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We investigate preimage entropy and show how to calculate it under the as-
sumption of forward expansiveness. We then define new invariants of non-
invertible maps, called the upper preimage entropy and the metric preimage
entropy, and obtain variational principles for them. Last, we prove a similar
result for the Kolmogorov-Sinai generator.

1. Introduction

The topological entropy /(7T") of a continuous map 7 of a compact metric space
to itself is a measure of its dynamical complexity. It was first defined by Adler,
Konheim and McAndrew, and later was given several equivalent definitions by
Bowen and others (see [Bowen 1972] for an exposition). These definitions have
led to results connecting topological and measure-theoretic entropies.

More recently, the preimage relation entropy /,(7") of a compact metric space
was introduced in [Langevin and Walczak 1991] and used as a new tool for studying
the topology and dynamics of endomorphisms of compact metric spaces. Hurley
[1995] and Nitecki and Przytycki [1999] then introduced several other entropy-
like invariants for noninvertible maps. One, the preimage branch entropy A, (T),
is closely related to /,(T). Two others are based on how many branches of the
inverse of the iterated map 7 ~" at a point x can be distinguished by measurements
of finite accuracy; they are called pointwise preimage entropies and are denoted
by h,(T) and h,,(T). The following inequalities hold for any continuous map T
on a compact metric space [Hurley 1995; Nitecki and Przytycki 1999]:

hp(T) < hy(T) < h(T) < hi(T) + b (T) < b (T) + h (T).

In this paper we first concentrate on the pointwise preimage entropies &, (7T)
and h,,(T), whose definitions are in some sense analogous to (and were motivated
by) Bowen’s notion of “local entropy” (see [Bowen 1972]). The definitions and
some basic properties of these invariants are reviewed in Section 2.
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In Section 3 we consider forward expansive maps. We show that, as in the case
of the standard topological entropy, both 4 ,(T') and h,,(T') can be computed using
the forward generator.

In Section 4 we introduce modified preimage entropies in the topological and
measure-theoretic contexts. We obtain variational principles and a similar result
for generators in the case of a measure-preserving transformation. We also show
that the construction of the metric preimage entropy equals the conditional metric
preimage entropy with infinite past o -algebra.

2. Pointwise preimage entropy

As in Adler, Konheim and McAndrew’s definition of topological entropy, we take
an open cover U of a compact space X and a continuous map 7 : X — X, and set

Vi T (U)={U;,nT'U;;N---NT™"U,, | U;, eU,0 <k <n}.

This is an open cover and a refinement of U. If x € Uj, N T_IUJ-l n---Nn1"U;,,
then x € UjO’ Tx e Ujl’ ..., T"x e an.

Definition 2.1. Let 7 : X — X be a continuous map of a compact space X and
take x € X. For N = 1,2, ..., the N-th preimage set of x under T is the set
T N(x):={ze X | TV (z) =x}, and the N-th branch at x is the set

By(x,T)={(zn,zZN-1s---,20) | T(zit+1) = 2i» 0<i <N —1and 79 = x}.

Let O(X) be the collection of all (finite or infinite) open covers of X. Given
U e O0(X),let UV be the open cover of xN by product sets Uy x Uy x - -+ x Uy,
where U; € U. For asubset Sy C XV, define (U, N, Sy) to be the least cardinality
of a subset of UV that covers Sy.

Remark 2.2. The continuity of 7 and the compactness of X insure that By (x, T') is
compact, and hence that the numbers 8(U, N, By (x, T)) are all finite and bounded
for fixed N over x € X.

Definition 2.3 (Pointwise preimage entropies [Nitecki and Przytycki 1999]). For
T : X — X be a continuous mapping from a compact space X to itself, define

1
h,(T)=sup sup limsup—log®(U, N, By(x,T)),
xeX UeO(X) N—oo N

1
hu(T)= sup limsup —log supR(U, N, By(x,T)).
UeO(X) N—oo xeX

Remark 2.4. If T is a homeomorphism, then 4 ,(T) = h,,(T) = 0.

