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We prove that Whitehead’s algorithm for solving the automorphism prob-
lem in a fixed free group Fk has strongly linear time generic-case complexity.
This is done by showing that the “hard” part of the algorithm terminates
in linear time on an exponentially generic set of input pairs. We then apply
these results to one-relator groups. We obtain a Mostow-type isomorphism
rigidity result for random one-relator groups: If two such groups are iso-
morphic then their Cayley graphs on the given generating sets are isomet-
ric. Although no nontrivial examples were previously known, we prove that
one-relator groups are generically complete groups, that is, they have triv-
ial center and trivial outer automorphism group. We also prove that the
stabilizers of generic elements of Fk in Aut(Fk) are cyclic groups generated
by inner automorphisms and that Aut(Fk)-orbits are uniformly small in the
sense of their growth entropy. We further prove that the number Ik(n) of
isomorphism types of k-generator one-relator groups with defining relators
of length n satisfies

c1

n
(2k − 1)n

≤ Ik(n) ≤
c2

n
(2k − 1)n,

where c1, c2 are positive constants depending on k but not on n. Thus Ik(n)

grows in essentially the same manner as the number of cyclic words of
length n.

1. Introduction

The famous Mostow Rigidity Theorem [1973] says that if M1 and M2 are complete
connected hyperbolic manifolds of finite volume and dimension n ≥ 3 then their
fundamental groups are isomorphic if and only if the manifolds themselves are
isometric. For a finitely generated group G with a finite generating set A the
naturally associated geometric object is the Cayley graph 0(G, A). Thus one
might say that a class of groups equipped with specified finite generating sets
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has the isomorphism rigidity property if whenever two groups from this class
are isomorphic then their Cayley graphs on the given generating sets are iso-
metric. Phenomena of this type were known for various classes of Coxeter and
Artin groups; see, for example, [Rosas 1988; Prassidis and Spieler 2000; Bahls
2003; Brady et al. 2002; Mühlherr and Weidmann 2002]. In the present paper
we obtain the first result of this kind for a class of groups given in terms of
“general” finite presentations. We prove that if two “random” one-relator groups
Gu = 〈a1, . . . , ak |u = 1〉 and Gv = 〈a1, . . . , ak |v = 1〉 are isomorphic then their
Cayley graphs 0(Gu, {a1, . . . , ak}) and 0(Gv, {a1, . . . , ak}) are isometric. Indeed,
their Cayley graphs are isomorphic as labeled graphs by a graph isomorphism
which is only allowed to permute the label set {a1, . . . , ak}

±1. This provides a con-
ceptually new source of group-theoretic rigidity given by “random” or “generic”
groups. Such rigidity arises not from structural restrictions, such as the structure
of flats or of finite subgroups, but rather from the rigidity of “randomness” itself.

The theorems in this paper are based on combining very different probabilistic
and algebraic techniques: the generic-case analysis of Whitehead’s algorithm in
this paper and the results of [Kapovich and Schupp 2005a] on the Nielsen unique-
ness property for generic groups that utilized the graph minimization and genericity
techniques developed in [Arzhantseva and Ol ′shanskiı̆ 1996]. Our goal is to obtain
new algebraic and geometric applications and the probabilistic tool used in this
paper, large deviation theory applied to finite state Markov chains, is quite basic
from the point of view of probability theory. Nevertheless, combining it with al-
gebraic and algorithmic considerations as well as with earlier probabilistic results
on Nielsen Uniqueness produces surprisingly powerful results.

We adopt the following convention throughout this paper.

Convention 1.1. Let Fk = F(a1, . . . , ak) be the free group of rank k ≥ 2. The
group alphabet is 6 := {a1, . . . , ak}

±1. A word w ∈ 6∗ is reduced if w does not
contain any subwords of the form ai a−1

i or a−1
i ai . The length, |w|, of a word w

is the number of letters in w. Since every element of Fk can be represented by a
unique reduced word, we can identify elements of Fk with reduced words. The
length |g| of an element g ∈ Fk is the length of the unique reduced word in 6∗

which represents g.
A word w is cyclically reduced if all cyclic permutations of w are reduced. We

use C to denote the set of all cyclically reduced words in Fk . Any reduced word w

can be uniquely decomposed as a concatenation w = vuv−1 where u is a cyclically
reduced. The word u is called the cyclically reduced form of w and ‖w‖ := |u| is
the cyclic length of w.

An element w ∈ Fk is minimal if |φ(w)| ≥ |w| for all φ ∈ Aut(Fk). In other
words, w is a shortest element in its orbit Aut(Fk)w.
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Recall that the automorphism problem (also called the automorphic conjugacy
problem or the automorphic equivalence problem) for a free group Fk is the fol-
lowing decision problem: Given two elements u, v ∈ Fk , is there an automorphism
φ ∈ Aut(Fk) such that φ(u) = v? If there is such an automorphism we say that u
and v are automorphically equivalent. An algorithm for solving this problem was
given in the classic paper [Whitehead 1936]. We need to give a brief description
of Whitehead’s solution, and more details are given in Section 4 below. Whitehead
introduced a particular finite set of generators of Aut(Fk), now called Whitehead
automorphisms. These automorphisms are divided in two types. The Whitehead
automorphisms of the first kind are “relabeling automorphisms” induced by permu-
tations of the set {a1, . . . , ak}

±1 and thus do not change the length of an element.
The remaining Whitehead automorphisms are of the second kind and can change
the length of an element. These automorphisms are precisely defined in Definition
4.2 below.

Proposition 1.2 (Whitehead’s Theorem [1936]).

(1) (Length reduction) If u ∈ Fk is cyclically reduced and not minimal then there
is a Whitehead automorphism τ such that ‖τ(u)‖ < ‖u‖.

(2) (Length preservation or “peak reduction”) Let u, v ∈ Fk be minimal (and
hence cyclically reduced) elements with |u| = |v| = n > 0. Then Aut(Fk)u =

Aut(Fk)v if and only if there exists a finite sequence of Whitehead automor-
phisms τs, . . . , τ1 such that τs . . . τ1(u)= v and such that for each i = 1, . . . , s
we have

‖τi . . . τ1(u)‖ = n.

This statement immediately gives Whitehead’s algorithm for solving the auto-
morphism problem for Fk . First, by length reduction there is a algorithm which,
given any element w ∈ Fk , finds a minimal element w′

∈ Aut(Fk)w. To start,
cyclically reduce w. Then repeatedly check if there is a Whitehead automorphism τ

decreasing the cyclically reduced length of the current element and if so, apply such
a τ and cyclically reduce the result. This process terminates in at most |w| steps
with a minimal element and requires at worst quadratic time in the length of w.
Each step takes at most linear time since the number of Whitehead automorphisms
is fixed. Thus given two elements of Fk we can first replace them by minimal
Aut(Fk)-equivalent elements. By peak reduction, if these minimal elements have
different lengths then there does not exist an automorphism taking one of original
elements to the other. This quadratic time procedure is the so-called “easy part” of
Whitehead’s algorithm.

Now suppose that starting with elements u, v ∈ Fk the process above yields
corresponding minimal elements u′, v′ of the same length. Peak reduction implies
that if these two minimal elements are automorphically equivalent then there is
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a chain of Whitehead automorphisms taking one element to the other so that the
cyclically reduced length is constant throughout the chain. Since the number of
elements of given length is bounded by an exponential function, this provides an
algorithm which is at worst exponential time for deciding if two minimal elements
of the same length are in the same Aut(Fk)-orbit. This stage is called the “hard
part” of Whitehead’s algorithm.

