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We consider the differential equation (d2/dx2)8(x) = (Pm(x)/x2)8(x) in
the complex field, where Pm is a monic polynomial function of order m.
We investigate the asymptotic and resurgent properties of the solutions at
infinity, focusing in particular on the analytic dependence of the Stokes–
Sibuya multipliers on the coefficients of Pm. Taking into account the non-
trivial monodromy at the origin, we derive a set of functional equations for
the Stokes–Sibuya multipliers, and show how these relations can be used to
compute the Stokes multipliers for a class of polynomials Pm. In particular,
we obtain conditions for isomonodromic deformations when m = 3.

1. Introduction

This article is the first of a series of three papers to come. The motivation stems
from the well-known theory of Sibuya [1975] and its Gevrey-resurgent extensions,
and their applications in spectral analysis.

Sibuya [1975] gives an exhaustive description of the asymptotic properties when
|x | → ∞ of the solutions of the ordinary differential equation −

d28
dx2 + P(x)8= 0,

where P(x)= xm
+a1xm−1

+· · ·+am is a complex polynomial function of order m.
Among various results, he shows the existence of a set of fundamental functional
relations between the Stokes connection matrices, when viewed as functions of the
coefficients of P . The asymptotic behavior of the Stokes–Sibuya coefficients when
the constant term am of P tends to infinity is also provided. Later, these results
have been clarified and extended in the framework of the Gevrey and resurgence
theories [Ramis 1993; Loday-Richaud 1995; Écalle 1985; Candelpergher et al.
1993a; Voros 1983; Delabaere et al. 1993; Delabaere and Pham 1999; Costin 1998;
Trinh 2005].

One of the main applications of these results is a qualitative and quantitative
description of the spectral set of the Schrödinger operator −

d2

dx2 + P(x). See,
for example, [Delabaere et al. 1997; Delabaere and Pham 1997; Kawai and Takei
1994; Voros 2000]. Recently, the exact asymptotic analysis has been applied with
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success to describe the spectral properties of a class of PT -symmetric oscillators,
that is, when the potential function P satisfies P(x) = P(−x). As a rule, such
PT -symmetric operators are not Hermitian, therefore the existence of a real spec-
trum is a nonobvious but interesting question (see, for example, [Bender et al.
1999; 2002] for motivations and applications in physics). In [Delabaere and Pham
1998] and [Delabaere and Trinh 2000], the authors consider the PT -symmetric
complex cubic oscillator, and prove the reality of the spectrum and the appearance
of spontaneous symmetry breaking, this depending on the values of the coupling
constant. Meanwhile, the reality of the spectrum of the PT -symmetric Schrödinger
operator −

d2

dx2 + P(x), with P polynomial, was proved by Shin [Shin 2002] under
convenient hypotheses. His work relies on a clever examination of the results of
Sibuya, and on ideas and tools usually used in the context of integrable models in
quantum field theory.

As a matter of fact, apart from the key-results of Sibuya, the strategy followed
by Shin was previously developed by Dorey et al. [2001] to prove the reality of the
spectrum of the PT -symmetric operator −

d2

dx2 − (i x)2m
−α(i x)m−1

+ l(l+1)/x2.
Our programme is to generalize all the above results to the one-dimensional

Schrödinger operator H = −
d2

dx2 + P(x)/x2 with P(x) a complex polynomial
function of order m ∈ N?.

In the present article, we consider the ordinary differential equation

(Em)
d2

dx28(x)=
Pm(x, a)

x2 8(x)

in the complex x plane, where a := (a1, . . . , am) ∈ Cm , m ∈ N?, and

Pm(x, a)= xm
+ a1xm−1

+ · · · + am ∈ C[x].

This equation admits a unique irregular singular point located at infinity, and our
aim is to concentrate on the asymptotic behaviors of the solutions of (Em) at this
point, and their deformations in the parameter a = (a1, . . . , am). Compared with
the work of Sibuya [1975], the main novelty comes from the existence (as a rule)
of another singular point, a regular singular one at the origin. The Stokes–Sibuya
coefficients, when considered as functions of the coefficients a of the polynomial
Pm , are still governed by a set of independent functional relations, but the nontrivial
monodromy at the origin has now to be taken into account. As we shall see, this
translates in term of an interesting a-dependent equational resurgence structure.

The paper is organized as follows. In Section 2 we study the solutions near in-
finity, introducing a well-behaved family of systems of fundamental solutions. The
associated Stokes–Sibuya coefficients are defined, and their analytic dependence
on a are analyzed. The main existence theorem given in Section 2 is proved in



RESURGENT DEFORMATIONS FOR AN ODE OF ORDER 2 37

Section 3 by resurgent methods, and we compare the Stokes–Sibuya coefficients
with the Stokes multipliers given by the resurgence viewpoint.

In Section 4, we introduce and study a convenient system of fundamental so-
lutions near the origin, by means of the Fuchs theory. By comparing, in Section
5, these different families of fundamental solutions, this yields a set of functional
relations which are detailed in Section 6. Besides describing these general prop-
erties, we provide different examples in Section 7 and the Appendix, which will
serve as guidelines in our next papers. In particular, for m = 3, we provide a family
of isomonodromic deformations conditions.

In a second paper, we will investigate the asymptotics of the solutions and Stokes
multipliers with respect to the parameter a, when ‖a‖ → ∞. Roughly speaking,
this corresponds to the second part of [Sibuya 1975]. However, this work will be
done in the framework of the exact WKB analysis, thus taking advantage of the
tools and ideas of the (quantum) resurgence theory, in the spirit of [Voros 1983]
and [Delabaere and Pham 1999].

A third paper will be devoted to applications to spectral analysis, especially for
PT -symmetric operators

H = −
d2

dx2 +
Pm(x, a)

x2 ,

with a generalization of the result of [Dorey et al. 2001] as an interesting by-
product.

2. Solutions of (Em) in the neighbourhood of infinity: classical asymptotics

We begin in the framework of the usual Poincaré asymptotic analysis, (see, for
example, [Dieudonné 1968; Fedoryuk 1983; Olver 1974; Wasow 1965]). We are
interested in the question of the existence of solutions (formal or not) at infinity
for the equation (Em). The starting point of our study will be the main existence
theorem, Theorem 2.1, which can be seen as an adaptation of a classical theorem
due to Sibuya [1975, p.15]. It asserts the existence and the uniqueness of a solution
of (Em) defined by its asymptotic expansion at infinity.

The main existence theorem. In the sequel, it will be convenient to think of x as
an element of the universal covering of C? with base point 1. Since this covering
can be identified to C provided with the projection t 7→ x = et , we shall associated
to x its argument arg(x) ∈ R.

In what follows,√
Pm(x, a)

x
= xm/2−1

+

N∑
k=1

bm/2−k(a)xm/2−k−1
+ O(xm/2−N )
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stands for the asymptotic expansion at infinity in x of
√

Pm(x, a)/x . Also, xα =

exp (α ln(x)) with ln(x) real for arg(x)= 0.

Theorem 2.1. The differential equation (Em) admits a unique solution 80(x, a)
satisfying the following condition.

(1) 80 is an analytic function in x in the sector 60 =
{
|x | > 0, | arg(x)| < 3π

m

}
such that, in any strict sub-sector of 60, 80 admits an asymptotic expansion
at infinity of the form

T80(x, a)= xr(a)e−S(x,a)φ0(x, a),

uniformly with respect to a in any compact set of Cm , where

S(x, a)=
2
m xm/2

+

(m−1)/2∑
k=1

bm/2−k(a)
m/2 − k

xm/2−k
∈ C[a][x1/2

],

r(a)=
1
2 −

m
4 ,

φ0 ∈ C[a]Jx−1/2K with constant term 1,

if m is odd, and

S(x, a)=
2
m xm/2

+

m/2−1∑
k=1

bm/2−k(a)
m/2 − k

xm/2−k
∈ C[a][x],

r(a)=
1
2 −

m
4 − b0(a),

φ0 ∈ C[a]Jx−1K with constant term 1,

if m is even.

Moreover,

(2) 80 extends analytically in x to the universal covering of C?, and is an entire
function in a.

(3) The derivative 8′

0 of 80 with respect to x admits an asymptotic expansion at
infinity of the form

T
( d

dx80(x, a)
)
=

d
dx

(
T80(x, a)

)
= xr(a)+m/2−1e−S(x,a)(−1 + o(1))

when x tends to infinity in any strict sub-sector of 60, uniformly with respect
to a.

Needless to say, the asymptotic expansion T80(x, a) of80 at infinity in60 can
be computed algorithmically. For instance, for m = 3 one gets (with Maple)

T80(x, a)= e−(2x3/2)/3−a1x1/2
x−1/4(1 +

(
a2−

1
4a2

1
)
x−1/2

+
(
−

1
4a2

1a2+
1

32a4
1−

1
4a1 +

1
2a2

2
)
x−1

+ O
(
x−3/2)),
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while for m = 4,

T80(x, a)= e−(x2
+a1x)/2x (a

2
1−4a2−4)/8(1 +

( 1
16a3

1 −
1
4a1a2 −

1
4a1 +

1
2a3
)
x−1

+
( 5

32a2
1 −

1
16a2

2 −
1

64a4
1a2 +

1
32a2

1a2
2 +

5
32a2

1a2 −
1
8a1a2a3 +

1
4a4 −

1
4a2

−
9

256a4
1 −

1
4a1a3 −

3
16 +

1
512a6

1 +
1

32a3
1a3 +

1
8a2

3
)
x−2

+ O
(
x−3)).

We shall discuss the proof of Theorem 2.1 in a moment (see Section 3). Here, we
would like to show how one can derive fundamental systems of solutions of (Em)
from 80 only. This is the subject of the following subsection.

Stokes–Sibuya coefficients. In the sequel, it will be convenient to introduce the
following notations.

Notation 2.2. For all λ ∈ C and all a = (a1, . . . , am) ∈ Cm , we define

λ.a := (λa1, . . . , λ
mam).

We set
ω = e±2iπ/m

and introduce, for all k ∈ Z,

8k(x, a)=80(ω
k x, ωk .a).

where 80 is given by Theorem 2.1.

We bring into play a quasi-homogeneity property of (Em). We note that (Em)
is invariant under the transformation (x, a) 7→ (ωx, ω.a) so that, with the above
notations, Theorem 2.1 easily translates into the following lemma.

Lemma 2.3. For any k ∈ Z, 8k is a solution of (Em), and is entire in a. Its
asymptotic expansion when x tends to infinity in the sector

6k =
{
|x |> 0, | arg(x)+ k. arg(ω) |< 3π

m

}
,

uniformly in a in any compact set of Cm , is given by

T8k(x, a)= T80(ω
k x, ωk.a)

where T80 is the asymptotic expansion of 80 in 60 described in Theorem 2.1.

Corollary 2.4. For every k ∈ Z, the solution8k is exponentially decreasing (“sub-
dominant function" in [Sibuya 1975, p19]) in the sector

3k =
{
| arg(x)+ k. arg(ω) |< π

m

}
.

We note that the sectors 3k−1, 3k and 3k+1 are included in 6k and, by Lemma
2.3, each solution 8k has an exponential growth of order not greater than m

2 in the
two sectors 3k−1 and 3k+1 adjacent to 3k . This leads to the following lemma.
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Lemma 2.5. For every k ∈ Z, {8k,8k+1} constitutes a fundamental system of
solutions of (Em) and, moreover,

W (8k,8k+1)= 2(−1)kωk(1−m/2)+r(ωk+1.a)

where W denotes the Wronskian, and r is given by Theorem 2.1.

Proof. By quasi-homogeneity of Pm(x, a), we note that

S(ωx, ω.a)= −S(x, a).

Thus, by Lemma 2.3, for x ∈6k ,

T8k(x, a)= ωkr(ωk.a)xr(ωk.a)e(−1)k−1 S(x,a)(1 + o(1)).

Using Theorem 2.1 part (3) we also have, for x ∈6k ,

T8′

k(x, a)= (−1)k−1ωkr(ωk.a)xr(ωk.a)+m/2−1e(−1)k−1 S(x,a)(1 + o(1)).

Moreover, the coefficient b0 of theorem 1 is a quasi-homogeneous polynomial in
a of order m

2 so that
r(ωk.a)+ r(ωk+1.a)= 1 −

m
2 .

As a result, we get the equalities

W (8k,8k+1)=8k8
′

k+1 −8′

k8k+1

= 2(−1)kωk(r(ωk.a)+r(ωk+1.a))+r(ωk+1.a)xr(ωk.a)+r(ωk+1.a)+m/2−1(1+o(1))

= 2(−1)kωk(1−m/2)+r(ωk+1.a)(1+o(1)).

for x ∈ 6k ∩ 6k+1. The Wronskian W (8k,8k+1) being independent of x , this
completes the proof. �

Since each system {8k,8k+1} constitutes a fundamental system of solutions
of (Em) we deduce, from the classical theory on linear differential equations, the
existence of functions Ck(a) and C̃k(a), depending only on a, such that

(2–1) 8k−1 = Ck(a)8k + C̃k(a)8k+1

for all k ∈ Z.

Definition 2.6. The functions Ck(a) and C̃k(a) defined in (2–1) are called the
Stokes–Sibuya coefficients of8k−1 associated respectively with8k and8k+1. The
matrices

Sk(a) :=

(
Ck(a) C̃k(a)

1 0

)
are called the Stokes–Sibuya connection matrices.
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Differentiating the equalities (2–1) with respect to x , we obtain

Ck(a)=
W (8k−1,8k+1)

W (8k,8k+1)
,(2–2)

C̃k(a)=
W (8k−1,8k)

W (8k+1,8k)
.(2–3)

Using the fact that the 8k’s are entire functions in a, we deduce from (2–2),
(2–3) and Lemma 2.5 that the Stokes–Sibuya coefficients are entire functions in
a. Also, it follows from (2–3), Lemma 2.5 and the definition of the 8k that
Ck(a) = C0(ω

k.a), while C̃k(a) = C̃0(ω
k.a) = ωm−2+2r(ωk.a). In particular, since

ωm
= e±2iπ , we get Ck = Ck (mod m) and C̃k = C̃k (mod m) for all k ∈ Z.

We summarize our results.

Theorem 2.7. For all k ∈ Z we denote

(2–4) 8k(x, a)=80(ω
k x, ωk.a),

where 80 is the solution of (Em) defined in Theorem 2.1. Then, for every k ∈ Z:

• 8k(x, a) is analytic in x on the universal covering of C? and entire in a.

• The system {8k,8k+1} constitutes a fundamental system of solutions of (Em).

• We have

(2–5)
(
8k−1

8k

)
(x, a)= Sk(a)

(
8k

8k+1

)
(x, a),

where the Stokes–Sibuya connection matrix Sk(a) is invertible, and entire in
a. Moreover,

(2–6) Sk(a)= Sk−1(ω.a), Sk(a)= S0(ω
k.a).

• The Stokes–Sibuya coefficients Ck(a) and C̃k(a) associated with, respectively,
8k and 8k+1 are entire functions in a, and

(2–7)
Ck(a)= C0(ω

k.a), Ck = Ck (mod m),

C̃k(a)= C̃0(ω
k.a)= ωm−2+2r(ωk.a), C̃k = C̃k (mod m).

For any k ∈ Z, the analytic continuation of {8k−1,8k} constitutes a fundamental
system of solutions of (Em) (by Lemma 2.5, the Wronskian W (8k−1,8k) does not
vanish). In particular, there exists a unique invertible 2×2 matrix M∞

k (a), entire
in a, such that (

8k−1

8k

)
(ωm x, a)= M∞

k (a)
(
8k−1

8k

)
(x, a).
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Definition 2.8. The 2×2 matrices M∞

k (a), for k ∈ Z, defined by

(2–8)
(
8k−1

8k

)
(ωm x, a)= M∞

k (a)
(
8k−1

8k

)
(x, a),

are called the ∞-monodromy matrices.

From the definition of the 8k , we note that M∞

k (a)= M∞

0 (ω
k.a). Also,(

8−1

80

)
(x, a)= S0(a) . . .Sm−1(a)

(
8m−1

8m

)
(x, a)

= S0(a) . . .Sm−1(a)
(
8−1

80

)
(ωm x, ωm.a).

Since
(
8−1

80

)
is entire in a, we obtain

(
8−1

80

)
(x, a)= S0(a) . . .Sm−1(a)

(
8−1

80

)
(ωm x, a)

= S0(a) . . .Sm−1(a)M∞

0 (a)
(
8−1

80

)
(x, a),

and, {8−1,80} being a fundamental system, this yields the following theorem.

Theorem 2.9. For every k ∈ Z, the ∞-monodromy matrix M∞

k (a) is invertible,
entire in a, and

(2–9) M∞

k (a)= M∞

0 (ω
k.a).

Furthermore, the Stokes–Sibuya matrices satisfy the functional relation

(2–10) S0(a) . . .Sm−1(a)=
(
M∞

0
(

a))−1.

Relation (2–10) generalizes a functional relation due to Sibuya [1975, p85].
Unfortunately, as a rule, the ∞- monodromy matrix M∞

0 is difficult to compute.
We return to this question in Section 6.

3. Solutions of (Em) in the neighbourhood of infinity: resurgent point of view

Theorem 2.1 can be shown with the methods developed in Sibuya’s book [1975]
and, in fact, is actually proved in [Mullin 1968; Bakken 1977]. However, using the
resurgent viewpoint, one can get a stronger result in a simpler way.
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Basic notions in resurgence theory. Since the terminology we use in this section
is likely to be least familiar to some readers, we first give the necessary definitions;
see [Candelpergher et al. 1993b; Candelpergher et al. 1993a; Delabaere and Pham
1997; Écalle 1981] for more details. We mention that our notation differs from
that usually used by Écalle. As usual in this article, we identify an element of the
universal covering of C? (with base point 1) by specifying its argument in R.

