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Consider a (nonempty) linear system of surfaces of degree d in P3 through
at most 8 multiple points in general position and let L denote the corre-
sponding complete linear system on the blowing-up X of P3 along those
general points. Then we determine the base locus of such linear systems L

on X .

1. Introduction

We work over an algebraically closed field of characteristic 0.
Let P1, . . . , Pr be general points of the n-dimensional projective space Pn and

choose some nonnegative integers m1, . . . , mr . Consider the linear system L′ of
hypersurfaces of degree d in Pn having multiplicities at least mi at Pi , for all
i = 1, . . . , r . Let X denote the blowing-up of Pn along P1, . . . , Pr , and let L

denote the complete linear system on X corresponding to L′.
A point Q ∈ X is called a basepoint of L if Q ∈ D for every divisor D ∈ L. The

scheme-theoretical union of all basepoints of L is called the base locus of L.
In the case n = 2 (i.e., if X is a rational surface obtained by blowing-up P2 along

r general points) the dimension, base locus and other properties of linear systems L

has been widely studied; see, for example, [Chauvin and De Volder 2002; Ciliberto
and Miranda 1998; 2001; d’Almeida and Hirschowitz 1992; Gimigliano 1989].

In the case n = 3, i.e., if X is a rational threefold obtained by blowing-up P3

along r general points, very little is known.
In this paper, for n = 3 and r ≤ 8, we will completely describe the base locus

of L on X .
If n = 3 and r ≤ 8, the dimension of L can be determined using the results

from [De Volder and Laface 2003]. These results as well as the ones stated in
[Harbourne 1985] (concerning the dimension and base locus of linear systems on
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rational surfaces with irreducible reduced anticanonical divisor) will play a crucial
role in the main proofs of this paper.

In Sections 2 to 5 we state some preliminaries and notation. The main results
are formulated in Section 6, and the last three sections contain their proofs.

2. Preliminaries

Let P1, . . . , P8 be general points on P3, let X denote the blowing-up of P3 along
these 8 points, denote the projection map by π : X → P3 and let Ei be the excep-
tional divisor corresponding to Pi .

By L3(d; m1, . . . , mr ), with r ≤ 8, we denote the complete linear system on X
corresponding to the invertible sheaf π∗(OP3(d))⊗OX (−m1 E1 −· · ·−mr Er ); i.e.
the complete linear system corresponding to the linear system of hypersurfaces of
degree d with multiplicities at least mi at Pi . Similarly, by L3(d; mr1

1 , . . . , mrs
s )

(with r1 +· · ·+rs ≤ 8), we denote the complete linear system on X corresponding
to the linear system of hypersurfaces of degree d with r j points of multiplicities at
least m j .

With 〈h, e1, . . . , er 〉 we denote a basis of A2(X), where h is the pullback of
a class of a general line in P3 and ei is the class of a line on Ei . The notation
` = `3(δ, µ1, . . . , µr ) indicates the set of the strict transforms of all curves in P3

of degree δ through r points of multiplicity µ1, . . . , µr or equivalently all curves
in

∣∣δh −
∑r

i=1 µi ei
∣∣ on X .

For 1 ≤ i < j ≤ 8, we denote the strict transform of the line through Pi and Pj

by `i, j .
We say a class L3(d; m1, . . . , mr ) is in standard form if m1 ≥ · · · ≥ mr ≥ 0 and

2d ≥ m1 + m2 + m3 + m4.

Lemma 2.1 [De Volder and Laface 2003, Proposition 2.2]. A linear system L =

L3(d; m1, . . . , mr ) is in standard form if and only if L = S +
∑a

i=4 ci Si with
ci ∈ Z≥0, Si = L3(2; 1i ) and S = L3(d − 2m4, m1 − m4, m2 − m4, m3 − m4). �

For all 1 ≤ i ≤ 8, let Qi be a general element of Si (= L3(2; 1i )). Then Qi

is the blowing-up of Q̄i , a general quadric hypersurface in P3 through the points
P1, . . . , Pi , along those i points. Also Pic Qi = 〈 f1, f2, e1, . . . , ei 〉, with f1 and f2

the pullbacks of the two rulings on Q̄i and e1, . . . , ei the exceptional curves. By
LQi (a, b; m1, . . . , mi ) we denote the complete linear system |a f1 + b f2 − m1e1 −

· · · − mi ei |, and, as before, if some of the multiplicities are the same, we also use
the notation LQi (a, b; mn1

1 , . . . , mnr
r ).

Let B j be the blowing-up of P2 along j general points. Then

Pic B j = 〈h, e′

1, . . . , e′

j 〉,
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with h the pullback of a line and e′

l the exceptional curves. By L2(d; m1, . . . , m j )

we denote the complete linear system |dh − m1e′

1 − · · · − m j e′

j |. And again,
as before, if some of the multiplicities are the same, we also use the notation
L2(d; mn1

1 , . . . , mnr
r ).

On B j , a system L2(d; m1, . . . , m j ) is said to be in standard form if d ≥ m1 +

m2+m3 and m1 ≥ m2 ≥ · · · ≥ m j ≥ 0; and it is called standard it there exists a base
〈h̃, ẽ1, . . . , ẽ j 〉 of Pic B j such that L2(d; m1, . . . , m j ) = |d̃ h̃ − m̃1ẽ1 −· · ·− m̃ j ẽ j |

is in standard form.
As explained in [De Volder and Laface 2003, §6], the blowing-up Qi of the

quadric along i general points can also be seen as a blowing-up of the projective
plane along i + 1 general points, and

LQi (a, b; m1, . . . , mi ) = L2(a + b − m1; a − m1, b − m1, m2, . . . , mi ).

In particular the anticanonical class −K Qi contains an irreducible reduced divisor
which we denote by DQi .