As in the case of the topological entropy, we can give metric definitions for these
invariants by reinterpreting the numbers X(U, N, Sy) in terms of e-spanning and
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e-separated sets. Given a metric space (X, d) and some ¢ > (), we say that a subset
S C X is e-separated if any two distinct points of S are at least ¢ apart; and we say
that A C X is e-spanned by R C X (or that R e-spans A) if any point of A is ata
distance of at most ¢ from R. Set

r(e,d, A) = min{card R | R is e-spans A},
s(e,d, A) =max{card S | § C A is e-separated}.

Theorem 2.5 [Nitecki and Przytycki 1999]. Let (X, d) be a compact metric space.
For any positive integer N, let dV be the metric on X" given by

AV (1, xn)s 1Y) = max d(x, i)
1<i<N
Then for T : X — X continuous, we have

1
h,(T) = sup lim limsup v log s (e, dV, By (x,T)),

xeX 20 N oo

1
hw(T) = giin limsup — logsup s(e, d", By(x, T)).

N—oo xeX
In both formulas, s(e,d", By(x, T)) can be replaced by r (e, d", By (x, T)).

We define a new metric d, on X by setting
dy(x,y) = max d(T'(x), T'(y)).
0<i<n-—1

A subset F of X is said to (n, ¢)-span K if for all x € K there exists y € F with
d,(x,y) <e. Let ry(e, K) denote the smallest cardinality of any (n, ¢)-spanning
set for K. A similar definition holds for (n, &) separated sets and s, (¢, K).

Definition 2.6 [Walters 1982]. Let U be a cover of X and Y a subset of X. We
denote by RX(U)|y the smallest cardinality of a subcover of U which can cover Y.

For U € O(X), we easily see that (s, d™, By(x, T)) = ry(e, T~V (x)), that
s(e,dV, By(x, T)) =sy(e, TN (x)), and that

R(U, N, By(x, 7)) = R(VE_oT7"U) 7w -

Remark 2.7. The pointwise preimage entropies are also given by

1
hp(T) = sup lim lim sup N log sy (e, T~V (x))

xeX 20 Nooo

1
= sup lim limsup — logry(e, TV (x))
xeX 20 Nosoo N

1
=sup sup limsup— log N(\/ZV:OT_nU)lT—N(x)
xeX UeO(X) N—o©
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and |
hy(T) = lim lim sup — log sup sy (e, T~ (x))

>0 Nooo xeX

1
= lim limsup — log sup ry (e, TN (x))
e—~0 N oo xeX

= sup limsup € log sup N(\/LOT—” U)lr-n -
UeO(X) N—oo xeX

If X is the circle or a closed interval, h,(T) and h,,(T) always coincide with
the topological entropy of 7' [Langevin and Przytycki 1992; Langevin and Walczak
1991]. But there exist X and T such that 4, (T) =0 and h,,(T) > 0; in fact, X can
be taken to be a zero-dimensional compact metric space [Nitecki and Przytycki
1999].
Theorem 2.8 [Nitecki and Przytycki 1999]. If T : X — X and T, : Y — Y are
topologically conjugate, then h,(Ty) = h,(13) and hy, (T\) = h,,, (T>).
Theorem 2.9. If d, d’' are metrics on a compact set X defining the same topology,
the pointwise preimage entropies with respect to d and d’ coincide.

If 75 is a factor of T} then h(T>) < h(T}), where h is the topological entropy.
This inequality need not hold for pointwise preimage entropies, which can increase
when we pass to factors. As an example, consider for a map f : X — X the shift
oy defined on the sequence space X = {{xi}?io | fxp)=xi—1,i=1,2,... } by

or(xo, x1,...) = (f(x0), f(x1),...) = (f(x0), X0, X1, ...).
The product topology on £ s C X makes ¥ ; compact and o'y a homeomorphism.

