 ⊗ f1)(h)

〉
dh = 〈 j ⊗ f, j1 ⊗ f1〉;

hence 8 extends to an isomorphism 8 : E → L2(G, E0) of Hilbert B,G-modules.
Since 8 ◦ Sk = (λk ⊗ Tk) ◦8, we see that 8 itself is an isomorphism of Hilbert
B,G-modules. Define π ′

: M(A)→ LB(E) such that

π ′(a)( j ⊗ f )= π0(a) j ⊗ f,

where (π0(a) j)(g)= aj (g). Then π ′ is a strictly continuous equivariant ∗-homo-
morphism. Let κn, n ∈ N, be a sequence of nonnegative functions in Cc(G) such
that supp κn+1 ⊆ supp κn and

∫
G κn(g)2 dg = 1 for all n, and⋂

n

supp κn = {e}.(5–1)

Let {un} be an approximate unit in A. For n,m ∈ N, set Wn,mb = κa
⊗ κb

n ∈

Cc(G, A) ⊗ Cc(G, B), where κa(g) = κ1(g)un , and κb
m(g) = κm(g)βg(b). We

claim that Wn,m is adjointable, as a map Wn,m : B → E . To see this, define first
T : Cc(G, A)⊗ Cc(G, B)→ B such that

T ( j ⊗ f )=

∫
G

∫
G
κ1(g−1h)κm(g)g−1

·
(
s(g · (un j (g−1h))) f (g)

)
dg dh.

It is then straightforward to check that

〈Wn,mb, j ⊗ f 〉 = 〈b, T ( j ⊗ f )〉.(5–2)
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Let
∑

i ji ⊗ fi be a finite sum of simple tensors in Cc(G, A) ⊗ Cc(G, B). By
using the Schwarz inequality for completely positive maps, as in [Lance 1995], for
instance, we find that∥∥∥∥T
(∑

i

ji ⊗ fi

)∥∥∥∥
=

∥∥∥∥∫
G

∫
G
κ1(g−1h)κm(g)

∑
i

g−1
·
(
s(g · (un ji (g−1h))) fi (g)

)
dg dh

∥∥∥∥
≤

∥∥∥∥∫
G

∫
G

g−1
·

(∑
i

fi (g)∗s(g · ( ji (g−1h)∗un))

×

∑
l

s(g · (un jl(g−1h))) fl(g)
)

dg dh
∥∥∥∥1/2

×

(∫
G

∫
G
κ1(g−1h)2κm(g)2 dg dh

)1/2

≤

∥∥∥∥∫
G

∫
G

g−1
·

(∑
i,l

fi (g)∗s(g · ( ji (g−1h)∗u2
n jl(g−1h))) fl(g)

)
dg dh

∥∥∥∥1/2

≤

∥∥∥∥∫
G

∫
G

g−1
·

(∑
i,l

fi (g)∗s(g · ( ji (g−1h)∗ jl(g−1h))) fl(g)
)

dg dh
∥∥∥∥1/2

=

∥∥∥∥∑
i

ji ⊗ fi

∥∥∥∥.
It follows that T extends to a linear contraction T : E → B which then, by (5–2),
is W ∗

n,m . Note that

(5–3) W ∗

n,mπ
′(a)Wn,mb =

∫
G

∫
G
κ1(g−1h)2κm(g)2g−1

· (s(g · (una))) b dg dh,

so that

‖W ∗

n,mπ(a)Wn,mb − s(a)b‖

=

∥∥∥∥∫
G

∫
G
κ1(g−1h)2κm(g)2

(
g−1(s(g · (una)))− s(a)

)
b dg dh

∥∥∥∥
≤ ‖b‖ sup{‖g−1

· s(g · (una))− s(a)‖ : g ∈ supp κm}

≤ ‖b‖‖s(una)− s(a)‖ +‖b‖ sup{‖g−1
· s(g · (una))− s(una)‖ : g ∈ supp κm}

for all b ∈ B, a ∈ A. Moreover g 7→ g−1
· s(g · a) is norm-continuous because s

takes values in M(B)G . Thus it follows from (5–1) and the preceding bound that

lim
n→∞

∥∥W ∗

n,kn
π(a)Wn,kn − s(a)

∥∥= 0



DUALITY IN EQUIVARIANT KK -THEORY 381

for all a ∈ A, when k1 < k2 < k3 < · · · is an appropriately chosen sequence in
N. Since E ⊕ B ' L2(G, E0)⊕ L2(G, B) ' L2(G, B) ' B by Corollary 2.4 and
Lemma 2.6, there is an equivariant adjointable isometry S : E → B of Hilbert
B,G-modules. Set π(a)= Sπ ′(a)S∗ and Wn = SWn,kn . �

Proposition 5.3. Let A and B be G-stable G-algebras. Assume that A is separa-
ble. Let ϕ : A→ M(B) be an equivariant completely positive contraction. It follows
that there is a strictly continuous equivariant ∗-homomorphism π : M(A)→ M(B)
and an asymptotically G-invariant sequence {Sn} of contractions in M(B) such
that

lim
n→∞

S∗

nπ(a)Sn = ϕ(a)

for all a ∈ A.

Proof. Make A ⊗ B into a pre-Hilbert B-module such that (a ⊗ b)b1 = a ⊗ bb1

and such 〈a ⊗ b, a1 ⊗ b1〉 = b∗ϕ(a∗a1)b1. Let E denote the resulting Hilbert B-
module. E is countably generated since A is separable and B σ -unital. Because
ϕ is equivariant we can make E into a Hilbert B,G-module by introducing the
representation T of G on E given by Tk(a ⊗ b) = k · a ⊗ k · b. Let {un} be an
asymptotically G-invariant approximate unit in A, as in Lemma 5.1, and define
Vn : B → E by Vnb = un ⊗ b. Then Vn is an adjointable contraction such that

V ∗

n (a ⊗ b)= ϕ(una)b.