Definition 3.1. A sectorial neighbourhood of infinity of aperture I = ]α, β[ ⊂ R

is an open set U of the universal covering of C? such that for any open interval
J ⊂ I , there is z ∈ U such that z J ⊂ U , where

z J :=
{
z + reiθ

: r > 0, θ ∈ J
}
.

Definition 3.2. If U is a sectorial neighbourhood of infinity of aperture I and if 9
is holomorphic in U , then 9 is of exponential growth of order 1 at infinity in U if
for any open interval J ⊂ I , there exist τ > 0 and C > 0 such that

|9(z)| ≤ Ceτ |z|

for all z ∈ U ∩ 0J .

We now introduce the notion of a minor. We do this only for a particular class
of formal power series which will be used in this paper.

Definition 3.3. Consider the formal power series

ψ(z)= r +

∞∑
n=0

αn

z1+n/m ∈ CJz−1/mK,

where m is a positive integer. Then r is the residual coefficient of ψ , and

ψ̃(ζ )=

∞∑
n=0

αn

0(1 + n/m)
ζ

n
m ∈ CJζ 1/mK

is the minor of ψ .

In other words, the minor of the formal power seriesψ is just the Borel transform
without its residual coefficient. This allows to define the Borel-summability for
such formal series.

Definition 3.4. The formal power series

ψ(z)= r +

∞∑
n=0

αn

z1+n/m ∈ CJz−1/mK

is Borel-resummable in the direction (of the argument) α ∈ R if
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(1) its minor ψ̃(ζ ) defines a (ramified) analytic function at the origin (for simplic-
ity, we keep the same notation ψ̃(ζ ) for the series and its sum, and ζ should
be regarded as an element of the universal covering of C?), and

(2) there exists an open sector 0I with I an open neighbourhood of α such that
ψ̃(ζ ) can be analytically extended in 0I and is of exponential growth of order
1 at infinity in 0I .

The Borel sum Sαψ(z) with respect to z, in the direction α ∈ R, of the formal series
ψ is defined by

Sαψ(z) := r +

∫
∞eiα

0
e−zζ ψ̃(ζ )dζ.

In Definition 3.4, when one drops the growth condition (2) at infinity,ψ is said to
be Borel presummable in the direction α, the summation operator Sα being replaced
by the presummation operator which we do not define here (see, for example,
[Delabaere and Pham 1997]).

A Borel sum has the following main properties.

Proposition 3.5. If

ψ(z)= r +

∞∑
n=0

αn

z1+n/m ∈ CJz−1/mK

is Borel-resummable in the direction α ∈ R, then

(1) its Borel sum Sαψ(z) is holomorphic in a sectorial neighbourhood of infinity
U of aperture I =

]
−
π
2 −α, π2 −α

[
,

(2) Sαψ(z) is asymptotic to ψ(z) at infinity in U . More precisely, for any strict
subinterval J of I , there is C > 0 such that∣∣∣∣Sαψ(z)− r −

n−1∑
k=0

αk

z1+k/m

∣∣∣∣≤ Cn0(1 + n/m)|z|−n/m−1.

for all n ≥ 1, and all z ∈ U ∩ 0J ,

(3) d
dz (Sαψ(z))= Sα

( dψ
dz (z)

)
.

(4) If two formal power series ψ(z), φ(z) ∈ CJz−1/mK are Borel-resummable in
the direction α ∈ R, then Sα (ψ.φ) (z)= Sα(ψ)(z).Sα(φ)(z).

Definition 3.6. A formal power series

ψ(z)= r +

∞∑
n=0

αn

z1+n/m ∈ CJz−1/mK

is resurgent if its minor ψ̃(ζ ) defines a (ramified) analytic function at the origin,
and is endlessly continuable, that is, for every L > 0 there is a finite subset�L ⊂ C
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such that ψ̃ can be analytically continued along every path λ of length < L which
avoids �L .

This definition can be extended to an algebra of resurgent formal functions which
we do not define precisely here. (Note that Écalle proposes a more general defini-
tion.)

Proposition 3.7. If two formal power series

ψ(z)= r +

∞∑
n=0

αn

z1+n/m ∈ CJz−1/mK and φ(z)= s +

∞∑
n=0

βn

z1+n/m ∈ CJz−1/mK

are resurgent, then the product ψ.φ(z) is too: the minor of ψ.φ(z) given by

(3–1)
ψ̃.φ(ζ )= r.φ̃(ζ )+ s.ψ̃(ζ )+ ψ̃ ∗ φ̃(ζ ),

ψ̃ ∗ φ̃(ζ )=

∫ ζ

0
ψ̃(η)φ̃(ζ − η)dη

(where the latter is the convolution product) is endlessly continuable.

For a resurgent formal power series, it may happen that we no longer can de-
fine its Borel (pre)sum in a given direction α ∈ R because the minor can have
singularities along this direction: this is the essence of the Stokes phenomenon.

Definition 3.8. We consider a resurgent formal power series

ψ(z)= r +

∞∑
n=0

αn

z1+n/m ∈ CJz−1/mK.

Let α ∈ R be a singular direction for the minor ψ̃(ζ ). We hypothesise that there is
an ε > 0 such that ψ̃(ζ ) can be analytically extended in the open sector 0]α, α+ε[

(respectively, 0]α−ε, α[) with an exponential growth of order 1 at infinity. We
assume also that this exponential growth at infinity extends up to paths [0,∞eiα

+[

and [0,∞eiα
−[) circumventing the singularities to the left and right, respectively,

along the direction α:

0

0 Right resummation

Left resummation

Then ψ is right (respectively, left) Borel-resummable in the direction α, its right
(respectively, left) Borel sum Sα+ψ (respectively, Sα−ψ) being defined by

Sα±ψ(z) := r +

∫
∞eiα

±

0
e−zζ ψ̃(ζ )dζ,
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for z in a sectorial neighbourhood of infinity of aperture
]
−
π
2 −α, π2 −α

[
.

In Definition 3.8, it is possible to drop the hypothesis, replacing the right (re-
spectively, left) Borel sum by the right (respectively, left) Borel presum (see, for
example, [Delabaere and Pham 1997]). In other words, every resurgent formal
function is always right and left Borel-presummable (in any direction).

We note that Proposition 3.5 is still valid for right and left Borel sum. Moreover,
when ψ is Borel (pre)summable in the direction α ∈ R, then

Sαψ(z)= Sα+ψ(z)= Sα−ψ(z).

In order to be able to compare right and left (pre)summation, one has to enlarge
the set of resurgent formal functions to the set of resurgent symbols.

Definition 3.9. A resurgent symbol (or resurgent transseries) in the direction α is
a formal sum

ϕ(z)=

∑
ω∈�

ψω e−zω

where each ψω(z) is a resurgent formal function and �, the singular support of ϕ,
is a discrete subset of [0,∞eiα

[.
The sum and product of two resurgent symbols are defined in an obvious fashion,
so that resurgent symbols in the direction α make up an algebra which we denote
by Rα.

The right and left (pre)summation operations can be extended to resurgent sym-
bols in a way so that

Sα+ ϕ =

∑
ω∈�

(Sα+ ψω) e−zω and Sα− ϕ =

∑
ω∈�

(Sα− ψω) e−zω.

The construction (which we do not explain here) makes the operations Sα+ and
Sα− isomorphisms of algebras and, moreover, Sα+(Rα)= Sα−(Rα). This key result
(due to Écalle) allows to define the so-called Stokes automorphism, which analyzes
the Stokes phenomenon by comparing right and left Borel (pre)summations.

Definition 3.10. The Stokes automorphism in the direction α is defined by

Sα := S−1
α+

◦ Sα− : Rα → Rα.

The action of the Stokes automorphism in a given direction can be understood
in terms of deformation of the contour of integration in a Laplace integral:

0
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It follows from the definitions that the Stokes automorphism in the direction α
acts trivially on exponentials e−zω, and that its action on a formal resurgent series
ψ is given by

Sαψ = ψ +

∑
ω

ψωe−zω,

where the sum runs over those singular points of the minor ψ̃ which have to be
avoided when considering left (pre)summation. The Stokes automorphism Sα is
given by

Sα = 1 +
+Sα

where the operator +Sα commutes with multiplication by exponentials, and trans-
forms formal resurgent series into “exponentially small resurgent symbols”. This
implies that the operator

1̇α := ln Sα =

∞∑
n=1

(−1)n−1

n
+Sn

α

is well defined on Rα. Since Sα is an automorphism of Rα, it follows that 1̇α is
a derivation of Rα.

Definition 3.11. The operator 1̇α is called the alien derivation in the direction α.

We note that since Sα+ and Sα− commute with d
dz , it follows that Sα and 1̇α

also commute with d
dz .

Proposition 3.12. The alien derivation 1̇α commutes with d
dz .

The alien derivation 1̇α commutes with multiplication by exponentials, and its
action on a formal resurgent series ψ has the explicit form

1̇αψ =

∑
ω∈�(ψ̃)

e−zω1ωψ,

where �(ψ̃) is a discrete subset of [0,∞eiα
[, the set of so-called glimpsed singu-

larities of ψ̃ , that is, the set of singularities to be circumvented when analytically
continuing ψ̃ in the direction α. Since 1̇α is a derivation, each1ω is also a deriva-
tion.

Definition 3.13. The derivation 1ω is called the alien derivation at ω.

Definition 3.14. A formal resurgent function ψ is a constant of resurgence if
1ωψ = 0 for any ω.

For instance, a convergent power series ψ is a constant of resurgence.
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Instead of working with the 1ω, it is sometimes convenient to work with the
so-called pointed alien derivations

1̇ω := e−zω1ω,

which have the advantage of commuting with d
dz (this is a consequence of Propo-

sition 3.12).

Proposition 3.15. The pointed alien derivations 1̇ω commute with d
dz .

Resurgence of solutions of (Em). We now return to the proof of Theorem 2.1.
The main idea will be to consider the asymptotic expansion T80 of Theorem 2.1
as a formal solution of (Em), and to show that 80 can be constructed from T80

by Borel resummation with respect to an appropriate variable z = z(x, a) (or z̃,
depending on the parity of m) which will be defined later, uniformly in a, for a in
any given compact set.

We start with a kind of preparation theorem, so as to transform equation (Em)
into a normal form. This is based on the Green–Liouville transformation, but we
shall have to dissociate the m odd case from the m even case for technical reasons.

In what follows, a is assumed to belong to an arbitrary compact set K ⊂ Cm .

Case 1: m odd. We consider the Green–Liouville transformation

(3–2)
z = z(x, a)=

∫ x
√

Pm(t, a)
t

dt,

9(z, a)=
Pm(x, a)1/4

√
x

8(x, a),

where the Laurent–Puiseux series expansion in x of z(x, a),

z(x, a)=
2
m xm/2

+

(m−1)/2∑
k=1

bm/2−k(a)
m/2 − k

xm/2−k
+ O

(
x−1/2)

∈ xm/2C[a]{x−1
},

coincides with the map x 7→ S(x, a) defined in Theorem 2.1 modulo an analytic
(multivalued) function vanishing at infinity. We note that, if X

π
−→C (respectively,

Z
π̃

−→C) is the (ramified) Riemann surface of x1/2 (respectively, z1/m), then there
exists a compact set B (depending on K ) (respectively, B̃) such that the map

(x, a) ∈ π−1(C\B)× K 7→ (z(x, a), a) ∈ π̃−1(C\B̃)× K

is biholomorphic.
We remark here that by the quasi-homogeneity of Pm(x, a), it follows that

(3–3) z(ωx, ω.a)= ωm/2z(x, a).
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The transformation (3–2) converts (Em) into the equation

(3–4) −
d2

dz29 + (1 − F(z, a))9 = 0,

which is our prepared normal form.
It is straightforward to see that studying (Em) at infinity in the variable x amounts

to studying (3–4) at infinity in the variable z. The inverse map x : (z, a) 7→ x(z, a)
can be identified with its Laurent–Puiseux series expansion

(3–5) x(z, a)=
(m

2 z
)2/m

+ O(1) ∈ z2/mC[a]{z−2/m
},

and, from (3–3),

(3–6) x(ω
m
2 z, ω.a)= ωx(z, a).

In (3–4), F(z, a) is defined by
(3–7)

F(z, a)= −
x P ′

m(x, a)+Pm(x, a)
4Pm(x, a)2

−
x2

4

(
P ′′

m(x, a)
Pm(x, a)2

−
5
4

P ′
m(x, a)2

Pm(x, a)3

)∣∣∣∣
x=x(z,a).

One infers from (3–5) that

(3–8) F(z, a)=
m2

− 4
4m2z2

(
1 + O

(
z−2/m))

∈
1
z2 C[a]{z−2/m

}

is an analytic function at infinity in z−1/m , uniformly in a ∈ K . It is easy to show
the existence of a unique formal solution 9+(z, a) of (3–4) satisfying

(3–9) 9+(z, a)= e−zψ+(z, a),

where

(3–10) ψ+(z, a)= 1 +

∞∑
n=0

αn(a)
z1+n/m ∈ C[a]Jz−1/mK

with 1 for its residual coefficient. Moreover the formal power series expansion
ψ+(z, a) satisfies the ordinary differential equation

(3–11) −
d2

dz2ψ+ + 2
d
dz
ψ+ − F(z, a)ψ+ = 0.

In addition, by the quasi-homogeneity property of Pm , from (3–6) and (3–7),
one sees that

(3–12) F(ωm/2z, ω.a)= F(z, a).
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Defining

(3–13) ψ−(z, a)= ψ+(ω
m/2z, ω.a),

one deduces the existence of a unique formal solution 9−(z, a) of (3–4) such that
9−(z, a) = ezψ−(z, a) for ψ− ∈ C[a]Jz−1/mK, with a residual coefficient equal
to 1. Note that 9+ and 9− are linearly independent, so (9+, 9−) provides a
fundamental system of formal solutions for the linear second order equation (3–4).

The formal series ψ± enjoys the following properties.

Proposition 3.16. The formal power series expansion

ψ+(z, a)= 1 +

∞∑
n=0

αn(a)
z1+n/m ∈ C[a]Jz−1/mK

(respectively, ψ−(z, a)= ψ+(ω
m/2z, ω.a)) is Borel-resummable with respect to z,

uniformly in a, for a in any compact set of Cm , for every direction of summation
except those of argument π (mod 2π) (respectively, 0 (mod 2π)).

Proof. We have to analyze the analytic properties of the minor

(3–14) ψ̃+(ζ, a)=

∞∑
n=0

αn(a)
0
( n

m + 1
)ζ n/m

∈ C[a]Jζ 1/mK.

of ψ+(z, a). To proceed, we go back to equation (3–11). Instead of considering
this differential equation, we shall rather introduce its deformation

(3–15) −
d2

dz2ψ + 2
d
dz
ψ − F(z, a)+ εF(z, a)(1 −ψ)= 0,

where ε can be thought of as a parameter of perturbation. The introduction of this
parameter will help us to rewrite ψ+ and its minor ψ̃+ into an analyzable form,
since (3–15) reduces to (3–11) when ε = 1. We now look for a formal solution of
(3–15) in the form of a normalized series expansion with respect to ε:

(3–16) ψ(z, a, ε)= 1 +

∞∑
n=0

ψn(z, a)εn, ψn ∈
1
z C[a]Jz−1/mK.

Plugging (3–16) into (3–15) and identifying the powers of ε, one gets

(3–17)
−

d2

dz2ψ0 + 2
d
dz
ψ0 = F(z, a),

−
d2

dz2ψn+1 + 2
d
dz
ψn+1 = F(z, a)ψn, for n ≥ 0.
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This translates into the fact that the minors ψ̃n(ζ, a) of the ψn(z, a) have to satisfy
the convolution equations

(3–18)
− ζ(2 + ζ )ψ̃0 = F̃,

− ζ(ζ + 2)ψ̃n+1 = ψ̃n ∗ F̃, for n ≥ 0,

where F̃(ζ, a) is the minor of F(z, a), while ∗ stands for the convolution product
(see (3–1)).

We have now to study the analytic properties of

(3–19) ψ̃(ζ, a, ε)=

∞∑
n=0

ψ̃n(ζ, a)εn.

The key-point of the analysis will come from the properties of F . Writing

(3–20) F(z, a)=

∞∑
n=0

fn(a)
z2+2n/m ∈

1
z2 C[a]{z−2/m

},

we know that

(3–21) G(z)=

∞∑
n=0

gn

z2+2n/m with gn = sup
a∈K

∣∣ fn(a)
∣∣,

is an analytic function at infinity in z−1/m . Therefore its minor

(3–22) G̃(ζ )=

∞∑
n=0

gn

0(2 + 2n/m)
ζ 1+2n/m

∈ ζC{ζ 2/m
}

is an entire function in ζ 1/m (with an exponential growth at infinity of order at most
1). Thus, if Cm denotes the Riemann surface of ζ 1/m , then

F̃(ζ, a)=

∞∑
n=0

fn(a)
0(2 + 2n/m)

ζ 1+2n/m
∈ ζC[a]{ζ 2/m

}

is a holomorphic function in (ζ, a) ∈ Cm × K such that

(3–23) |F̃(ζ, a)| ≤ G(|ζ |) for all (ζ, a) ∈ Cm × K .