Taken together, these two parts provide a complete solution for the automor-
phism problem for Fk and requires at most exponential time in terms of the maxi-
mum of the lengths of the input words. Note that Whitehead’s algorithm actually
solves the Search Automorphism Problem as well. If u, v are in the same Aut(Fk)-
orbit, the algorithm produces an explicit automorphism taking u to v.

Whether or not Whitehead’s algorithm actually requires exponential time is cur-
rently an active research question. The only well understood case is k = 2, where
Myasnikov and Shpilrain [2003] proved that an improved version of Whitehead’s
algorithm takes at most polynomial time. Substantial further progress for k = 2
has been made by Bilal Khan [2004]. Very interesting partial results regarding the
complexity of Whitehead’s algorithm for k > 2 have recently been obtained by
Donghi Lee [2003].

Experimental evidence (see, for example, [Booth et al. 2004; Haralick et al.
2005; Miasnikov and Myasnikov 2004]) strongly indicates that even for k > 2
Whitehead’s algorithm usually runs very quickly. In the present paper we provide
a theoretical explanation of this phenomenon and prove that for an “exponentially
generic” set of inputs the “easy” first stage of the Whitehead algorithm terminates
immediately and the “hard” second part terminates in linear time.

The study of genericity, or “typical behavior”, in group theory was initiated
by Gromov [1987; 1993], Ol ′shanskii [1992] and Champetier [1994]. The impor-
tance of these ideas is becoming increasingly clear and manifestations of genericity
in many different group-theoretic contexts are the subject of active investigation
[Arzhantseva 1997; 1998; 2000; Arzhantseva and Ol ′shanskiı̆ 1996; Champetier
1994; 1995; 2000; Cherix and Valette 1996; Cherix and Schaeffer 1998; Żuk 2002;
Kapovich and Schupp 2005a; Ghys 2004; Gromov 2003; Kapovich et al. 2003;
Kapovich et al. 2005; Ollivier 2003]. Intuitively, a subset Q of S ⊆ Fk is generic
in S if a “randomly” chosen long element of S belongs to Q with probability
tending to 1, or that Q has “measure 1” in S. The precise definitions of genericity
used in [Kapovich et al. 2003; Kapovich et al. 2005] are given in Definition 2.1
below.

We need the following crucial definition.

Definition 1.3. A cyclically reduced element w ∈ Fk is strictly minimal if the
cyclically reduced length ‖τ(w)‖ is strictly greater than |w| for every noninner
Whitehead automorphism τ of the second kind. We use SM to denote the set of
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all strictly minimal elements of Fk . Also, SM ′ denotes the set of all w ∈ Fk such
that the cyclically reduced form of w belongs to SM .

The description of Whitehead’s algorithm given above shows that every element
of SM is already minimal in its Aut(Fk)-orbit. Moreover, if w ∈ SM then any chain
of Whitehead moves that preserves the cyclic length of w must consist entirely of
conjugations and of Whitehead automorphisms of the first kind, that is, relabeling
automorphisms. Thus if w ∈ SM and w′

∈ Fk is another minimal element with
|w| = |w′

| then Whitehead’s algorithm, applied to the pair (w, w′), terminates in
time linear in |w|. Moreover, for arbitrary (w1, w2) ∈ F2

k such that at least one of
w1, w2 is Aut(Fk)-equivalent to a strictly minimal element, Whitehead’s algorithm
terminates in at most quadratic time on (w1, w2).

We give here a short informal summary of our results regarding Whitehead’s
algorithm and the properties of random one-relator groups. Precise and detailed
statements are given in Section 3.

Convention 1.4. For u ∈ Fk set Gu = 〈a1, . . . , ak |u〉.

By saying that a certain property holds for a generic element we mean that there
is an exponentially generic set such that every element of that set has the property.
We prove that:

(a) The cyclically reduced form of a generic element of Fk is strictly minimal and
a generic cyclically reduced element is strictly minimal.

(b) The generic-case complexity of Whitehead’s algorithm for Fk is strongly
linear-time.

(c) For any u ∈ Fk the orbit Aut(Fk)u is an exponentially negligible subset of
Fk . Moreover, all such orbits are “uniformly small” in Fk . Namely, there is
a number α < 2k − 1 such that for any u ∈ Fk the exponential growth rate of
Aut(Fk)u is at most α < 2k − 1. (The growth rate of Fk is 2k − 1.)

(d) For a generic element u ∈ Fk the stabilizer of u in Aut(Fk) is infinite cyclic
and is generated by the inner automorphism corresponding to conjugation by
u.

(e) For a generic u ∈ Fk the one-relator group Gu is a complete group, that is, it
has trivial center and trivial outer automorphism group.

(f) A generic one-relator group Gu is torsion-free, nonelementary and word-
hyperbolic, and it has either the Menger curve or the Sierpiński carpet as
its boundary. If k = 2 the boundary is the Menger curve.

(g) If we fix a generic one-relator group Gu then there is a quadratic-time al-
gorithm (in terms of |v|) which decides if an arbitrary one-relator group
Gv = 〈a1, . . . , ak |v〉 is isomorphic to Gu .
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(h) Two generic one-relator groups Gu, Gv are isomorphic if and only if |u| = |v|

and there is a relabeling automorphism τ such that τ(u) is a cyclic permutation
of v or v−1.

(i) The number Ik(n) of isomorphism types of one-relator groups on k generators
with defining relators of length n satisfies

c1

n
(2k − 1)n

≤ Ik(n) ≤
c2

n
(2k − 1)n,

where c1 = c1(k) > 0, c2 = c2(k) > 0 are constants independent of n.

The structure of Whitehead’s algorithm for solving the automorphism problem
is similar to that of Garside’s algorithm (and its various modifications) for solving
the conjugacy problem in braid groups. (See for example [Garside 1969; Birman
et al. 1998; Franco and González-Meneses 2003].) In both cases there has been a
great deal of experimental evidence that in practice the algorithms almost always
work much faster than the worst-case exponential time estimate suggests. State-
ments (a) and (b) above provide the first proof explaining why this happens for
Whitehead’s algorithm. It remains an interesting open problem to find and prove
similar statements for Garside’s algorithm.

As discussed earlier, statement (h) above may be regarded as an analogue of
Mostow rigidity for random one-relator groups. Indeed, it says that two generic
one-relator groups Gu and Gv are isomorphic if and only if their Cayley graphs
corresponding to the given generating sets {a1, . . . , ak} are isomorphic as labeled
graphs where the graph isomorphism is only allowed to permute the label set
{a1, . . . , ak}

±1. This means that the class of random one-relator groups has the
isomorphism rigidity property. We will see that isomorphism rigidity is also re-
sponsible for us being able to estimate the number of isomorphism types of one-
relator groups in the statement (i) above. In subsequent work Kapovich and Schupp
[2005b] combine the results of this paper with methods involving Kolmogorov
complexity to prove that a random one-relator presentation Gu is “essentially in-
compressible”. This means that Gu does not admit any finite group presentation
of total length much smaller than |u|.

2. Generic sets and Generic Complexity

We need to recall the definitions concerning genericity used in [Kapovich et al.
2003]. Note that the length condition on sets of pairs which we consider here is
slightly different from that used in [Kapovich et al. 2003].