Since Tk Vnk−1
· b = k · un ⊗ b, we see that {Vn} is asymptotically G-invariant

because {un} is. Define π0 : M(A) → LB(E) such that π0(m)(a ⊗ b) = ma ⊗ b,
and note that π0 is a strictly continuous equivariant ∗-homomorphism, and that
π0(A)E = E . Furthermore, limn→∞ V ∗

n π0(a)Vn = limn→∞ ϕ(unaun) = ϕ(a) for
all a ∈ A. Since A and B are G-stable it follows from Corollary 2.9 that E ⊕ B ' B
as Hilbert B,G-modules. It follows that there is an adjointable equivariant isometry
W : E → B. Set Sn = W Vn and π(m)= Wπ0(m)W ∗. �

Let A and B be G-algebras, B stable. Then M(B) contains a pair of G-invariant
isometries V1, V2 with the property that V1V ∗

1 + V2V ∗

2 = 1, since this is clearly the
case of B ⊗ K. Using these isometries we can add maps from A to M(B) in the
usual way: (ϕ⊕ψ) (a)= V1ϕ(a)V ∗

1 +V2ψ(a)V ∗

2 . The map ϕ⊕ψ is equivariant iff
ϕ and ψ both are. Note that this addition is independent of the choice of isometries
V1 and V2 up to conjugation by a G-invariant unitary. Since B is stable there is a
sequence {Si }

∞

i=1 of G-invariant isometries in M(B) such that
∑

∞

i=1 Si S∗

i = 1 in
the strict topology. An equivariant ∗-homomorphism π : A → M(B) is saturated
when there is a G-invariant unitary U in M(B) such that

(5–4) Uπ(a)U∗
=

∞∑
i=1

S2iπ(a)S∗

2i
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for all a ∈ A. Thus a saturated ∗-homomorphism A → M(B) is one which is
unitarily equivalent to the sum of infinitely many copies of itself plus the zero
homomorphism. From the technical point of view, one of the main features of
a saturated ∗-homomorphism, π , that we shall need is that there is a sequence
Wi , i ∈ N, of G-invariant isometries in M(B) such that W ∗

i W j = 0 when i 6= j ,
W ∗

i π(a)W j = δ(i, j)π(a) for all a, i, j , and such that limi→∞ W ∗

i b = 0 for all
b ∈ B. Indeed, in the notation of (5–4), Wi = U∗S2i will be such a sequence.

Any equivariant ∗-homomorphism can be saturated: When ϕ : A → M(B) is an
equivariant ∗-homomorphism, ϕ′( · ) =

∑
∞

i=1 S2iϕ( · )S∗

2i is saturated, and we call
it the saturation of ϕ.

Theorem 5.4. Let A and B be G-algebras, A separable, B stable. Let π : A →

M(B) be a saturated equivariant ∗-homomorphism. Consider the following five
conditions on π :

(1) For any completely positive equivariant contraction ϕ : A → M(B) there is
an asymptotically G-invariant sequence of contractions {Wn} ⊆ M(B) such
that limn→∞ ‖ϕ(a)− W ∗

n π(a)Wn‖ = 0 for all a ∈ A.

(2) For any completely positive equivariant contraction ϕ : A → M(B) there is
an asymptotically G-invariant sequence {Vn} of isometries in M(B) such that

(a) V ∗
n π(a)Vn −ϕ(a) ∈ B, n ∈ N , a ∈ A ,

(b) limn→∞ ‖V ∗
n π(a)Vn −ϕ(a)‖ = 0, a ∈ A,

(c) g · Vn − Vn ∈ B for all n ∈ N and all g ∈ G.

(3) For any completely positive equivariant contraction ϕ : A → M(B) there is
an asymptotically G-invariant and norm-continuous path, Vt , t ∈ [1,∞), of
isometries in M(B) such that

(a) V ∗
t π(a)Vt −ϕ(a) ∈ B, t ∈ [1,∞[ , a ∈ A ,

(b) limt→∞ ‖V ∗
t π(a)Vt −ϕ(a)‖ = 0, a ∈ A.

(c) g · Vt − Vt ∈ B for all t ∈ [1,∞[ and all g ∈ G.

(4) For any equivariant ∗-homomorphism ϕ : A → M(B) there is an asymptot-
ically G-invariant and norm-continuous path, Ut , t ∈ [1,∞), of unitaries in
M(B) such that

(a) Ut(π(a)⊕ϕ(a))U∗
t −π(a) ∈ B, t ∈ [1,∞), a ∈ A,

(b) limt→∞ ‖Ut(π(a)⊕ϕ(a))U∗
t −π(a)‖ = 0, a ∈ A ,

(c) g · Ut − Ut ∈ B for all t ∈ [1,∞) and all g ∈ G.

(5) For any equivariant ∗-homomorphism ϕ : A → M(B) there is an asymptoti-
cally G-invariant sequence {Un} of unitaries Un ∈ M(B) such that

lim
n→∞

‖Un(π(a)⊕ϕ(a))U∗

n −π(a)‖ = 0, a ∈ A.
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Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). When, in addition, A and B are G-stable, (5)
⇒ (1) so that (1)-(5) are equivalent in this case.

Proof. (1) ⇒ (2): Let ϕ : A → M(B) be a completely positive equivariant contrac-
tion. By (1) there is an asymptotically G-invariant sequence {Wn} of contractions
in M(B) such that limn→∞ W ∗

n π(a)Wn = ϕ(a), a ∈ A. Set

Xn =

(
Wn 0√

1 − W ∗
n Wn 0

)
which is a partial isometry in M2(M(B)) such that X∗

n Xn =
( 1

0
0
0

)
for all n and

lim
n→∞

X∗

n
(
π(a)

0

)
Xn =

(
ϕ(a)

0

)
, a ∈ A.

Furthermore, {Xn} is asymptotically G-invariant since {Wn} is. Since B is stable
there is a G-invariant element V ∈ M2(M(B)) such that V V ∗

=1 and V ∗V =
( 1

0
0
0

)
.

Then Rn = XnV ∗ is an isometry and

lim
n→∞

R∗

n
(
π(a)

0

)
Rn = V

(
ϕ(a)

0

)
V ∗, a ∈ A.

Set

U =

(
V ∗ 1−V ∗V
0 V

)
,

which is a G-invariant unitary in M4(M(B)) with the property that

U
(

V
(
ϕ(a)

0

)
V ∗

0

)
U∗

=

(
ϕ(a)

0
0

0

)
.