Using the fact that F̃ is a holomorphic function in (ζ, a) ∈ Cm × K such that
F(ζ, a) = O(ζ ) uniformly in a ∈ K , and from the properties of the convolu-
tion product, one easily deduces from (3–18) that each ψ̃n belongs to the space
C[a]{ζ 1/m

} and extends analytically to C̃\{0,−2} × K , where C̃\{0,−2} denotes
the universal covering of C\{0,−2}. For ρ > 0, we now define the star-shape
domain

(3–24) �m(ρ)= {ζ ∈ Cm, |ζ̇ + 2|> ρ, [0, ζ ] ∈�m(ρ)} ⊂ Cm
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where ζ̇ is the projection of ζ by the natural mapping Cm → C. We also introduce
the sequence of analytic functions hn(ζ ) defined for ζ ∈ Cm by

(3–25)
ζρh̃0 = G̃,

ζρh̃n+1 = h̃n ∗ G̃ for n ≥ 0

Comparing (3–25) with (3–18), and using (3–23), one gets

(3–26) |ψ̃n(ζ, a)| ≤ h̃n(|ζ |) for all (ζ, a) ∈�m(ρ)× K and all n ∈ N.

This can be shown by an easy recursion. We just detail here the n = 0 and n = 1
cases. For all (ζ, a) ∈ (�m(ρ)\{0})× K we have

|ψ̃0(ζ, a)| =
|F̃(ζ, a)|
|ζ ||ζ + 2|

≤
G̃(|ζ |)
|ζ |ρ

= h̃0(|ζ |),

and this inequality extends to ζ = 0 by continuity. This proves (3–26) for n = 0.
We thus deduce that, for all (ζ, a) ∈ (�m(ρ)\{0})× K ,

∣∣ψ̃1(ζ, a)
∣∣= ∣∣F̃ ∗ ψ̃0(ζ, a)

∣∣
|ζ ||ζ + 2|

≤

∣∣∫ ζ
0 F̃(η, a)ψ̃0(ζ − η, a)dη

∣∣
|ζ |ρ

.

Writing ζ = |ζ |eiθ and making the change of variable η = teiθ , we get∣∣∣∣∫ ζ

0
F̃(η, a)ψ̃0(ζ − η, a)dη

∣∣∣∣= ∣∣∣∣∫ |ζ |

0
F̃(teiθ , a)ψ̃0((|ζ | − t)eiθ , a)dt

∣∣∣∣
≤

∫
|ζ |

0

∣∣F̃(teiθ , a)
∣∣.∣∣ψ̃0((|ζ | − t)eiθ , a)

∣∣dt

≤

∫
|ζ |

0
G̃(t)h̃0(|ζ | − t)dt

= G̃ ∗ h̃0(|ζ |).

Therefore, for all (ζ, a) ∈ (�m(ρ)\{0})× K ,∣∣ψ̃1(ζ, a)
∣∣≤ G̃ ∗ h̃0(|ζ |)

|ζ |ρ
= h̃1(|ζ |).

This gives (3–26) for n =1 by a continuity argument. Now h̃(ζ, ε)=
∑

∞

n=0 h̃n(ζ )ε
n

is nothing but the minor of the series expansion h(z, ε) =
∑

∞

n=0 hn(z)εn , where
the hn are defined recursively by

(3–27)
−ρ

d
dz

h0 = G,

−ρ
d
dz

hn+1 = hnG for n ≥ 0.
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This means that h satisfies the ordinary differential equation

(3–28) −ρ
d
dz

h = εG(z)h + G(z).

From (3–21), we see that G is integrable at infinity, so that the function

(3–29) (z, ε) 7→
(
e−(ε/ρ)

∫ z
+∞

G(z′)dz′

− 1
)
/ε

is a solution of (3–28) which is holomorphic for z in a neighbourhood of infinity
of Cm and ε ∈ D(0, R), R > 1. Moreover, its Taylor series expansion at ε = 0
is exactly h(z, ε) =

∑
∞

n=0 hn(z)εn . In return, this proves that h̃(ζ, ε) defines a
holomorphic function in (ζ, ε) ∈ Cm × D(0, R), with an exponential growth of
order not greater than 1 at infinity in ζ , uniformly in ε ∈ D(0, R): there exist A, B
in ]0,+∞[ such that

|h(ζ, ε)| ≤ AeB|ζ | for all (ζ, ε) ∈ Cm × D(0, R).

This last result, together with (3–26), shows that the series expansion ψ̃n(ζ, a, ε)
converges uniformly for ζ in every compact set of �m(ρ), a ∈ K and ε ∈ D(0, R),
and moreover,∣∣ψ̃(ζ, a, ε)

∣∣≤ h̃(|ζ |, |ε|)≤ AeB|ζ | for all (ζ, a, ε) ∈�m(ρ)× K × D(0, R).

Putting ε= 1, we deduce the same result for ψ̃+(ζ, a): holomorphy in�m(ρ)×K ,
exponential growth of order not greater than 1 at infinity in ζ , uniformly in a ∈ K .
Since ρ > 0 can be chosen arbitrarily small, we have shown that, except for the
directions of argument α= π (mod 2π), there is no singular point on the half line
arg ζ =α and, since ψ̃+(ζ, a) has an exponential growth of order not greater than 1
at infinity in ζ , uniformly in a ∈ K , we deduce that ψ+(z, a) is Borel-resummable
with respect to z, uniformly in a for a in any compact set of Cm , for every direction
of summation except those of argument π (mod 2π).

Thanks to (3–13), an analogous result can be obtained ψ−(z, a). This yields
Proposition 3.16. �

Proposition 3.16 is enough to prove Theorem 2.1. Let us define φ0(x, a) ∈

C[a]Jx−1/2K by the formula

xr(a)e−S(x,a)φ0(x, a)=

√
x

Pm(x, a)
1
4

e−zψ+(z, a)
∣∣∣∣
z=z(x,a).

Due to the definition of ψ+, the left-hand side of this equality is a formal solution
of equation (Em).

We know from Proposition 3.16 that ψ+(z, a) is Borel-resummable for the di-
rection of argument 0. For a in any given compact set K of Cm , this allows us to
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define the function

80(x, a)=

√
x

Pm(x, a)1/4
e−z S0ψ+(z, a)

∣∣∣∣
z=z(x,a),

which is an analytic solution of (Em) for z in a sectorial neighbourhood of infinity
of aperture

]
−
π
2 ,

π
2

[
and a in K . Note that the size of the sectorial neighbourhood

may depend on K . By the inverse map z ↔ x given by (3–5), this corresponds to
an x-sectorial neighbourhood of infinity of aperture ] −

π
m ,

π
m [. From Proposition

3.16 again, 80 can be analytically extended by varying the direction of summation
on ] −π, π[. This shows that 80 is holomorphic in an x-sectorial neighbourhood
of infinity 6′

0, of aperture
]
−

3π
m ,

3π
m

[
and, by construction, 80 is asymptotic to

xr(a)e−S(x,a)φ0(x, a) at infinity in 6′

0, uniformly in a ∈ K . The uniqueness of 80

follows from the Watson theorem [Malgrange 1995].
Also, since for any strict sub-sector 6 of 60 the set 6\6 ∩6′

0 is bounded, all
we have to do now to prove part (1) of Theorem 2.1 is to show that 80 extends an-
alytically in x ∈60. This is a consequence of the Cauchy–Kovalevskaya theorem:
take a point x0 in 6′

0 and consider the datum (80(x0, a),8′

0(x0, a)). Then 80 is
uniquely defined by this Cauchy datum, which is holomorphic in a ∈ K . Since the
linear differential equation (Em) is holomorphic in (x, a) ∈ C? × C, we conclude
that 80 extends analytically to C̃?× K , where C̃? stands for the universal covering
of C?. We end by noticing that K can be chosen arbitrarily. This also proves part
(2) of Theorem 2.1.

Part (3) of Theorem 2.1 follows from the fact that the Borel resummation with
respect to z commutes with the derivative d

dz .
Note that besides proving Theorem 2.1, we have obtained the following inter-

esting result.

Proposition 3.17. If m is odd, the analytic function80 of Theorem 2.1 is given by

(3–30) 80(x, a)=

√
x

Pm(x, a)
1
4

e−z Sαψ+(z, a)
∣∣∣∣
z=z(x,a),

for x in a sectorial neighbourhood of infinity of aperture
]
−
π
m −

2α
m ,

π
m −

2α
m

[
,

uniformly in a for a in any compact set of Cm , where the direction of Borel resum-
mation α runs through ] −π,+π [.

The arguments used to prove Proposition 3.16 can be extended to analyze the
whole analytic structure of the minor ψ̃+(ζ, a) of ψ+(z, a). Since the techniques
involved are the same as those used in [Loday-Richaud 1995] and [Gelfreich and
Sauzin 2001], we just give the final result. (For the particular reader, this part is
detailed in [Rasoamanana 2006].)
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Proposition 3.18. The minor ψ̃+(ζ, a) ∈ C[a]{ζ 1/m
} (respectively, ψ̃−(ζ, a) ∈

C[a]{ζ 1/m
}) of ψ+(z, a) (respectively, ψ−(z, a)) can be extended analytically to

(ζ, a)∈ C̃\{0,−2}×Cm (respectively, (ζ, a)∈ C̃\{0,+2}×Cm), where C̃\{0,±2}

is the universal covering of C\{0,±2}. Moreover, ψ̃± has an exponential growth
of order not greater than 1 at infinity in ζ , uniformly in a for a in any given compact
set of Cm .

One can make things more precise concerning the resurgent structure, that is, the
behavior of ψ̃+ and ψ̃− near their singular points. To do that, we shall use the alien
derivations. We would like to compute1τψ+, where1τ stands for the alien deriva-
tion at τ . From Proposition 3.18 we know that the singular points of the minor of
ψ+ lie above −2 and 0. However, since ψ+ belongs to C[a]Jz−1/mK, the nonvan-
ishing 1τψ+ can be indexed by the elements τ above −2 on the Riemann surface
Cm of z1/m . We now use one of the fundamental properties of the alien derivations:
the pointed alien derivation 1̇τ = e−τ z1τ commutes with d

dz (Proposition 3.15).
Using the facts that the resurgent symbol (Definition 3.9) 9+(z, a)= e−zψ+(z, a)
is solution of (3–4), and that F is a constant of resurgence (Definition 3.14), we
obtain

−
d2

dz2

(
1̇τ9+

)
+ (1 − F(z, a))

(
1̇τ9+

)
= 0.

This means that 1̇τ9+ satisfies the same equation (3–4). Since (9+, 9−) is a
fundamental system of formal solutions for (3–4), we can conclude that 1̇τ9+ has
to be proportional to the resurgent symbol 9− by an argument of singular support
(Definition 3.9): the singular support of 9+ (respectively, 9−) reduces to {+1}

(respectively, {−1}), whereas, by definition, the resurgent symbol

1̇τ9+ = e+z
× (a formal resurgent function)

has {−1} for its singular support. We deduce that there is δτ (a) such that

1̇τ9+(z, a)= δτ (a)9−(z, a),

that is, 1τψ+(z, a)= δτ (a)ψ−(z, a). Similarly, one obtains the existence of δτ (a)
such that 1τψ−(z, a) = δτ (a)ψ+(z, a), where τ is above +2 on the Riemann
surface Cm .

The coefficients δτ (a) are entire functions of a: this stems directly from the
regularity in a of the formal series ψ+, ψ−, and from the fact that the location of
the singular points of the minors does not depend on a, so that the Stokes automor-
phism (in any direction) commutes with the analytic continuation in a. However,
this is a consequence of Theorem 3.27 which will be discussed in a moment.

To summarize:
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Theorem 3.19. For m odd, there exists a unique formal power series ψ+(z, a) ∈

C[a]Jz−1/mK (respectively, ψ−(z, a) ∈ C[a]Jz−1/mK) whose residual coefficient is
1, such that e−zψ+(z, a) (respectively, e+zψ−(z, a)) is a solution of (3–4) and,
moreover,

(3–31) ψ−(z, a)= ψ+(ω
m/2z, ω.a).

These formal power series ψ± are resurgent in z with holomorphic dependence in
a, and Borel-resummable in z, uniformly with respect to a in any compact set (ex-
cept, of course, for the singular directions which are described by the resurgence
structure). Their resurgent structure is given by

12ekiπψ−(z, a)= Sk(a)ψ+(z, a) for k ∈ 2Z,

12ekiπψ+(z, a)= Sk(a)ψ−(z, a) for k − 1 ∈ 2Z,

1τψ± = 0 otherwise,

where1τ is the alien derivation at τ . The coefficients Sk(a) are entire functions in
a and, for all k ∈ Z, Sk = Sk (mod 2m).

Definition 3.20. The coefficients Sk(a), for k ∈ Z, are called the Stokes multipliers.

Case 2: m even. The fundamental difference with the case where m is odd is the
existence of the term b0(a) ln(x) in the asymptotic expansion of z(x, a) (defined
by (3–2)) at infinity in x . This is why it is worth considering the following new
Green–Liouville transformation

(3–32)

z̃ = z̃(x, a)=

∫ x
√

Pm(t, a)− b0(a)
t

dt,

9(z̃, a)=

√√
Pm(x, a)− b0(a)

√
x

8(x, a)

so that the Laurent–Puiseux series expansion of x 7→ z̃(x, a) coincides with the
map x 7→ S(x, a) defined in Theorem 2.1 modulo an analytic function vanishing
at infinity. The quasi-homogeneity properties (3–3) and (3–6) are still valid for the
maps (x, a) 7→ z̃(x, a) and (z̃, a) 7→ x(z̃, a) respectively.

Equation (Em) is converted into the prepared equation

(3–33) −
d2

dz̃29 +

(
1 +

4b0(a)
mz̃

− H(z̃, a)
)
9 = 0



RESURGENT DEFORMATIONS FOR AN ODE OF ORDER 2 57

with
(3–34)

H(z̃, a)=1 +
4b0(a)

mz̃
−

Pm(x, a)(√
Pm(x, a)− b0(a)

)2

−

(
x2

4

(
P ′′

m(x, a)√
Pm(x, a)

(√
Pm(x, a)− b0(a)

)3

−
1
4

(P ′
m(x, a))2

(
5
√

Pm(x, a)−2b0(a)
)(

Pm(x, a)−b0(a)
√

Pm(x, a)
)3(√Pm(x, a)− b0(a)

))

+
x P ′

m(x, a)+ Pm(x, a)− b0(a)
√

Pm(x, a)

4
√

Pm(x, a)
(√

Pm(x, a)− b0(a)
)3

) ∣∣∣∣∣
z̃=z̃(x,a)

and

(3–35) H(z̃, a)=
m2

− 4
4m2 z̃2

(
1 + O(z̃−2/m)

)
∈

1
z̃2 C[a]

{
z̃−2/m}.

Furthermore, H satisfies the quasi-homogeneity property (3–12).
One easily proves the existence of a unique formal solution

9+(z̃, a)= e−z̃ψ+

(
z̃, a

)
of (3–33), satisfying

ψ+(z̃, a)= z̃−2b0(a)/mµ+

(
z̃, a

)
where µ+ ∈ C[a]Jz̃−2/mK with residual coefficient 1. By quasi-homogeneity, one
deduces the existence of another formal solution

9−(z̃, a)= e+z̃ψ−

(
z̃, a

)
= e+z̃ z̃+2b0(a)/mµ−

(
z̃, a

)
of (3–33) such that

ψ−

(
z̃, a

)
= ψ+

(
ωm/2 z̃, ω.a

)
.

From now on the analysis is exactly the same as in the case where m is odd, and
yields the following results.

Theorem 3.21. For m even, there exists a unique formal series

ψ+

(
z̃, a

)
= z̃−2b0(a)/mµ+

(
z̃, a

)
where µ+ ∈ C[a]Jz̃−2/mK with residual coefficient 1 (respectively,

ψ−

(
z̃, a

)
= z̃+2b0(a)/mµ−(z̃, a),
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where µ− ∈ C[a]Jz̃−2/mK with residual coefficient 1), such that e−z̃ψ+

(
z̃, a

)
(re-

spectively, e+z̃ψ−

(
z̃, a

)
) is solution of (3–33). Moreover,

(3–36) ψ−

(
z̃, a

)
= ψ+

(
ωm/2 z̃, ω.a

)
.

The formal power series ψ± are resurgent in z̃ with holomorphic dependence in a,
and Borel-resummable in z̃, uniformly with respect to a in any compact set.
There exists a set of entire functions Sk(a), the Stokes multipliers, such that

12ekiπψ−

(
z̃, a

)
= Sk(a)ψ+

(
z̃, a

)
for k ∈ 2Z,

12ekiπψ+

(
z̃, a

)
= Sk(a)ψ−

(
z̃, a

)
for k − 1 ∈ 2Z,

1τψ± = 0 otherwise,

where 1τ is the alien derivation at τ .

In this theorem, due to the fact that the formal solutions µ+ and µ− belong
to C[a]Jz−2/mK, the alien derivations need only to be indexed by elements on the
Riemann surface of z2/m . Thus, a priori, only m Stokes multipliers govern the
resurgence structure. Nevertheless, it is better to describe the resurgence structure
in terms of ψ+ and ψ−, which have to be thought of as formal functions on the
universal covering of C?.

Returning to Theorem 2.1, we finally get the desired result.

Proposition 3.22. If m is even, the analytic function80 of Theorem 2.1 is given by

(3–37) 80(x, a)=

√
x(√

Pm(x, a)− b0(a)
) 1

2

e−z̃ Sαψ+(z̃, a)
∣∣∣∣
z̃=z̃(x,a),

for x in a sectorial neighbourhood of infinity of aperture
]
−
π
m −

2α
m ,

π
m −

2α
m

[
,

uniformly in a for a in any compact set of Cm , where the direction of Borel resum-
mation α runs through ] −π,+π [.