We say that a sequence xn ∈ R, n ≥ 1 with limn→∞ xn = x ∈ R converges
exponentially fast if there are 0 < σ < 1 and K > 0 such that for all n ≥ 1

|x − xn| ≤ Kσ n.
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Definition 2.1. Let S be a set of words in the group alphabet 6. Let ρ(n, S) denote
the number of words w ∈ S with |w| ≤ n. Also, let γ (n, S) denote the number of
words w ∈ S with |w| = n.

We say that a subset B ⊆ S is generic in S if

lim
n→∞

ρ(n, B)

ρ(n, S)
= 1.

If, in addition, the convergence is exponentially fast, we say that B is exponentially
generic in S.

The complement of an (exponentially) generic set in S is said to be (exponen-
tially) negligible in S.

Similarly, let D ⊂ S × S and let ρ(n, D) denote the number of pairs (u, v) ∈ D
such that |u| ≤ n and |v| ≤ n. Note that ρ(n, S × S) = ρ(n, S)2. We say that D is
generic in S × S if

lim
n→∞

ρ(n, D)

ρ(n, S × S)
= 1.

Again, if convergence is exponentially fast, we say that D is exponentially generic
in S × S.

We can now apply this concept to decision problems. The following notion was
introduced in [Kapovich et al. 2003].

Definition 2.2 (Generic-case complexity). Let S ⊆ 6∗ be an infinite set of words
and let D ⊆ S × S. (We regard the set S × S as the set of all inputs for a decision
problem D, so that we are now working relative to S).

Suppose that � is a partial algorithm for deciding if an element (u, v) ∈ S × S
belongs to D. Note that this means that � is correct. That is, whenever � does
produce a definite answer, that answer is correct. Let t (n) ≥ 0 be a nondecreas-
ing function. We say that � solves D with strong generic-case time complexity
bounded by t in S×S if there exists an exponentially S×S-generic subset A ⊂ S×S
such that for any (u, v) ∈ A with |u| ≤ n, |v| ≤ n the algorithm � terminates on
the input (u, v) in at most t (n) steps.

Let S, D be as above and let B be a deterministic time complexity class such as
linear time, quadratic time, polynomial time, etc. We say that D is decidable with
strong S-generic case complexity in B if there exist a function t (n) satisfying the
constraints of the complexity class B and a correct partial algorithm � that solves
D with strong generic-case time complexity bounded by t in S × S.

3. Main results

We can now state our main results regarding Whitehead’s algorithm in more tech-
nical detail.
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Theorem A. Let Fk = F(a1, . . . , ak), where k ≥ 2.

(1) The set SM ⊆ C is exponentially C-generic and the set SM ′
⊆ Fk is exponen-

tially Fk-generic. Hence the set SM × SM ⊆ C × C is exponentially C × C-
generic and the set SM ′

× SM ′
⊆ Fk × Fk is exponentially Fk × Fk-generic.

(2) There is a linear time (in |w|) algorithm which, given a freely reduced word
w, decides whether or not w ∈ SM and whether or not w ∈ SM ′.

(3) Every w ∈ SM is minimal in its Aut(Fk)-orbit; that is, for every α ∈ Aut(Fk)

we have |w| ≤ |α(w)|.
Moreover, if w ∈ SM and v is a cyclically reduced word with |w| = |v| then

w and v are in the same Aut(Fk)-orbit if and only if there exists a Whitehead
automorphism τ of the first kind such that τ(w) is a cyclic permutation of v.

(4) Whitehead’s algorithm works in linear time on pairs (u, v) ∈ SM × SM and
so has strongly linear time generic-case complexity on C × C . Similarly,
Whitehead’s algorithm works in linear time on pairs (u, v) ∈ SM ′

× SM ′ and
so has strongly linear time generic-case complexity on Fk × Fk .

(5) Whitehead’s algorithm works in at most quadratic time on all pairs (u, v) such
that at least one of u, v is in the same Aut(Fk)-orbit as an element of SM .

The theorem above says that for a “random” pair of cyclically reduced words
(u, v) both u and v are strictly minimal. Hence the “easy” first part of Whitehead’s
algorithm terminates in a single step and the “hard” second part reduces to simply
checking if one can get from u to v by applying a relabeling automorphism and
then a cyclic permutation.

Recall that for a subset S ⊆ Fk the exponential growth rate or growth entropy
of S is

H(S) := lim sup
n→∞

n
√

ρ(n, S).

Then H(Fk) = 2k − 1 and S ⊆ Fk is exponentially Fk-negligible if and only if
H(S) < 2k − 1.

Corollary 3.1. For any w ∈ Fk the set Aut(Fk)w is exponentially negligible in Fk

and the set C ∩ Aut(Fk)w is exponentially negligible in C . Moreover

H(Aut(Fk)w) ≤ H(F − SM ′) < 2k − 1.

Proof. We may assume that w is minimal. Let L be the set of elements of length
|w| in the orbit Aut(Fk)w. Now L is finite and any element in Aut(Fk)w−L is not
minimal and hence not strictly minimal. Therefore T := C ∩ [Aut(Fk)w − L] ⊆

C − SM . By part (1) of Theorem A the set C − SM is exponentially C-negligible
and therefore so is the set T . We have C ∩Aut(Fk)w = T ∪ (C ∩ L) and therefore
C ∩ Aut(Fk)w is C-negligible, as claimed.



WHITEHEAD’S ALGORITHM AND ISOMORPHISM RIGIDITY OF GROUPS 121

Let u be an arbitrary element of Aut(Fk)w. Since u need not be cyclically
reduced let u0 be the cyclically reduced form of u.

If u0 /∈ SM then u is contained in the set Fk − SM ′ which is exponentially
Fk-negligible by part (1) of Theorem A. Now suppose that u0 is strictly minimal.
Since u0 is conjugate to u, u0 ∈ Aut(Fk)w. Since u0 is minimal, |u0| = |w| and
u0 ∈ L . Thus u is contained in the Fk-conjugacy class of an element of L . It is not
difficult to see that any conjugacy class in Fk has exponential growth rate

√
2k − 1

and is thus exponentially negligible. Therefore the orbit Aut(Fk)w is contained
in the union of finitely many exponentially Fk-negligible sets and is exponentially
Fk-negligible, as required.

Moreover, the set Fk − SM ′ contains the conjugacy class of a1. Thus

H(Fk − SM ′) ≥
√

2k − 1.

The previous argument shows that Aut(Fk)w is contained in the union of F − SM ′

and of finitely many Fk-conjugacy classes K1, . . . , Km . Hence

H(Aut(Fk)w) ≤ max{H(Fk − SM ′), H(K1), . . . , H(Km)} = H(Fk − SM ′)

< 2k − 1,

where the last inequality holds since SM ′ is exponentially Fk-generic and Fk −SM ′

is exponentially Fk-negligible. �

Corollary 3.1 shows that automorphic orbits in Fk are “uniformly small” in the
sense of their growth rate. This can be viewed as a generalization of the results
from [Borovik, Myasnikov and Shpilrain 2002] and [Burillo and Ventura 2002],
papers that establish (with specific quantitative growth estimates) that the set of
primitive elements is exponentially negligible in Fk .

As mentioned before, the worst-case complexity of Whitehead’s algorithm is
known to be polynomial time for k = 2. The results of [Kapovich et al. 2005] and
Theorem A imply that the average-case complexity (as opposed to generic-case)
of Whitehead’s algorithm is linear time for k = 2.