3. Cubic Cremona transformation

The cubic Cremona transformation on P3, whose associated rational map is given
by

(3–1)
Cr : P3 99K P3

(x0 : x1 : x2 : x3) 7−→ (x−1
0 : x−1

1 : x−1
2 : x−1

3 ),

induces an action on Pic X and one on A2(X), as stated in the next two propositions
(see [Laface and Ugaglia 2003] for a proof of both results).

Proposition 3.1. Let the Cremona transformation (3–1) use the points P1, . . . , P4.
Its induced action on L = L3(d, m1, . . . , mr ) is given by

Cr(L): = L3(d + k, m1 + k, . . . , m4 + k, m5, . . . , mr ),(3–2)

where k = 2d −
∑4

i=1 mi . �

Proposition 3.2. Let the Cremona transformation (3–1) use the points P1, . . . , P4.
Its induced action on `=`3(δ, µ1, . . . , µr ), with ` skew to the `i, j for 1≤ i < j ≤4,
is given by

Cr(`): = `3(δ + 2h, µ1 + h, . . . , µ4 + h, µ5, . . . , µr ),(3–3)

where h =δ−
∑4

i=1 µi . Moreover, under the same assumption, for all 1≤ i < j ≤4,
we have that Cr(`i, j ) = `u,v, with {i, j, u, v} = {1, 2, 3, 4}. �

Remark 3.3. It follows immediately from the previous propositions that the Cre-
mona transformation fixes Si (for 4≤ i ≤8) and K Q8(=`3(4; 18)), i.e., Cr(Si )=Si

and Cr(K Q8) = K Q8 . Moreover Cr(L).K Q8 = L.K Q8 .
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Remark 3.4. It can be proved (see [Laface and Ugaglia 2003]) that the cubic
Cremona transformation on X , is obtained by blowing-up the strict transforms of
the six edges of the tetrahedron through the four points used by the cubic Cre-
mona transformation, and blowing down along the other rulings of the exceptional
quadrics. This implies in particular that the cubic Cremona transformation is not
just a base change of Pic X .

Let Y denote the blowing-up of X along the l1,2, l1,3, l1,4, l2,3, l2,4 and l3,4. Then

Pic Y = 〈H, E1, . . . , E8, E1,2, . . . , E3,4〉

where H is the pullback of a plane in P3, Ei is the pullback of Ei on X (for
all 1 ≤ i ≤ 8) and Ei, j is the exceptional quadric corresponding to li, j (for all
1 ≤ i < j ≤ 4).

On Y the Cremona transformation using the points P1, . . . , P4, is then nothing
else than a base change for Pic Y . In particular, in [Laface and Ugaglia 2003], it is
shown that

(3–4) Pic Y = 〈H, E1, . . . , E8, E1,2, . . . , E3,4〉

= 〈H ′, F1, . . . , F4, E5, . . . , E8, F1,2, . . . , F3,4〉,

with

(3–5)



H ′
= Cr(H) = 3H −

4∑
i=1

2Ei −

∑
1≤i< j≤4

Ei, j ,

Fk = Cr(Ek) = H −

∑
1≤ j≤4

j 6=k

E j −

∑
1≤i< j≤4

i, j 6=k

Ei, j ,

Fi, j = Cr(Ei, j ) = Ek,l, with {i, j, k, l} = {1, 2, 3, 4}.

It follows immediately from these formulas that

(3–6)
∣∣∣∣d H −

∑
1≤i≤4

mi Ei −

∑
1≤i< j≤4

mi, j Ei, j

∣∣∣∣
=

∣∣∣∣(d + s)H ′
−

∑
1≤i≤4

(mi + s)Fi −

∑
1≤i< j≤4

{i, j,k,l}={1,2,3,4}

(d − mk − ml + mk,l)Fi, j

∣∣∣∣
Similarly, for A2(Y ), we have, by [Laface and Ugaglia 2003],

(3–7) A2(Y ) = 〈h, e1, . . . , e8, e1,2, . . . , e3,4〉

= 〈h′, f1, . . . , f4, e5, . . . , e8, f1,2, . . . , f3,4〉,
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with h the pullback of a line in P3, ei the class of a line in Ei , ei, j the vertical
ruling of Ei, j and

(3–8)



h′
= Cr(h) = 3h −

4∑
i=1

ei ,

fk = Cr(ek) = 2h −

∑
1≤ j≤4

j 6=k

e j ,

fi, j = Cr(ei, j ) = h + ek,l − ek − el, with {i, j, k, l} = {1, 2, 3, 4}.

Henceforth, we will use sheaf notation (as in π∗(OP3(d))⊗OX (−m1 E1)) as well
as linear system notation (as in |d H −m1 E1|) for both purposes. It should be clear
from the context which one is intended.

4. (−1)-curves on X

A curve C ∈ ` = `3(δ, µ1, . . . , µr ) is called a (−1)-curve if ` is obtained by
applying a finite set of cubic Cremona transformations on the system `3(1, 12).

For all a ∈ Z≥0 and distinct b, c ∈ {1, . . . , 8}, set

δi;b,c =

{
0 if i /∈ {b, c},

1 if i ∈ {b, c};
and

Cb,c
a =

{
`3

(
2a + 1;

1
2a + δ1;b,c,

1
2a + δ2;b,c, . . . ,

1
2a + δ8;b,c

)
if a is even,

`3
(
2a + 1;

1
2(a + 1) − δ1;b,c,

1
2(a + 1) − δ2;b,c, . . . ,

1
2(a + 1) − δ8;b,c

)
if a is odd.

Lemma 4.1. A curve C ∈ ` on X is a (-1)-curve if and only if there exists a ∈ Z≥0

and b, c ∈ {1, . . . , 8}, b 6= c, such that ` = Cb,c
a .