Some properties of the Stokes multipliers. The quasi-homogeneity induces some
interesting properties of the Stokes multipliers. To simplify, we introduce the fol-
lowing notation.

Notation 3.23.

(3–38) ω = e2iπ/m .

We recall the following easy result in resurgence theory; see [Écalle 1981].

Lemma 3.24. Let ψ1(y) be a formal resurgent function and let ν be a nonzero
complex number. Setting y = νt and ψ2(t)= ψ1(y), we have

1t
ντψ2 =1y

τψ1,
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where 1x
τ denotes the alien derivation at τ with respect to the variable x .

Proposition 3.25. With the notations of Theorems 3.19 and 3.21, we have, for all
k ∈ Z,

Sk(a)= S0
(
ωk.a

)
.

Proof. In Theorems 3.19 and 3.21 we introduce t = z for m odd, and t = z̃ for m
even. From (3–31) and (3–36), we get

ψ+

(
e+iπ t, ω.a

)
= ψ−(t, a),

ψ+(t, a)= ψ−

(
e−iπ t, ω−1.a

)
.

Using Lemma 3.24 with y = eiπ t , we deduce

1
y
2ei0ψ−(y, ω.a)=1t

2eiπψ+(t, a).

Now, by the definition of S0 and S1 (Theorems 3.19 and 3.21), we have

1
y
2ei0ψ−(y, ω.a)= S0(ω.a)ψ+(y, ω.a),

1z
2eiπψ+(t, a)= S1(a)ψ−(t, a).

Finally, we obtain
S1(a)= S0(ω.a).

We complete the proof with an easy induction argument. �

Since ωm
= e2iπ , we get the following corollary.

Corollary 3.26. For all k ∈ Z,

Sk = Sk (mod m).

Stokes–Sibuya coefficients and Stokes multipliers. In order to describe the con-
nection formulas, we now have two sets of Stokes coefficients at our disposal. One
is made up of the Stokes–Sibuya coefficients Ck(a), the other is made up of the
Stokes multipliers Sk(a). The following proposition clarifies the relations between
these two fundamental data.

Theorem 3.27. We consider the Stokes–Sibuya coefficients Ck given by Theorem
2.7 and the Stokes multipliers described by Theorems 3.19 and 3.21. Then

(3–39) Sk(a)= ωr(ωk.a)Ck(a)

for all k ∈ Z, where ω is given by (3–38).

Here, r(a) is as defined in Theorem 2.1. In particular, when m is odd, then
r(a)=

1
2 −

m
4 does not depend on a, so (3–39) becomes

Sk(a)= ωr Ck(a).
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Proof. To simplify, we give the proof for odd m only, so that r =
1
2 −

m
4 .

By Proposition 3.25, and (2–7) in Theorem 2.7, it is sufficient to show (3–39)
for k = 0. By Proposition 3.17, 80 of Theorem 2.1 can be defined by

(3–40) 80(x, a)=

√
x

Pm(x, a)1/4
e−z S0ψ+(z, a)

∣∣∣∣
z=z(x,a),

for z in a sectorial neighbourhood of infinity of aperture
]
−
π
2 ,

π
2

[
, which corre-

sponds to x in a sectorial neighbourhood of infinity of aperture
]
−
π
m ,

π
m

[
. Now, by

Theorem 2.7, 81 is defined by

81(x, a)=80(ωx, ω.a).

Using (3–40), we get the representation

(3–41) 81(x, a)=

√
xω

Pm(xω,ω.a)1/4
e−z S0ψ+(z, ω.a)

∣∣∣∣
z=z(ωx,ω.a),

for81, where ωx lies in a sectorial neighbourhood of infinity of aperture
]
−
π
m ,

π
m

[
,

that is, x lies in a sectorial neighbourhood of infinity of aperture
]
−

3π
m ,−

π
m

[
, so

that z belongs to a sectorial neighbourhood of infinity of aperture
]
−

3π
2 ,−

π
2

[
. By

quasi-homogeneity considerations, we have seen that z(ωx, ω.a)=eiπ z(x, a), (see
(3–3)), so that, by (3–31) in Theorem 3.19,

ψ+(z(ωx, ω.a), ω.a)= ψ−(z, a).

Also,
Pm(ωx, ω.a)= ωm Pm(x, a).

This means that (3–41) can be written as

81(x, a)= ωr
√

x
Pm(x, a)1/4

ez Sπψ−(z, a)
∣∣∣∣
z=z(x,a)

for x in a sectorial neighbourhood of infinity of aperture
]
−

3π
m ,−

π
m

[
and z in a

sectorial neighbourhood of infinity of aperture
]
−

3π
2 ,−

π
2

[
. As for 81, we have

the representation

8−1(x, a)= ω−r
√

x
Pm(x, a)1/4

ez S−πψ−(z, a)
∣∣∣∣
z=z(x,a)

for 8−1, for x in a sectorial neighbourhood of infinity of aperture
]
π
m ,

3π
m

[
and z

in a sectorial neighbourhood of infinity of aperture
]
π
2 ,

3π
2

[
.

To compare 8−1, 80, and 81, we rotate the directions of resummation so as
to sum along the direction 0. Since 12ei0ψ−(z, a)= S0(a)ψ+(z, a) (see Theorem
3.19), ψ− is not Borel-resummable in the direction 0 if S0(a) 6= 0, but only right
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or left Borel-resummable. In other words, we have to take into account a Stokes
phenomenon. Since 1̇0ψ−(z, a) (Definition 3.11) reduces to 1̇2ei0ψ−(z, a), one
gets

S0ψ−(z, a)= ψ−(z, a)+ 1̇2ei0ψ−(z, a),

where S0 is the Stokes automorphism in the direction 0 (Definition 3.10). There-
fore,

S0−ψ−(z, a)= S0+

[
ψ−(z, a)+ e−2z S0(a)ψ+(z, a)

]
,

where S0+ (respectively, S0−) is the right (respectively, left) Borel-resummation in
the direction 0.

We obtain
(3–42)

80(x, a)=

√
x

Pm(x,a)1/4
e−z S0ψ+(z,a)

∣∣∣∣
z=z(x,a),

81(x, a)= ωr
√

x
Pm(x,a)1/4

e+z S0+ψ−(z,a)
∣∣∣∣
z=z(x,a),

8−1(x, a)= ω−r
√

x
Pm(x,a)1/4

S0+(ezψ−(z,a)+ e−z S0(a)ψ+(z,a))
∣∣∣∣
z=z(x,a).

By Theorem 2.7, we have the connection formula 8−1 = C0(a)80 + C̃0(a)81;
in this equality, replacing 8−1, 80 and 81 by the right-hand sides of (3–42) and
equating the coefficients of e−z S0ψ+ and e+z S0+ψ−, we finally get

S0(a)= ωr C0(a),

C̃0(a)= ω−2r
= ωm−2+2r ,

which completes the proof. �

4. Solutions of (Em) in the neighbourhood of the origin: Fuchs theory

In order to get more information about the Stokes–Sibuya coefficients Ck (or about
the Stokes multipliers Sk , since this is equivalent by Theorem 3.27), we have to
pick up the necessary information coming from the other singular point of (Em),
that is, the origin.

Since the origin is a regular singular point of (Em), the classical Fuchs theory
allows to describe “canonical” systems of solutions of (Em) near the origin (see,
for example, [Reinhard 1982; Wasow 1965]). The characteristic equation is

s(s − 1)− am = 0,

so that 1±p
2 are the characteristic values, with p = (1 + 4am)

1/2.
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Notation 4.1. In what follows, p = (1 + 4am)
1/2 and s(p) =

1+p
2 . We denote

a′
:= (a1, . . . , am−1) and, for all τ ∈ C,

τ.a′
:= (τa1, . . . , τ

m−1am−1).

As is well-known, we have to distinguish between the case p /∈Z, the case p ∈Z?

and the case p = 0. Since we have the freedom for choosing the determination of
the square root (1+4am)

1/2, we can avoid the case where p ∈−N? in the following
theorem.

Theorem 4.2. There exist two unique linearly independent solutions, f1 and f2, of
(Em) such that

f1(x, a′, p)= x s(p)g1(x, a′, p)= x s(p)
(

1 +

∞∑
k=1

Ak(a′, p)xk
)

f2(x, a′, p)= λ(a′, p) f1(x, a′, p) ln(x)+ x s(−p)g2(x, a′, p)

where g1 and g2 are entire functions in x and a′, while λ is entire in a′. Moreover,
g1 is meromorphic in p with at most simple poles when −p ∈ N?. Precisely,
Ak(a′, p)

∏k
l=1(p + l) ∈ C[a′, p] for all k ∈ N?.

(1) When p /∈ Z, then λ(a′, p)= 0 and g2(x, a′, p)= g1(x, a′,−p).

(2) When p ∈ N?, then

g2(x, a′, p)=

(
1 +

∞∑
k=1

Bk(a′, p)xk
)

with Bp = 0.

Moreover, Bk(a′, p) ∈ C[a′
] for all k ∈ N? and all λ(a′, p), and

λ(ω.a′, p)= ω−pλ(a′, p).

(3) When p = 0, then λ(a′, p)= 1 and

g2(x, a′, p)=

∞∑
k=1

Bk(a′, p)xk

with Bk(a′, p) ∈ C[a′
] for all k ∈ N?.

Remark 4.3. When −p ∈ N?, just change p into −p in Theorem 4.2, which
corresponds to choosing the other root for (1 + 4am)

1/2 or, equivalently, to am

making a loop around −
1
4 .

Remark 4.4. In the special case when a′
= 0, the function g1 is meromorphic in

p with at most simple poles when −p ∈ mN?.
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The existence and unicity of f1 and f2 follow from the Fuchs theory, and the
chosen normalization for g1 and g2. The properties of the coefficients Ak , Bk and
λ can be proved by induction, and this induces the analytic properties of g1, g2.
The quasi-homogeneity property of λ is a consequence of the quasi-homogeneity
of equation (Em).

The following result can be shown also by induction; see [Rasoamanana 2006].

Proposition 4.5. We consider p ∈ N? and let p = km + r , for 0 ≤ r ≤ m − 1, its
Euclidean division by m. We introduce

ε(r)=

{
1 if r 6= 0

0 if r = 0.

Then

λ(a′, p)=
1
p

p∑
l=k+ε(r)

∑
i1+···+il=p

1≤i j ≤m

am−i1 . . . am−il

i1(i1 − p) . . . (i1 + · · · + il−1)(i1 + · · · + il−1 − p)

with the convention a0 = 1.

Remark 4.6. Let p ∈ N?.
If a′

= 0, then
λ(0, p) |p 6=0 (mod m) = 0

while, for k ∈ N?,

λ(0, p) |p=km =
(−1)k+1

m2k−1k0(k)2
.

When m = 2, then

λ(a′, p)
∣∣

p=0 (mod 2) = −
1

p0(p)2

p/2∏
k=1

(a1 + 2k − 1)(a1 − 2k + 1)

λ(a′, p)
∣∣

p=1 (mod 2) =
a1

p0(p)2

(p−1)/2∏
k=1

(a1 + 2k)(a1 − 2k)

From the uniqueness of f1 and f2 in Theorem 4.2, and from the quasi-homo-
geneity of equation (Em), we easily obtain the following corollary.

Corollary 4.7. Consider the fundamental system of solutions ( f1, f2) of Theorem
4.2. Then

(4–1)
(

f1

f2

) (
ωx, ω.a′, p

)
= N(a′, p)

(
f1

f2

) (
x, a′, p

)
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with

(4–2) N(a′, p)=

(
ωs(p) 0

2iπ
m λ(a′, p)ωs(−p) ωs(−p)

)
.

Moreover

(4–3)
(

f1

f2

) (
ωm x, a′, p

)
= M(a′, p)

(
f1

f2

) (
x, a

)
where

(4–4) M(a′, p)=

(
e2iπs(p) 0

2iπλ(a′, p)e2iπs(−p) e2iπs(−p)

)
is the monodromy matrix at the origin.

5. The 0∞ connection matrices

In Section 2, we described a set of fundamental systems of solutions (8k−1,8k)

of (Em), where k ∈ Z. In Section 4, we have obtained another fundamental system
of solutions ( f1, f2). To compare these fundamental systems, we introduce, for all
k ∈ Z,

(5–1)
(
8k−1

8k

) (
x, a

)
= Mk

(
a′, p

) ( f1

f2

) (
x, a′, p

)
where the matrices Mk(a′, p) are invertible.

Definition 5.1. The matrices Mk(a′, p) are called the 0∞-connection matrices.

We now give some properties of the matrices Mk . These properties depend
essentially on p, as does the fundamental system ( f1, f2).

We start with an obvious result.

Proposition 5.2. For every k ∈ Z,

(5–2) Mk+1(a′, p)= Mk(ω.a′, p)N(a′, p)

where the invertible matrix N(a′, p) is given by (4–2).

Proof. By Theorem 2.7, we write(
8k

8k+1

) (
x, a

)
=

(
8k−1

8k

) (
ωx, ω.a

)
= Mk(ω.a′, p)

(
f1

f2

) (
ωx, ω.a′, p

)
.

Since, by the definition of N,(
f1

f2

) (
ωx, ω.a′, p

)
= N(a′, p)

(
f1

f2

) (
x, a′, p

)
,

we can conclude because ( f1, f2) is a fundamental system. �
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Theorem 5.3. (a) For every k ∈ Z,

(5–3) det Mk(a′, p)=

{
2(−1)kω(k−1)(1−m/2)+r(ωk.a)/p for p 6= 0

2(−1)k−1ω(k−1)(1−m/2)+r(ωk.a) for p = 0.

(b) For every k ∈ Z, the matrix Mk(a′, p) is entire in a′. More precisely,

(5–4) Mk(a′, p)=


Lk(a′, p) L̃k(a′, p)

2iπ
m λ(a′, p)ωs(−p) L̃k(ω.a′, p)

+ωs(p)Lk(ω.a′, p)
ωs(−p) L̃k(ω.a′, p)


where Lk(a′, p) and L̃k(a′, p) are entire in a′.

(c) For every k ∈ Z, the matrix Mk(a′, p) is holomorphic in p /∈ Z, and

L̃k(a′, p)= Lk(a′,−p)

for all p /∈ Z and all a′
∈ Cm−1. Moreover, L̃k extends analytically at p ∈ N?.

(d) For every k ∈ Z,

(5–5) Mk(a′, p)= M0
(
ωk .a′, p

) ( ωks(p) 0
2iπk

m λ(a′, p)ωks(−p) ωks(−p)

)
.

In particular,

(5–6) Mm(a′, p)= M0(a′, p)M(a′, p).

Proof. We only detail the proof for p /∈ Z.
(a) We deduce from (5–1) that

W (8k−1,8k)= det(Mk)W ( f1, f2)

where W (., .) denotes the Wronskian. From Lemma 2.5, we know that

W (8k−1,8k)= 2(−1)k−1ω(k−1)(1−m/2)+r(ωk.a),

while, by Theorem 4.2, taking the limit x →0 and using the fact that the Wronskian
is x-independent, one easily gets

W ( f1, f2)= s(−p)− s(p)= −p.

(b) From (5–1), we have(
8k−1

8k

)
(x, a)= Mk(a′, p)

(
f1

f2

)
(x, a′, p)
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for all k ∈ Z, with

Mk(a′, p)=

(
βk1(a′, p) βk2(a′, p)
βk3(a′, p) βk4(a′, p)

)
so that, in particular,

(5–7) 8k(x, a)= βk3(a′, p) f1(x, a′, p)+βk4(a′, p) f2(x, a′, p).

Then (
8k−1

8k

) (
ωx, ω.a

)
= Mk(ω.a′, p)

(
f1

f2

) (
ωx, ω.a′, p

)
.

By Proposition 5.2 and Corollary 4.7, we get(
8k

8k+1

) (
x, a

)
= Mk(ω.a′, p)

(
ωs(p) 0

0 ωs(−p)

)(
f1

f2

) (
x, a′, p

)
so that

(5–8) 8k(x, a)=ωs(p)βk1(ω.a′, p) f1(x, a′, p)+ωs(−p)βk2(ω.a′, p) f2(x, a′, p).

Comparing (5–7) and (5–8), we obtain the announced form for Mk with βk1 = Lk

and βk2 = L̃k , since ( f1, f2) is a fundamental system.
(c) We have

Mk = −
1
p

(
8k−1 8

′

k−1
8k 8′

k

)(
f ′

2 − f ′

1
− f2 f1

)
so that the analytic properties of Mk easily follow from the analytic properties of
the 8k (see Theorem 2.7) and of f1 and f2 (see Theorem 4.2).
(d) The given statement follows from Proposition 5.2, by induction, inferring from
(4–2) that N(ω.a′, p)= N(a′, p). �

In addition to Theorem 5.3, it is easy to show the following proposition (the
special case where a′

= 0 follows from Remark 4.4).

Proposition 5.4. The restriction to p /∈ Z of the function Lk(a′, p) (respectively,
L̃k(a′, p)) has a meromorphic continuation in p, with at most simple poles when
p ∈ N (respectively, −p ∈ N).

In the special case where a′
=0, the restriction to p /∈ Z of the function Lk(a′, p)

(respectively, L̃k(a′, p)) has a meromorphic continuation in p, with at most simple
poles at p ∈ mN (respectively, −p ∈ mN).