A deep result of McCool [1975] shows that for any w ∈ Fk the stabilizer of w

in Aut(Fk) is finitely presentable. Similar arguments as those used in the proof of
Theorem A allow us to conclude that Aut(Fk)-stabilizers of generic elements of
Fk are very small.

Definition 3.2. The set TS (for “trivial stabilizer”) is the set of all words w ∈ SM
(necessarily cyclically reduced) such that w is not a proper power and such that for
every nontrivial relabeling automorphism τ of Fk the elements w and τ(w) are not
conjugate in Fk . Also, TS′ denotes the set of all elements of Fk whose cyclically
reduced form is in TS.

Theorem B. Let k ≥ 2. Then:
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(1) The set TS′ is exponentially Fk-generic and the set TS is exponentially C-
generic.

(2) There is a linear-time (in terms of |w|) algorithm which, given a freely reduced
word w, decides if w ∈ TS′ or if w ∈ TS.

(3) For any nontrivial w ∈ TS′ the stabilizer Aut(Fk)w of w in Aut(Fk) is the
infinite cyclic group generated by the inner automorphism ad(w) of Fk . Here
ad(w) : u 7→ wuw−1 for u ∈ Fk .

(4) For every w ∈ TS′ the stabilizer Out(Fk)w of the conjugacy class of w in
Out(Fk) is trivial.

These results, together with the work of Kapovich and Schupp [2005a] on the
isomorphism problem for one-relator groups yield strong conclusions about the
properties of generic one-relator groups. There are several different notions of
genericity in the context of finitely presented groups, namely genericity in the
sense of Arzhantseva and Ol ′shanskii [1996] and in the sense of Gromov [1987]
(see also [Ol ′shanskiı̆ 1992]). These two notions essentially coincide in the case
of one-relator groups. Recall that a group G is complete if all automorphisms of G
are inner (so that Out(G) = {1}) and if G also has trivial center so that the adjoint
map ad : G → Aut(G) is an isomorphism.

Theorem C. There exists an exponentially C-generic set Qk of nontrivial cyclically
reduced words in Fk with the following properties:

(1) There is an exponential time (in |w|) algorithm which, given a cyclically re-
duced word w, decides whether or not w ∈ Qk .

(2) Let u ∈ Qk . Then the one-relator group Gu is a complete one-ended torsion-
free word-hyperbolic group.

(3) If u ∈ Qk then the hyperbolic boundary ∂Gu is homeomorphic to either the
Menger curve or the Sierpiński carpet. If k = 2 then ∂Gu is homeomorphic to
the Menger curve.

(4) Let u, v ∈ Qk . Then the groups Gu and Gv are isomorphic if and only if
there exists a relabeling automorphism τ of Fk such that τ(u) is a cyclic
permutation of either v or v−1. In particular, Gu ∼= Gv implies |u| = |v|.

(5) Let u ∈ Qk be a fixed element. Then there exists a quadratic time algorithm
(in terms of |v|) which, given an arbitrary v ∈ Fk , decides if the groups Gu and
Gv are isomorphic.

A result of Champetier [1995], obtained by completely different methods, states
that generic (in the sense of [Gromov 1993; Ol ′shanskiı̆ 1992]) two-relator groups
are word-hyperbolic with boundary homeomorphic to the Menger curve.
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Prior to Theorem C there were no known nontrivial examples of complete one-
relator groups and some experts in the field believed that such groups might not
exist. Our proof that such groups do exist is obtained by an indirect probabilistic
argument. The set Qk is obtained as the intersection Qk = Rk ∩ Zk of two expo-
nentially C-generic sets, Rk and Zk , and hence Qk is also exponentially generic.
In particular it is certainly nonempty. The genericity of the sets Rk and Zk is es-
tablished using two very different methods: namely, the Arzhantseva–Ol ′shanskii
graph-minimization method in [Kapovich and Schupp 2005a] and large deviation
theory in the present paper. This demonstrates the strength of the “probabilistic
argument” for producing groups with genuinely new and often unexpected features.

In the definitions of genericity both in the sense of Gromov [Gromov 1993;
Ol ′shanskiı̆ 1992] and in the sense of Ol ′shanskii [Arzhantseva and Ol ′shanskiı̆
1996] one counts group presentations as opposed to group isomorphism classes.
It is very natural to ask, for fixed numbers of generators and defining relators,
how many isomorphism types there are of groups with particular constraints on the
lengths of the relators. As a corollary of Theorem C it turns out that the number of
isomorphism types of one-relator groups with relators of length n grows in essen-
tially the same way (taking into account the obvious symmetries) as the number of
one-relator presentations with relators of length n.

Corollary 3.3. Let k ≥ 2 be an integer. For n ≥ 1 define Ik(n) to be the number
of isomorphism types among the groups given by presentations 〈a1, . . . , ak |u = 1〉

where u varies of the set of all cyclically reduced words of length n. Then there
exist constants A = A(k) > 0, B = B(k) > 0 such that for any n ≥ 1

B
n

(2k − 1)n
≤ Ik(n) ≤

A
n

(2k − 1)n.

Proof. Let Qk be the exponentially generic set of cyclically reduced words given
by Theorem C and recall that C denotes the set of all cyclically reduced words.

It follows from Lemma 6.1 below that the number γ (n, C) of cyclically reduced
words of length n satisfies

c2(2k − 1)n
≥ γ (n, C) ≥ c1(2k − 1)n

for some constants c1, c2 > 0 independent of n.
Since Qk is exponentially C-generic, Lemma 6.1 below implies that

lim
n→∞

γ (n, Qk)

γ (n, C)
= 1.

Thus there is n0 > 1 such that for any n ≥ n0 we have

γ (n, Qk) ≥
1
2γ (n, C) ≥

1
2 c1(2k − 1)n.
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Let M be the number of all Whitehead automorphisms of the first kind (that is,
relabeling automorphisms). Let n ≥ n0 and let u ∈ Qk with |u| = n. Part 4 of
Theorem C implies that the number of v ∈ Qk with Gv

∼= Gu is at most 2nM . Here
the factor of 2n corresponds to the number of cyclic permutations of u±1.

Therefore for n ≥ n0:

Ik(n) ≥
γ (n, Qk)

2Mn
≥

c1

4Mn
(2k − 1)n.

The set P P of cyclically reduced proper powers is exponentially negligible in
C ; see [Arzhantseva and Ol ′shanskiı̆ 1996]. Thus there exist K > 0 and 0 < σ < 1
such that for any n ≥ 1 we have

γ (n, P P) ≤ Kσ nγ (n, C) ≤ K c2σ
n(2k − 1)n.

It is easy to see that if u is cyclically reduced of length n and is not a proper
power, then all n cyclic permutations of u are distinct words. Clearly, if v is a
cyclic permutation of u then Gu ∼= Gv.

Therefore

Ik(n) ≤
γ (n, C − P P)

n
+ γ (n, P P) ≤

c2

n
(2k − 1)n

+ γ (n, P P) ≤
2c2

n
(2k − 1)n,

where the last inequality holds for all sufficiently large n. �

Via an additional technical argument, Kapovich and Schupp [2005b] improve
the estimate for Ik(n) and establish that

lim
n→∞

nIk(n)

(2k − 1)n =
1

k!2k+1 .

4. Whitehead automorphisms

We follow [Lyndon and Schupp 1977, Chapter I] in recalling the basic definitions
and results about Whitehead automorphisms.