Proof. First of all, note that `i, j = C
i, j
0 . So all C

i, j
0 are classes of (−1)-curves. To

simplify notation, we now assume that i = 1 and j = 2, and by B we denote the set
of the four indices of the points used for the transformation (3–1). To determine
Cr(`1,2) we distinguish three cases:

(a) P1 and P2 ∈ B. Without loss of generality we may assume that the trans-
formation (3–1) uses the points P1, . . . , P4, i.e. that B = {1, 2, 3, 4}. So, by
Proposition 3.2 we obtain that Cr(`1,2) = `3,4, i.e. Cr(C1,2

0 ) = C3,4
0 .

(b) P2 ∈ B and P1 /∈ B. Then we may assume that B = {2, 3, 4, 5}. So, by
Proposition 3.2 we obtain that Cr(`1,2) = `1,2, i.e. Cr(C1,2

0 ) = C1,2
0 .
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(c) P1 nor P2 is used for the transformation (3–1). Then we may assume that
B = {3, 4, 5, 6}. So, by Proposition 3.2 we obtain that Cr(`1,2) = `3(3; 16),
i.e. Cr(C1,2

0 ) = C7,8
1 .

Since we can do this for any i, j , we conclude that all C
i, j
1 are classes of (−1)-

curves. Similarly, one can see that, for a odd,

(4–1) Cr(C1,2
a ) =


C3,4

a+1 if B = {1, 2, 3, 4},

C1,2
a if B = {2, 3, 4, 5},

C7,8
a−1 if B = {3, 4, 5, 6};

and, for a even (and a > 0),

(4–2) Cr(C1,2
a ) =


C3,4

a−1 if B = {1, 2, 3, 4},

C1,2
a if B = {2, 3, 4, 5},

C7,8
a+1 if B = {3, 4, 5, 6};

So, we can obtain all classes of type C
i, j
a , and no others. �

Remark 4.2. Lemma 4.1 implies that Cb,c
a contains precisely one (irreducible)

curve, which we denote by Cb,c
a . If a is even, Cb,c

a is the strict transform of a curve
of degree 2a +1 with multiplicity 1

2a at Pi for i /∈ {b, c} and multiplicity 1
2a +1 at

Pb and Pc. If a is odd, Cb,c
a is the strict transform of a curve of degree 2a +1 with

multiplicity 1
2(a + 1) at Pi for i /∈ {b, c} and multiplicity 1

2(a − 1) at Pb and Pc.

5. Blowings-up of Hirzebruch surfaces along general points

Let Fn be a Hirzebruch surface with n > 0, i.e. Fn is the geometrically ruled surface
over P1 determined by the vector bundle OP1 ⊕ OP1(n). Then Pic Fn = 〈 f, hn〉 =

〈 f, cn〉 with f 2
= 0, h0. f = 1, h2

n = n, cn = hn −n f and c2
n =−n; see, for example,

[Beauville 1996, Proposition IV.1].
Now let F

j
n be the blowing-up of Fn along j general points. By abuse of notation,

let f , hn and cn also denote the pullbacks of these curves on F
j
n , then Pic F

j
n =

〈 f, cn, e1, . . . , e j 〉, where e1, . . . , e j are the exceptional divisors.

Lemma 5.1. The surface F1
n , with n > 1, can also be seen as the blowing-up of

an Fn−1 along a general point of cn−1. In particular Pic F1
n = 〈 f, hn−1, e′

1〉 with
hn−1 = hn −e1 and e′

1 = f −e1 the exceptional divisor corresponding to the blown-
up point on cn−1. Moreover α f +βhn −me1 = (α+β−m) f +βhn−1 −(β−m)e′

1.

Proof. The last equality follows immediately, using hn−1 = hn −e1 and e′

1 = f −e1,
so Pic F1

n = 〈 f, hn−1, e′

1〉 is true. Note that e′

1
2
= −1 and h2

n−1 = n − 1. Consider
cn−1 = hn−1 − (n − 1) f = cn + e′

1, then c2
n−1 = −(n − 1).
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Now, let b :F1
n → V denote the map obtained by blowing down e′

1, then Pic(V )=

〈 f, hn−1〉 = 〈 f, cn−1〉, and b(e′

1) = Q1 is a (general) point on cn−1 which is an
irreducible curve on V of negative self-intersection. So V = Fn−1 and F1

n is the
blowing-up of Fn−1 along the point Q1 ∈ cn−1. �

Corollary 5.2. The surface Fn−1
n can also be seen as the blowing-up of an F1

along n − 1 general points of c1. In particular Pic Fn−1
n = 〈 f, h1, e′

1, . . . , e′

n−1〉

with h1 = hn − e1 − · · ·− en−1 and e′

i = f − ei for all i = 1, . . . , n − 1. Moreover
α f +βhn −m1e1−· · ·−mn−1en−1 = (α+(n−1)β−m1−· · ·−mn−1) f +βhn−1−

(β − m1)e′

1 − · · · − (β − mn−1)e′

n−1.

Proof. This follows immediately by applying Lemma 5.1 n − 1 times. �

6. Base locus of linear systems on X

A point P of X is called a basepoint of a linear system L = L3(d; m1, . . . , mr ) if
P ∈ D for all D ∈ L.

A divisor F on X is called a fixed component of L if F ⊂ D for all D ∈ L.
The base locus of L, which we denote by Bs(L), is defined as the scheme-

theoretical union of all basepoints.

Example 6.1. Bs(L3(2; 23)) = 2H , with H the unique element of L3(1; 13).

Since an empty system obviously has no base locus, we only consider nonempty
linear systems on X (the results from [De Volder and Laface 2003] can be used to
determine whether or not a system is empty).

The main results of this paper are the following:

Theorem 6.2. Let L = L3(d; m1, . . . , mr ) = S +
∑r

i=4 ci Si , r ≤ 8, be (nonempty
and) in standard form on X .