Furthermore, if f is surjective, f is a factor of oy via the projection ¢ ({x;}7°) = xo.
By Remark 2.4, we have

hp(6f) =hu(op) =0,

Taking f such that 4, (f) = h,,(f) > O (for instance, the standard expanding map
z + 2z mod 1 of the circle S! = R/Z, for which h,(f) = h,(f) = log2) and
setting g = oy, we see that there exist maps f: X — X, g: Y — Y with f a factor
of g and

The pointwise preimage entropies are subadditive under Cartesian products and
multiplicative under iteration:

Lemma 2.10 [Nitecki and Przytycki 1999]. Let X, X' be compact metric spaces
and T : X — X, T': X' — X' continuous maps. Then

hp(T X T <hy(T)+hy(T),  h(T*) =kh,(T),
B (T X T') < hy(T) + b (T"),  hy(T*) = kb (T).
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3. Topological forward generator

Let X be a compact metric space and T : X — X a continuous map. A finite open
cover o of X is a forward generator for T if for every sequence (A,)g° of members
of & the set (-, 7 " A, contains at most one point of X.

Lemma 3.1. Let T : X — X be a continuous map of a compact metric space
(X, d). Let o be a forward generator for T. For any ¢ > 0, there exists N > 0 such
that each set in \/fLOT_”a has diameter less than &.

Proof. Suppose the lemma does not hold. Then we can find a positive ¢ such that,
for all j > 0, there exist x, y; satisfying the conditions d(x;, y;) > ¢ and

j .

Xj, Yj € ﬂ T_IAJ',,',

i=0
for some sequence {A ; i}lj:() of sets A;; € a. Using the compactness of X, we can
assume (passing to a subsequence if necessary) that x; — x and y; — y. We have
x #y. Consider the sets A o. Infinitely many of them coincide, since « is finite.
Thus x;, y; € Ao, say, for infinitely many j, and hence x, y € Ao. Similarly, for
each n, infinitely many A; , coincide and we obtain A, € o with x, y € T"A,.
Thus

X,y € m T"A,,

0

contradicting the assumption that « is a forward generator. O

Definition 3.2 [Nitecki and Przytycki 1999]. A continuous map 7" from a compact
metric space (X, d) to itself is said to be forward expansive if there exists § > 0
such that, for any distinct x # y € X, the forward images 7"x and T"y are more
than § apart, for some 7.

Lemma 3.3. A continuous map T from a compact metric space (X, d) to itself is
forward expansive if and only if is has a forward generator.

Proof. Suppose T is forward expansive. Let § be as in the definition and let o be
a finite cover of X by open balls of radius §/2. Suppose that x, y € (g’ T"A,,
where A, € a. Then d(T"(x), T"(y)) < § for all n € NU {0} so, by assumption
x = y. Then « is a forward generator.

Conversely, suppose « is a forward generator. Let § be a Lebesgue number for
o, Ifd(T"(x), T"(y)) < § for all n eN| {0}, then for all n € N exists A, € « with
T"(x), T"(y) € A, and so, x, y € ﬂgo T~ "A,. Since this intersection contains at
most one point we have x = y. Hence T is forward expansive. U

Example 3.4. Take X = {1, 2, .. .m}" and T = left shift. Then {[k]:1 <k <m]}
is a forward generator, where [k] = {(kxxox3...) 1 x; €{1,2,...,m}}.
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Recall from Definitions 2.1 and 2.6 the notations X(U, N, Y) and R(U|y). Also
recall that O (X) is the collection of all open covers of X. Take U € O(X) and
x € X, and set

1
h,(T,U) = sup limsup v log N(\/Q’:OT*"U)|T7N(X),

xeX N-—oo
1
h (T, U) =lim sup — log sup R(V1_oT "U) 7 (1)
N—oo xeX

Theorem 3.5. Let T : X — X be a forward expansive continuous map of the
compact metric space (X, d). If o is a forward generator for T, then

hp(T)=hy(T,a) and hy(T) = hy(T, ).