Convention 4.1. If u and w are words in the alphabet 6, then wu will denote the
number of occurrences of u as a subword of w. In particular, if a ∈ 6 is a letter,
then wa is the number of occurrences of the letter a in w and if x, y ∈ 6 with
y 6= x−1 then wxy is the number of occurrences of xy in w.

Definition 4.2 (Whitehead automorphisms). A Whitehead automorphism of Fk is
an automorphism τ of Fk of one of the following two types:

(1) There is a permutation t of 6 such that τ |6 = t . In this case τ is called a
relabeling automorphism or a Whitehead automorphism of the first kind.

(2) There is an element a ∈ 6, called the multiplier, such that for any x ∈ 6

τ(x) ∈ {x, xa, a−1x, a−1xa}.
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In this case we say that τ is a Whitehead automorphism of the second kind. (Note
that since τ is an automorphism of Fk , we always have τ(a) = a in this case). To
every such τ we associate a pair (A, a) where a is as above and A consists of all
those elements of 6, including a but excluding a−1, such that τ(x) ∈ {xa, a−1xa}.
We say that (A, a) is the characteristic pair of τ .

Note that for any a ∈ 6 the inner automorphism ad(a) is a Whitehead automor-
phism of the second kind. Observe also that the set SM of strictly minimal words is
closed under applying relabeling Whitehead automorphisms, cyclic permutations
and taking inverses.

Here is an immediate corollary of Proposition 1.2.

Proposition 4.3. Let w be a cyclically reduced word of length n > 0 such that
w ∈ SM . Let w′ be a cyclically reduced word of length n.

Then w′
∈Aut(Fk)w if and only if there is a relabeling Whitehead automorphism

τ such that w′ is a cyclic permutation of τ(w).

Remark 4.4. It is easy to see that primitive elements of Fk are never strictly
minimal.

If u ∈ Fk is primitive and |u| > 1 then u is not minimal and hence not strictly
minimal. Suppose now that |u| = 1, so that u is aε

i (where ε ∈ {1, −1}). Pick an
index j 6= i , 1 ≤ i ≤ j . Consider the Whitehead automorphism τ of the second
kind which sends a j to a j ai and fixes all at for t 6= j . Then τ(u) = u, and hence
u is not strictly minimal.

Definition 4.5 (Weighted Whitehead graph). Let w be a nontrivial cyclically re-
duced word in 6∗. Let c be the first letter of w. Thus the word wc is freely
reduced. (We use the word wc so that we need only consider linear words as
opposed to cyclic words.)

The weighted Whitehead graph 0w of w is defined as follows. The vertex set of
0w is 6. For every x, y ∈ 6 such that x 6= y−1 there is an undirected edge in 0w

from x−1 to y labeled by the sum ŵxy := (wc)xy +(wc)y−1x−1 . where (wc)xy is the
number of occurrences of xy in wc and (wc)y−1x−1 is the number of occurrences
of y−1x−1 in wc.

One can think of ŵxy as the number of occurrences of xy and y−1x−1 in the
“cyclic” word defined by w. There are k(2k − 1) undirected edges in 0w. Edges
may have label zero, but there are no edges from a to a for a ∈ 6. It is easy to see
that for any cyclic permutation v of w or of w−1 we have 0w = 0v.

Convention 4.6. Let w be a fixed nontrivial cyclically reduced word. For two
subsets X, Y ⊆ 6 we denote by X.Y the sum of all edge-labels in the weighted
Whitehead graph 0w of w of edges from elements of X to elements of Y . Thus for
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x ∈ 6 the number x .6 is equal to wx + wx−1 , the total number of occurrences of
x±1 in w.

The next lemma gives an explicit formula for the difference of the lengths of w

and τ(w), where τ is a Whitehead automorphism.

Lemma 4.7 [Lyndon and Schupp 1977, Chapter I, Proposition 4.16]. Let w be a
nontrivial cyclically reduced word and let τ be a Whitehead automorphism of the
second kind with the characteristic pair (A, a). Let A′

= 6 − A. Then

‖τ(w)‖ −‖w‖ = A.A′
− a.6.

Proposition 4.3 guarantees fast performance of Whitehead’s algorithm on strictly
minimal words. It turns out that a cyclically reduced word w is strictly minimal if
the distribution of the numbers on the edges of the weighted Whitehead graph of
w, divided by |w|, is close to the uniform distribution as are the frequencies with
which individual letters occur in w.

Lemma 4.8 (Strict minimality criterion). Let

0 < ε <
2k − 3

k(2k − 1)(4k − 3)
.

Suppose w is a cyclically reduced word of length n such that

(a) for every letter x ∈ 6 we have

wx
n

∈

( 1
2k

−
ε

2
,

1
2k

+
ε

2

)
;

(b) for every edge in the weighted Whitehead graph of w the label of this edge,
divided by n, belongs to( 1

k(2k−1)
− ε,

1
k(2k−1)

+ ε
)
.

Then for any noninner Whitehead automorphism τ of F(a1, . . . , ak) of second kind
we have ‖τ(w)‖ > ‖w‖ = |w|, so that w ∈ SM .

Proof. Let (A, a) be the characteristic pair of τ and let A′
= 6 − A. Since τ is

assumed to be noninner, we have both |A| ≥ 2, and |A′
| ≥ 2. Hence |A| |A′

| ≥

2(2k −2) and there are at least 2(2k −2) edges between A and A′ in the weighted
Whitehead graph of w. Recall that a.6 is the total number of occurrences of a±1

in w.
By Lemma 4.7, ‖τ(w)‖ − ‖w‖ = A.A′

− a.6. By assumption on w we have
a.6 ≤ n( 1

k + ε) and

‖τ(w)‖ −‖w‖ = A.A′
− a.6 ≥ 2n(2k − 2)

( 1
k(2k−1)

− ε
)

− n
(1

k
+ ε

)
> 0,

where the last inequality holds by the choice of ε. �
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We will see later that the strict minimality criterion holds for an exponentially
generic set of cyclically reduced words.

5. A little probability theory

Fortunately, probability theory provides us with a good way of estimating the rela-
tive frequencies with which particular one- and two-letter words occur as subwords
in freely reduced words of length n in a free group Fk . This tool is called “large
deviation theory”. Since we are only interested in applications of large deviation
theory, we refer the reader to Chapter 3 of the excellent and comprehensive book
[Dembo and Zeitouni 1998] and give only a brief overview of how this theory
works. The statements most relevant to our discussion are Theorems 3.1.2, 3.1.6
and 3.1.13 of that reference.

Convention 5.1. Let 6 be as in Convention 1.1. Suppose 5 = (5i j )i, j∈6 is the
transition matrix of a Markov process with a finite set of states 6. Suppose 5 is
irreducible, that is, for every position (i, j) there is m > 0 such that (5m)i, j > 0.
Assume also that 5 is aperiodic, that is, for each i ∈ 6 the gcd of all m > 0
such that (5m)i,i > 0 is equal to 1. Suppose also that the Markov process starts
with some probability distribution on 6. Let f : 6 → R be a fixed function. Let
Y1, . . . , Yn, . . . be a Markov chain for this process. We are interested in estimat-
ing the probability that 1

n

∑n
i=1 f (Yi ) belongs to a particular interval J ⊆ R, or,

more generally, to a particular Borel subset of R. This probability defines what
is referred to as an empirical measure on R. A similarly defined pair empirical
measure counts 1

n

∑n
i=1 g(Yi , Yi+1), where g : 6×6 → R is some function (in the

summation one takes Yn+1 = Y1).