Set Sn =
( Rn

Rn

)
U∗ which is an isometry in M4(M(B)) for all n such that

lim
n→∞

S∗

n

(
π(a)

0
0

0

)
Sn =

(
ϕ(a)

0
0

0

)
for all a ∈ A. {Sn} is asymptotically G-invariant since {Wn} is. Since B3

' B as
Hilbert B,G-modules we can use an isomorphism M4(B)' M2(B) of G-algebras
to get an asymptotically G-invariant sequence {S′

n} of isometries in M(M2(B))
such that

lim
n→∞

S′

n
∗
(
π(a)

0

)
S′

n =
(
ϕ(a)

0

)
for all a ∈ A. Since B is stable there are G-invariant isometries V1, V2 ∈ M(B)
such that V1V ∗

1 + V2V ∗

2 = 1. Let 2 : M2(M(B)) → M(B) be the G-equivariant
∗-isomorphism given by

(5–5) 2

(
a11 a12

a21 a22

)
=

∑
i, j

Vi ai j V ∗

j .
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Set T ′
n = 2(S′

n). Then 2 ◦
(
ϕ

0

)
= V1ϕ( · )V ∗

1 and {T ′
n} is an asymptotically G-

invariant sequence of isometries such that limn→∞ T ′
n
∗V1π(a)V ∗

1 T ′
n = V1ϕ(a)V ∗

1
for a ∈ A. Since π is saturated there is a G-invariant unitary U such that Uπ(a)U∗

=

V1π(a)V ∗

1 . Then Tn = U∗T ′
nV1, n ∈ N, is an asymptotically G-invariant sequence

of isometries in M(B) such that limn→∞ T ∗
n π(a)Tn = ϕ(a) for all a ∈ A. Note that

since π is saturated we can arrange that limn→∞ ‖T ∗
n b‖ = 0 for all b ∈ B, and that

T ∗

i T j = 0, T ∗

i π(A)T j = {0}, for i 6= j .
Fix a compact subset X with dense span in A, an ε > 0 and a compact subset

K ⊆ G. Let K = K1 ⊆ K2 ⊆ K3 ⊆ · · · be a sequence of compact sets such that
G =

⋃
n Kn . Let {ei }

∞

i=1 be an approximate unit for B which is asymptotically
G-invariant and asymptotically commutes with ϕ(A); see Lemma 5.1. Let n1 <

n2 < n3 < · · · be a sequence in N and set

f1 = e1/2
n1
, fk = (enk − enk−1)

1/2, k ≥ 2.

Let b be a strictly positive element in B. Assume that {ni } increases so fast that

‖g · fi − fi‖ ≤ 2−iε(5–6)

for all g ∈ Ki and all i ∈ N,

‖ fkb‖ ≤ 2−k, k ≥ 2,(5–7)

and

‖ fkϕ(a)−ϕ(a) fk‖ ≤ 2−kε(5–8)

for all a ∈ X and k ∈ N. Now let {Wk} be a subsequence of {Tk} chosen such that

‖g · Wi − Wi‖ ≤ 2−iε, g ∈ Ki ,(5–9)

‖W ∗

i b‖ ≤ 2−iε,(5–10)

and ∥∥W ∗

i π(a)Wi −ϕ(a)
∥∥≤ 2−iε(5–11)

for all a ∈ X and all i ∈ N. It follows then from (5–10) and (5–7) that
∑

∞

k=1 Wk fk

converges in the strict topology to an isometry W in M(B). Since

‖g · (Wk fk)− Wk fk‖ ≤ 2−k+1ε, k ≥ n, g ∈ Kn,

by (5–6) and (5–9) we see that g ·W −W ∈ B for all g ∈ G and that ‖g ·W −W‖ ≤

2ε, g ∈ K . Note that W ∗π(a)W =
∑

∞

i=1 fi W ∗

i π(a)Wi fi for all a. Furthermore,
(5–8) ensures that ϕ(a)−

∑
∞

i=1 fiϕ(a) fi ∈ B and that ‖ϕ(a)−
∑

∞

i=1 fiϕ(a) fi‖ ≤

ε for all a ∈ X . It follows then from (5–11) that W ∗π(a)W − ϕ(a) ∈ B and
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‖W ∗π(a)W − ϕ(a)‖ ≤ ε for all a ∈ X . Since X, K and ε > 0 were arbitrary, (2)
follows.

(2) ⇒ (3): Since π is saturated there is a sequence Wi , i ∈ N, of G-invariant
isometries in M(B) such that W ∗

i W j = 0 when i 6= j and W ∗

i π(a)W j = δ(i, j)π(a)
for all a, i, j . So by substituting WnVn for Vn , we may assume that V ∗

i V j = 0 and
V ∗

i π(a)V j = 0 for all a ∈ A when i 6= j . Set Vt =
√

t − iVi+1 +
√

i + 1 − tVi ,
for t ∈ [i, i + 1]. Then Vt , t ∈ [1,∞), is an asymptotically G-invariant and norm-
continuous path of isometries such that (3a)–(3c) hold.

(3) ⇒ (4): In the following we will write ψ1 ∼ ψ2 between equivariant ∗-homo-
morphisms ψ1, ψ2 : A → M(B), when there is an asymptotically G-invariant and
norm-continuous path Wt , t ∈ [1,∞), of unitaries in M(B) such that

lim
t→∞

Wtψ1(a)W ∗

t = ψ2(a)

for all a ∈ A and such that Wtψ1(a)W ∗
t − ψ2(a) ∈ B and g · Wt − Wt ∈ B for

all a, t, g. Let ϕ : A → M(B) be an equivariant ∗-homomorphism. We need
to show that π ⊕ ϕ ∼ π . Let {Vt } be an asymptotically G-invariant and norm-
continuous path of isometries such that (3a), (3b) and (3c) hold. By considering
the asymptotically G-invariant path of unitaries in M2(M(B)) given by

Ut =

(
V ∗

t 1 − V ∗
t Vt

0 Vt

)
,

we see that π ⊕ 0 ∼ ϕ⊕ 0. Note that π ∼ π ⊕ 0 ∼ π ⊕π ⊕ 0 since π is saturated.
It follows that

π ⊕ϕ ∼ π ⊕ 0 ⊕ϕ ∼ π ⊕π ⊕ 0 ∼ π.

(4) ⇒ (5) is trivial.