Proof. Since « is a forward generator, for any U € O(X), we can choose N large
enough such that \/;V:OT_”oz is a refinement of U. This implies that

log N(\//fl:OT_” U) ke < log N(\/ﬁZOT_”\/,]:/:OT_”a)|T_k(x) for any k.

Then

1
lim sup A log N(\/LOT_” U) ke

k—o00

1
< limsup % log R (\/LOT*" VI 0T ™) p )

k—00

1
= lim sup r log N(\/f;f)vT_”oz)hfk(x)

k— 00

1

< limsup - log N(\/ﬁigT_”a) |7~ ()
k— 00 k
. k+l’l 1 k4N e

=lims ——log®(V 0 T "at)|7-
k—)ip k k+N g (\/n—O )lT k+N) (x)

1
< lim sup lim sup log R (\/ﬁig’ T*"a) |73 ()
k— 00 k— 00 N
=limsu log R(\VAENT—n - .
s eSOV

Let
. 1 k —n
h,(T,U, x) =limsup z log R(V,—oT 7" U) | 7—k(x)-
k—o00
Then h,(T, U, x) <h,(T, a, x) for all open covers U and any fixed x in X, which
implies

hy(T)=sup sup h,(T,U,x) <h,(T,a)=sup h,(T,a, x).
xeX UeO(X) xeX
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Then h,(T) = h,(T, ).
Similarly, since U is refined by \/,ivon_N o, we have
k k N —n
N(\/nZOU)|T_k(X) = N(\/nzo\/non O‘)|T—’f<x)-

Thus

1
hyu (T, U) =limsup — log sup N(\/ﬁZOT*"U)lek(x)

k— 00 xeX

1
< limsup - log sup N(\/LOT_” \/flV:oT_”oz) | 7k (-

k— 00 xeX

A similar calculation yields &, (T, U) < h,,(T, @) for all open covers U. Thus
h(T) = hp(T, ). O
4. Measure-theoretic forward generator

We continue to consider a continuous self-map 7 of a compact metric space (X, d).
Given a subset K C X, a§ > 0, and a positive integer n, we set

r(n,8,K)=rn,8, K, T)=max{card E : E C K is (n, §)-separated}.

Definition 4.1. The upper preimage entropy of a continuous self-map 7 : X — X
of a compact metric space X is the number

1
htop(T|§*)=81i_r)r(1)limsup—log sup r(n,8,T*kx)

n—oo N k>0,xeX

1 _ .
= sup limsup — log sup N(\/?=01T710l)|]“—k(x).
acO(X) n—oo N k>0
xeX

One can check that h,(T) < hy, (T) < heop(T |E7) < h(T).

Example 4.2. Consider S : {1,2}V — {1,2}V and T : {1,2}¢ — {1, 2}, where
S and T are left shifts. We know that /1,(S) = h;, (S) = hyp(S) = log2, that
hp(T) = hy(T) = hip(T) =0, and that the product rule holds, i.e.,

hiop(S X T 1E7) = hiop(S167) + hiop(T |§7)
(see [Cheng and Newhouse 2005]) and
h(SxT)=h(S)+h(T).
It follows that

hpy(SXT)=hp(SXT)=hep(SxXT|E7)=log2 <h(SxT)=2log2.
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Now we introduce conditional entropy. Let { = {A}, Aj, ...} be a countable
partition of X into measurable sets. For each x € X, denote by ¢(x) the element
of ¢ to which x belongs. The information function associated to ¢ is defined to be

I (x) = —logm (£ (x)) = — Y _logm(A)xa(x),
Aeg

so that I, (x) takes the constant value —logm(A) on the cell A of ¢. Clearly

H(;):/XI;(x)dm(x).