Example 5.2. In a typical application to free groups, a freely reduced word w =

Y1 . . . Yn in a free group F(a1, . . . , ak), k > 1, can be viewed as such a Markov
chain for a Markov process with the set of states 6 = {a1 . . . , ak, a−1

1 , . . . , a−1
k }

and with transition probabilities 5x,y = P(x |y)= 1/(2k−1) if y 6= x−1 and 5x,y =

P(x |y) = 0 if y = x−1, where x, y ∈ 6. The initial distribution on 6 is uniform,
so that for any x ∈ 6 the probability for a Markov chain to start at x is 1/(2k). The
sample space for the Markov process of length n consists of all words of length n
in 6. However, a word which is not freely reduced will occur as a trajectory with
zero probability because of the definition of 5x,y . It is easy to see that this Markov
process induces precisely the uniform distribution on the set of all freely reduced
words of length n and the probability assigned to a freely reduced word of length
n ≥ 1 is

1
2k(2k − 1)(n−1)

.
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If we want to count the number wa of occurrences of a ∈ 6 in such a freely
reduced word, we should take f to be the characteristic function of a, meaning that
f (a) = 1 and f (y) = 0 for all y 6= a, y ∈ 6. Then (1/n)

∑n
i=1 f (Yi ) is precisely

wa/n. Similarly, if g(a, b) = 1 and g(x, y) = 0 for (x, y) 6= (a, b) then the pair
empirical measure essentially counts wab/n.

Going back to the general case, large deviation theory guarantees the existence
of a rate function I (x) ≥ 0 (with some additional good convexity properties) such
that for any closed subset C of R:

(1) lim sup
n→∞

1
n

log P
(

1
n

n∑
i=1

f (Yi ) ∈ C
)

≤ − inf
x∈C

I (x).

Therefore, if infx∈C I (x) = s > 0 then for all but finitely many n we have

P
(

1
n

n∑
i=1

f (Yi ) ∈ C
)

≤ exp(−sn/2)

and thus the above probability converges to zero exponentially fast when n tends
to ∞.

Similarly, for any open subset U ⊆ R we have

lim inf
n→∞

1
n

log P
(

1
n

n∑
i=1

f (Yi ) ∈ U
)

≥ − inf
x∈U

I (x),

so that for s ′
= infx∈U I (x) ≥ 0 we have

(†) P
(

1
n

n∑
i=1

f (Yi ) ∈ U
)

≥ exp(−2s ′n)

for all sufficiently large n.
Large deviation theory also provides an explicit formula for computing the rate

function I (x) above and assures that in reasonably good cases, like Example 5.2
above, the function I (x) is a strictly convex nonnegative function achieving its
unique minimum at a point x0 corresponding to the expected value of f (or the
“equilibrium”). For instance, in the case of the Markov process for Fk considered
in Example 5.2, the symmetry considerations imply that x0 is the expected value
of the number of occurrences of a ∈ 6 = {a1, . . . , ak, a−1

1 , . . . , a−1
k }, divided by n,

in a freely reduced word w of length n in Fk — namely, x0 =
1

2k . Then the equality
I (x0) = 0 and large deviation theory [Dembo and Zeitouni 1998, Theorems 3.1.2
and 3.1.6] implies that for any ε > 0 we have

inf
{

I (x) | x ∈
[
0, 1

2k − ε
]
∪

[ 1
2k + ε, 1

]}
= sε > 0.



WHITEHEAD’S ALGORITHM AND ISOMORPHISM RIGIDITY OF GROUPS 129

The preceding computation means that for any fixed ε > 0 we have

P
(
wa
n

∈
[
0, 1

2k − ε
]
∪

[ 1
2k + ε, 1

] ∣∣∣ w ∈ Fk with |w| = n
)

≤
n→∞

exp(−sεn/2);

that is, this probability tends to zero exponentially fast when n tends to infinity.
Accordingly,

P
(
wa
n

∈
( 1

2k − ε, 1
2k + ε

) ∣∣∣ w ∈ Fk with |w| = n
)

→n→∞ 1

and the convergence is exponentially fast.
We present a formula for computing I (x) for reference purposes. Let 5, 6, f

be as in Convention 5.1. Then formula (1) holds with

I (x) = sup
θ∈R

θx − log ρ(5θ ).

Here 5θ is a 6×6-matrix, where the entry in the position (i, j) is 5i j exp(θ f ( j))
and where ρ(5θ ) is the Perron–Frobenius eigenvalue of 5θ . The convexity of I (x)

follows from the fact that in the above formula I (x) is obtained via a Legendre–
Fenchel transform (also known as “convex conjugation”) of a smooth function. A
different explicit formula for I (x) is given in [Dembo and Zeitouni 1998, Theo-
rem 3.1.6].

Theorem 3.1.13 of the same reference also provides an analogue of (1) for the
pair empirical measure corresponding to a finite state Markov process, which, in
the context of Example 5.2 allows one to estimate the expected relative frequencies
with which a fixed two-letter word occurs as a subword of a freely reduced word.

Recall that γ (n, Fk) = 2k(2k −1)n−1 is the number of all freely reduced words
of length n in Fk . When applied to the Markov process corresponding to freely
reduced words in a free group Fk , as in Example 5.2 above, Theorems 3.1.2, 3.1.6
and 3.1.13 of [Dembo and Zeitouni 1998] imply:

Proposition 5.3. Let Fk = F(a1, . . . , ak) be a free group of rank k > 1.

(1) For any ε > 0 and for any a ∈ 6 we have

lim
n→∞

#
{
w ∈ Fk

∣∣∣ |w| = n and wa
n

∈
( 1

2k − ε, 1
2k + ε

)}
γ (n, Fk)

= 1,

and the convergence is exponentially fast.

(2) For any a, b ∈ 6 such that b 6= a−1 and for any ε > 0 we have

lim
n→∞

#
{
w ∈ Fk

∣∣∣ |w| = n and wab
n

∈

( 1
2k(2k−1)

− ε,
1

2k(2k−1)
+ ε

)}
γ (n, Fk)

= 1,

and the convergence is exponentially fast.
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It is worth noting, as pointed out to us by Steve Lalley, that one can also obtain
the conclusion of Proposition 5.3 without using large deviation theory and relying
instead on generating functions methods but such an approach would be longer and
require considerably more computation.

6. Whitehead graphs of generic words

The next two preliminary statements are straightforward and we omit the proofs.

Lemma 6.1. The following hold in Fk :

(1) For every n > 0 we have γ (n, C) ≤ γ (n, Fk) ≤ 2kγ (n, C) and ρ(n, C) ≤

ρ(n, Fk) ≤ 2kρ(n, C). Moreover,

γ (n, Fk) = 2k(2k − 1)n−1 and ρ(n, Fk) = 1 +
k

k − 1
((2k − 1)n

− 1).

(2) A set D ⊆ Fk is exponentially Fk-negligible if and only if γ (n, D)

(2k−1)n → 0
exponentially fast when n → ∞.

(3) A set D ⊆ C is exponentially C-negligible if and only if γ (n, D)

(2k−1)n → 0 expo-
nentially fast when n → ∞.

(4) A subset D ⊆ Fk is exponentially Fk-generic if and only if γ (n, D)

γ (n, Fk)
→ 1

exponentially fast when n → ∞.