(5) ⇒ (1) (when A and B are G-stable): It follows from Proposition 5.3 that there is
an equivariant ∗-homomorphism µ : A → M(B) and an asymptotically G-invariant
sequence of isometries {Wn} ⊆ M(B) such that limn→∞ W ∗

nµ(a)Wn = ϕ(a) for all
a ∈ A. Let F1 ⊆ F2 ⊆ F3 ⊆ · · · be a sequence of finite subsets with dense union
in A and let K1 ⊆ K2 ⊆ K3 ⊆ · · · be a sequence of compact subsets in G whose
union is G. Fix n ∈ N. It follows from (5) that there is a unitary Un ∈ M(B) such
that

∥∥Un(π(a)⊕µ(a))U∗
n −π(a)

∥∥≤ 1/n for all a ∈ Fn and ‖g · Un − Un‖ ≤ 1/n
for all g ∈ Kn . Let V1 and V2 be the isometries used to define the addition and set
Sn = UnV2Wn ∈ M(B). Then ‖Sn‖ ≤ 1, ‖g · Sn − Sn‖ ≤ 1/n + ‖g · Wn − Wn‖ for
all g ∈ Kn , and ∥∥ϕ(a)− S∗

nπ(a)Sn
∥∥≤

1
n

+
∥∥W ∗

nµ(a)Wn −ϕ(a)
∥∥

for all a ∈ Fn . �
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A saturated equivariant ∗-homomorphism π : A → M(B) will be called equiv-
ariantly absorbing when it satisfies condition (5) of Theorem 5.4.

Proposition 5.5. Let A and B be G-algebras, A separable. Assume that A and B
are both G-stable. If ϕ : A → M(B) and π : A → M(B) are both equivariantly
absorbing there is a norm-continuous path ut , t ∈ [0,∞), of unitaries in M(B)
such that

(i) utπ(a)u∗
t −ϕ(a) ∈ B for all a, t ,

(ii) g · ut − ut ∈ B for all g, t ,

(iii) limt→∞ utπ(a)u∗
t −ϕ(a)= 0 for all a, and

(iv) limt→∞ g · ut − ut = 0, uniformly on compact subsets of G.

Proof. This follows from Theorem 5.2. �

Note that the condition for an equivariant ∗-homomorphism A → M(B) to be
equivariantly absorbing does not reduce to the condition that it is absorbing, in the
sense of [Thomsen 2001], when G = 0. The reason is that we require an equivari-
antly absorbing ∗-homomorphism to be saturated, and in the nonequivariant case
this means that it must be unitarily equivalent to the infinite sum of copies of itself
plus the zero homomorphism. While this may not be the case of all absorbing ∗-
homomorphisms, the additional requirement seems not to have any significance in
practice, and as demonstrated by Proposition 5.5, saturation is a very convenient
property to have.

Proposition 5.6. Let A and B be C∗-algebras, A separable, B σ -unital and stable.
Let π : A → M(B) be a saturated ∗-homomorphism with the following property:

(A) For any completely positive contraction ϕ : A → B there is a sequence of
contractions {Wn} ⊆ M(B) such that limn→∞ ‖ϕ(a)− W ∗

n π(a)Wn‖ = 0 for
all a ∈ A.

It follows that π is absorbing.

Proof. By combining the G =0 case of Theorem 5.4 with [Thomsen 2001, Theorem
2.5] we see that it suffices to show that π has the following property:

(B) For any completely positive contraction ψ : A → M(B) there is a sequence
of contractions {Wn} ⊆ M(B) such that limn→∞ ‖ψ(a)− W ∗

n π(a)Wn‖ = 0
for all a ∈ A.

To this end, let F ⊆ A be a finite set, and let ε > 0 be given. Choose a positive
element u ∈ A such that ‖uau−a‖≤ε for all a ∈ F , and set F ′

={u2
}∪{uau :a ∈ F}.

Let X be a compact subset of A which contains F ′ and spans a dense subspace in
A. Let b be a strictly positive element of B. Let {ei }

∞

i=1 be an approximate unit
for B which asymptotically commutes with ψ(A). Let n1 < n2 < n3 < · · · be a
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sequence in N and set f1 = e1/2
n1 and fk = (enk −enk−1)

1/2 for k ≥ 2. We can arrange
that {ni } increases so fast that ‖ fkb‖≤ 2−k, k ≥ 2, and ‖ fkψ(a)−ψ(a) fk‖≤ 2−kε

for all a ∈ X and all k ∈ N. It follows then that
∑

∞

i=1 fiψ(a) fi converges in the
strict topology for all a ∈ A, and that

(5–12)
∥∥ ∞∑

i=1

fiψ(a) fi −ψ(a)
∥∥≤ ε

for all a ∈ F ′. Since π has property (A) we can find a contraction Wi ∈ M(B) such
that

(5–13)
∥∥∥∥W ∗

i π(a)Wi − f 1/2
i ψ(a) f 1/2

i

∥∥∥∥≤ 2−iε

for all a ∈ F ′. Since π is saturated we can arrange that W ∗

i W j = 0, W ∗

i π(A)W j =

{0} if i 6= j , and ‖W ∗

i b‖ ≤ 2−i for all i . Since ‖ f 1/2
i b‖ ≤

√
‖b‖ 2−i/2 for i ≥ 2,

we see that the sum W =
∑

∞

i=1 Wi f 1/2
i converges in the strict topology. Thanks to

the properties of the Wi we find that W ∗π(a)W =
∑

∞

i=1 f 1/2
i W ∗

i π(a)Wi f 1/2
i for

all a ∈ A. It follows then from (5–13) and (5–12) that

(5–14) ‖W ∗π(a)W −ψ(a)‖ ≤ 2ε

for all a ∈ F ′. Set V = π(u)W , and note that it follows from (5–14) that ‖V ‖ ≤
√

1 + 2ε. Furthermore, since ‖uau − a‖ ≤ ε for a ∈ F , we conclude from (5–14)
that ‖V ∗π(a)V −ψ(a)‖ ≤ 3ε for all a ∈ F . It follows that π has property (B), as
desired. �

Theorem 5.7. Let A and B be separable G-algebras, both G-stable. There exists
a strictly continuous equivariant ∗-homomorphism π : M(A) → M(B) such that
π |A is both absorbing and equivariantly absorbing.