6. Monodromy, Stokes–Sibuya and 0∞ connection matrices

We collect here the different results that we have on the monodromy, Stokes–
Sibuya, and 0∞ connection matrices to obtain a set of functional relations.
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First functional equation. From the definition (5–1) of the 0∞ connection ma-
trices Mk , and the fundamental property (2–5) of the Stokes–Sibuya connection
matrices, we have, for all k ∈ Z,

Mk

(
f1

f2

)
=

(
8k−1

8k

)
= Sk

(
8k

8k+1

)
= Sk Mk+1

(
f1

f2

)
.

Since ( f1, f2) is a fundamental system, we have the following proposition.

Proposition 6.1. For all k ∈ Z,

(6–1) Sk(a)= Mk(a′, p)M−1
k+1(a

′, p).

Using (6–1), we see that

S0(a)S1(a) . . .Sm−1(a)= M0(a′, p)M−1
m (a′, p).

Using (5–6), we obtain the following theorem.

Theorem 6.2. The Stokes–Sibuya connection matrices satisfy the functional rela-
tion

(6–2) S0(a)S1(a) . . .Sm−1(a)= M0(a′, p)M−1(a′, p)M−1
0 (a′, p).

This functional relation is equivalent to formula (2–10) of Theorem 2.9. But
this new formulation is interesting due to the following two corollaries.

Corollary 6.3. We have

Tr
(
S0(a)S1(a) . . .Sm−1(a)

)
= −2 cos(pπ).

Proof. This follows from the fact that

Tr
(
M0(a′, p)M−1(a′, p)M−1

0 (a′, p)
)
= Tr

(
M−1(a′, p)

)
= −2 cos(pπ). �

Corollary 6.4. We assume that p ∈ N?. Then, with the notation of Theorem 4.2,

S0(a)S1(a) . . .Sm−1(a)
∣∣
λ(a′,p)=0 = (−1)p+1

(
1 0
0 1

)
.

Proof. From Corollary 4.7, we know that

M(a′, p)= e2iπs(p)
(

1 0
2iπλ(a′, p) 1

)
with 2s(p)= 1 + p, so that

M0(a′, p)M−1(a′, p)M−1
0 (a′, p)

∣∣
λ(a′,p)=0 = M−1(a′, p)

∣∣
λ(a′,p)=0

= (−1)p+1
(

1 0
0 1

)
. �
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Second functional equation.

Theorem 6.5. We use the notation of Theorem 5.3.

(1) Suppose that p /∈ Z, and that a satisfies L̃0(ω
k.a′, p) 6= 0 for k = 0, . . . ,m −1.

(Note that L̃0(a′, p) cannot be identically zero, so this is a generic hypothesis
on a.) Then

(6–3)
L0(a′, p)
L̃0(a′, p)

= −i
ω−3/2ω−(m+1)p/2

p sin(pπ)

m−1∑
k=0

ωr(ωk.a)+(k+1)p

L̃0(ωk.a′, p)L̃0(ωk+1.a′, p)
.

(2) Suppose that p ∈N?, and that a satisfies L̃0(ω
k.a′, p) 6=0 for k =0, . . . ,m−1.

Then

(6–4) i pπω(3+p)/2λ(a′, p)=

m−1∑
k=0

ωr(ωk.a,p)+(k+1)p

L̃0(ωk.a′, p)L̃0(ωk+1.a′, p)
.

Proof. (1) Using (5–3) and (5–4) with k = 0, we get

ωs(−p)L0(a′, p)L̃0(ω.a′, p)−ωs(p)L0(ω.a′, p)L̃0(a′, p)= −
2
pω

−1+r(a)

and, more generally, for all k = 0, . . . ,m − 1,

ωs(−p)L0(ω
k.a′,p)L̃0(ω

k+1.a′,p)−ωs(p)L0(ω
k+1.a′,p)L̃0(ω

k.a′,p)=−
2
pω

−1+r(ωk.a).

We assume a generic so that L̃0(ω
k .a′, p) 6=0 for all k =0, . . . ,m−1. The previous

equalities then become

ωs(−p) L0(ω
k.a′, p)

L̃0(ωk.a′, p)
−ωs(p) L0(ω

k+1.a′, p)
L̃0(ωk+1.a′, p)

= −
2
p

ω−1+r(ωk.a)

L̃0(ωk.a′, p)L̃0(ωk+1.a′, p)
.

From the holomorphy in a′ of L0 and L̃0, and since ωm
= e2iπ , this can be written

in the form

L


L0(a′,p)
L̃0(a′,p)
...

L0(ω
m−1.a′,p)

L̃0(ωm−1.a′,p)

= −
2ω−1

p


ωr(a)

L̃0(a′,p)L̃0(ω.a′,p)
...

ωr(ωm−1.a)

L̃0(ωm−1.a′,p)L̃0(a′,p)

 ,
where

L =


ωs(−p)

−ωs(p) 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 ωs(−p)

−ωs(p)

−ωs(p) 0 · · · 0 ωs(−p)





RESURGENT DEFORMATIONS FOR AN ODE OF ORDER 2 69

is an m×m circulant matrix whose determinant is ωms(−p)
−ωms(p). This determi-

nant does not vanish because s(p)− s(−p) = p is not an integer. The inverse of
this matrix is also a circulant matrix, specifically

L−1
=

1
ωms(−p)−ωms(p)


ω(m−1)s(−p) ω(m−2)s(−p)+s(p)

··· ωs(−p)+(m−2)s(p) ω(m−1)s(p)

ω(m−1)s(p) ω(m−1)s(−p)
··· ··· ωs(−p)+(m−2)s(p)

...
...

...
...

...

ω(m−2)s(−p)+s(p)
··· ··· ω(m−1)s(p) ω(m−1)s(−p)

 .
Since s(p)− s(−p)= p, this yields

L0(a′, p)
L̃0(a′, p)

= −
2ω−1ω(m−1)s(−p)

p
(
ωms(−p) −ωms(p)

) m−1∑
l=0

ωlp ωr(ωl.a)

L̃0
(
ωl.a′, p

)
L̃0
(
ωl+1.a′, p

)
and also

L0(a′, p)
L̃0(a′, p)

= i
ω−1ω(m−1)s(−p)

p sin(pπ)

m−1∑
l=0

ωlp ωr(ωl.a)

L̃0
(
ωl.a′, p

)
L̃0
(
ωl+1.a′, p

) .
(2) We use (5–3) and (5–4) with k = 0 and p ∈ N?. Using also the fact that
λ(ω.a′, p)= ω−pλ(a′, p) (see Theorem 4.2), we get

L


L0(a′,p)
L̃0(a′,p)
...

L0

(
ωm−1.a′,p

)
L̃0

(
ωm−1.a′,p

)
=−

2ω−1

p


ωr(a)

L̃0(a′,p)L̃0(ω.a′,p)
...

ωr(ωm−1.a)

L̃0(ωm−1.a′,p)L̃0(a′,p)

+
2iπ
m ωs(−p)λ(a′, p)

 1
...

ω−(m−1)p



where L is the previous circulant matrix. But now det(L)=ωms(−p)
−ωms(p)

= 0,
since s(p)− s(−p)= p ∈ N?. It is straightforward to see that L is of rank m − 1,
so that the compatibility condition is given by

det



ωs(−p)
−ωs(p) 0 · · · 0 α0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

0 · · · 0 ωs(−p)
−ωs(p)

0 0 · · · 0 ωs(−p) αm−2

−ωs(p) 0 · · · 0 0 αm−1


= 0

where

αk = −
2ω−1

p
ωr(ωk.a)

L̃0
(
ωk.a′, p

)
L̃0
(
ωk+1.a′, p

) +
2iπ
m
ωs(−p)ω−kpλ(a′, p).
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This means that

ω(m−1)s(−p)αm−1 +ω(m−1)s(p)αm−2

+ω(m−2)s(p)+s(−p)αm−3 + · · · +ωs(p)+(m−2)s(−p)α0 = 0,

and also, since s(p)− s(−p)= p,

αm−1 +ω(m−1)pαm−2 +ω(m−2)pαm−3 + · · · +ωpα0 = 0.

Since p is an integer, we eventually get

i pπω
3
2 +

p
2 λ(a′, p)=

ωr(ωm−1.a)

L̃0
(
ωm−1.a′, p

)
L̃0(a′, p)

+

m−2∑
k=0

ωr(ωk.a′,p)+(k+1)p

L̃0
(
ωk.a′, p

)
L̃0
(
ωk+1.a′, p

)
which completes the proof. �

Theorem 6.5 induces the following interesting result.

Corollary 6.6. The Stokes–Sibuya multiplier C0(a) satisfies the following condi-
tions.

(1) If m = 1,
C0(a)= −2 cos(pπ)

for all a ∈ C.

(2) If m = 2,

C0(a)L̃0(ω.a′, p)= −2ie−iπa1/2 cos
(
π
2 (p + a1)

)
L̃0(a′, p)

for all a′
∈ C and p /∈ −N.

(3) If m ≥ 3,

C0(a)L̃0(ω.a′, p)= ωr(a)−1+(m/4) (L̃0(a′, p)ω−r(a)+(1/2)−(m/4)+(p/2)

+L̃0(ω
2.a′, p)ωr(a)−(1/2)+(m/4)−(p/2) )

for all a′
∈ Cm−1 and p /∈ −N.

Proof. Setting k = 0 in formula (6–1) of Proposition 6.1 yields

S0(a)= M0(a′, p)M−1
1 (a′, p).

Using (5–4) and (5–5), we obtain(
C0(a) C̃0(a)

1 0

)
=(

L0(a′,p) L̃0(a′,p)

ωs(p)L0(ω.a′,p) ωs(−p) L̃0(ω.a′,p)

)(
ωs(p)L0(ω.a′,p) ωs(−p) L̃0(ω.a′,p)

ω2s(p)L0(ω
2.a′,p) ω2s(−p) L̃0(ω

2.a′,p)

)−1
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so that, with (5–3),
(6–5)

C0(a)= −
p
2ω

1−r(ω.a)
(
ω−p L0(a′,p)

L̃0(a′,p)
−ωp L0(ω

2.a′,p)
L̃0(ω2.a′,p)

)
L̃0(a′,p)L̃0(ω

2.a′,p).

We now apply formula (6–3) under the assumptions made in Theorem 6.5.
(1) When m = 1, ω= e2iπ and r(a)= 1

4 , formula (6–3) of Theorem 6.5 reduces to

L0(p)
L̃0(p)

= −
1

p sin(pπ)L̃0(p)L̃0(p)
.

This allows us to write (6–5) as

C0(a)= −
sin(2pπ)
sin(pπ)

= −2 cos(pπ).

This result extends for all a ∈ C by analytic continuation, since C0 is entire in a.
(2) When m = 2, we have ω= eiπ and r(a)= −

a1
2 . Formula (6–3) of Theorem 6.5

becomes

L0(a′, p)
L̃0(a′, p)

=
ω−3p/2

p sin(pπ)

(
ωp−a1/2

L̃0(a′, p)L̃0(ω.a′, p)
+

ω2p+a1/2

L̃0(ω.a′, p)L̃0(a′, p)

)
,

= 2
cos

(
π
2 (p + a1)

)
p sin(pπ)

1
L̃0(a′, p)L̃0(ω.a′, p)

.

This means that (6–5) becomes

C0(a)= −2ie−iπ a1
2 cos

(π
2
(p + a1)

) L̃0(a′, p)
L̃0(ω.a′, p)

.

The announced result follows by analytic continuation for all a′
∈C and all p /∈−N,

since C0 is entire in a, while L̃0 is holomorphic in a′
∈ C and p /∈ −N.

(3) When m > 2 we can write, by Theorem 6.5,

C0(a)= i
ω−

1
2ω−(m−1) p

2 −r(ω.a)

2 sin(pπ)

(
ω−p

m−1∑
l=0

ωlp+r(ωl .a)

L̃0(ωl.a′,p)L̃0(ωl+1.a′, p)

−ωp
m−1∑
l=0

ωlp+r(ωl+2.a)

L̃0(ωl+2.a)L̃0(ωl+3.a′,p)

)
L̃0(a′,p)L̃0(ω

2.a′,p)
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which equals

C0(a)= i
ω−

1
2ω−(m−1) p

2 −r(ω.a)

2 sin(pπ)

(
ω−p+r(a)

L̃0(a′,p)L̃0(ω.a′,p)
+

ωr(ω.a)

L̃0(ω.a′,p)L̃0(ω2.a′,p)

+

m−1∑
l=2

ω(l−1)p+r(ωl .a)

L̃0(ωl.a′,p)L̃0(ωl+1.a′,p)
−

m−3∑
l=0

ω(l+1)p+r(ωl+2.a)

L̃0(ωl+2.a′,p)L̃0(ωl+3.a′,p)

−
ω(m−1)p+r(a)

L̃0(a′,p)L̃0(ω.a′,p)
−

ωmp+r(ω.a)

L̃0(ω.a′,p)L̃0(ω2.a′,p)

)
L̃0(a′,p)L̃0(ω

2.a′,p).

The right-hand side of this equality simplifies to give

C0(a)= ωr(a)−1+(m/4)
(

L̃0(a′, p)
L̃0(ω.a′, p)

ω−r(a)+(1/2)−(m/4)+(p/2)
+

L̃0(ω
2.a′, p)

L̃0(ω.a′, p)
ωr(a)−(1/2)+(m/4)−(p/2)

)
.

Again, the announced result follows by analytic continuation. �

Third functional equation. In this subsection, we study a class of differential
equations (Em) with higher symmetries. For that purpose, it will be useful to
introduce new notations.

Notation 6.7. For m, n ∈ N?, we define

an = (0, . . . , 0, an, 0, . . . , 0, a2n, 0, . . . , 0, a jn, 0 . . . , 0, anm) ∈ Cnm,

that is,
an = (a j )1≤ j≤nm so that a j = 0 if j 6= 0 (mod m).

For such an an , we also define

a′

n := (a j )1≤ j≤nm−1

and

ãn :=

(
an

n2/m ,
a2n

n4/m , . . . ,
an(m−1)

n2(m−1)/m ,−
1
4

+
1 + 4anm

4n2

)
∈ Cm

ã′

n :=

( an

n2/m ,
a2n

n4/m , . . . ,
an(m−1)

n2(m−1)/m

)
∈ Cm−1.

We shall consider in this subsection the differential equation

(En
nm) x2 d2

dx28(x, an)= Pnm(x, an)8(x, an).
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This equation is a particular case of our main equation (En
nm), but its higher sym-

metry will allow us to compare its Stokes–Sibuya and 0∞ connection matrices
with those of (Em), associated with the polynomial Pm(x, ãn) of lower order.

Lemma 6.8. If 8 satisfies the differential equation (En
nm) with n,m ∈ N?, then

9 =9(x, ãn) := x (n−1)/2n8
((

n2/m x
)1/n

, an
)

satisfies the differential equation (Em) with a = ãn , that is,

(6–6) x2 d2

dx29
(
x, ãn

)
= Pm

(
x, ãn

)
9
(
x, ãn

)
.

Proof. We consider the transformation

9
(
x, ãn

)
= xα8

(
λx1/n, an

)
with α =

n−1
2n . Then

x29 ′′(x, ãn)=
λ2

n2 xα+2/n8′′(λx1/n, an)+α(α− 1)xα8(λx1/n, an).

Assuming that x28′′(x, an)= Pnm(x, an)8(x, an), one gets

x29 ′′(x, ãn)=
( 1

n2 Pnm(λx1/n, an)+α(α− 1)
)
9(x, ãn).

Setting λ= n2/nm completes the proof. �

Notation 6.9. For k ∈ Z, we denote by Cn
k (an) and C̃n

k (an) the Stokes–Sibuya
coefficients associated with (En

nm).

The above lemma induces the following corollary.

Corollary 6.10. The Stokes–Sibuya coefficients Cn
0 (an) and C̃n

0 (an) associated
with equation (En

nm) are related to the Stokes–Sibuya coefficients C0 and C̃0 of
equation (Em) by

Cn
0 (an)= ω(n−1)/2nn(2/m)−1−(4/m)rm(ãn)C0

(
ãn
)

C̃n
0 (an)= ω(n−1)/nC̃0

(
ãn
)

(6–7)

where ω = e2iπ/m .

Proof. We denote by80 the solution of (Em) that is characterized by its asymptotes

T80(x, a)= xrm(a)e−Sm(x,a)
(
1 + o(1)

)
at infinity in the sector 60 =

{
|x |> 0, | arg(x)|< 3π

m

}
(where rm = r and Sm = S

in Theorem 2.1). The Stokes–Sibuya coefficients C0 and C̃0 are defined by

(6–8) 80(ω
−1x, ω−1.a)= C0(a)80(x, a)+ C̃0(a)80(ωx, ω.a)
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with ω = e2iπ/m . We denote by 8n
0 the analog for equation (En

nm), so that

T8n
0(x, an)= xrnm(an)e−Snm(x,an)

(
1 + o(1)

)
at infinity in the sector 6n

0 =
{
|x |> 0, | arg(x)|< 3π

nm

}
(where rnm = r and Snm = S

in Theorem 2.1), and

(6–9) 8n
0(ω

−1
n x, ω−1

n .an)= Cn
0 (an)8

n
0(x, an)+ C̃n

0 (an)8
n
0(ωnx;ωn.an)

with ωn = e2iπ/mn . Introducing, by Lemma 6.8, the function

(6–10) 90(x, ãn)= x (n−1)/2n8n
0
(
(n2/m x)1/n, an

)
we get a solution of (Em) such that

T90(x, ãn)= n(2/nm)rnm(an)x (1/n)rnm(an)+(n−1)/2ne−Snm((n2/m x)1/n,an)
(
1 + o(1)

)
at infinity in the sector60. One easily checks that Snm((n2/m x)1/n, an)= Sm(x, ãn)

and 1
n rnm(an)= rm(ãn)−

n−1
2n . This means that

(6–11) 90(x, ãn)= n(2/m)rm(ãn)−(n−1)/mn80
(
x, ãn

)
.