(5) A subset D ⊆ C is exponentially C-generic if and only if γ (n, D)

γ (n, C)
→ 1 expo-

nentially fast when n → ∞.

Proposition 6.2. Let A ⊆ C . Let A′ be the set of all freely reduced words in Fk

whose cyclically reduced form belongs to A. Then:

(1) If A is exponentially C-negligible then A′ is exponentially Fk-negligible.

(2) If A is exponentially C-generic then A′ is exponentially Fk-generic.

The above proposition shows that the notions of being exponentially Fk-generic
and exponentially C-generic (same for negligible) essentially coincide.

The results of large deviation theory stated in Section 5 now allow us to describe
the weighted Whitehead graph of a “random” cyclically reduced word of length n
of Fk .

Proposition 6.3. Let ε > 0 be an arbitrary number. Let Q(n, ε) be the number of
all cyclically reduced words w of length n such that for every edge of the weighted
Whitehead graph of w the label of this edge, divided by n, belongs to the interval( 1

k(2k−1)
− ε,

1
k(2k−1)

+ ε
)
.
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Similarly, for a ∈ 6 let T (n, a, ε) be the number of all cyclically reduced words w

of length n such that
wa
n

∈

( 1
2k

−
ε

2
,

1
2k

+
ε

2

)
.

Then:

(1) We have

lim
n→∞

Q(n, ε)

γ (n, C)
= 1,

and the convergence is exponentially fast.

(2) For any a ∈ 6 we have

lim
n→∞

T (n, a, ε)

γ (n, C)
= 1,

and the convergence is exponentially fast.

Proof. Denote Nn = γ (n, Fk) and Cn = γ (n, C). For a two-letter word xy in 6∗

denote by Exy(n, ε) (correspondingly by E ′
xy(n, ε)) the number of all cyclically

reduced (correspondingly freely reduced) words w of length n such that

wxy

n
∈

[
0,

1
k(2k−1)

− ε
]

∪

[ 1
k(2k−1)

+ ε, 1
]
.

Similarly, for a ∈ 6 let Ea(n, ε) (correspondingly E ′
a(n, ε)) denote the number of

all cyclically reduced (correspondingly freely reduced) words w of length n such
that

wa

n
∈

[
0,

1
2k

− ε
]

∪

[ 1
2k

+ ε, 1
]
.

Fix a letter a ∈ 6 and a two-letter word xy such that y 6= x−1.
By Lemma 6.1 we know that Cn ≤ Nn ≤ 2kCn . Also, since every cyclically

reduced word is freely reduced, we have Ea(n, ε) ≤ E ′
a(n, ε) and Exy(n, ε) ≤

E ′
xy(n, ε).
Therefore

Ea(n, ε)

Cn
≤ 2k

Ea(n, ε)

Nn
≤ 2k

E ′
a(n, ε)

Nn
→n→∞ 0

and
Exy(n, ε)

Cn
≤ 2k

Exy(n, ε)

Nn
≤ 2k

E ′
xy(n, ε)

Nn
→n→∞ 0

and the convergence in both cases is exponentially fast by Proposition 5.3.
Note that the label, which we denote ŵxy , on the edge [x−1, y] in the weighted

Whitehead graph of a cyclically reduced word w differs at most by one from wxy +

wy−1x−1 (since it is possible that w begins with y and ends with x or that w begins
with x−1 and ends with x−1).
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Therefore for all sufficiently large n the condition∣∣∣∣ŵxy

n
−

1
k(2k − 1)

∣∣∣∣ <
ε

2

implies that ∣∣∣∣wxy + wy−1x−1

n
−

1
k(2k − 1)

∣∣∣∣ < ε.

Let Êxy(n, ε) denote the number of all cyclically reduced words of length n such
that ∣∣∣∣ŵxy

n
−

1
k(2k − 1)

∣∣∣∣ ≥ ε.

Then

Êxy(n, ε)

Cn
≤ 2k

Êxy(n, ε)

Nn
≤ 2k

E ′
xy(n, ε/8) + E ′

y−1x−1(n, ε/8)

Nn
→n→∞ 0,

where the convergence is exponentially fast by Proposition 5.3. This implies the
statement of Proposition 6.3. �

7. The generic complexity of Whitehead’s algorithm

Remark 7.1. Before proving the main result, we need to discuss the complexity
of the conjugacy problem in the free group Fk . Given freely reduced words u′, v′,
we can find their cyclically reduced forms u and v in time linear in max{|u′

|, |v′
|})

by successively canceling inverse pairs of letters from the two ends of each word.
If |u| 6= |v| then clearly u′ is not conjugate to v′ in Fk .

Suppose now that |u| = |v| = n. Then u′ is conjugate to v′ if and only if u is a
cyclic permutation of v. The naive algorithm of comparing all cyclic permutations
of u with v takes quadratic time. However, u is a cyclic permutation of v if and
only if u is a subword of vv. There is a well-known pattern matching algorithm
in computer science, called the Knuth–Morris–Pratt algorithm, which decides if
a word u is a subword of a word z in time linear in |u| + |z|. See, for example,
[Gusfield 1997] for details. Applied to the words u, vv, this algorithm allows us
to decide if u is a cyclic permutation of v in linear time in n. Thus the conjugacy
problem in Fk is actually solvable in time linear in terms of the maximum of the
lengths of the two input words.

We can now prove Theorem A as stated in Section 3:

Proof of Theorem A. Choose

0 < ε <
2k − 3

k(2k − 1)(4k − 3)
.

Let L(ε) be the set of all cyclically reduced words w in 6∗ such that
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(a) for every letter a ∈ 6 we have

wa
n

∈

( 1
2k

−
ε

2
,

1
2k

+
ε

2

)
(where n = |w|), and

(b) for every edge in the weighted Whitehead graph of w the label of this edge,
divided by n, belongs to( 1

k(2k−1)
− ε,

1
k(2k−1)

+ ε
)
.

By the strict minimality criterion (Lemma 4.8) we have L(ε) ⊆ SM . Proposition
6.3 and Lemma 6.1 imply that L(ε) is exponentially C-generic. Therefore the
bigger set SM is also exponentially C-generic. Hence by Proposition 6.2 the set
SM ′ is exponentially Fk-generic and part (1) of the theorem is established.

For a fixed Whitehead automorphism τ and a freely reduced word w ∈ Fk one
can compute the freely reduced word τ(w) in time linear in |w|. Since the set of
Whitehead automorphisms is a fixed finite set, one can thus decide in time linear
in |w| if a cyclically reduced word w belongs to SM . Thus part (2) of the theorem
holds. Now Proposition 1.2 together with Remark 7.1 imply part (3), since there
are only finitely many relabeling Whitehead automorphisms of the first kind.

In turn part (3) together with Proposition 1.2 implies parts (4) and (5). �

Remark 7.2. As stated in Theorem A, we can indeed decide if a cyclically reduced
word w is strictly minimal, that is, w ∈ SM , in time linear in |w| since the number
of Whitehead automorphisms is fixed and finite. A priori however, this requires
applying every Whitehead automorphism of the second kind to w and then com-
puting the freely reduced form of the result. This may be undesirable if the rank k
of Fk is large since the number of Whitehead automorphisms of the second kind
grows exponentially with k.