It is useful to consider conditional information and entropy, which take into account
information that may already be in hand. Let $ be a sub-o-algebra of 9. Recall
that for ¢ € L'(X), the conditional expectation E(¢ | $) of ¢ given $ is an 9-
measurable function on X satisfying

/E(qb|§)dm=/¢dm
F F

for all F € 9; the name comes from the fact that E (¢ | ) (x) represents our expected
value for ¢ if we are given the foreknowledge $. Thus welet m(A | $) =E(xa | $)
and define the conditional information function of a countable partition ¢ given a
o-algebra $ C %R to be

Ieis (x) ==Y logm(A | $)xa(x).
Aeg

The conditional entropy of ¢ given . is defined by

H(¢ |9):/}(I;|9(x)dm.

Next, let £ denote the point partition of X, we also identify with the o-algebra %
of Borel measurable sets. For n > 0, set

E"=T7"¢.
Given a finite partition «, let " = \/;':_01 T~ «. For a T-invariant probability s, let
Hu(@"§7)

denote the conditional entropy of «” given the o-algebra T*%. We call this the
entropy of o™ given the preimage partition £~

Since H, (- | -) is increasing in the first variable and decreasing in the second,
the inequalities n > m, [ > k imply

Hy(@"|E7) > Hy (@™ |£75).
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Set

Hy (" |E7) = Hy (" |~ oo)_i“ISH L@ |E7F) = Jim Hy (o 1§ .

We can also define o
="
k=1
and we call this eventual range £~ the infinity past o-algebra.

Lemma 4.3 [Bowen 1972]. The quantity a, = H, (" |§™) is subadditive.

Definition 4.4. For any finite partition «, the entropy of « given £~ is the number
_ _ .1 _ L. 1 _
h(T1E",a)=h,(a|§7) = lim —H,(«"|§7) = inf —H,(a"|E7),
n—oon n—-oon
and we define the metric preimage entropy of T given £~ with respect to |1 to be

hy(T1E7) =suphy(a|&")=suph,(T|E", ).

Lemma 4.5. The metric preimage entropy h, (T |§™) is a measure-theoretic conju-
gacy invariant. The upper preimage entropy hp(T | € ™) is a topological conjugacy
invariant.

Theorem 4.6 (Variational principle [Cheng and Newhouse 2005]). Let T : X — X
be a continuous map of a compact metric space X. Then

htop(T 1§7) = SUPhM(T|‘§7),
"

where [ runs over all T -invariant Borel probability measures on X.

Theorem 4.7. Let T : X — X be a forward expansive continuous function of a
compact metric space (X, d). If o is a forward generator for T, then

hiop(T'167) = hiop(T |§™, a1).
The proof is similar to that of Theorem 3.5.

Lemma 4.8. Let ¢ and n be two finite partitions of X. Then

hy(€1E7) <h,(n|§7)+Hu( | n).
Proof. We have
Hy(ViZoT ¢ 167) < Hu (Vi T ¢ v “n)1g7")
H,(ViZ T "nl&" ) (on ‘CIVIS T InvET)
H(\/"_OT ‘n|&” )+H (\/noT §|\/_0T 77)

IA
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Let k — o0; since H,, ( "_OIT i f:_()]T_in) <n-H,(¢ | n), this implies that
H,(¢y1E7) < Hy(nyl&E™) +n-Hy(C | n). Divide by n and let n go to infinity;
then h, ($167) < hu(m|&E7) + Hu(S | n). O

Lemma 4.9. For any fixed k,
ha(T 15 @) =hu(T1E7, VieT a).

Proof. hM(T|S_,\/f=0T_ia) lim 1H (\/"_OlT (\/f-{=OT_ia)|§_)

n— 00 n

— lim H (\/k+n 1 alE” )

n—oo n
. k+n—-1 1 T
_nll>ngo n k—i—n—lH”“(\/ Tals )
=h,(T|&", a). O
Lemma 4.10. If {A,,} is an increasing sequence of finite partitions of X and C is a
partition with C < \/{2A;, then H,(C | A,) — 0 as n — oo.

