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We investigate preimage entropy and show how to calculate it under the as-
sumption of forward expansiveness. We then define new invariants of non-
invertible maps, called the upper preimage entropy and the metric preimage
entropy, and obtain variational principles for them. Last, we prove a similar
result for the Kolmogorov–Sinai generator.

1. Introduction

The topological entropy h(T ) of a continuous map T of a compact metric space
to itself is a measure of its dynamical complexity. It was first defined by Adler,
Konheim and McAndrew, and later was given several equivalent definitions by
Bowen and others (see [Bowen 1972] for an exposition). These definitions have
led to results connecting topological and measure-theoretic entropies.

More recently, the preimage relation entropy hr (T ) of a compact metric space
was introduced in [Langevin and Walczak 1991] and used as a new tool for studying
the topology and dynamics of endomorphisms of compact metric spaces. Hurley
[1995] and Nitecki and Przytycki [1999] then introduced several other entropy-
like invariants for noninvertible maps. One, the preimage branch entropy hi (T ),
is closely related to hr (T ). Two others are based on how many branches of the
inverse of the iterated map T −n at a point x can be distinguished by measurements
of finite accuracy; they are called pointwise preimage entropies and are denoted
by h p(T ) and hm(T ). The following inequalities hold for any continuous map T
on a compact metric space [Hurley 1995; Nitecki and Przytycki 1999]:

h p(T ) ≤ hm(T ) ≤ h(T ) ≤ hi (T ) + hm(T ) ≤ hr (T ) + hm(T ).

In this paper we first concentrate on the pointwise preimage entropies h p(T )

and hm(T ), whose definitions are in some sense analogous to (and were motivated
by) Bowen’s notion of “local entropy” (see [Bowen 1972]). The definitions and
some basic properties of these invariants are reviewed in Section 2.
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In Section 3 we consider forward expansive maps. We show that, as in the case
of the standard topological entropy, both h p(T ) and hm(T ) can be computed using
the forward generator.

In Section 4 we introduce modified preimage entropies in the topological and
measure-theoretic contexts. We obtain variational principles and a similar result
for generators in the case of a measure-preserving transformation. We also show
that the construction of the metric preimage entropy equals the conditional metric
preimage entropy with infinite past σ -algebra.

2. Pointwise preimage entropy

As in Adler, Konheim and McAndrew’s definition of topological entropy, we take
an open cover U of a compact space X and a continuous map T : X → X , and set∨n

i=0T −i (U ) = {U j0 ∩ T −1U j1 ∩ · · · ∩ T −nU jn | U jk ∈ U, 0 ≤ k ≤ n}.

This is an open cover and a refinement of U . If x ∈ U j0 ∩ T −1U j1 ∩ · · · ∩ T nU jn ,
then x ∈ U j0 , T x ∈ U j1 , . . . , T nx ∈ U jn .

Definition 2.1. Let T : X → X be a continuous map of a compact space X and
take x ∈ X . For N = 1, 2, . . . , the N-th preimage set of x under T is the set
T −N (x) := {z ∈ X | T N (z) = x}, and the N-th branch at x is the set

BN (x, T ) = {(zN , zN−1, . . . , z0) | T (zi+1) = zi , 0 ≤ i ≤ N − 1 and z0 = x}.

Let O(X) be the collection of all (finite or infinite) open covers of X . Given
U ∈ O(X), let U N be the open cover of X N by product sets U1 × U2 × · · · × UN ,
where Ui ∈U . For a subset SN ⊂ X N , define ℵ(U, N , SN ) to be the least cardinality
of a subset of U N that covers SN .

Remark 2.2. The continuity of T and the compactness of X insure that BN (x, T ) is
compact, and hence that the numbers ℵ(U, N , BN (x, T )) are all finite and bounded
for fixed N over x ∈ X .

Definition 2.3 (Pointwise preimage entropies [Nitecki and Przytycki 1999]). For
T : X → X be a continuous mapping from a compact space X to itself, define

h p(T ) = sup
x∈X

sup
U∈O(X)

lim sup
N→∞

1
N

log ℵ(U, N , BN (x, T )),

hm(T ) = sup
U∈O(X)

lim sup
N→∞

1
N

log sup
x∈X

ℵ(U, N , BN (x, T )).