Proof. By [Thomsen 2001, Lemma 2.3] there is a sequence {sn} of completely pos-
itive contractions from A to B which is dense among all such completely positive
contractions. We may assume that each sn occurs infinitely often in the sequence.
Let F1 ⊆ F2 ⊆ F3 ⊆ · · · be a sequence of finite sets in A whose union is dense
in A and let K1 ⊆ K2 ⊆ K3 ⊆ · · · be a sequence of compact subsets of G whose
union is G. For each pair n, l ∈ N, let Xn,l denote the set of pairs (w, π), where
w ∈ B, ‖w‖ ≤ 1, and π : M(A) → M(B) is a strictly continuous equivariant ∗-
homomorphism such that ‖sn(a)−w∗π(a)w‖≤ 1/ l for a ∈ Fl . Note that Xn,l 6= ∅
by Theorem 5.2. For each m ∈ N, set

δn,l,m = inf
{

sup
g∈Km

‖g ·w−w‖ : (w, π) ∈ Xn,l
}
.
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For each triple n,m, l ∈ N, choose a pair (wn,l,m, πn,l,m) ∈ Xn,l such that

sup
g∈Km

‖g ·wn,l,m −wn,l,m‖ ≤ δn,l,m +
1
l
.

Let

π(x)=

∑
n,l,m

Sn,l,mπn,l,m(x)S∗

n,l,m,

where {Sn,l,m} is a family of G-invariant isometries such that S∗

n,i,m Sk, j,l = 0 when
(n, i,m) 6= (k, j, l) and

∑
n,i,m Sn,i,m S∗

n,i,m = 1 in the strict topology.
To show that the saturation of π |A is absorbing it suffices by Proposition 5.6 to

show that π |A has property (A) of that proposition, and to show that the saturation
of π |A is equivariantly absorbing it suffices to show that π |A has property (1)
of Theorem 5.4. We will establish these two properties of π |A simultaneously.
Since π is strictly continuous this will complete the proof. Consider therefore a
completely positive contraction ϕ : A → M(B) such that either (a) ϕ(A) ⊆ B or
(b) ϕ is equivariant. Let k ∈ N and ε > 0 be given. We will show that in both cases
there is an element W ∈ M(B) such that ‖W‖≤

√
1 + ε and ‖ϕ(a)−W ∗π(a)W‖≤

3ε, a ∈ Fk . Then π |A will clearly satisfy condition (A). Furthermore, we will show
that in case (b) W can be chosen such that supg∈Kk

‖g · W − W‖ ≤ 2ε. Then π |A

will clearly satisfy condition (1) of Theorem 5.4, and we will be done.
To simplify notation, set K = Kk and F = Fk . By using an asymptotically G-

invariant approximate unit for B which asymptotically commutes with the range of
ϕ— for which see Lemma 5.1 — we can construct a sequence { fi } in B such that
0 ≤ fi ≤ 1, ‖g · fi − fi‖< 2−iε for all i and g ∈ K ,

∑
∞

i=1 f 2
i = 1,

∑
∞

i=1 fiϕ(a) fi

converge in the strict topology for all a ∈ A and∥∥∥∥ ∞∑
i=1

fiϕ(x) fi −ϕ(x)
∥∥∥∥≤ ε,(5–15)

for all x ∈ F . We claim that for any i ∈ N, any finite set H ⊆ A, any δ > 0 and any
N ∈ N, there is a pair n, l ∈ N such that n ≥ N , and

‖ fiϕ(a) fi −w∗

n,l,kπn,l,k(a)wn,l,k‖ ≤ δ,(5–16)

for all a ∈ H , and

‖g ·wn,l,k −wn,l,k‖ ≤ 2−iε,(5–17)

for all g ∈ K , in case (b). To see this observe first that in case (a) Theorem 5.2 gives
us a sequence {Wn} of contractions in M(B) and a strictly continuous equivariant
∗-homomorphism π0 : M(A)→ M(B) such that limn→∞ W ∗

n π0(a)Wn = ϕ(a) for
all a ∈ A. In case (b) Proposition 5.3 does the same, and more: In case (b) we can
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choose {Wn} to be asymptotically G-invariant. We first choose m ∈ N so large that

(5–18)
∥∥ϕ(a)− W ∗

mπ0(a)Wm
∥∥≤

1
2δ

for all a ∈ H , and ‖g · (Wm fi )− Wm fi‖ ≤ 2−iε, g ∈ K , in case (b). Then we
choose l ∈ N so large that

(i) 2/ l < δ/6,

(ii) H ⊆δ/6 Fl , meaning that for all x ∈ H there is a y ∈ Fl such that ‖x −y‖≤ δ/6;

in case (b) we require that l satisfy the additional condition

(iii) 1
l ≤ 2−iε− max{‖g · (Wm fi )− Wm fi‖ : g ∈ K }.

Then choose n ≥ N such that

‖sn(x)− fi W ∗

mπ0(x)Wm fi‖ ≤
1
l

(5–19)

for all x ∈ Fl . It follows from (5–19) that δn,l,k ≤ max{‖g · (Wm fi )− Wm fi‖ :

g ∈ K }, and hence by (iii) that ‖g ·wn,l,k −wn,l,k‖ ≤ δn,l,k + 1/ l ≤ 2−iε for all
g ∈ K , provided of course that we are in case (b). Thus (5–17) holds in this case.
Since ‖sn(x)−w∗

n,l,kπn,l,k(x)wn,l,k‖ ≤ 1/ l for x ∈ Fl , it follows from (5–19) that
‖ fi W ∗

mπ0(x)Wm fi −w∗

n,l,kπn,l,k(x)wn,l,k‖ ≤ 2/ l for all x ∈ Fl . Combining this
with i) and ii) we obtain that ‖ fi W ∗

mπ0(a)Wm fi −w∗

n,l,kπn,l,k(a)wn,l,k‖ ≤
1
2δ for

all a ∈ H . In combination with (5–18) this gives us (5–16).
For each i we choose an element ui ∈ A, 0 ≤ ui ≤ 1, such that

‖ui xui − x‖ ≤ 2−iε,(5–20)

x ∈ F , and ‖g · ui − ui‖ ≤ 2−iε, g ∈ K ; we can do this by Lemma 5.1. Let b be a
strictly positive element of B. By using the property established above and the fact
that πn,l,k( · ) = S∗

n,l,kπ( · )Sn,l,k , we see that we can choose a sequence l ′i , i ∈ N,
of contractions in B such that