(1) if d ≥m1+m2 and L /∈{L3(2m; m8), L3(2m; m7, m−1)} then L is basepoint-
free;

(2) if L = L3(2m; m8) (m ≥ 1) then Bs(L) = m DQ8 ;

(3) if L = L3(2m; m7, m − 1) (m ≥ 1) then Bs(L) = m P where P is the unique
basepoint of L|Q8 (which is a point on DQ8);

(4) if d < m1 + m2, then Bs(L) =
∑

ti, j >0 ti, j`i, j , with ti, j = mi + m j − d (i 6= j)
and `i, j the strict transform of the line through Pi and Pj .

Remark 6.3. Theorem 6.2 implies in particular that a class in standard form does
not have fixed components.

Theorem 6.4. Consider the (nonempty) linear system L = L3(d; m1, . . . , mr ),
r ≤ 8, on X , then one can obtain the fixed components of L as follows:

(1) Renumber the multiplicities such that m1 ≥ m2 ≥ · · · ≥ mr .
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(2) If 2d < m1 + m2 + m3 + m4 then apply the cubic Cremona transformation to
these 4 multiplicities and goto (1); otherwise goto (3).

(3) If mi < 0 then −mi E ′

i is a fixed component, and you can apply the cubic
Cremona transforms in the opposite direction to obtain the class Fi that cor-
responds to E ′

i in the original situation; −mi Fi then belongs to the fixed
components of L. Moreover, in this way you obtain all fixed components
of L.

Theorem 6.5. Let L = L3(d; m1, . . . , mr ) be a (nonempty) linear system on X
with m1 ≥ · · · ≥ mr . Assume that L has no fixed components and that L is not in
standard form. Define tb,c

a := −L.Cb,c
a .

(1) If 4d −
∑r

i=1 mi 6= 1 then

Bs(L) =

∑
tb,c
a >0

tb,c
a Cb,c

a .

(2) If 4d −
∑r

i=1 mi (= L.DQ8)= 1 then L can be transformed, by a finite number
of Cremona transformations, into L3(2m; m7, m − 1) for some m > 0, and

Bs(L) =

∑
tb,c
a >0

tb,c
a Cb,c

a + m P,

with P the unique basepoint of L on DQ8 .

Remark 6.6. Using Theorems 6.2, 6.4 and 6.5, we can completely determine
the base locus of any linear system L on X . Indeed, using Theorem 6.4, you
can write L as F + L′, with F the fixed components of L and L′ without fixed
components. Then, using either Theorem 6.2 or 6.5, depending on whether or not
L′ is in standard form, you can obtain Bs(L′). But since Bs(L) = F +Bs(L′), you
then also know the base locus of L.

Example 6.7. Consider the linear system L = L3(15; 13, 10, 9, 7, 6, 32, 2) on X .
First, we apply the algorithm of Theorem 6.4 to determine the fixed components

of L. We use the following diagram (where Step 1 consists of marking the four
biggest multiplicities):

15 13 10 9 7 6 3 3 2
6 4 1 0 −2 6 3 3 2
2 0 1 0 −2 2 −1 −1 2
1 −1 0 0 −2 1 −1 −1 1

So, after applying the cubic Cremona transform 3 times, we obtain that E ′

1+2E ′

4+

E ′

6 + E ′

7 is the fixed part. In order to go back to the original situation, we now
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apply the three cubic Cremona transforms in opposite order. For instance, for E ′

1
we obtain

0 −1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1
2 1 1 0 0 2 1 1 1
4 3 3 2 2 2 1 1 1

Proceeding in the same way for the other E ′

i , we deduce that the fixed components
of L are F = F1 + 2F2 + F3 + F4, with F1 ∈ L3(4; 32, 23, 13), F2 ∈ L3(1; 13),
F3 ∈ L3(2; 2, 14, 0, 1, 0) and F4 ∈ L3(2; 2, 15).

Now consider L′
:= L − F . Then L′

= L3(5; 4, 33, 2, 13) is a system without
fixed components and not in standard form, so we can apply Theorem 6.5 to obtain

Bs(L′) =

∑
2≤i≤4

2 C1,i
0 + C1,5

0 +

∑
2≤i< j≤4

C i, j
0 +

∑
6≤i< j≤8

C i, j
1

and
Bs(L) = F1 + 2F2 + F3 + F4 + Bs(L′).

7. Proof of Theorem 6.2

Without loss of generality, we may assume that mr > 0.

(1) In case r > 4, we consider the exact sequence

(7–1) 0 - L − Sr - L - L ⊗ OQr
- 0.

We then have

L ⊗ OQr = LQr (d, d; m1, . . . , mr ) = L2(2d − m1; (d − m1)
2, m2, . . . , mr ).

Also, using [De Volder and Laface 2003, Theorem 5.3], we know that h1(L−Sr )=

h1(L) = 0, so L|Qr = L ⊗ OQr ; that is,

L|Qr = L2(2d − m1; (d − m1)
2, m2, . . . , mr ).

Since d ≥ m1 + m2, we see that d − m1 ≥ m2(≥ m3 ≥ · · · ≥ mr ). On the other
hand 2d −m1 ≥ 2(d −m1)+m2 and L|Qr .K Qr = −4d +m1 +· · ·+mr < −1 (the
inequality is true because L /∈ {L3(2m; m8), L3(2m; m7, m−1)}). This means that
we can apply [Harbourne 1985, Theorem 3.1 and Corollary 3.4] to conclude that
L|Qr is basepoint-free or thus that L has no basepoints on Qr .

Proceed using the exact sequence (7–1), replacing L by L−Sr , then by L−2Sr

and so on, until the residue class becomes L − cr Sr .
Now, let b be max{i < r : ci > 0}, and, if b ≥ 4, again use the same arguments,

now using Qb in stead of Qr .
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Continuing in this way, we reduce the proof of the basepoint-freeness of L to
proving it for the case r ≤ 3; that is, to proving the basepoint-freeness of S.