Remark 2.4. If T is a homeomorphism, then h p(T ) = hm(T ) = 0.

As in the case of the topological entropy, we can give metric definitions for these
invariants by reinterpreting the numbers ℵ(U, N , SN ) in terms of ε-spanning and
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ε-separated sets. Given a metric space (X, d) and some ε > 0, we say that a subset
S ⊂ X is ε-separated if any two distinct points of S are at least ε apart; and we say
that A ⊂ X is ε-spanned by R ⊂ X (or that R ε-spans A) if any point of A is at a
distance of at most ε from R. Set

r(ε, d, A) = min{card R | R is ε-spans A},

s(ε, d, A) = max{card S | S ⊂ A is ε-separated}.

Theorem 2.5 [Nitecki and Przytycki 1999]. Let (X, d) be a compact metric space.
For any positive integer N, let d N be the metric on X N given by

d N ((x1, . . . , xN ), (y1, . . . , yN )) = max
1≤i≤N

d(xi , yi ).

Then for T : X → X continuous, we have

h p(T ) = sup
x∈X

lim
ε→0

lim sup
N→∞

1
N

log s(ε, d N , BN (x, T )),

hm(T ) = lim
ε→0

lim sup
N→∞

1
N

log sup
x∈X

s(ε, d N , BN (x, T )).

In both formulas, s(ε, d N , BN (x, T )) can be replaced by r(ε, d N , BN (x, T )).

We define a new metric dn on X by setting

dn(x, y) = max
0≤i≤n−1

d(T i (x), T i (y)).

A subset F of X is said to (n, ε)-span K if for all x ∈ K there exists y ∈ F with
dn(x, y) ≤ ε. Let rn(ε, K ) denote the smallest cardinality of any (n, ε)-spanning
set for K . A similar definition holds for (n, ε) separated sets and sn(ε, K ).

Definition 2.6 [Walters 1982]. Let U be a cover of X and Y a subset of X . We
denote by ℵ(U )|Y the smallest cardinality of a subcover of U which can cover Y .

For U ∈ O(X), we easily see that r(ε, d N , BN (x, T )) = rN (ε, T −N (x)), that
s(ε, d N , BN (x, T )) = sN (ε, T −N (x)), and that

ℵ(U, N , BN (x, T )) = ℵ
(∨N

n=0T −nU
)
|T −N (x).

Remark 2.7. The pointwise preimage entropies are also given by

h p(T ) = sup
x∈X

lim
ε→0

lim sup
N→∞

1
N

log sN (ε, T −N (x))

= sup
x∈X

lim
ε→0

lim sup
N→∞

1
N

log rN (ε, T −N (x))

= sup
x∈X

sup
U∈O(X)

lim sup
N→∞

1
N

log ℵ
(∨N

n=0T −nU
)
|T −N (x)
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and
hm(T ) = lim

ε→0
lim sup

N→∞

1
N

log sup
x∈X

sN (ε, T −N (x))

= lim
ε→0

lim sup
N→∞

1
N

log sup
x∈X

rN (ε, T −N (x))

= sup
U∈O(X)

lim sup
N→∞

1
N

log sup
x∈X

ℵ
(∨N

n=0T −nU
)
|T −N (x).

If X is the circle or a closed interval, h p(T ) and hm(T ) always coincide with
the topological entropy of T [Langevin and Przytycki 1992; Langevin and Walczak
1991]. But there exist X and T such that h p(T ) = 0 and hm(T ) > 0; in fact, X can
be taken to be a zero-dimensional compact metric space [Nitecki and Przytycki
1999].

Theorem 2.8 [Nitecki and Przytycki 1999]. If T1 : X → X and T2 : Y → Y are
topologically conjugate, then h p(T1) = h p(T2) and hm(T1) = hm(T2).

Theorem 2.9. If d, d ′ are metrics on a compact set X defining the same topology,
the pointwise preimage entropies with respect to d and d ′ coincide.