(iv) l ′i
∗
π(A)l ′j = {0}, i 6= j ,

(v) ‖l ′i
∗
π(ui )b‖ ≤ 2−i ,

(vi) ‖l ′i
∗
π(x)l ′i − fiϕ(x) fi‖ ≤ 2−iε, x ∈ {u2

i } ∪ ui Fui ,

and in case (b),

(vii) ‖g · l ′i − l ′i‖ ≤ 2−iε, g ∈ K .
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Set li = π(ui )l ′i . We claim that
∑

∞

i=1 li converges in the strict topology of M(B).
Since∥∥∥∥ m∑

i=n

li b
∥∥∥∥2

≤ ‖b‖

∥∥∥∥ m∑
i, j=n

l∗i l j b
∥∥∥∥= ‖b‖

∥∥∥∥ m∑
i=n

l∗i li b
∥∥∥∥

= ‖b‖

∥∥∥∥ m∑
i=n

l ′i
∗
π(u2

i )l
′

i b
∥∥∥∥ (by (iv))

≤ ε‖b‖

m∑
i=n

2−i
+ ‖b‖

∥∥∥∥ m∑
i=n

fiϕ(u2
i ) fi b

∥∥∥∥ (by (vi))

≤ ε‖b‖

m∑
i=n

2−i
+ ‖b‖

√√√√∥∥∥∥b
( m∑

i=n

fiϕ(u2
i ) fi

)2

b
∥∥∥∥

≤ ε‖b‖

m∑
i=n

2−i
+ ‖b‖

√√√√∥∥∥∥b
( m∑

i=n

f 2
i

)
b
∥∥∥∥,

we see that
∑

∞

i=1 li b converges in B. Since ‖l∗i b‖≤2−i by (v),
∑

∞

i=1 l∗i b converges
also in B. Since b is a strictly positive element, and since

sup
m

∥∥∥∥ m∑
i=1

li

∥∥∥∥≤
√

1 + ε

by (iv) and (vi), it follows that
∑

∞

i=1 li converges in the strict topology to an element
W of M(B) whose norm does not exceed

√
1 + ε. For x ∈ F we have

∥∥W ∗π(x)W−ϕ(x)
∥∥≤ ε+

∥∥∥∥W ∗π(x)W −

∞∑
i=1

fiϕ(x) fi

∥∥∥∥ (by (5–15))

= ε+

∥∥∥∥ ∞∑
i=1

l ′i
∗
π(ui xui )l ′i −

∞∑
i=1

fiϕ(x) fi

∥∥∥∥ (by (iv))

≤ 2ε+

∥∥∥∥ ∞∑
i=1

l ′i
∗
π(ui xui )l ′i −

∞∑
i=1

fiϕ(ui xui ) fi

∥∥∥∥ (by (5–20))

≤ 3ε (by (vi)).

Finally,

‖g · li − li‖ ≤ ‖g · l ′i − l ′i‖ +‖g · ui − ui‖ ≤ 2−i+1ε, g ∈ K ,

by (vii) and the choice of ui , in case (b). Hence ‖g · W − W‖ ≤ 2ε for all g ∈ K ,
in case (b). �
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6. Duality in equivariant KK -theory

In this section we combine the results of Sections 3 and 4 with those of Section 5.
In this way we obtain the duality results for equivariant KK -theory relatively
painlessly.

We assume now that A and B are separable G-algebras, both G-stable.

Lemma 6.1. Let A and B be G-algebras, B stable. Let π : A → M(B) be a
saturated equivariant ∗-homomorphism and set

E = {m ∈ M(B)G : mπ(a)= π(a)m, a ∈ A}.

Then K∗(E)= {0}.

Proof. The argument is well-known so we will be sketchy. Since π is saturated,
E contains a sequence {Vi } of G-invariant isometries with orthogonal ranges such
that

∑
∞

i=1 Vi V ∗

i = 1 in the strict topology. We can then define a ∗-homomorphism
ψ : E → E such that ψ(m)=

∑
∞

i=2 Vi mV ∗

i , where the sum converges in the strict
topology. Then ψ ⊕ idE = Ad U ◦ψ for a unitary U ∈ E , and we conclude that
ψ∗ + id = ψ∗ in K -theory. It follows that K∗(E)= {0}. �

Given an equivariantly absorbing ∗-homomorphism π : A → M(B), set

Aπ = {x ∈ M(B) : xπ(a)−π(a)x ∈ B , a ∈ A},

and
Bπ = {x ∈ Aπ : xπ(A)⊆ B}.

Then Bπ is a closed two-sided ideal in Aπ and we set Dπ = Aπ/Bπ . Note that G
acts by automorphisms on Aπ which leave Bπ globally invariant, and we get an
action of G on Dπ . None of these actions are continuous in general.

If τ : A → M(B) is another equivariantly absorbing ∗-homomorphism, there is a
unitaryw∈ M(B) such that Adw◦π(a)−τ(a)∈ B for all a ∈ A and g·w−w∈ B for
all g ∈ G; see Proposition 5.5. It follows that there is an equivariant ∗-isomorphism
between Dπ and Dτ . In particular, it follows that DG

π ' DG
τ .

Let u be a unitary in Mn(D
G
π ). Choose v ∈ Mn(Aπ ) such that idMn ⊗q(v)= u.

Define πn
: A → LB(Bn) by

πn(a)(b1, b2, . . . , bn)= (π(a)b1, π(a)b2, . . . , π(a)bn) .

Let Bn
⊕ Bn be graded by (x, y) 7→ (x,−y). Then

(6–1)
(
Bn

⊕ Bn,
(
πn

πn

)
,
(
v∗

v
))

is an even Kasparov triple for A and B. It is easy to see that the class of (6–1)
in KK 0

G(A, B) only depends on the class of u in K1(D
G
π ). Thus the construc-

tion gives rise to a map 2 : K1(D
G
π ) → KK 0

G(A, B) which is easily seen to be a
homomorphism.
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In the following we will let 1m and 0m denote the unit and the zero element of
Mm(M(B)), respectively. We will identify Mm(M(B)) and M(Mm(B)).

Theorem 6.2. Let A and B be separable G-algebras, both G-stable. Then 2 :

K1(D
G
π )→ KK 0

G(A, B) is an isomorphism.