In order to see that S is basepoint-free, let H be the unique element of L3(1; 13)

and consider the exact sequence

(7–2) 0 - S − L3(1; 13) - S - S ⊗ OH - 0.

Using [De Volder and Laface 2003, Theorem 5.3], we know that

h1(S − L3(1; 13)) = h1(S) = 0,

so S|H = S⊗OH . But S⊗OH = L2(d −2m4; m1 −m4, m2 −m4, m3 −m4), which
is basepoint-free (since d ≥ m1 + m2).

We can use this procedure to see that if L3(d − m3 − m4; m1 − m3, m2 − m3),
is basepoint-free then S is basepoint-free.

Then proceed in the same way, but use a general H ′
∈ L3(1; 12) until the residue

class is L3(d − m2 − m4; m1 − m2); and after this, use a general H ′′
∈ L3(1; 1)

until the residue class is L3(d − m1 − m4).
So we actually only need to prove that L3(d − m1 − m4) is basepoint-free, but

this is obviously true since d − m1 − m4 ≥ 0.

(2) We use induction on m to prove that Bs(L) = m DQ8 .
In case m = 1, Q8 ∈ L = S8 and we can consider the exact sequence

0 - OX - S8 - S8 ⊗ OQ8
- 0.

Since h1(S8) = h1(OX ) = 0, we have S8|Q8 = S8 ⊗ OQ8 . So S8|Q8 = L2(3; 19) =

−K Q8 , and D8, the unique element of −K Q8 , is the fixed locus of S8|Q8 and thus
also of L.

Now assume that m >1 and that the statement is true for all m′
≤m−1. Consider

the exact sequence

0 - L − S8 - L - L ⊗ OQ8
- 0.

Since L = L3(2m; m8) and L−S8 = L3(2(m−1); (m−1)8), we see that d ≥ m1+

m2 for L and L−S8. So, because of [De Volder and Laface 2003, Theorem 5.3], we
know that h1(L − S8) = h1(L) = 0. Thus we obtain L|Q8 = L ⊗ OQ8 = −mK Q8 .
The only element of −mK Q8 is m DQ8 ; thus Bs(L) = DQ8 + Bs(L − S8) and
L − S8 = L3(2(m − 1); (m − 1)8). By induction we obtain Bs(L) = m DQ8 .

(3) The same procedure as in (2) can be used. The only difference being that L|Q8 =

L2(3m; m8, m − 1), which has exactly one basepoint P on DQ8 ; see [Harbourne
1985, Corollary 3.4].
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(4) Since obviously
∑

ti, j >0 ti, j`i, j ⊂ Bs(L), it is sufficient to show that Bs(L) ⊂∑
ti, j >0 ti, j`i, j . To do this, we have to distinguish between S 6= ∅ and S = ∅.

• In the case S 6= ∅, d ≥ m1 + m4, and thus also ti, j ≤ 0 for all i ≥ 1 and
j ≥ 4. Now consider the exact sequence (7–1). Using [De Volder and Laface 2003,
Theorem 5.3], we see that h1(L − Sr ) = h1(L)(6= 0), and, because of Lemma 5.2
of the same reference, h1(L ⊗ OQr ) = 0, so

L|Qr = L ⊗ OQr = L2(2d − m1; (d − m1)
2, m2, . . . , mr ).

On the other hand, L|Qr .K Qr = −4d + m1 + · · · + mr < −1 (the inequality is
true because L /∈ {L3(2m; m8), L3(2m; m7, m − 1)}) and L|Qr is standard (see
the proof of [De Volder and Laface 2003, Lemma 5.2]). This means that we can
apply [Harbourne 1985, Theorem 3.1 and Corollary 3.4] to conclude that L|Qr is
basepoint-free or thus that L has no basepoints on Qr .

Continuing this procedure as in (1), we see that Bs(L) ⊂ Bs(S).
Now consider the exact sequence (7–2). Using [De Volder and Laface 2003],

Theorem 5.3, we obtain

h1(S) =

∑
ti, j ≥2

(
ti, j + 1

3

)
and h1(S − L3(1; 13)) =

∑
ti, j ≥2

(
ti, j

3

)
.

So h1(S) − h1(S − L3(1; 13)) = h1(S ⊗ OH ), which implies that S|H = S ⊗ OH .
Since Bs(S ⊗ OH ) =

∑
ti, j ≥1 ti, j`i, j , we see that

Bs(S) =

∑
ti, j ≥1

ti, j`i, j + Bs(S − L3(1; 13)).

Again continuing as in (1), we finally get Bs(L) = Bs(S) =
∑

ti, j ≥1 ti, j`i, j .

• In the case S = ∅, d < m1 + m4, i.e. t1,2 ≥ t1,3 ≥ t1,4 > 0 (and thus also r ≥ 4).
Moreover 2d ≥ m1 + m2 + m3 + m4, so d > m2 + m3, and thus ti, j ≤ 0 for all
2 ≤ i < j .

Let Wr be a general element of L3(2; 2, 1x) with x = min{r − 1, 5}, i.e. Wr

corresponds in P3 with an irreducible cone with vertex P1 and through the points
P2, . . . , Px+1. Then (in X ) Wr is the blowing-up of a Hirzebruch surface F2 along
x general points, and Pic(Wr ) = 〈 f, h2, e2, . . . , ex+1〉 = 〈 f, c2, e2, . . . , ex+1〉, with
c2 = h2 − 2 f , L3(1)|Wr = h2, E1|Wr = c2 and Ei |Wr = ei for all i = 2, . . . , x + 1.

Now consider the exact sequence

0 - L − L3(2; 2, 1x) - L - L ⊗ OWr
- 0.

Because of [De Volder and Laface 2003, Theorem 5.3], we know that h1(L) =∑
t1, j >0

(t1, j +1
3

)
.
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Claim 7.1. h1(L ⊗ OWr ) =

∑
t1, j >0
j≤x+1

(
t1, j

2

)
and Bs(L ⊗ OWr ) =

∑
t1, j >0
j≤x+1

t1, j`1, j .