If T2 is a factor of T1 then h(T2) ≤ h(T1), where h is the topological entropy.
This inequality need not hold for pointwise preimage entropies, which can increase
when we pass to factors. As an example, consider for a map f : X → X the shift
σ f defined on the sequence space 6 f =

{
{xi }

∞

i=0 | f (xi ) = xi−1, i = 1, 2, . . .
}

by

σ f (x0, x1, . . . ) = ( f (x0), f (x1), . . . ) = ( f (x0), x0, x1, . . . ).

The product topology on 6 f ⊂ X N makes 6 f compact and σ f a homeomorphism.
Furthermore, if f is surjective, f is a factor of σ f via the projection ϕ({xi }

∞

i=0)= x0.
By Remark 2.4, we have

h p(σ f ) = hm(σ f ) = 0.

Taking f such that h p( f ) = hm( f ) > 0 (for instance, the standard expanding map
z 7→ 2z mod 1 of the circle S1

= R/Z, for which h p( f ) = hm( f ) = log 2) and
setting g = σ f , we see that there exist maps f : X → X, g : Y → Y with f a factor
of g and

hm( f ) = h p( f ) > hm(g) = h p(g).

The pointwise preimage entropies are subadditive under Cartesian products and
multiplicative under iteration:

Lemma 2.10 [Nitecki and Przytycki 1999]. Let X, X ′ be compact metric spaces
and T : X → X, T ′

: X ′
→ X ′ continuous maps. Then

h p(T × T ′) ≤ h p(T ) + h p(T ′),

hm(T × T ′) ≤ hm(T ) + hm(T ′),

h p(T k) = kh p(T ),

hm(T k) = khm(T ).
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3. Topological forward generator

Let X be a compact metric space and T : X → X a continuous map. A finite open
cover α of X is a forward generator for T if for every sequence (An)

∞

0 of members
of α the set

⋂
∞

n=0 T −n An contains at most one point of X .

Lemma 3.1. Let T : X → X be a continuous map of a compact metric space
(X, d). Let α be a forward generator for T . For any ε > 0, there exists N > 0 such
that each set in

∨N
n=0T −nα has diameter less than ε.

Proof. Suppose the lemma does not hold. Then we can find a positive ε such that,
for all j > 0, there exist x j , y j satisfying the conditions d(x j , y j ) > ε and

x j , y j ∈

j⋂
i=0

T −i A j,i ,

for some sequence {A j,i }
j
i=0 of sets A j,i ∈ α. Using the compactness of X , we can

assume (passing to a subsequence if necessary) that x j → x and y j → y. We have
x 6= y. Consider the sets A j,0. Infinitely many of them coincide, since α is finite.
Thus x j , y j ∈ A0, say, for infinitely many j , and hence x, y ∈ A0. Similarly, for
each n, infinitely many A j,n coincide and we obtain An ∈ α with x, y ∈ T −n An .
Thus

x, y ∈

∞⋂
0

T −n An,

contradicting the assumption that α is a forward generator. �

Definition 3.2 [Nitecki and Przytycki 1999]. A continuous map T from a compact
metric space (X, d) to itself is said to be forward expansive if there exists δ > 0
such that, for any distinct x 6= y ∈ X , the forward images T nx and T n y are more
than δ apart, for some n.

Lemma 3.3. A continuous map T from a compact metric space (X, d) to itself is
forward expansive if and only if is has a forward generator.

Proof. Suppose T is forward expansive. Let δ be as in the definition and let α be
a finite cover of X by open balls of radius δ/2. Suppose that x, y ∈

⋂
∞

0 T −n An ,
where An ∈ α. Then d(T n(x), T n(y)) ≤ δ for all n ∈ N ∪ {0} so, by assumption
x = y. Then α is a forward generator.