Let C ={C;:i =1,2,...,n} be a finite sub-o-algebra of . The nonempty
sets of the form B; N B, - --N B, where B; = C; or X\C;, form a finite partition
of X. We denote it by «(C) and we define h, (T =, C) =h, (T |7, a(C)).

As in the case of measure-theoretic entropy, the main method for calculating
h, (T |£7) is supplied by the next theorem.

Theorem 4.11 (Kolmogorov—Sinai forward generator). Let T be a measure-pre-
serving transformation of (X, B, ) and R a finite sub-o -algebra such that

VizoT " (@(®) =R

Then
hy(T1E7) =h, (T 15, R).

Proof. Let C be any partition. We show that 4, (T | £§~,C) < h, (T &7, a(R)).
For n > 1, by Lemmas 4.8 and 4.9,

hu(T1E7,C) < hyu(T167, Vi T a(@®) + Hu(C | ViZ T ()
=h, (T, (@) + Hu(C | Vi_gT " a(®)).

Let A, = V/_yT '@ (A) be as in Lemma 4.10. Then H,(C | A,) — 0 as n — oo.
This implies 4, (T |7, C) < h, (T | £, a(R)). Therefore
hy(T1E7,C) <h (T |§,R). 0

We end this section with some propositions about 4, (T |£™) and from those
results we conclude that i, (T |§7) <h,(T), where h, (T) is the measure-theoretic
entropy.
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Lemma 4.12. We let Boo = \ oo | By if (B} is an increasing sequence of sub-o -
algebras of X and let Boo =\ By, if {By} is a decreasing sequence. If o is a finite
partition, then

Tim Hy, (o | By) = Hy(o | Boo).

Proof. We show the decreasing case; the discussion for the increasing sequence is
similar — see [Petersen 1983, Proposition 5.2.11].

Take A € a. Because E(E(xa | Bn-1) | Bn) = E(xa | Bn), by the reverse
martingale theorem and [Billingsley 1995, Theorem 35.9], we have

nli)H;OE(XA | Br) = E(xa | Boo)-

Also Iyig, =— Y aca 108 E(xa |B4)-E(xa|B,) is a bounded continuous function;
thus, by the bounded convergence theorem, we get

lim H(a|B,) = lim [ Iy, d,u:fnli)rgo Lyg, dp=H(a | Bo). O

n—oo

Lemma 4.13. Let o be a finite partition. Then
- _ _ T . n—14p—1 —k
hy(e|E7)=h, (T, )= lim lim H, (e |V, T a Vv T ()
n—00 k— o0
= lim Hy(a| lim V2 T o v T7%#))
n— o0 k—o00
= lim H, (o |V T avE).
n—oo
Proof. We have
Jim HyavT 'av...vT U D T7k))
—00
= lim Hy(@|V T avT*E)+ lim H, (V2 T« T75E),
k— 00 - k— o0 -
which implies
lim Hy(«|VIZ T avT 5 (8))
—00
= lim H, (VT 'av...vT Y Ve |T*E)— lim H,(V/ T« T75))
k—o00 k— o0 -
= lim H,(V/ T a|T%#)) = lim H, (VT 'a| T % V).
kinolo [L( 1=0 o (‘5)) kirgo /t( =0 of (f))
We thus get
n .
lim H, Il v Tk
X;kgrgo (@I VI T &)
J:

= lim H, (Vi7" |T74©) — lim Hu(@|T7&)
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By Cesaro’s Theorem and Lemma 4.12,

— . . n—1— —
hul§7) = lim lim H,(«|Vi5 T e v T75@)

n—oo

= lim Hy(«| Jim Vi T a v T (&))
—00
= lim H,(«|V]Z T avED). O
Lemma 4.14. 1, (T |£7) < h,(T).

Proof:. For any finite partition o, H,, (o | \/:’:_11 T aVvET)<H, (x| \/?:_11 T o) and
Ry (T, @) =1imy, s 00 Hy (o | Vi T 'a). By Lemma 4.13, b, (T |E7) < hy(T). O
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