Claim 7.2. The linear system L − L3(2; 2, 1x) is in standard form unless L =

L3(m + m′
+ t; m′

+ 2t, m′, m6) for some m′
≥ m ≥ t > 0. Moreover

h1(L − L3(2; 2, 1x)) =

∑
t1, j >0
j≤x+1

(
t1, j

3

)
+

∑
t1, j >0

x+1< j≤r

(
t1, j + 1

3

)
.

Using these two claims, we obtain

L|Wr = L ⊗ OWr and Bs(L|Wr ) =

∑
t1, j >0

j≤x

t1, j`1, j .

Thus
Bs(L) ⊂ Bs(L − L3(2; 2, 1x)) +

∑
t1, j >0
j≤x+1

`1, j .

If r >6, let H be a general element of L3(1; 1, 05, 1r−6), denote L−L3(2; 2, 15)

by L̄ and consider the exact sequence

0 - L − L3(3; 3, 1r−1) - L̄ - L̄ ⊗ OH - 0.

Claim 7.3. h1(L̄ ⊗ OH ) =

∑
t1, j >0
6< j≤r

(
t1, j

2

)
and Bs(L̄ ⊗ OH ) =

∑
t1, j >0
6< j≤r

t1, j`1, j .

Claim 7.4. The linear system L − L3(3; 3, 1r−1) is in standard form and

h1(L − L3(3; 3, 1r−1)) =

∑
t1, j >0

(
t1, j

3

)
.

Using Claims 7.2 and 7.4, we obtain L̄|H = L̄ ⊗ OH and

Bs(L̄|H ) =

∑
t1, j >0
6< j≤r

t1, j`1, j .

Now define

L′
= L3(d ′

; m′

1, . . . , m′

r ) :=

{
L − L3(2; 2, 1x) if r ≤ 6,

L − L3(3; 3, 1r−1) if r > 6.

and t ′

i, j := m′

i +m′

j −d ′. Then d ′
= d −3, m′

1 = m1 −3, m′

i = mi −1 for 2 ≤ i ≤ r ;
t ′

1, j = t1, j − 1 for 2 ≤ j ≤ r ; and t ′

i, j = ti, j + 1 for 2 ≤ i < j ≤ r . In particular,
t ′

i, j ≤ t ′

2,3 = t2,3 + 1 ≤ −t1,4 + 1 ≤ 0 for 2 ≤ i < j ≤ r .
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If t ′

1,4 > 0 (so t1,4 ≥ 2), then, since L′ is in standard form (by Claims 7.2 and
7.4), we can start our procedure again, and we can do this until t ′

1,4 =0 for some L′.
Thus we obtain

Bs(L) ⊂ Bs(L′) +

∑
t1, j >0

α j`1, j

in any case, with

α j =

{
t1, j if m′

j = 0,

min{m j − m′

j , t1, j } if m′

j > 0.

Because of Claims 7.2 and 7.4, we also know that L′ is in standard form, which
means that we are in one of the previously treated cases of our theorem (since
t ′

1,4 = 0).
If we are in case (1) or in case (4) with S 6= ∅, then we immediately obtain

Bs(L) ⊂

∑
t1, j >0

t1, j`1, j .

In case (2), we obtain L′
= L3(2m; m8), for some m ≥ 1, Bs(L′) = m DQ8 and

L = L3(2m; m8) + yL3(3; 3, 17) (y > 0). So t1,i = y for all 2 ≤ i ≤ 8 and
Bs(L) ⊂ m DQ8 +

∑8
j=1 y`1, j and, as DQ8 ⊂ Q8, it is sufficient to prove that L is

basepoint-free on Q8.
Consider the exact sequence (7–1). Then, because of [De Volder and Laface

2003, Theorem 5.3] we know that h1(L − S8) = h1(L) = 8
(y+1

3

)
. On the other

hand, h1(L ⊗ OQ8) = 0 by [De Volder and Laface 2003, Lemma 5.2], so L|Q8 =

L ⊗ OQ8 = L2(3m + 3y; m2, (m + y)7), which is basepoint-free, since it is in
standard form and L|Q8 .K Q8 = −2y ≤ −2 (see [Harbourne 1985, Corollary 3.4]).

In case (3), we obtain L′
= L3(2m; m7, m − 1), for some m ≥ 1, Bs(L′) = m P

and L = L3(2m; m7, m − 1) + yL3(3; 3, 17) (y > 0) or

L = L3(2; 17) + y′L3(3; 3, 16) + yL3(3; 3, 17)

(y, y′
≥0 and y+y′ >0). Proceeding as above, we can prove that L|Q8 is basepoint-

free, and thus that
Bs(L) ⊂

∑
t1, j >0

t1, j`1, j . �

Proof of Claim 7.1. We know that L⊗OWr =|dh2−m1c2−m2e2−· · ·−mx+1ex+1|,
and, because of Corollary 5.2, we obtain

L ⊗ OWr =
∣∣(2d − m2)h1 − (d + m1 − m2)c1 + t1,2e′

2 − m3e3 − · · · − mx+1ex+1
∣∣.

So L ⊗ OWr = t1,2`1,2 + M and dim(L ⊗ OWr ) = dim(M), with

M = L2(2d − m2; d + m1 − m2, m3, . . . , mx+1).
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Using the results of [Harbourne 1985], it can be checked that

(7–3) h1(M) =

∑
3≤ j≤x+1

t1, j >0

(
t1, j

2

)
and Bs(M) =

∑
3≤ j≤x+1

t1, j >0

t1, j`1, j .