Conversely, suppose α is a forward generator. Let δ be a Lebesgue number for
α, If d(T n(x), T n(y)) ≤ δ for all n ∈N

⋃
{0}, then for all n ∈ N exists An ∈ α with

T n(x), T n(y) ∈ An and so, x, y ∈
⋂

∞

0 T −n An . Since this intersection contains at
most one point we have x = y. Hence T is forward expansive. �

Example 3.4. Take X = {1, 2, . . . m}
N and T = left shift. Then {[k] : 1 ≤ k ≤ m}

is a forward generator, where [k] =
{
(kx1x2x3 . . . ) : xi ∈ {1, 2, . . . , m}

}
.
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Recall from Definitions 2.1 and 2.6 the notations ℵ(U, N , Y ) and ℵ(U |Y ). Also
recall that O(X) is the collection of all open covers of X . Take U ∈ O(X) and
x ∈ X , and set

h p(T, U ) = sup
x∈X

lim sup
N→∞

1
N

log ℵ
(∨N

n=0T −nU
)
|T −N (x),

hm(T, U ) = lim sup
N→∞

1
N

log sup
x∈X

ℵ
(∨N

n=0T −nU
)
|T −N (x).

Theorem 3.5. Let T : X → X be a forward expansive continuous map of the
compact metric space (X, d). If α is a forward generator for T , then

h p(T ) = h p(T, α) and hm(T ) = hm(T, α).

Proof. Since α is a forward generator, for any U ∈ O(X), we can choose N large
enough such that

∨N
n=0T −nα is a refinement of U . This implies that

log ℵ
(∨k

n=0T −nU
)
|T −k(x) ≤ log ℵ

(∨k
n=0T −n∨N

n=0T −nα
)
|T −k(x) for any k.

Then

lim sup
k→∞

1
k

log ℵ
(∨k

n=0T −nU
)
|T −k(x)

≤ lim sup
k→∞

1
k

log ℵ
(∨k

n=0T −n∨N
n=0T −nα

)
|T −k(x)

= lim sup
k→∞

1
k

log ℵ
(∨k+N

n=0 T −nα
)
|T −k(x)

≤ lim sup
k→∞

1
k

log ℵ
(∨k+N

n=0 T −nα
)
|T −(k+N )(x)

= lim sup
k→∞

k + n
k

1
k + N

log ℵ
(∨k+N

n=0 T −nα
)
|T −(k+N )(x)

≤ lim sup
k→∞

k + N
k

lim sup
k→∞

1
k + N

log ℵ
(∨k+N

n=0 T −nα
)
|T −(k+N )(x)

= lim sup
k→∞

1
k + N

log ℵ
(∨k+N

n=0 T −nα
)
|T −(k+N )(x).

Let

h p(T, U, x) = lim sup
k→∞

1
k

log ℵ(
∨k

n=0T −nU )|T −k(x).

Then h p(T, U, x) ≤ h p(T, α, x) for all open covers U and any fixed x in X , which
implies

h p(T ) = sup
x∈X

sup
U∈O(X)

h p(T, U, x) ≤ h p(T, α) = sup
x∈X

h p(T, α, x).
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Then h p(T ) = h p(T, α).

Similarly, since U is refined by
∨N

n=0T −N α, we have

ℵ
(∨k

n=0U
)
|T −k(x) ≤ ℵ

(∨k
n=0

∨N
n=0T −nα

)
|T −k(x).

Thus

hm(T, U ) = lim sup
k→∞

1
k

log sup
x∈X

ℵ
(∨k

n=0T −nU
)
|T −k(x)

≤ lim sup
k→∞

1
k

log sup
x∈X

ℵ
(∨k

n=0T −n∨N
n=0T −nα

)
|T −k(x).

A similar calculation yields hm(T, U ) ≤ hm(T, α) for all open covers U . Thus
hm(T ) = hm(T, α). �

4. Measure-theoretic forward generator

We continue to consider a continuous self-map T of a compact metric space (X, d).
Given a subset K ⊂ X , a δ > 0, and a positive integer n, we set

r(n, δ, K ) = r(n, δ, K , T ) = max{card E : E ⊆ K is (n, δ)-separated}.

Definition 4.1. The upper preimage entropy of a continuous self-map T : X → X
of a compact metric space X is the number

htop(T |ξ−) = lim
δ→0

lim sup
n→∞

1
n

log sup
k≥0,x∈X

r(n, δ, T −k x)

= sup
α∈O(X)

lim sup
n→∞

1
n

log sup
k≥0
x∈X

ℵ
(∨n−1

i=0 T −iα
)
|T −k(x).