From (6–9), one observes that

(6–12)

ω(n−1)/2n(ω−1x
)(n−1)/2n

8n
0((n

2/mω−1x)1/n, ω−1
n .an)

= Cn
0 (an)x

(n−1)/2n8n
0((n

2/m x)1/n, an)

+ω−(n−1)/2nC̃n
0 (an) (ωx)(n−1)/2n 8n

0((n
2/mωx)1/n

;ωn.an)

so that, by (6–10),
(6–13)

ω
n−1
2n 90(ω

−1x, ω−1.ãn)= Cn
0 (an)90(x, ãn)+ω

−
n−1
2n C̃n

0 (an)90(ωx, ω.ãn).

Using (6–11), one can compare this last equation with (6–8) to complete the proof.
�

Lemma 6.8 can be used also to compare the 0∞ connection matrices. We shall
use the following notations.

Notation 6.11. For k ∈ Z, we denote by L̃n
k (a

′
n, p(amn)) and Ln

k (a
′
n, p(amn)) the

coefficients of the 0∞ connection matrices associated to (En
nm), with p(amn) =

(1 + 4amn)
1/2.

Corollary 6.12. When −p(amn)/n /∈ N,
(6–14)

L̃n
0
(
a′

n, p(amn)
)
= eiπ(1−1/n)/mn−2r(ãn)/m+p(amn)/mn+1/m−1 L̃0

(
ã′

n,
p(amn)

n

)
.
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Proof. We use the notation of Theorem 4.2. We introduce the solution f1(x, a) of
(Em), where

(6–15) f1(x, a′, p(am))= x s(p(am))g1(x, a′, p(am)),

and we suppose that p(am) = (1 + 4am)
1/2 /∈ −N. Similarly, we denote by

f n
1 (x, a′

n, p(amn)) the solution of (En
nm) which can be written as

(6–16) f n
1 (x, a′

n, p(amn))= x s(p(amn))gn(x, a′

n, p(amn))

if p(amn) /∈ −N. Following Lemma 6.8, we define

(6–17) F1(x, ãn)= x (n−1)/2n f n
1
(
(n2/m x)1/n, a′

n, p(amn)
)

which is a solution of (Em) with parameter ãn . One easily checks that

(6–18) F1(x, ãn)= n2s(p(amn))/mn f1

(
x, ã′

n,
p(amn)

n

)
.

In other words,
(6–19)

f1

(
x, ã′

n,
p(amn)

n

)
= n−2s(p(amn))/mnx (n−1)/2n f n

1
(
(n2/m x)1/n, a′

n, p(amn)
)
.

Note that this allows us to extend f n
1 (x, a′

n, p(amn)) analytically for p(amn)

n /∈ −N,
and this translates to the L̃n

k (a
′
n, p(amn)) as well.

We consider the 0∞ connection matrices M1 and Mn
1 associated with (Em) and

(En
nm) respectively. We have

(6–20)
L̃1(a′,p(am))= −

1
p(am)

(
f1(x, a′,p(am))8

′

0(x, a)− f ′

1(x, a′,p(am))80(x, a)
)

and
(6–21)

L̃n
1(a

′

n,p(amn))=

−
1

p(amn)

(
f n
1 (x, a′

n,p(amn))8
n
0
′
(x, an)− f n

1
′
(x, a′

n,p(amn))8
n
0(x, an)

)
where 8n

0 was defined in the proof of Corollary 6.10. By (6–10) and (6–11), we
know that

(6–22) 80
(
x, ãn

)
= n−2r(ãn)/m+(n−1)/mnx (n−1)/2n8n

0
(
(n2/m x)1/n, an

)
.
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Equation (6–20), together with (6–19) and (6–22), yields

L̃1

(
ã′

n,
p(amn)

n

)
=

1
p(amn)

n(1−2r(ãn)−p(amn)/n)/m
(

f n
1

′
((n2/m x)1/n, a′

n,p(amn))8
n
0((n

2/m x)1/n, an)

− f n
1 ((n

2/m x)1/n, a′

n,p(amn))8
n
0
′
((n2/m x)1/n, an)

)
.

Comparing this with (6–21), we get

L̃n
1(a

′

n, p(amn))= n(2r(ãn)+p(amn)/n−1)/m L̃1

(
ã′

n,
p(amn)

n

)
.

Using formula (5–5) of Theorem 5.3, we eventually find that

L̃n
0(a

′

n, p(amn))= eiπ(1−1/n)/mn(1−2r(ãn)+p(amn)/n)/m−1 L̃0

(
ã′

n,
p(amn)

n

)
,

since r(a)+ r(ω.a)= 1 −
m
2 . �

7. Some applications

Application for a special class. Some simplifications occur when a′
= 0, allowing

to get the following proposition:

Proposition 7.1. We consider (Em) restricted to the case a′
= 0. Then

S0(0, am)=

(
2e−iπ/m cos

( pπ
m

)
−e−2iπ/m

1 0

)
where p = (1+4am)

1/2. Furthermore, for p
m /∈ Z, the 0∞ connection matrix M0 is

given by

M0(0, p)=

 eβm(−p) ω−1/2
√

mπ 0
(
−

p
m

)
eβm(p) ω−1/2

√
mπ 0

( p
m

)
ωs(p)eβm(−p) ω−1/2

√
mπ 0

(
−

p
m

)
ωs(−p)eβm(p) ω−1/2

√
mπ 0

( p
m

)


where s(p)=
1+p

2 , while βm(p) is an odd function, entire in p, such that

eβm(km)
= ±mk

for all k ∈ N?.

Remark 7.2. We shall see in Example 1 in the Appendix, by other means, that
L̃0(a) = −ei pπ 0(p)√

π
when m = 1. Moreover, r(a) =

1
4 for m = 1. Applying

Corollary 6.12 with a′
= 0, we deduce that

L̃0(0, p)= e−iπ/mm p/meiπp/m 0
( p

m

)
√

mπ
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while

L0(0, p)= e−iπ/mm−p/me−iπp/m 0
(
−

p
m

)
√

mπ
.

Proof. We note that ω.a = a and r(a) =
1
2 −

m
4 when a′

= 0. This has two
consequences.

Firstly, when applying Corollary 6.6, one immediately gets

C0(0, am)= 2e−iπ/m cos
( pπ

m

)
for p /∈ −N. Since C0(a) is an entire function in a, the above formula extends to
all am , by analytic continuation.

Secondly, formula (6–3) of Theorem 6.5 reduces into

1
L0(0, p)L̃0(0, p)

= −ωp sin
( pπ

m

)
,

which resembles the Euler reflection formula π
0(z)0(−z) = −z sin (π z). Since, by

Proposition 5.4, the restriction to p /∈ Z of the function L0(0, p) (respectively,
L̃0(0, p)) has a meromorphic continuation in p with, at most, simple poles at p ∈

mN (respectively, −p ∈ mN), we can write

L0(0, p)= α(p)
ω−1/2
√

mπ
0
(
−

p
m

)
and

L̃0(0, p)=
1

α(p)
ω−1/2
√

mπ
0
( p

m

)
where α(p) is a nowhere vanishing entire function of p. In other words,

α(p)= e−βm(p)

with βm(p) an entire function. Furthermore, also by Theorem 5.3, we know that
L0(a′,−p)= L̃0(a′, p). This means that βm can be chosen as an odd function.

Again by Theorem 5.3, we know that L̃0(a′, p) extends analytically to p ∈ N?.
Moreover, when

p = km

for some k ∈ N?, then formula (6–4) of Theorem 6.5 gives

L̃2
0(0, p)

∣∣
p=km = (−1)k+1 mω−1

pπλ(0, p)

∣∣∣∣
p=km.

By Remark 4.6, we know that

λ(0, p)
∣∣

p=km =
(−1)k+1

m2k−1k0(k)2
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and therefore

L̃2
0(0, p)

∣∣
p=km = m2k ω

−102(k)
mπ

,

that is,

L̃0(0, p)
∣∣

p=km = ±mk ω
−1/20(k)
√

mπ
. �

Application when m = 2, and consequences. We consider the case m = 2, so that
ω = eiπ and r(a)= −

a1
2 .

On the one hand, Corollary 6.3 implies

C0(a)C1(a)+ C̃0(a)+ C̃1(a)= −2 cos(pπ)

with C1(a)= C0(ω.a), where, by formula (2–7) of Theorem 2.7,

C̃0(a)= e−iπa1 and C̃1(a)= C̃0(ω.a)= eiπa1 .

This means that

C0(a)C0(ω.a)= −4 cos
(
(p + a1)

π
2

)
cos

(
(p − a1)

π
2

)
.

On the other hand, we know by Corollary 6.6 that, for a generic,

(7–1) C0(a)= −2ie−iπa1/2 cos
(
(p + a1)

π
2

) L̃0(a′, p)
L̃0(ω.a′, p)

.

Also, by formula (6–4) of Theorem 6.5, we have, when p ∈ N? and for a′
= a1

generic,

pπλ(a′, p)= 2
cos

(
(p − a1)

π
2

)
L̃0(a′, p)L̃0(ω.a′, p)

∣∣∣∣
p∈N?.

By Remark 4.6,

λ(a′, p)
∣∣

p=0 (mod 2) =
(−1)p+1

p0(p)2

p/2∏
k=1

(a1 + 2k − 1)(a1 − 2k + 1)

λ(a′, p)
∣∣

p=1 (mod 2) =
(−1)p+1

p0(p)2
a1

(p−1)/2∏
k=1

(a1 + 2k)(a1 − 2k),

so that L̃0(a′, p)L̃0(ω.a′, p)
∣∣

p∈N? equals
2(−1)(p+2)/2 cos

(
π
2 a1

)
0(p)2

π
∏p/2

k=1(a1+2k−1)(a1−2k+1)
for p even.

2(−1)(p+1)/2 sin
(
π
2 a1

)
0(p)2

πa1
∏(p−1)/2

k=1 (a1+2k)(a1−2k)
for p odd.
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This can be also written as

(7–2) L̃0(a′, p)L̃0(ω.a′, p)
∣∣

p∈N? = −
2−p+1ei pπ0(p)2

0
( p

2 +
a1
2 +

1
2

)
0
( p

2 −
a1
2 +

1
2

) .
At this point, we can use the following lemma, whose easy proof is left to the
reader.

Lemma 7.3. When p + a1 + 1 = −2N with N ∈ N, then, for p /∈ −N?,

f1(x, a1, p)= x s(p)e−x
N∑

n=0

0(p + 1)Qn(a1, p)
0(n + p + 1)

xn

where the Qn(a1, p) ∈ C[a1, p] are defined by

Q0(a1, p)= 1

(a1 + p + 1 + 2n)Qn(a1, p)− (n + 1)Qn+1(a1, p)= 0 for n ≥ 0.

In particular, f1(x, a1, p)= (−1)N 2N 0(p+1)
0(N+p+1)80(x, a).

This lemma implies that

L̃0(ω.a′, p)= 0 when p + a1 + 1 ∈ −2N and p /∈ −N?,

that is,

(7–3) L̃0(a′, p)= 0 when p − a1 + 1 ∈ −2N and p /∈ −N?.

Since the right-hand side of (7–2) has only simple zeros when p + a1 + 1 ∈ −2N,
we can write

(7–4) L̃0(a′, p)
∣∣

p∈N? = −i2−(p−1)/2eiπp/2 0(p)

0
( p

2 −
a1
2 +

1
2

)eβ(a1,p)

∣∣∣∣∣
p∈N?

with β(−a1, p) = −β(a1, p). Now when p /∈ Z, the coefficient L0(a′, p) can be
derived from formula (6–3) of Theorem 6.5. This gives

(7–5) L0(a′, p)L̃0(ω.a′, p)= 2
cos

(
(p + a1)

π
2

)
p sin(pπ)

.

We recall also that L0(a′, p) can be derived from L̃0(a′, p) just by changing p into
−p. Using (7–3) and the known analytic properties of L0(a′, p) and L̃0(a′, p)
described by Proposition 5.4, equation (7–5) shows that equation (7–4) can be
extended to all (a′, p) ∈ C2 with p /∈ −N?, so that

L̃0(a′, p)= −i2−(p−1)/2eiπp/2 0(p)

0
( p

2 −
a1
2 +

1
2

)eβ(a1,p)
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where β can be chosen as an entire function satisfying

β(−a1, p)= −β(a1, p) and β(a1,−p)= β(a1, p).

Finally, (7–1) reduces to

C0(a)= −2ie−iπa1/2 cos
(
(p + a1)

π
2

) 0( p
2 +

a1
2 +

1
2

)
0
( p

2 −
a1
2 +

1
2

)e2β(a1,p).

To summarize:

Proposition 7.4. Suppose m = 2. Then the Stokes–Sibuya multiplier C0 may be
written as

(7–6)
C0(a)= −2ie−iπa1/2 cos

(
(p + a1)

π
2

) 0( p
2 +

a1
2 +

1
2

)
0
( p

2 −
a1
2 +

1
2

)e2β(a1,p)

C̃0(a)= e−iπa1

where β is an entire function satisfying β(a1, p) = β(a1,−p) = −β(−a1, p).
Moreover, for p /∈ Z, the coefficients of the 0∞ connection matrix M0 of Theorem
5.3 satisfy

(7–7)

L̃0(a1, p)= −i2−(p−1)/2eiπp/2 0(p)

0
( p

2 −
a1
2 +

1
2

)eβ(a1,p)

L0(a1, p)L̃0(ωa1, p)= 2
cos

(
(p + a1)

π
2

)
p sin(pπ)

.

Remark 7.5. The above proposition is interesting since, for instance, it already
provides the location of the zeroes of C0 and of the other Stokes–Sibuya coeffi-
cients. However, one can be more precise using the Whittaker special functions.
We shall see in Example 2 in the Appendix that

β(a1, p)= −
1
2 ln(2)a1.

With this remark and Corollaries 6.10 and 6.12, Proposition 7.4 implies the
following consequences.

Corollary 7.6. We consider the differential equation

(En
2n) x2 d2

dx28=
(
x2n

+ anxn
+ a2n

)
8

where n ∈ N?. Then

Cn
0 (an)= 2e−iπ/2ne−iπan/2n (n

2

)an/n 0
( p

2n +
an
2n +

1
2

)
0
( p

2n −
an
2n +

1
2

) cos
(( p

2n +
an
2n

)
π
)

C̃n
0 (an)= −e−iπ/ne−iπan/n
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where p = (1 + 4a2n)
1/2. Moreover, when p /∈ −nN,

L̃n
0(a

′

n, p)= e−iπ/2neiπp/2n (n
2

)an/2n+p/2n−1/2 0
( p

n

)
0
( p

2n −
an
2n +

1
2

) .
Application when m ≥3. As a matter of fact, we shall only discuss the cases m =3
and m = 4 to show what kind of information we can extract from our analysis.

The case m = 3. In a sense, this is the first interesting case, since no special func-
tion solution of (Em) is known for m = 3. Here we have ω= e2iπ/3 and r(a)= −

1
4

is a constant function.
We first apply Corollary 6.3, to get a functional relation between the Stokes–

Sibuya multipliers:

C0(a)C1(a)C2(a)+ C̃0(a)C2(a)+ C̃1(a)C0(a)+ C̃2(a)C1(a)= −2 cos(pπ)

where, by (2–7) of Theorem 2.7,

C̃0(a)= C̃1(a)= C̃2(a)= eiπ/3.

Applying Corollary 6.6, we find

(7–8) L̃0(ω.a′, p)C0(a)= ω−1/2(L̃0(a′, p)ωp/2
+ L̃0(ω

2.a′, p)ω−p/2)
for all a′

∈ C2 and p /∈ −N.
We concentrate on the case p ∈ N?. By formula (6–4) of Theorem 6.5, we get

(7–9) i pπω7/4+p/2λ(a′, p)L̃0(a′, p)L̃0(ω.a′, p)L̃0
(
ω2.a′, p

)
=

L̃0(ω.a′, p)+ωp L̃0
(
ω2.a′, p

)
+ω2p L̃0(a′, p).

We now suppose, additionally, that a′ satisfies

λ(a′, p)L̃0(a′, p)L̃0(ω.a′, p)L̃0
(
ω2.a′, p

)
= 0.

Using the fact that L̃0(ω.a′, p)= 0 implies L̃0(a′, p)L̃0
(
ω2.a′, p

)
6= 0 necessarily

(otherwise, one of the two 0∞ connection matrices M0 or M1 is not invertible,
which is absurd), equations (7–9) and (7–8) imply that

C0(a)= C1(a)= C2(a)= −ω−1/2−3p/2
= (−1)p+1e−iπ/3.

We summarize our results:

Proposition 7.7. Suppose m =3. Then the Stokes–Sibuya multiplier C0(a) satisfies
the functional equation
(7–10)

C0(a)C0(ω.a)C0(ω
2.a)+ eiπ/3(C0(a)+ C0(ω.a)+ C0(ω

2.a)
)
= −2 cos(pπ)



82 ERIC DELABAERE AND JEAN-MARC RASOAMANANA

with p = (1 + 4a3)
1/2 and ω = e2iπ/3, whereas

(7–11) C̃0(a)= eiπ/3.

Moreover, when a3 = (p2
− 1)/4, with p ∈ N?, then

λ(a′, p)L̃0(a′, p)L̃0(ω.a′, p)L̃0
(
ω2.a′, p

)
= 0

is equivalent to C0 being a constant, specifically

C0 = (−1)p+1e−iπ/3.