Let us illustrate how this is done for the case x = 5, t1,6 ≥ 1 (the other cases are
easier). First, we apply twice the (plane) Cremona transformation on M as shown
in the table:

2d − m2 d + m1 − m2 m3 m4 m5 m6

3d −
∑4

i=1 mi 2d − m2 − m3 − m4 −t1,4 −t1,3 m5 m6

4d − 2m1 −
∑6

i=2 mi 3d −
∑6

i=1 mi −t1,4 −t1,3 −t1,6 −t1,5

So, with respect to the new base h̄1, c̄1, ē3, . . . , ē6, we see that t1,4ē3 + t1,3ē4 +

t1,6ē5 + t1,5ē6 ⊂ Bs(M). Going back to the original base, we obtain M = t1,3l1,3 +

t1,4l1,4 + t1,5l1,5 + t1,6l1,6 + M′, with M′ basepoint-free and nonspecial (see [Har-
bourne 1985]). Thus we get Bs(M) = t1,3l1,3 + t1,4l1,4 + t1,5l1,5 + t1,6l1,6, h0(M) =

h0(M′) and h1(M′) = h2(M′) = 0. A simple calculation then shows that h0(M) =

X(M) +
∑6

j=3
(t1, j

2

)
, that is, h1(M) =

∑6
j=3

(t1, j
2

)
.

Using (7–3) we may conclude that

h1(L ⊗ OWr ) =

∑
j≤x+1
t1, j >0

(
t1, j

2

)
and Bs(L ⊗ OWr ) =

∑
j≤x+1
t1, j >0

t1, j`1, j . �

Proof of Claim 7.2. If L − L3(2; 2, 1x) is in standard form, then the equality
for h1(L − L3(2; 2, 1x)) follows immediately from [De Volder and Laface 2003],
Theorem 5.3.

Since d = m1+m4−t1,4 and 2d ≥ m1+m2+m3+m4, we get m1 ≥ m2+2t1,4+

m3 −m4 ≥ m2 +2. Using this, it is easy to see that 2d −4 is bigger or equal to the
sum of the bigger four multiplicities unless L = L3(m + m′

+ t; m′
+ 2t, m′, m6)

for some m′
≥ m ≥ t > 0. �

Proof of Claim 7.3. This follows directly from L̄⊗OH = L2(d−2; m1−2, m7, m8)

(or = L2(d − 2; m1 − 2, m7) if r = 7). �

Proof of Claim 7.4. If L−L3(3; 3, 1r−1) is in standard form, then the equality for
h1(L − L3(3; 3, 1r−1)) follows immediately from [De Volder and Laface 2003],
Theorem 5.3.

So we only need to show that L − L3(3; 3, 1r−1) is in standard form; in other
words, that m1 −2 ≥ m2. Using d = m1 +m4 − t1,4 and 2d ≥ m1 +m2 +m3 +m4,
we get m1 ≥ m2 + 2t1,4 + m3 − m4 ≥ m2 + 2. �
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8. Proof of Theorem 6.4

Since the Cremona transformation on X is nothing else than blowing-up the lines of
the tetrahedron (formed by the four points used for the transformation) and blowing
down the other rulings of the quadrics obtained in this way (see remark 3.4), we
cannot eliminate nor construct a fixed part of dimension 2 when applying such a
cubic Cremona transformation.

Since we stop applying the Cremona transformation only when we obtain some-
thing of type M+

∑
m′

i E ′

i , where mi > 0 and M is a class in standard form (that is,
a class without fixed components — see Remark 6.3), we obtain precisely all fixed
components of L.

9. Proof of Theorem 6.5

Proceeding as in the proof of [De Volder and Laface 2003, Proposition 4.3], it is
easy to see that F :=

∑
tb,c
a >0 tb,c

a Cb,c
a ⊂ Bs(L). So, if 4d −m1 −· · ·−mr 6= 1 it is

enough to prove that there are no basepoints outside F ; and if 4d−m1−· · ·−mr =1
it is enough to prove that Bs(L) − F = m P .

Lemma 9.1. Let L = L3(d; m1, . . . , mr ) be a (nonempty) class on X which has no
fixed components. Then 4d−m1−· · ·−mr = 1 if and only if L can be transformed,
by a finite number of Cremona transformations, into L3(2m; m7, m − 1) for some
m > 0.

Proof. Since the Cremona transformation fixes DQ8 and since Cr(L).DQ8 =L.DQ8 ,
it is clear that 4d − m1 − · · · − mr = 1 if, after a finite number of Cremona trans-
formations, L transforms into L3(2m; m7, m − 1).

Conversely, assume 4d − m1 − · · · − mr = 1. Then L transforms into a class
M = L3(d ′

; m′

1, . . . , m8) in standard form with m8 ≥ 0 and M.DQ8 = 4d ′
− m′

1 −

· · · − m′

8 = 1, which implies that M = L3(2m; m7, m − 1). �

Lemma 9.2. Let N := L3(d; m1, . . . , m8) be a class in standard form on X , then
N.Cb,c

a ≥ 0 for all a > 0 and for all b, c ∈ {1, . . . , 8}.

Proof. If a is even, then N.Cb,c
a ≥ N.C1,2

a for all b, c ∈ {1, . . . , 8}, and N.C1,2
a =

−
1
2a(t1,2

0 + t3,4
0 + t5,6

0 ) − (1
2a − 1)t7,8

0 − (t1,2
0 + t7,8

0 ). Since N is in standard form,
0 ≥ t3,4

0 ≥ t5,6
0 ≥ t7,8

0 and 0 ≥ t1,2
0 + t3,4

0 ≥ t1,2
0 + t7,8

0 , so N.C1,2
a ≥ 0.