One can check that h p(T ) ≤ hm(T ) ≤ htop(T |ξ−) ≤ h(T ).

Example 4.2. Consider S : {1, 2}
N

→ {1, 2}
N and T : {1, 2}

Z
→ {1, 2}

Z, where
S and T are left shifts. We know that h p(S) = hm(S) = htop(S) = log 2, that
h p(T ) = hm(T ) = htop(T ) = 0, and that the product rule holds, i.e.,

htop(S × T |ξ−) = htop(S |ξ−) + htop(T |ξ−)

(see [Cheng and Newhouse 2005]) and

h(S × T ) = h(S) + h(T ).

It follows that

h p(S × T ) = hm(S × T ) = htop(S × T |ξ−) = log 2 < h(S × T ) = 2 log 2.
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Now we introduce conditional entropy. Let ζ = {A1, A2, . . . } be a countable
partition of X into measurable sets. For each x ∈ X , denote by ζ(x) the element
of ζ to which x belongs. The information function associated to ζ is defined to be

Iζ (x) = − log m(ζ(x)) = −

∑
A∈ζ

log m(A)χA(x),

so that Iζ (x) takes the constant value −log m(A) on the cell A of ζ . Clearly

H(ζ ) =

∫
X

Iζ (x) dm(x).

It is useful to consider conditional information and entropy, which take into account
information that may already be in hand. Let I be a sub-σ -algebra of B. Recall
that for φ ∈ L1(X), the conditional expectation E(φ | I) of φ given I is an I-
measurable function on X satisfying∫

F
E(φ | I) dm =

∫
F

φ dm

for all F ∈I; the name comes from the fact that E(φ |I)(x) represents our expected
value for φ if we are given the foreknowledge I. Thus we let m(A | I)= E(χA | I)

and define the conditional information function of a countable partition ζ given a
σ -algebra I ⊂ B to be

Iζ |I(x) = −

∑
A∈ζ

log m(A | I)χA(x).

The conditional entropy of ζ given I is defined by

H(ζ | I) =

∫
X

Iζ |I(x) dm.

Next, let ξ denote the point partition of X , we also identify with the σ -algebra B

of Borel measurable sets. For n > 0, set

ξ−n
= T −nξ.

Given a finite partition α, let αn
=

∨n−1
i=0 T −iα. For a T -invariant probability µ, let

Hµ(αn
|ξ−k)

denote the conditional entropy of αn given the σ -algebra T −kB. We call this the
entropy of αn given the preimage partition ξ−k .

Since Hµ( · | · ) is increasing in the first variable and decreasing in the second,
the inequalities n ≥ m, l ≥ k imply

Hµ(αn
|ξ−l) ≥ Hµ(αm

|ξ−k).
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Set

Hµ(αn
|ξ−) = Hµ(αn

|ξ−∞) = sup
k≥0

Hµ(αn
|ξ−k) = lim

k→∞

Hµ(αn
|ξ−k).

We can also define

ξ−
=

∞⋂
k=1

ξ−k,

and we call this eventual range ξ− the infinity past σ -algebra.

Lemma 4.3 [Bowen 1972]. The quantity an = Hµ(αn
|ξ−) is subadditive.

Definition 4.4. For any finite partition α, the entropy of α given ξ− is the number

hµ(T |ξ−, α) = hµ(α |ξ−) = lim
n→∞

1
n

Hµ(αn
|ξ−) = inf

n→∞

1
n

Hµ(αn
|ξ−),

and we define the metric preimage entropy of T given ξ− with respect to µ to be

hµ(T |ξ−) = sup
α

hµ(α | ξ−) = sup
α

hµ(T |ξ−, α).

Lemma 4.5. The metric preimage entropy hµ(T |ξ−) is a measure-theoretic conju-
gacy invariant. The upper preimage entropy htop(T |ξ−) is a topological conjugacy
invariant.