Proof. 2 is injective: Let u ∈ Mn(D
G
π ) be a unitary and choose v ∈ Mn(Aπ ) such

that idMn ⊗q(v)= u. Assume that
[
Bn

⊕ Bn,
(
πn

πn

)
,
(
v∗

v
)]

= 0 in KK 0
G(A, B).

By Theorem 3.10 this means that there are elementary degenerate even Kasparov
triples D1 and D2 such that

(
Bn

⊕ Bn,
(
πn

πn

)
,
(
v∗

v
))

⊕D1 is operator homotopic
to
(
Bn

⊕ Bn,
(
πn

πn

)
,
(

1
1))

⊕ D2. Since D1 and D2 are degenerate we can define
a new degenerate even Kasparov A − B-module D by

D = 0 ⊕ D1 ⊕ D2 ⊕ D1 ⊕ D2 ⊕ D1 ⊕ D2 ⊕ · · · .

Then D1 ⊕ D and D2 ⊕ D are both isomorphic to D and hence(
Bn

⊕ Bn,
(
πn

πn

)
,
(
v∗

v
))

⊕ D

is operator homotopic to
(
Bn

⊕ Bn,
(
πn

πn

)
,
(

1
1))

⊕D. Note that D is isomorphic
to an elementary even Kasparov triple since D1 and D2 are. Up to isomorphism, it
must therefore have the form

D =
(
Be,

(
λ+

λ−

)
,
(

b
a ))

,

where λ± : A → M(B) are saturated equivariant ∗-homomorphisms and a, b ∈

M(B). By performing the same alterations to D as was performed to E in [Jensen
and Thomsen 1991, pages 125–126] we may assume that a = w and b = w∗ for
some unitary w ∈ M(B). Note that wλ−(a)w∗

= λ+(a), (g ·w)λ±(a)= wλ±(a)
for all a ∈ A and all g ∈ G since D is degenerate. By adding to D the sum(

Be,
(
λ−

λ+

)
,
(
w
w∗ ))

⊕
(
Be,

(
π
π

)
,
(

1
1))

we may assume that λ+ = λ− and that λ = λ+ = λ− is equivariantly absorbing.
Now the operator homotopy between(

Bn
⊕ Bn,

(
πn

πn

)
,
(
v∗

v
))

⊕
(
Be,

(
λ
λ

)
,
(
w∗

w
))

and (
Bn

⊕ Bn,
(
πn

πn

)
,
(

1
1))

⊕
(
Be,

(
λ
λ

)
,
(
w∗

w
))

gives us a G-invariant unitary S ∈ Mn+1 (M(B)) such that

S
(
πn(a)

λ(a)

)
=
(
πn(a)

λ(a)

)
S

for all a ∈ A, and a norm-continuous path Ft , t ∈ [0, 1], in Mn+1(M(B)) such
that F0S = S

( 1n
w

)
, F1 =

(
v
w

)
, and the following inclusions are satisfied for all
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values of g, t, a: (
Ft F∗

t − 1n+1
) (

πn(a)
λ(a)

)
∈ Mn+1(B),(

F∗

t Ft − 1n+1
) (

πn(a)
λ(a)

)
∈ Mn+1(B),

(g · Ft − Ft)
(
πn(a)

λ(a)

)
∈ Mn+1(B),

and

Ft
(
πn(a)

λ(a)

)
−
(
πn(a)

λ(a)

)
Ft ∈ Mn+1(B).

As an equivariant ∗-homomorphism A → Mn+1(M(B)), ν =
(
πn

λ

)
is saturated,

since π and λ are. By Lemma 6.1 we can therefore find an m ∈ N and a norm-
continuous path of unitaries in

{x ∈ Mm(n+1)(M(B)G) : xνm(a)= νm(a)x, a ∈ A}

connecting
( S

1(m−1)(n+1)

)
to 1m(n+1). In combination with F this gives us a norm-

continuous path Ht , t ∈ [0, 1], in Mm(n+1)
(
M(B)G

)
such that

H0 =

1n

w

1(m−1)(n+1)

 , H1 =

v w
1(m−1)(n+1)

 ,
and moreover the following elements lie in Mm(n+1)(B):

(
Ht H∗

t − 1m(n+1)
)
νm(a),(

H∗
t Ht − 1m(n+1)

)
νm(a), (g · Ht − Ht) ν

m(a) and Htν
m(a)−νm(a)Ht , for all t , g,

and a. Since λ and π both are equivariantly absorbing there is a unitaryw0 ∈ M(B)
such that g ·w0 −w0 ∈ B for all g ∈ G and w0λ(a)w∗

0 − π(a) ∈ B, a ∈ A; see
Proposition 5.5. Set

W = diag
(
1n, w0, 1n, w0, . . . , 1n, w0︸ ︷︷ ︸

m times

)
∈ Mm(n+1)(M(B))

and
G t = W Ht W ∗.

Then G t is a norm-continuous path in Mm(n+1)(M(B)) such that

G0 =

1n

w0ww
∗

0
1(m−1)(n+1)

 , G1 =

v w0ww
∗

0
1(m−1)(n+1)

 ,
and moreover the following elements lie in Mm(n+1)(B), again for all t , g, and a:
(G t G∗

t −1m(n+1)π
m(n+1)(a), (G∗

t G t −1m(n+1)π
m(n+1)(a), (g ·G t −G tπ

m(n+1)(a)
and G tπ

m(n+1)(a)−πm(n+1)(a)G t . Thus
(
idMm(n+1) ⊗q

)
(G t) is a path of unitaries
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in Mm(n+1)
(
DG
π

)
connectingu

q(w0ww
∗

0)

1(m−1)(n+1)

 to

1n

q(w0ww
∗

0)

1(m−1)(n+1)

 .
2 is surjective: Let (E, ψ, F) be an even Kasparov triple for A and B. By Theorem
3.10 we may assume that E = Be. By Lemma 3.2 we may assume that ψ =

(ϕ, ϕ). The constructions in [Jensen and Thomsen 1991, pages 125–126] show
that [Be, ψ, F] ∈ KKG(A, B) is also represented by a Kasparov triple of the form(

Be,

(
ϕ

ϕ

)
,

(
v

v∗

))
,

where ϕ : A → M(B) is an equivariant ∗-homomorphism and v∈ M(B) is a unitary.
By adding on (

Be,

(
π

π

)
,

(
1

1

))
,

and using that π is equivariantly absorbing we may assume that there is a unitary
u ∈ M(B) such that g·u−u ∈ B, g ∈ G, and uϕ(a)u∗

−π(a)∈ B for all a ∈ A. Let X
be the graded Hilbert B,G-module which as a graded Hilbert B-module is B ⊕ B,
but with the representation of G changed to g ·(b1, b2)=

(
uβg (u∗b1) , uβg (u∗b2)

)
.