If a is odd, N.Cb,c
a ≥ N.C7,8

a for all b, c ∈ {1, . . . , 8}, and

N.C7,8
a = −

1
2(a − 1)(t1,2

0 + t3,4
0 + t5,6

0 + t7,8
0 ) − (t1,2

0 + t3,4
0 + t5,6

0 ) ≥ 0. �

To simplify the notation, assume we want to apply the Cremona transformation
using P1, . . . , P4.
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Let Y be the blowing-up of X along the `i, j , 1 ≤ i < j ≤ 4, p : Y → X the
projection map, let Ei , Fi , Ei, j and Fi, j be as in (3–4) and (3–5) and let h, h′, ei ,
f j , ei, j and fi, j be as in (3–7) and (3–8).

Let p′
: Y → X ′ be the map obtained by blowing down the Fi, j .

Now, analogously to Cb,c
a , define Db,c

a in A2(X ′); for example, we have D7,8
1 =

|3h′
− f1 − · · · − f4 − e5 − e6|. Also define sb,c

a := −Cr(L).Db,c
a .

By abuse of notation, if a > 0 or if a = 0 and {b, c} 6⊂ {1, 2, 3, 4}, we also denote
the pullbacks of Cb,c

a and Db,c
a by Cb,c

a and Db,c
a , respectively.

Let F∗ denote the pullback on Y of F , and write F∗ as F (1)
+ F (2), with

F (2)
=

∑
1≤b<c≤4

tb,c
0 >0

tb,c
0 Eb,c.

Similarly, let G∗ denote the pullback of G =
∑

sb,c
a >0 sb,c

a Db,c
a on Y , and write

G∗ as G(1)
+ G(2), with

G(2)
=

∑
1≤b<c≤4

sb,c
0 >0

sb,c
0 Fb,c.

Define M := p∗(L) ⊗ OY (−F (2)) ⊗ IF (1) .

Proposition 9.3.

M = p′∗(Cr(L)) ⊗ OY (−G(2)) ⊗ IG(1) . �

Proof. First of all, by abuse of notation, let us write M as M(2)
− M(1), with

M(2)
= d H −

∑
1≤i≤8

mi Ei −

∑
1≤i< j≤4

t i, j
0 >0

t i, j
0 Ei, j and M(1)

=

∑
a>0 or a=0 and 4<c

tb,c
a >0

tb,c
a Cb,c

a .

Using the formulas (3–5) and the fact that si, j
0 = d − mk − ml = −tk,l

0 with
{i, j, k, l} = {1, 2, 3, 4}, it can easily be checked that, if s = 2d −

∑4
i=1 mi ,

M(2)
= (d + s)H ′

−

∑
1≤i≤4

(mi + s)Fi −

∑
5≤i≤r

mi Ei −

∑
1≤i< j≤4

si, j
0 >0

si, j
0 Fi, j .

Moreover, using the formulas (3–8), a simple calculation shows that

M(1)
=

∑
a>0 or a=0 and 4<c

sb,c
a >0

sb,c
a Db,c

a .

Combining these two results, we obtain

M = p′∗(Cr(L)) ⊗ OY (−G(2)) ⊗ IG(1) . �
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Corollary 9.4. Bs(L) − F 6= ∅ if and only if Bs(Cr(L)) − G 6= ∅.

Proof. Since the Cremona transformation is an involution, it is sufficient to prove
just one implication. If P ∈ Bs(L)− F then p−1(P) ⊂ Bs(M)− F∗

= Bs(M)−G∗,
which implies that p′(p−1(P)) ⊂ Bs(Cr(L)) − G (and p′(p−1(P)) 6= ∅). �

(1) If 4d − m1 − · · · − mr 6= 1, we apply Cremona until we obtain a class L′ in
standard form. Because of Corollary 9.4, it is enough to prove that Bs(L′)−F ′

=∅,
with F ′

=
∑

t ′b,c
a >0 t ′b,c

a C ′b,c
a . But, because of Lemma 9.2, we have t ′b,c

a ≤0 if a >0,

that is, F ′
=

∑
t ′b,c

0 >0 t ′b,c
0 C ′b,c

0 . On the other hand, 4d −m1 −· · ·−mr 6= 1 implies
that L′ is of type (1) or (4) of Theorem 6.2 (L′ is not of type (2) since this is a class
which is invariant under Cremona, and it is not of type (3) because of Lemma 9.1).
So it follows from Theorem 6.2 that Bs(L′) = F ′, and thus Bs(L′) − F ′

= ∅.
(2) If 4d − m1 − · · · − mr = 1, we apply Cremona until we obtain the class

L′
= L3(2m; m7, m − 1) (see Lemma 9.1). Reasoning as before, we get

F ′
=

∑
t ′b,c

0 >0

t ′b,c
0 C ′b,c

0 ,

but now t ′b,c
0 is equal to either 0 or −1, so F ′

= ∅. On the other hand, because
of Theorem 6.2, Bs(L′) = m P ′, and, since P ′ is never on a strict transform of an
edge of the tetrahedron used for the Cremona transformation, proceeding as in the
proof of Corollary 9.4, we conclude that, on X , P ′ corresponds to the basepoint P
of L3(2; 17) on DQ8 . Thus Bs(L) − F = m P .
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UNIVERSITÀ DEGLI STUDI DI MILANO

VIA SALDINI 50
20100 MILANO

ITALY

antonio.laface@unimi.it

http://links.jstor.org/sici?sici=0002-9947(198505)289:1%3C213:CLSORS%3E2.0.CO%3B2-%23
http://www.ams.org/mathscinet-getitem?mr=86h:14030
http://www.emis.de/cgi-bin/MATH-item?0609.14004
http://arxiv.org/abs/math.AG/0311445
mailto:cdv@cage.ugent.be
mailto:antonio.laface@unimi.it

	1. Introduction
	2. Preliminaries
	3. Cubic Cremona transformation
	4. (-1)-curves on X
	5. Blowings-up of Hirzebruch surfaces along general points
	6. Base locus of linear systems on X
	7. Proof of Theorem 6.2
	8. Proof of Theorem 6.4
	9. Proof of Theorem 6.5
	References