We note that Proposition 7.7 can be derived from Corollary 6.4 if λ(a′, p)= 0,
while the particular case a1 = a2 = 0 is given by Proposition 7.1.

For a given p ∈ N?, the case λ(a′, p) = 0 can be seen as an isomonodromic
deformation condition, since both the monodromy at the origin and the Stokes
structure are fixed. We get the following corollary.

Corollary 7.8. For m = 3 and p ∈ N?, the condition λ(a′, p) = 0 is an isomon-
odromic deformation condition.

By computing λ(a′, p) (see Proposition 4.5), one obtains, for example, from
Proposition 7.7:

(1) If p = 1, then λ(a′, p)= a2. Therefore, for all a1 ∈ C,

C0(a1, 0, 0)= e−iπ/3.

By a Tschirnhaus transformation, this case is equivalent to the Airy equation.
This also means that L̃0(a1, 0, 1)= L̃0(0, 0, 1) so that, by Remark 7.2,

L̃0(a1, 0, 1)= e−iπ/331/3eiπ/30
( 1

3

)
√

3π
,

L0(a1, 0, 1)= e−iπ/33−1/3e−iπ/30
(
−

1
3

)
√

3π
.

(2) If p = 2, then λ(a′, p)= −
a2

2
2 +

a1
2 . We deduce that, for all a2 ∈ C,

C0
(
a2

2, a2,
3
4

)
= −e−iπ/3.

(3) If p = 3, then λ(a′, p)=
a3

2
12 −

a2a1
3 +

1
3 . Thus, for all a2 ∈ C?,

C0
( 4+a3

2
4a2

, a2, 2
)
= e−iπ/3.

Since λ(a′, p) can be computed exactly for all fixed p ∈ N?, it is natural to try
to get more informations from equation (7–9). The result is a bit disappointing, as
we now explain.
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We suppose that

(7–12) L̃0(a′, p)L̃0(ω.a′, p)L̃0(ω
2.a′, p) 6= 0.

We note that, by Remark 7.2,

L̃0(0, p)= e−iπ/33p/3eiπp/30
( p

3

)
√

3π
,

so that hypothesis (7–12) is valid for a′ in a neighbourhood of the origin. We can
write (7–9) as

(7–13) y(a′, p)+ωp y(ω.a′, p)+ω2p y(ω2.a′, p)= −pπω1−p/2λ(a′, p)

with
y(a′, p)=

1
L̃0(a′, p)L̃0(ω.a′, p)

.

Equation (7–13) can be thought of as a nonhomogeneous second order linear q-
difference equation. Unfortunately, we are in the worst situation, when q is a
root of unity, so that solving (7–13) gives very little information. Indeed, we
first observe that −

pπ
3 ω

1−p/2λ(a′, p) is a particular solution of (7–13), because
λ(ω.a′, p) = ω−pλ(a′, p). Therefore, by linearity of (7–13), one only needs to
solve the homogeneous equation

(7–14) y(a′, p)+ωp y(ω.a′, p)+ω2p y(ω2.a′, p)= 0

in the space C{a1, a2}. Writing y(a′, p) =
∑

∞

k,l=0 bk,lak
1al

2, equation (7–14) is
equivalent to

∞∑
k,l=0

(
1 +ωp+k+2l

+ω2p+2k+l)bk,lak
1al

2 = 0,

since ω3
= e2iπ . Thus y ∈ C{a1, a2} is a solution of (7–14) provided that bk,l = 0

when p + k + 2l = 0 (mod 3). This corresponds to a vector space of infinite
dimension!

To end this subsection, we mention [Slavyanov 1996] for the numerical compu-
tations of the 0∞ connection matrices.

The case m = 4. When m = 4, we have r(a)=−
1
2 −

1
2a2+

1
8a2

1 so that, by Theorem
2.7,

C̃0(a)= ie−iπ(a2−a2
1/4)/2.

Also, by Corollary 6.3,

(7–15) C0(a)C1(a)C2(a)C3(a)+ C̃0(a)C2(a)C3(a)+ C̃1(a)C0(a)C3(a)

+ C̃2(a)C0(a)C1(a)+ C̃3(a)C1(a)C2(a)

+ C̃0(a)C̃2(a)+ C̃1(a)C̃3(a)= −2 cos(pπ).
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We already know, by Corollary 7.6 with n = 2, that

(7–16) C0(0, a2, 0, a4)= 2e−iπ(a2+1)/40
( p

4 +
a2
4 +

1
2

)
0
( p

4 −
a2
4 +

1
2

) cos
(
(p + a2)

π
4

)
,

with p = (1 + 4a4)
1/2.

Propositions similar to Proposition 7.7 can be obtained for every m ≥ 3. In
particular, for m = 4, we show what happens for values of a such that a4 =

(p2
− 1)/4 with p ∈ N? and λ(a′, p) = 0. Evaluating the last row of the product

S0(a)S1(a) . . .S3(a) and applying Corollary 6.4, one gets( · · · · · ·

(C1(a)C2(a)+ C̃1(a))C3(a)+ C1(a)C̃2(a) (C1(a)C2(a)+ C̃1(a))C̃3(a)

)
= (−1)p+1

(
1 0
0 1

)
.

We have ω = eiπ/2 so that C̃2(a)= C̃0(ω
2.a)= C̃0(a). We thus get

C0(a)C1(a)+ C̃0(a)= (−1)p+1C̃−1
0 (a)

and (
C0(a)C1(a)+ C̃0(a)

)
C2(a)+ C0(a)C̃1(a)= 0.

Since C̃0(a)C̃1(a)= −1, we obtain

C0(a)= (−1)p+1C2(a), C0(a)C1(a)= (−1)p+1C̃−1
0 (a)− C̃0(a).

Computing λ(a′, p), one obtains for instance:

(1) If p = 1, then λ(a′, p)= a3. Therefore, for all (a1, a2) ∈ C2,

C0(a1, a2, 0, 0)= C2(a1, a2, 0, 0),

C0(a1, a2, 0, 0)C1(a1, a2, 0, 0)= −2i cos
(
(a2 −

1
4a2

1)
π
2

)
.

This case corresponds to the Weber equation. By a Tschirnhaus transforma-
tion, one can use equation (7–16) to get

C0(a1, a2, 0, 0)=

2e−iπ/4e−iπ(a2−a2
1/4)/4

0
(a2

4 −
1
16a2

1+
3
4

)
0
(
−

a2
4 +

1
16a2

1 +
3
4

) cos
((

a2−
1
4a2

1+1
)
π
4

)
.

By the Euler reflection formula and the duplication formula for the Gamma
function, one gets the usual well-known formula (see [Sibuya 1975]).
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Comparing this result with (7–16), it is tempting to conjecture that

C0(a1, a2, 0, a4)= 2e−iπ(a2+1−a2
1/4)/4

0
( p

4 +
a2
4 −

1
16a2

1+
1
2

)
0
( p

4 −
a2
4 +

1
16a2

1+
1
2

) cos
((

p+a2−
1
4a2

1
)
π
4

)
.

(This satisfies the functional relation (7–15), but also the known order-1 Taylor
expansion; see [Bakken 1977]).

(2) If p = 2, then λ(a′, p)= −
1
2a2

3 +
1
2a2. We deduce that, for all (a1, a3) ∈ C2,

C0
(
a1, a2

3, a3,
3
4

)
= −C2

(
a1, a2

3, a3,
3
4

)
,

C0
(
a1, a2

3, a3,
3
4

)
C1
(
a1, a2

3, a3,
3
4

)
= −2 sin

((
a2

3 −
1
4a2

1
)
π
2

)
.

(3) If p = 3, then λ(a′, p)=
1
12a3

3 −
1
3a2a3 +

1
3a1. Thus, for all (a2, a3) ∈ C2,

C0
(
−

1
4a3

3 + a2a3, a2, a3, 2
)
= C2

(
−

1
4a3

3 + a2a3, a2, a3, 2
)
,

C0
(
−

1
4a3

3 + a2a3, a2, a3, 2
)
C1
(
−

1
4a3

3 + a2a3, a2, a3, 2
)
=

− 2i cos
((

a2 −
1
4

(
−

1
4a3

3 + a2a3
)2)π

2

)
.

Appendix: Using special functions

Example 1: a normal form of Heun’s equation. We consider the equation

(E1) x28′′
= (x + a)8.

This is the simplest case, when m = 1. In this case, the Stokes–Sibuya connection
matrix S0 is given by Proposition 7.1. This proposition provides also the 0∞

connection matrix M0, up to an odd entire function of p = (1 + 4a)1/2, which we
are going to compute here thanks to the fact that the above normal form (E1) of
Heun’s equation reduces to a modified Bessel equation. Indeed, setting

(A–1) t = 2x1/2, 9(t)= x−1/28(x),

equation (E1) is converted into the equation

(A–2) t29 ′′(t)+ t9 ′(t)− (t2
+ p2)9(t)= 0, p = (1 + 4a)1/2,

which is a modified Bessel equation of parameter p. Thus, we can use the well-
known special functions associated with the modified Bessel equation.

We assume that p = (1 + 4a)1/2 /∈ Z.
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With the notations of Theorem 4.2, one easily gets the fundamental system of
solutions ( f1, f2) of (E1) in the form
(A–3)

f1(x,p)=0(p+1)
√

x Ip(2
√

x), Ip(t)=
( t

2

)p
+∞∑
n=0

1
n!0(n+p+1)

( t
2

)2n
,

f2(x,p)=0(−p+1)
√

x I−p(2
√

x), I−p(t)=
( t

2

)−p
+∞∑
n=0

1
n!0(n−p+1)

( t
2

)2n
,

where Ip is the modified Bessel function (or Bessel function of imaginary argu-
ment) of order p; see [Olver 1974].

Remark A.9. We recall that the functions Ip and I−p are very closely connected
to the Bessel functions Jp and J−p of the first kind by

Ip(t)= e−i pπ/2 Jp(i t), I−p(t)= ei pπ/2 J−p(i t);

see [Olver 1974].

Now, thanks to Theorem 2.1, there exists an unique solution80 of (E1), asymp-
totic at infinity to T80(x, a) = e−2

√
x x1/4φ0(x, a) with φ0 ∈ C[a]Jx−1/2K in the

sector −3π < arg(x) < 3π . Specifically,

(A–4) T80(x, a)= e−2
√

x x1/4

(
1 +

+∞∑
n=1

(4p2
− 1) . . . (4p2

− (2n − 1)2)
n!16nxn/2

)

in 60 =
{
| arg(x)| < 3π

}
. Also, by Lemma 2.3 and Theorem 2.7, we have a

fundamental system (80,81) of solutions of (E1), where 81 is characterized by
the asymptotic expansion at infinity

(A–5) T81(x, a)= e2
√

xω1/4x1/4
(

1 +

+∞∑
n=1

(−1)n
(4p2

−1) . . . (4p2
−(2n−1)2)

n!16nxn/2

)
in 61 =

{
| arg(x)+ 2π | < 3π

}
, where ω = e2iπ . As we shall see, these functions

80 and 81 can be expressed in terms of the MacDonald functions K (1)
p and K (2)

p .
The MacDonald functions K (1)

p (t) and K (2)
p (t) are analytic functions in the

variable t for t nonzero; they are linearly independent (W
(
K (1)

p , K (2)
p
)

=
π
t ) and

solutions of the modified Bessel equation (A–2). These functions are derived from
the Hankel functions by the relationships

(A–6)
K (1)

p (t)=
1
2 iπepiπ/2 H (1)

p (i t),

K (2)
p (t)=

1
2πe−piπ/2 H (2)

p (i t).
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Furthermore, they admit, respectively, asymptotic expansions T K (1)
p and T K (2)

p of
the form

(A–7) T K (1)
p (t)=

( π
2t

)1/2
e−t
(

1 +

+∞∑
n=1

(4p2
− 1) . . . (4p2

− (2n − 1)2)
n! 8ntn

)
in 6̃0 =

{
| arg(t)|< 3π

2

}
, and

(A–8) T K (2)
p (t)=

( π
2t

)1/2
et
(

1 +

+∞∑
n=1

(−1)n
(4p2

− 1) . . . (4p2
− (2n − 1)2)

n! 8ntn

)
in 6̃1 =

{
| arg(t)+ π | < 3π

2

}
, when t tends to infinity (see [Olver 1974]). Using

(A–1) and (A–2), we deduce by uniqueness of 80 (respectively, 81), comparing
(A–7) with (A–4) (respectively, (A–8) with (A–5)), that

80(x, a)=
2

√
π

√
x K (1)

p (2
√

x),(A–9)

81(x, a)=
2

√
π
ω1/4√x K (2)

p (2
√

x).(A–10)

Recalling the connection formulas (see [Olver 1974]),

Jp(t)=
1
2(H

(1)
p (t)+ H (2)

p (t)),

J−p(t)=
1
2(e

i pπ H (1)
p (t)+ e−i pπ H (2)

p (t)),

we deduce, from Remark A.9 and (A–6),

(A–11)
Ip(t)=

e−i pπ

iπ
K (1)

p (t)+ 1
π

K (2)
p (t),

I−p(t)=
ei pπ

iπ
K (1)

p (t)+ 1
π

K (2)
p (t).

Putting (A–3), (A–9), (A–10) and (A–11) together, we obtain

(A–12)
(

f1

f2

)
(x, p)=

 −i 0(p+1)
2
√
π

e−i pπ
−i 0(p+1)

2
√
π

−i 0(−p+1)
2
√
π

ei pπ
−i 0(−p+1)

2
√
π

( 80

81

)
(x, a)

where the matrix on the right-hand side of this equality is the inverse of the 0∞

connection matrix M1 (see (5–1)). By Proposition 5.2 we deduce

M0(p)=

 −e−i pπ 0(−p)
√
π

−ei pπ 0(p)√
π

0(−p)
√
π

0(p)
√
π

 .
Remark A.10. This result is consistent with Proposition 7.1 and Remark 7.2.
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Example 2: a normal form of Whittaker’s equation. We now focus on the equa-
tion

(E2) x28′′
= (x2

+ a1x + a2)8.

This equation reduces to the Whittaker equation. Indeed, the transformation

x =
t
2 , φ(t)=8(x)

converts equation (E2) into

φ′′(t)=
( 1

4 +
a1
2t +

a2
t2

)
φ(t)

which is the Whittaker equation of parameters

k = −
a1
2 and n =

p
2 =

( 1
4 + a2

)1/2
.

In what follows, we shall make a heavy use of the known properties of the special
functions associated with the Whittaker equation, see for instance [Olver 1974].

Study near the origin. We assume here that p = (1 + 4a2)
1/2 /∈ Z, that is, 2n /∈ Z.

The fundamental system ( f1, f2) of solutions of Theorem 4.2 can be written

(A–13)
f1(x, a1, p)= 2−n−1/2 Mk,n(2x),

f2(x, a1, p)= 2n−1/2 Nk,n(2x)

where

Mk,n(t)= e−t/2tn+1/2 M
(
n − k +

1
2 , 2n + 1, t

)
,

M(α, c, t)=

+∞∑
s=0

(α)s

(c)s

t s

s!
,

Nk,n(t)= e−t/2tn+1/2 N
(
n − k +

1
2 , 2n + 1, t

)
,

N (α, c, t)= t1−c M(1 +α− c, 2 − c, t),

with Pochhammer’s notation: (α)0 = 1, (α)s = α(α+ 1) . . . (α+ s − 1).

Remark A.11. The function Mk,n is called a Whittaker function and M(α, c, t) is
called the Kummer function (which is an entire function in t).

Study at infinity. In Theorem 2.1, the solution 80 of (E2) can be characterized by
its asymptotics. Since r(a)= −

1
2a1 = k and ω = eiπ , we have

T80(x, a)= xke−xφ0(x, a),

with φ0(x, a)∈C[a1, a2]Jx−1K with constant term 1 in the sector arg x ∈
]
−

3π
2 ,

3π
2

[
.
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In the same way, 81 is characterized by its asymptotics,

T81(x, a)= ω−k x−kexφ1(x, a)

where φ1(x, a) ∈ C[a1, a2]Jx−1K with constant term 1 in the same sector.
In fact, these two functions80 and81 can be expressed in terms of the functions

U and V of the confluent hypergeometric equation

t
d2 f
dt2 + (c − t)

d f
dt

−α f = 0.

Proposition A.12.
80(x, a)= 2−k Wk,n(2x),

where

Wk,n(t)= e−t/2tn+1/2U
(
n − k +

1
2 , 2n + 1, t

)
,

U (α, c, t)∼ t−α

+∞∑
s=0

(−1)s(1 +α− c)s
s!t s

in the sector | arg(t)|< 3π
2 , and

81(x, a)= i2kenπ i Vk,n(2x)

where

Vk,n(t)= e−
t
2 tn+1/2V

(
n − k +

1
2 , 2n + 1, t

)
,

V (α, c, t)∼ et(eiπ t)α−c
+∞∑
s=0

(c −α)s(1 −α)s

s!t s

in the sector | arg(t)+π |< 3π
2 .

Remark A.13. Wk,n is also called a Whittaker function; see [Olver 1974].

Connection formulas. We recall the connection formula

M(α, c, t)= 0(c)
( e−απ i

0(c −α)
U (α, c, t)+

e(c−α)π i

0(α)
V (α, c, t)

)
;

see [Olver 1974]. Therefore

Mk,n(2x)=
−ie(k−n)π i0(2n + 1)

0(n + k +
1
2)

Wk,n(2x)+
ie(k+n)π i0(2n + 1)

0(n − k +
1
2)

Vk,n(2x),

which means that
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(A–14) f1(x, a1, p)= −ieiπ(k−n) 2k−n0(2n + 1)
√

20
(
n + k +

1
2

)80(x, a)

+ eiπk 2−k−n0(2n + 1)
√

20
(
n − k +

1
2

)81(x, a).