Then
(
Be,

(
ϕ
ϕ

)
,
(
v∗

v
))

is isomorphic to(
X,
(

Ad u ◦ϕ

Ad u ◦ϕ

)
,

(
uvu∗

uv∗u∗

))
.

Thanks to the properties of u a rotation argument works to show that(
X,
(

Ad u ◦ϕ

Ad u ◦ϕ

)
,

(
uvu∗

uv∗u∗

))
⊕

(
Be,

(
π

π

)
,

(
1

1

))
is operator homotopic to(

X,
(

Ad u ◦ϕ

Ad u ◦ϕ

)
,

(
1

1

))
⊕

(
Be,

(
π

π

)
,

(
uvu∗

uv∗u∗

))
.

Thus uvu∗ is a unitary in Aπ such that q(uvu∗) ∈ DG
π and 2([q (uvu∗)]) =

[E, ψ, F] in KK 0
G(A, B). �

Let next Q be a projection in Mn
(
DG
π

)
, and let P ∈ Mn (Aπ ) be a lift of P .

Then (Bn, πn, Q) is an odd Kasparov for A and B and we can define a map 20 :

K0
(
DG
π

)
→ KK 1

G(A, B) such that 20[Q] = [Bn, πn, Q]. By using Theorem 4.3
in place of Theorem 3.10, we can adopt the previous proof to obtain:
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Theorem 6.3. Let A and B be separable G-algebras, both G-stable. Then 20 :

K0(D
G
π )→ KK 1

G(A, B) is an isomorphism.

Lemma 6.4. Let A and B be separable G-algebras, both G-stable. Let π :

M(A)→ M(B) be a strictly continuous ∗-homomorphism such that π |A is equiv-
ariantly absorbing. It follows that q

(
AG
π

)
=DG

π , and that q∗ : K∗

(
AG
π

)
→ K∗

(
DG
π

)
is an isomorphism.

Proof. Set E = π(1) which is a G-invariant projection in M(B) such that E B =

π(A)B. Let x ∈ DG
π be self-adjoint and choose a self-adjoint y ∈ Aπ such q(y)= x .

By applying Lemma 3.3 to the triple (B, π, y) we see that there is a G-invariant
element z ∈ LB(E B) such that yπ(a)−π(a)z ∈ KB(E B, B) and π(a)y − zπ(a) ∈
KB(B, E B) for all a ∈ A. Define z0 ∈ M(B) such that z0b = zEb for all b ∈ B.
Then z0 ∈ M(B)G and yπ(a)− π(a)z0 ∈ B, π(a)y − z0π(a) ∈ B for all a ∈ A.
It follows that z0π(a)− π(a)z0 ∈ B and π(a) (y − z0) ∈ B for all a ∈ A so that
z0 ∈ AG

π and q(z0)= q(y)= x . Hence q
(
AG
π

)
= DG

π .
It suffices now to show that K∗

(
BG
π

)
= 0. To this end, consider the C∗-algebra

Y =
{

X ∈ M2(M(B)G) : X
(
π(a)

0

)
,
(
π(a)

0

)
X ∈ M2(B), a ∈ A

}
.

Define κ : BG
π → Y by κ(x) =

( x
0

)
. We claim that κ∗ : K∗

(
AG
π

)
→ K∗ (Y) is

injective and that κ∗ = 0. To prove injectivity of κ∗, note that since π absorbs 0
there is a G-invariant unitary U ∈ LB(B ⊕ B, B) such that

(6–2) U
(
π(a)

0

)
U∗

−π(a) ∈ B

for all a ∈ B. Then X 7→ U XU∗ is an equivariant ∗-homomorphism λ : Y → BG
π .

Define V : B → B by V b = U (b, 0), and observe that V is adjointable with
adjoint V ∗

: B → B given by p1U∗b, where p1 : B ⊕ B → B is the projection
to the first coordinate. V is then a G-invariant isometry V ∈ M(B)G such that
λ ◦ κ = Ad U ◦ κ = Ad V , and Vπ(a)V ∗

= U
(
π(a)

0

)
U∗. It follows from the last

equality and (6–2) that Vπ(a)−π(a)V ∈ B for all a ∈ V , and then that xV ∈ BG
π

when x ∈ BG
π . Therefore V is an isometry in M

(
BG
π

)
and hence (Ad V )∗ = id in

K -theory. Consequently λ∗ ◦ κ∗ = id in K -theory, and κ∗ must be injective. On
the other hand, observe that κ is homotopic via a standard rotation argument to
the ∗-homomorphism x 7→

(0
x

)
, which factors through M(B)G . Since the zero

homomorphism is saturated, it follows from Lemma 6.1 that K∗

(
M(B)G

)
= 0.

Thus κ∗ = 0. �

Theorem 6.5. Let A and B be separable G-algebras, both G-stable. Let π :

M(A)→ M(B) be a strictly continuous ∗-homomorphism such that π |A is equiv-
ariantly absorbing. It follows that 2 ◦ q∗ : K1

(
AG
π

)
→ KK 0

G(A, B) and 20 ◦ q∗ :

K0
(
AG
π

)
→ KK 1

G(A, B) are both isomorphisms.

Proof. Combine Theorems 6.2 and 6.3 with Lemma 6.4. �
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By Theorem 5.7 we can choose the ∗-homomorphism π of Theorem 6.5 such
that π |A : A → M(B) is absorbing (nonequivariantly), and it follows then from
[Thomsen 2001] that the K -theory of Aπ gives us the nonequivariant KK -groups
KK i (A, B), i = 0, 1. Under these identifications the canonical forgetful maps

KK i
G (A, B)→ KK i (A, B) ,

i =0, 1, become the maps Ki
(
AG
π

)
→ Ki (Aπ ), i =0, 1, induced by the embedding

AG
π ⊆ Aπ .
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