Theorem 4.6 (Variational principle [Cheng and Newhouse 2005]). Let T : X → X
be a continuous map of a compact metric space X. Then

htop(T |ξ−) = sup
µ

hµ(T |ξ−),

where µ runs over all T -invariant Borel probability measures on X.

Theorem 4.7. Let T : X → X be a forward expansive continuous function of a
compact metric space (X, d). If α is a forward generator for T , then

htop(T |ξ−) = htop(T |ξ−, α).

The proof is similar to that of Theorem 3.5.

Lemma 4.8. Let ζ and η be two finite partitions of X. Then

hµ(ζ |ξ−) ≤ hµ(η |ξ−) + Hµ(ζ | η).

Proof. We have

Hµ

(∨n−1
i=0 T −iζ |ξ−k)

≤ Hµ

((∨n−1
i=0 T −iζ ∨

∨n−1
i=0 T −iη

)
|ξ−k)

= Hµ

(∨n−1
i=0 T −iη |ξ−k)

+Hµ

(∨n−1
i=0 T −iζ |

∨n−1
i=0 T −iη∨ξ−k)

≤ Hµ

(∨n−1
i=0 T −iη |ξ−k)

+Hµ

(∨n−1
i=0 T −iζ |

∨n−1
i=0 T −iη

)
.
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Let k → ∞; since Hµ

(∨n−1
i=0 T −iζ |

∨n−1
i=0 T −iη

)
≤ n · Hµ(ζ | η), this implies that

Hµ(ζ n
0 |ξ−) ≤ Hµ(ηn

0 |ξ−) + n · Hµ(ζ | η). Divide by n and let n go to infinity;
then hµ(ζ |ξ−) ≤ hµ(η |ξ−) + Hµ(ζ | η). �

Lemma 4.9. For any fixed k,

hµ(T |ξ−, α) = hµ

(
T |ξ−,

∨k
i=0T −iα

)
.

Proof. hµ

(
T |ξ−,

∨k
i=0T −iα

)
= lim

n→∞

1
n

Hµ

(∨n−1
i=0 T −i(∨k

i=0T −iα
)
|ξ−

)
= lim

n→∞

1
n

Hµ

(∨k+n−1
i=0 T −iα |ξ−

)
= lim

n→∞

k + n − 1
n

1
k + n − 1

Hµ

(∨k+n−1
i=0 T −iα |ξ−

)
= hµ(T |ξ−, α). �

Lemma 4.10. If {An} is an increasing sequence of finite partitions of X and C is a
partition with C ≤

∨
∞

i=0 Ai , then Hµ(C | An) → 0 as n → ∞.

Let C = {Ci : i = 1, 2, . . . , n} be a finite sub-σ -algebra of B. The nonempty
sets of the form B1 ∩ B2 · · · ∩ Bn , where Bi = Ci or X\Ci , form a finite partition
of X . We denote it by α(C) and we define hµ(T |ξ−, C) = hµ(T |ξ−, α(C)).

As in the case of measure-theoretic entropy, the main method for calculating
hµ(T |ξ−) is supplied by the next theorem.

Theorem 4.11 (Kolmogorov–Sinai forward generator). Let T be a measure-pre-
serving transformation of (X, B, µ) and R a finite sub-σ -algebra such that∨

∞

n=0T −n(α(R)) = B.

Then
hµ(T |ξ−) = hµ(T |ξ−, R).

Proof. Let C be any partition. We show that hµ(T | ξ−, C) ≤ hµ(T |ξ−, α(R)).
For n ≥ 1, by Lemmas 4.8 and 4.9,

hµ(T |ξ−, C) ≤ hµ

(
T |ξ−,

∨n
i=0T −iα(R)

)
+ Hµ(C |

∨n
i=0T −iα(R))

= hµ

(
T |ξ−, α(R)

)
+ Hµ

(
C |

∨n
i=0T −iα(R)

)
.