Furthermore, thanks to the connection formula (see [Olver 1974])

U (α, c, t)=
0(1 − c)

0(1 +α− c)
M(α, c, t)−

0(c)0(1 − c)
0(α)0(2 − c)

N (α, c, t),

we deduce that

N (α, c, t)=
e(c−α)π i0(2 − c)
0(1 +α− c)

V (α, c, t)

+

( 0(α)0(2 − c)e−απ i

0(1 +α− c)0(c −α)
−
0(α)0(2 − c)
0(c)0(1 − c)

)
U (α, c, t)

so that

Nk,n(2x)=

(e(n+k+1/2)π i0(1 − 2n)

0
(
−n − k +

1
2

) )
Vk,n(2x)

+

(
0
(
n−k+

1
2

)
0(1−2n)e−(n−k+1/2)π i

0
(
−n−k+

1
2

)
0
(
n+k+

1
2

) −
0
(
n−k+

1
2

)
0(1−2n)

0(2n + 1)0(−2n)

)
Wk,n(2x),

that is,

f2(x, a1, p)=(
−i2k+ne(k−n)π i0(1 − 2n)0

(
n−k+

1
2

)
√

20
(
n+k+

1
2

)
0
(
−n−k+

1
2

) −
2k+n0(1−2n)0

(
n−k+

1
2

)
√

20(2n+1)0(−2n)

)
80(x, a)

+

(
2n−kekπ i0(1−2n)
√

20
(
−n−k+

1
2

) )81(x, a).

Hence

(A–15) f2(x, a1, p)= −ieiπ(n+k) 2k+n0(1 − 2n)
√

20
(
−n + k +

1
2

)80(x, a)

+ eiπk 2n−k0(1 − 2n)
√

20
(
−n − k +

1
2

)81(x, a).

Formulas (A–14) and (A–15) yield the inverse of the 0∞ connection matrix M1.
Going back to the variables p and a1, one gets
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(A–16) M−1
1 (a1, p)=


−ieiπ(−a1−p)/2 2(−a1−p)/20(p+1)

√
20
(

p
2 −

a1
2 +

1
2

) e−iπa1/2 2(a1−p)/20(p+1)
√

20
(

p
2 +

a1
2 +

1
2

)
−ieiπ(−a1+p)/2 2(−a1+p)/20(1−p)

√
20
(
−

p
2 −

a1
2 +

1
2

) e−iπa1/2 2(a1+p)/20(1−p)
√

20
(
−

p
2 +

a1
2 +

1
2

)
.

Using Proposition 5.2 we deduce that

(A–17) M0(a1, p)=


−ie−iπp/2 21+(−a1+p)/20(−p)

√
20
(
−

p
2 −

a1
2 +

1
2

) −ieiπp/2 21+(−a1−p)/20(p)
√

20
(

p
2 −

a1
2 +

1
2

)
21+(a1+p)/20(−p)
√

20
(
−

p
2 +

a1
2 +

1
2

) 21+(a1−p)/20(p)
√

20
(

p
2 +

a1
2 +

1
2

)
 .

Remark A.14. This result is consistent with Theorem 5.3. Also, with the notations
of Theorem 5.3, we have found

L̃0(a1, p)= −ieiπp/2 21+(−a1−p)/20(p)
√

20
( p

2 −
a1
2 +

1
2

) .
In particular, when a1 = 0 we get, using the Legendre duplication formula for the
Gamma function,

L̃0(0, p)= 2p/2eiπp/2 (−i)
√

2π
0
( p

2

)
,

a result which agrees also with Proposition 7.1 and Remark 7.2.

By formula (6–1) of Theorem 6.2, we have S0(a)= M0(a1, p)M−1
1 (a1, p) and

the result extends to 2n ∈ Z by analytic continuation, since S0 is entire. We even-
tually get the following proposition.

Proposition A.15. We assume m = 2. Then, for all a = (a1, a2) ∈ C2, the Stokes–
Sibuya connection matrix S0 is given by

S0(a)=

 −2ie−iπa1/22−a1
0
(

p
2 +

a1
2 +

1
2

)
0
(

p
2 −

a1
2 +

1
2

) cos
(( p

2 +
a1
2

)
π
)

e−iπa1

1 0

 ,
where

p = (1 + 4a2)
1/2.

Moreover, when p /∈ Z, the 0∞ connection matrix M0 is given by formula (A–17).

References

[Bakken 1977] I. Bakken, “On the central connection problem for a class of ordinary differential
equations, I and II”, Funkcial. Ekvac. 20:2 (1977), 115–156. MR 58:17365a Zbl 0386.34009

[Bender et al. 1999] C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum
mechanics”, J. Math. Phys. 40:5 (1999), 2201–2229. MR 2001d:81017 Zbl 1057.81512

[Bender et al. 2002] C. M. Bender, M. V. Berry, and A. Mandilara, “Generalized PT symmetry and
real spectra”, J. Phys. A 35:31 (2002), L467–L471. MR 2003m:81062 Zbl 02071787

http://www.ams.org/mathscinet-getitem?mr=58:17365a
http://www.emis.de/cgi-bin/MATH-item?0386.34009
http://www.ams.org/mathscinet-getitem?mr=2001d:81017
http://www.emis.de/cgi-bin/MATH-item?1057.81512
http://www.ams.org/mathscinet-getitem?mr=2003m:81062
http://www.emis.de/cgi-bin/MATH-item?02071787


92 ERIC DELABAERE AND JEAN-MARC RASOAMANANA

[Candelpergher et al. 1993a] B. Candelpergher, J.-C. Nosmas, and F. Pham, Approche de la résur-
gence, Hermann, Paris, 1993. MR 95e:34005 Zbl 0791.32001

[Candelpergher et al. 1993b] B. Candelpergher, J.-C. Nosmas, and F. Pham, “Premiers pas en calcul
étranger”, Ann. Inst. Fourier (Grenoble) 43:1 (1993), 201–224. MR 94f:34104 Zbl 0785.30017

[Costin 1998] O. Costin, “On Borel summation and Stokes phenomena for rank-1 nonlinear sys-
tems of ordinary differential equations”, Duke Math. J. 93:2 (1998), 289–344. MR 99h:34003
Zbl 0948.34068

[Delabaere and Pham 1997] E. Delabaere and F. Pham, “Unfolding the quartic oscillator”, Ann.
Physics 261:2 (1997), 180–218. MR 99k:81065 Zbl 0977.34052

[Delabaere and Pham 1998] E. Delabaere and F. Pham, “Eigenvalues of complex Hamiltonians with
PT-symmetry, I”, Phys. Lett. A 250:1-3 (1998), 25–28. MR 2000k:81079

[Delabaere and Pham 1999] E. Delabaere and F. Pham, “Resurgent methods in semi-classical asymp-
totics”, Ann. Inst. H. Poincaré Phys. Théor. 71:1 (1999), 1–94. MR 2000f:34108 Zbl 0977.34053

[Delabaere and Trinh 2000] E. Delabaere and D. T. Trinh, “Spectral analysis of the complex cubic
oscillator”, J. Phys. A 33:48 (2000), 8771–8796. MR 2001k:81064 Zbl 1044.81555

[Delabaere et al. 1993] É. Delabaere, H. Dillinger, and F. Pham, “Résurgence de Voros et périodes
des courbes hyperelliptiques”, Ann. Inst. Fourier (Grenoble) 43:1 (1993), 163–199. MR 94i:34115
Zbl 0766.34032

[Delabaere et al. 1997] E. Delabaere, H. Dillinger, and F. Pham, “Exact semiclassical expansions for
one-dimensional quantum oscillators”, J. Math. Phys. 38:12 (1997), 6126–6184. MR 99c:81041
Zbl 0896.34051

[Dieudonné 1968] J. Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968. MR 37:2557 Zbl
0155.10001

[Dorey et al. 2001] P. Dorey, C. Dunning, and R. Tateo, “Spectral equivalences, Bethe ansatz equa-
tions, and reality properties in PT-symmetric quantum mechanics”, J. Phys. A 34:28 (2001), 5679–
5704. MR 2002i:81070 Zbl 0982.81021

[Écalle 1981] J. Écalle, “Les algèbres de fonctions résurgentes”, Publ. Math. d’Orsay 81-05, Uni-
versité de Paris-Sud, Orsay, 1981. MR 84h:30077a Zbl 0499.30034

[Écalle 1985] J. Écalle, “L’équation du pont et la classification analytique des objets locaux”, Publ.
Math. d’Orsay 85-05, Université de Paris-Sud, Orsay, 1985. MR 87k:32009 Zbl 0602.30029

[Fedoryuk 1983] M. V. Fedoryuk, Asimptotiqeskie metody dl� lineinyh obyknoven-
nyh differencialnyh uravnenii, Nauka, Moscow, 1983. MR 85m:34001 Zbl 0538.34001

[Gelfreich and Sauzin 2001] V. Gelfreich and D. Sauzin, “Borel summation and splitting of separa-
trices for the Hénon map”, Ann. Inst. Fourier (Grenoble) 51:2 (2001), 513–567. MR 2002d:37045
Zbl 0988.37031

[Kawai and Takei 1994] T. Kawai and Y. Takei, “Secular equations through the exact WKB analy-
sis”, pp. 85–102 in Analyse algébrique des perturbations singulières (Marseille and Luminy, 1991),
vol. I, edited by L. Boutet de Monvel, Travaux en Cours 47, Hermann, Paris, 1994. MR 95i:81053
Zbl 0834.34068

[Loday-Richaud 1995] M. Loday-Richaud, “Solutions formelles des systèmes différentiels linéaires
méromorphes et sommation”, Exposition. Math. 13:2-3 (1995), 116–162. MR 96i:34124 Zbl 0831.
34002

[Malgrange 1995] B. Malgrange, “Sommation des séries divergentes”, Exposition. Math. 13:2-3
(1995), 163–222. MR 96i:34125 Zbl 0836.40004

http://www.ams.org/mathscinet-getitem?mr=95e:34005
http://www.emis.de/cgi-bin/MATH-item?0791.32001
http://www.ams.org/mathscinet-getitem?mr=94f:34104
http://www.emis.de/cgi-bin/MATH-item?0785.30017
http://www.ams.org/mathscinet-getitem?mr=99h:34003
http://www.emis.de/cgi-bin/MATH-item?0948.34068
http://www.ams.org/mathscinet-getitem?mr=99k:81065
http://www.emis.de/cgi-bin/MATH-item?0977.34052
http://www.ams.org/mathscinet-getitem?mr=2000k:81079
http://www.ams.org/mathscinet-getitem?mr=2000f:34108
http://www.emis.de/cgi-bin/MATH-item?0977.34053
http://www.ams.org/mathscinet-getitem?mr=2001k:81064
http://www.emis.de/cgi-bin/MATH-item?1044.81555
http://www.ams.org/mathscinet-getitem?mr=94i:34115
http://www.emis.de/cgi-bin/MATH-item?0766.34032
http://www.ams.org/mathscinet-getitem?mr=99c:81041
http://www.emis.de/cgi-bin/MATH-item?0896.34051
http://www.ams.org/mathscinet-getitem?mr=37:2557
http://www.emis.de/cgi-bin/MATH-item?0155.10001
http://www.emis.de/cgi-bin/MATH-item?0155.10001
http://www.ams.org/mathscinet-getitem?mr=2002i:81070
http://www.emis.de/cgi-bin/MATH-item?0982.81021
http://www.ams.org/mathscinet-getitem?mr=84h:30077a
http://www.emis.de/cgi-bin/MATH-item?0499.30034
http://www.ams.org/mathscinet-getitem?mr=87k:32009
http://www.emis.de/cgi-bin/MATH-item?0602.30029
http://www.ams.org/mathscinet-getitem?mr=85m:34001
http://www.emis.de/cgi-bin/MATH-item?0538.34001
http://www.ams.org/mathscinet-getitem?mr=2002d:37045
http://www.emis.de/cgi-bin/MATH-item?0988.37031
http://www.ams.org/mathscinet-getitem?mr=95i:81053
http://www.emis.de/cgi-bin/MATH-item?0834.34068
http://www.ams.org/mathscinet-getitem?mr=96i:34124
http://www.emis.de/cgi-bin/MATH-item?0831.34002
http://www.emis.de/cgi-bin/MATH-item?0831.34002
http://www.ams.org/mathscinet-getitem?mr=96i:34125
http://www.emis.de/cgi-bin/MATH-item?0836.40004


RESURGENT DEFORMATIONS FOR AN ODE OF ORDER 2 93

[Mullin 1968] F. E. Mullin, “On the regular perturbation of the subdominant solution to second order
linear ordinary differential equations with polynomial coefficients”, Funkcial. Ekvac. 11 (1968), 1–
38. MR 39:3112 Zbl 0266.34052

[Olver 1974] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974.
MR 55:8655 Zbl 0303.41035

[Ramis 1993] J.-P. Ramis, Séries divergentes et théories asymptotiques, Panoramas et Synthèses
(suppl. au Bull. Soc. Math. France 121), 1993. MR 95h:34074 Zbl 0830.34045

[Rasoamanana 2006] J.-M. Rasoamanana, Étude résurgente d’une classe d’équations différentielles
de type Schrödinger, Ph.D. thesis, Université d’Angers, 2006.

[Reinhard 1982] H. Reinhard, Équations différentielles, Gauthier-Villars, Paris, 1982. Revised and
updated translation: Differential equations: foundations and applications, North Oxford Academic,
London, 1986. MR 84g:34002 Zbl 0495.34002

[Shin 2002] K. C. Shin, “On the reality of the eigenvalues for a class of PT-symmetric oscillators”,
Comm. Math. Phys. 229:3 (2002), 543–564. MR 2003g:34188 Zbl 1017.34083

[Sibuya 1975] Y. Sibuya, Global theory of a second order linear ordinary differential equation with
a polynomial coefficient, North-Holland, Amsterdam, 1975. MR 58:6561 Zbl 0322.34006

[Slavyanov 1996] S. Y. Slavyanov, Asymptotic solutions of the one-dimensional Schrödinger equa-
tion, Translations of Mathematical Monographs 151, American Mathematical Society, Providence,
RI, 1996. MR 97f:34001 Zbl 0847.34007

[Trinh 2005] D. T. Trinh, “Coefficients de Stokes du modèle cubique: point de vue de la résurgence
quantique”, Ann. Fac. Sci. Toulouse Math. (6) 14:1 (2005), 71–103.

[Voros 1983] A. Voros, “The return of the quartic oscillator: the complex WKB method”, Ann. Inst.
H. Poincaré Sect. A (N.S.) 39:3 (1983), 211–338. MR 86m:81051 Zbl 0526.34046

[Voros 2000] A. Voros, “Exercises in exact quantization”, J. Phys. A 33:41 (2000), 7423–7450.
MR 2002c:81053 Zbl 0991.81023

[Wasow 1965] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Ap-
plied Mathematics 14, Interscience, New York, 1965. MR 34:3041 Zbl 0133.35301

Received March 5, 2004.

ERIC DELABAERE

DÉPARTEMENT DE MATHÉMATIQUES

UMR CNRS 6093
UNIVERSITÉ D’ANGERS

2 BOULEVARD LAVOISIER

49045 ANGERS CEDEX 01
FRANCE

eric.delabaere@univ-angers.fr

JEAN-MARC RASOAMANANA

DÉPARTEMENT DE MATHÉMATIQUES

UMR CNRS 6093
UNIVERSITÉ D’ANGERS

2 BOULEVARD LAVOISIER

49045 ANGERS CEDEX 01
FRANCE

jean-marc.rasoamanana@univ-angers.fr

http://www.ams.org/mathscinet-getitem?mr=39:3112
http://www.emis.de/cgi-bin/MATH-item?0266.34052
http://www.ams.org/mathscinet-getitem?mr=55:8655
http://www.emis.de/cgi-bin/MATH-item?0303.41035
http://www.ams.org/mathscinet-getitem?mr=95h:34074
http://www.emis.de/cgi-bin/MATH-item?0830.34045
http://www.ams.org/mathscinet-getitem?mr=84g:34002
http://www.emis.de/cgi-bin/MATH-item?0495.34002
http://www.ams.org/mathscinet-getitem?mr=2003g:34188
http://www.emis.de/cgi-bin/MATH-item?1017.34083
http://www.ams.org/mathscinet-getitem?mr=58:6561
http://www.emis.de/cgi-bin/MATH-item?0322.34006
http://www.ams.org/mathscinet-getitem?mr=97f:34001
http://www.emis.de/cgi-bin/MATH-item?0847.34007
http://www.ams.org/mathscinet-getitem?mr=86m:81051
http://www.emis.de/cgi-bin/MATH-item?0526.34046
http://www.ams.org/mathscinet-getitem?mr=2002c:81053
http://www.emis.de/cgi-bin/MATH-item?0991.81023
http://www.ams.org/mathscinet-getitem?mr=34:3041
http://www.emis.de/cgi-bin/MATH-item?0133.35301
mailto:eric.delabaere@univ-angers.fr
mailto:jean-marc.rasoamanana@univ-angers.fr

	1. Introduction
	2. Solutions of (Em) in the neighbourhood of infinity: classical asymptotics
	3. Solutions of (Em) in the neighbourhood of infinity: resurgent point of view
	4. Solutions of (Em) in the neighbourhood of the origin: Fuchs theory
	5. The 0 connection matrices
	6. Monodromy, Stokes--Sibuya and 0 connection matrices
	7. Some applications
	Appendix: Using special functions
	References

