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We consider complete noncompact simply connected nonpositively curved
surfaces that are twice continuously differentiably embedded in Euclidean
three space. If such a surface has square integrable second fundamental
form, then it must be a plane.

1. Introduction

The study of minimal surfaces has a long tradition and has been extended in many
directions: surfaces of constant mean curvature, isometric immersion of surfaces
into hyperbolic spaces or other higher dimensional spaces, and so on. Here, we try
to go in another direction. Consider the condition

(1)
∫

|B|
2 da < ∞,

where |B| is the length of second fundamental form. Now, |B|
2

= 4|H |
2
− 2K ,

where H is the mean curvature and K is the Gauss curvature. The Gauss curva-
ture of minimal surfaces is nonpositive. We examine what minimal surface results
continue to hold if we extend the minimal condition H ≡ 0 to K ≤ 0 but require
(1) instead. We recall:

Theorem [Xavier 2001]. Let M ⊂ R3 be a complete simply connected embedded
minimal surface whose Gaussian curvature is bounded from below. If there is a
plane whose intersection with M is transversal and connected then M is a plane
or a helicoid.

Theorem [Meeks and Rosenberg 2005]. A properly embedded simply connected
minimal surface in R3 is either a plane or a helicoid.

Minimal surfaces can be divided into two classes: those of finite total curvature
and those of infinite total curvature. For the case of finite total curvature we have∫

|B|
2
= −2

∫
K < ∞, so condition (1) is satisfied. In this paper we prove:
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Theorem 1. A complete simply connected embedded C2-surface M in R3 with
K ≤ 0 and (1) is a plane.

We can apply the proof of Theorem 1 to recover the finite total curvature case
of Meeks and Rosenberg’s Theorem.

S. Bernstein [1915–17] proved that if M is an entire minimal graph, then M must
be a plane. This theorem has been generalized; see [Fujimoto 1988; Osserman
1971; Xavier 1981]. In [Chan 2000], we showed:

Theorem 2. Suppose M is a complete, oriented, one-ended, nonpositively curved
Riemannian surface with an isolated set of parabolic points {p ∈ M : K (p) = 0}.
Then M cannot be C2 isometrically immersed in R3 with (1) and one embedded
end.

The stipulation of one embedded end cannot be weakened, because of the caten-
oid and Enneper’s surface. The conditions in Theorem 2, apart from the isolated-
ness of parabolic points, are satisfied by the following example. Let (x, y, z) be
the usual coordinates of R3. Let S be the locus of points satisfying

(1 − z)
(
y2

+ z(1 + z)
)
= (1 + z)

(
x2

− z(1 − z)
)
.

By the Implicit Function Theorem, S is a surface in R3. In fact, S lies in the region
|z| ≤ 1 and is not simply connected (its genus is 1). In [Chan and Treibergs 2001],
we improved our theorem as follows:

Theorem 3. Suppose M is a complete, oriented, nonpositively curved Riemannian
surface C2 isometrically immersed in R3 satisfying (1) and having one embedded
end near infinity. Then M must lie in a slab (a region between two parallel planes).

Since the plane stays in the slab, this generalizes Bernstein’s Theorem. In
that paper, we also provided explicit examples of nonpositively curved surfaces
of genus n. In cylindrical coordinated of R3, for n ≥ 2 an integer, the surface

rn(z − cos nθ) = z − z3

has genus n − 1 and lies in the slab |z| ≤ 1. Thus, simple connectivity is a critical
condition for the Theorem 1.

2. Proof of Theorem 1.

Morse’s theorems relate the topology of manifolds to the singularities of Morse
functions on them. In this section, we apply Morse theory to noncompact complete
surfaces in R3 by finding Morse functions that have no critical points outside a large
compact set.
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Let M be a complete, oriented, connected, nonpositively curved surface C2

immersed in R3. White [1987] proved that if (1) is satisfied, the Gauss map extends
continuously to one point near infinity and M is properly immersed near infinity.

The simple connectivity and embeddedness of the surface M in Theorem 1 imply
that M has one embedded end. Let p denote the point at infinity of the surface.
By White’s theorem, (1) implies that the Gauss image g(p) is one point and M is
properly embedded. Then there exists a punctured disk Uε(p) that is embedded
and such that |g(x) − g(p)| < ε for all x ∈ Uε(p). The outside of a big compact
set of M can be considered as a graph of a function over the xy-plane P .

We divide the proofs into two cases, K ≡ 0 and K 6≡ 0. Assume that K ≡ 0 on
M in Theorem 1. According to [Hartman and Nirenberg 1959], M is a generalized
cylinder. By (1), M is a plane. Assume instead that K 6≡ 0. Then there is a point p0

such that K (p0) < 0. We may assume that the tangent plane Tp0 M is not parallel
to P and that the distance function to Tp0 M (the height function above Tp0 M) is a
Morse function. Since the normal directions of a neighborhood of p0 form a set of
full measure on the unit sphere, there is a point p1 in a small neighborhood of p0

such that the distance function of the tangent plane Tp1 M is a Morse function and
Tp1 M is not parallel to P . Then p1 is a critical point of f . Because the curvature
is nonpositive at the critical points, all indices are 1.

For a Morse function on a compact surface M , Morse’s formula [Milnor 1963]
says that the Euler characteristic is the algebraic sum of the numbers Cλ of critical
points of index λ:

(2) χ(M) =

∑
λ

(−1)λCλ.

In the case of a surface, λ takes the values 0, 1, and 2, so χ(M) = C0 − C1 + C2.
To prove Theorem 1, we need to modify Morse’s formula. Let f be the distance

function from Tp1 M on M . Choose ε so small that |g(p1) − g(p)| > ε. Then no
critical points of f occur in Uε(p). Because the Gauss map extends continuously
to p, the point at infinity, and because M is the graph of a function in Uε(p), we
can cut out a disk about p in Uε and glue back a spherical cap containing exactly
two new critical points of f , of indices 0 and 2 respectively. Call the new surface
M̂ . After gluing, χ(M̂) = χ(M) + 1. Thus the Morse formula for noncompact
surfaces yields

χ(M) = χ(M̂) − 1 = 1 − C1 + 1 − 1 = 1 − C1.

There is at least one critical point p1 whose index is 1 for f , so χ(M) has a
upper bound of zero, contradicting simple connectivity. Thus M is a plane. This
completes the proof.
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