Let An =
∨n

i=0T −iα(A) be as in Lemma 4.10. Then Hµ(C | An) → 0 as n → ∞.
This implies hµ(T | ξ−, C) ≤ hµ(T | ξ−, α(R)). Therefore

hµ(T | ξ−, C) ≤ hµ(T | ξ−, R). �

We end this section with some propositions about hµ(T |ξ−) and from those
results we conclude that hµ(T |ξ−)≤hµ(T ), where hµ(T ) is the measure-theoretic
entropy.
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Lemma 4.12. We let B∞ =
∨

∞

n=1Bn if {Bn} is an increasing sequence of sub-σ -
algebras of X and let B∞ =

⋂
Bn if {Bn} is a decreasing sequence. If α is a finite

partition, then
lim

n→∞
Hµ(α | Bn) = Hµ(α | B∞).

Proof. We show the decreasing case; the discussion for the increasing sequence is
similar — see [Petersen 1983, Proposition 5.2.11].

Take A ∈ α. Because E(E(χA | Bn−1) | Bn) = E(χA | Bn), by the reverse
martingale theorem and [Billingsley 1995, Theorem 35.9], we have

lim
n→∞

E(χA | Bn) = E(χA | B∞).

Also Iα|Bn =−
∑

A∈α log E(χA |Bn)·E(χA |Bn) is a bounded continuous function;
thus, by the bounded convergence theorem, we get

lim
n→∞

H(α | Bn) = lim
n→∞

∫
Iα|Bn dµ =

∫
lim

n→∞
Iα|Bn dµ = H(α | B∞). �

Lemma 4.13. Let α be a finite partition. Then

hµ(α |ξ−) = hµ(T |ξ−, α) = lim
n→∞

lim
k→∞

Hµ(α |
∨n−1

l=1 T −lα ∨ T −k(ξ))

= lim
n→∞

Hµ(α | lim
k→∞

∨n−1
l=1 T −lα ∨ T −k(ξ))

= lim
n→∞

Hµ(α |
∨n−1

l=1 T −lα ∨ ξ−).

Proof. We have

lim
k→∞

Hµ(α ∨ T −1α ∨ · · · ∨ T −( j−1)α |T −k(ξ))

= lim
k→∞

Hµ(α |
∨ j−1

l=1 T −lα ∨ T −k(ξ)) + lim
k→∞

Hµ

(∨ j−1
l=1 T −lα |T −k(ξ)

)
,

which implies

lim
k→∞

Hµ

(
α |

∨ j−1
l=1 T −lα∨T −k(ξ)

)
= lim

k→∞

Hµ(α∨T −1α∨· · ·∨T −( j−1)α |T −k(ξ))− lim
k→∞

Hµ

(∨ j−1
l=1 T −lα | T −k(ξ)

)
= lim

k→∞

Hµ

(∨ j−1
l=0 T −lα |T −k(ξ)

)
− lim

k→∞

Hµ

(∨ j−2
l=0 T −lα |T −(k−1)(ξ)

)
.

We thus get

n∑
j=2

lim
k→∞

Hµ

(
α |

∨ j−1
l=1 T −lα ∨ T −k(ξ)

)
= lim

k→∞

Hµ

(∨n−1
l=0 T −lα |T −k(ξ)

)
− lim

k→∞

Hµ(α |T −k(ξ))
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By Cesàro’s Theorem and Lemma 4.12,

hµ(α |ξ−) = lim
n→∞

lim
k→∞

Hµ

(
α |

∨n−1
l=1 T −lα ∨ T −k(ξ)

)
= lim

n→∞
Hµ

(
α | lim

k→∞

∨n−1
l=1 T −lα ∨ T −k(ξ)

)
= lim

n→∞
Hµ

(
α |

∨n−1
l=1 T −lα ∨ ξ−

)
. �

Lemma 4.14. hµ(T |ξ−) ≤ hµ(T ).

Proof. For any finite partition α, Hµ

(
α |

∨n−1
i=1 T −iα∨ξ−

)
≤ Hµ

(
α |

∨n−1
i=1 T −iα

)
and

hµ(T, α) = limn→∞ Hµ

(
α |

∨n−1
i=1 T −iα

)
. By Lemma 4.13, hµ(T |ξ−) ≤ hµ(T ). �
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