On the other hand, the subset L(ε) of SM , defined as in the proof of Theorem
A with ε =

2k−3
2k(2k−1)(4k−3)

, is still exponentially generic according to the Strict
Minimality Criterion. The membership problem in L(ε) is solvable much faster.
All we need to do to decide if w ∈ L(ε) is to compute the frequencies with which
the one- and two-letter subwords occur in w and then check if they belong to the
required intervals. The number of one- and two-letter words that can occur in w

only grows quadratically with k.

8. Stabilizers of generic elements

The above analysis also allows us to deduce that stabilizers of generic elements of
Fk in Aut(Fk) and in Out(Fk) are very small.
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We need to recall a property of automorphic orbits which is a direct corollary
of [Lyndon and Schupp 1977, Chapter I, Proposition 4.17].

Proposition 8.1. Let w, w′ be minimal cyclically reduced words with ‖w‖ = ‖w′
‖

and let α ∈ Aut(Fk) be such that w′
=α(w). There exist Whitehead automorphisms

τi , for i = 1, . . . , n, such that α = τn . . . τ1 in Aut(Fk) ‖τi . . . τ1(w)‖ = ‖w‖ for
each i = 1, . . . , n.

Recall that TS is the set of all w ∈ SM such that w is not a proper power and
such that for every nontrivial relabeling automorphism τ of Fk the elements w

and τ(w) are not conjugate in Fk . Also, TS′ is the set of elements of Fk whose
cyclically reduced form is in TS.

It is easy to see that TS is closed under applying relabeling automorphisms and
cyclic permutations.

Lemma 8.2. Let w ∈ TS be a nontrivial cyclically reduced word. Then:

(1) If α ∈ Aut(Fk) is such that α(w) is conjugate to w then α is an inner auto-
morphism of Fk .

(2) The stabilizer Aut(Fk)w of w in Aut(Fk) is the infinite cyclic group generated
by ad(w).

(3) The stabilizer Out(Fk)w of the conjugacy class of w in Out(Fk) is trivial.

Proof. To see that (1) holds, suppose that w ∈ TS and that α(w) = w for some
α ∈ Aut(Fk). Recall that TS ⊆ SM . Proposition 8.1 and the definition of SM
imply that α is a product α = ωτ where ω is inner and where τ is a relabeling
automorphism. The definition of TS now implies that τ is trivial and hence α is
inner, as required.

Parts (2) and (3) follow directly from (1) since the centralizer of a nontrivial
element w that is not a proper power in Fk is just the cyclic group generated by
w. �

We will show that the set TS is exponentially C-generic.

Lemma 8.3. Let τ be a nontrivial relabeling automorphism of Fk . Let B(τ ) be the
set consisting of all cyclically reduced words w such that τ(w) is conjugate to w.
Then B(τ ) is exponentially negligible in C .

Proof. We only sketch the argument of the proof, leaving the details to the reader.
Let |w| = n > 0 and suppose that τ(w) is conjugate to w, that is τ(w) is a cyclic

permutation of w. Suppose first that w is obtained as nontrivial cyclic permutation
µ of the word τ(w). Then w is uniquely determined by its initial segment of
length n/2+1 and by µ. Note that there are at most n possibilities for µ. Thus the
number of such w is bounded above by the number nγ (n/2 + 1, Fk) which grows
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approximately as n(2k−1)n/2+1 and thus, after dividing by (2k−1)n , tends to zero
exponentially fast.

Suppose now that w = τ(w). Since τ is induced by a nontrivial permutation
of 6, this implies that w omits at least one letter of 6. It is easy to see that for
each a ∈ 6 the set of all cyclically reduced words w with wa = 0 is exponentially
negligible in C . This yields the statement of Lemma 8.3. �

Proposition 8.4. The set TS is exponentially generic in C .

Proof. Arzhantseva and Ol ′shanskii [1996] observed that the set of cyclically re-
duced words that are proper powers in Fk is exponentially C-negligible. It is easy
to prove this directly by an argument similar to the one used in the proof of Lemma
8.3. Now Lemma 8.3 and the fact that SM is exponentially C-generic imply that
C − TS is contained in a finite union of exponentially negligible sets and hence is
itself exponentially negligible. Therefore TS is exponentially C-generic. �

Proposition 6.2 implies that the set TS′ of all freely reduced words, whose cycli-
cally reduced form belongs to TS, is exponentially Fk-generic.

We summarize the good properties of TS in the following statement, which
follows directly from Proposition 8.4 (compare Theorem B):

Theorem 8.5. We have TS = TS′
∩ C and the following hold:

(1) The set TS is exponentially C-generic and the set TS′ is exponentially Fk-
generic.

(2) There is a linear-time algorithm which, given a freely reduced word w, decides
if w ∈ TS′ or if w ∈ TS.

(3) For any nontrivial w ∈ TS′ the stabilizer Aut(Fk)w of w in Aut(Fk) is the
infinite cyclic group generated by ad(w).

(4) For any nontrivial w ∈ TS′ the stabilizer Out(Fk)w of the conjugacy class of
w in Out(Fk) is trivial.

For future use we also need to establish the genericity of the following set:

Definition 8.6. Let the set Z consist of all w ∈ TS such that there is no relabeling
automorphism τ such that τ(w) is a cyclic permutation of w−1.

Proposition 8.7. The following hold in Fk .

(1) If w ∈ Z is a nontrivial word then for any α ∈ Aut(Fk) we have α(w) 6= w−1.

(2) The set Z is exponentially C-generic.

Proof. Note that by construction the sets TS and Z are closed under taking inverses.
Let w ∈ Z be a nontrivial element.

The definition of Z and Proposition 8.1 imply that if α(w)=w−1 for α∈Aut(Fk)

then α is a product of inner Whitehead automorphisms and hence is inner itself.



136 ILYA KAPOVICH, PAUL SCHUPP AND VLADIMIR SHPILRAIN

However in a free group a nontrivial element is not conjugate to its inverse. This
proves (1).

For a fixed relabeling automorphism τ let D(τ ) be the set of cyclically reduced
words w such that w−1 is a cyclic permutation of τ(w).

Thus to see that (2) holds it suffices to show that for each nontrivial relabeling
automorphism τ the set D(τ ) is exponentially C-negligible. The proof is exactly
the same as for Lemma 8.3. Namely, if w ∈ C , |w| = n > 0 and w−1 is obtained by
a cyclic permutation µ of τ(w), then the word w is uniquely determined by µ and
by the initial segment of w of length n/2 + 1. Since there are n choices for µ, the
number of such w is bounded by nγ (n/2 + 1, C), which is exponentially smaller
than (2k − 1)n . �

9. Applications to generic one-relator groups

We recall a classical theorem of Magnus [1930]:

Proposition 9.1. Let G = 〈a1, . . . , ak |r = 1〉 where r is a nontrivial cyclically
reduced word in Fk . Let α ∈ Aut(Fk). Then α factors through to an automorphism
of G if and only if α(r) is conjugate to either r or r−1 in Fk .

The following surprising result about “isomorphism rigidity” of generic one-
relator groups was obtained by Kapovich and Schupp [2005a].

Proposition 9.2. Let k ≥2 and Fk = F(a1, . . . , ak). There exists a exponentially C-
generic set Pk of nontrivial cyclically reduced words with the following properties:

(1) There is an exponential time algorithm which, given a cyclically reduced word
w, decides whether or not w ∈ Pk .

(2) Let u ∈ Pk . Then Gu is an one-ended torsion-free word-hyperbolic group and
every automorphism of Gu is induced by an automorphism of Fk .

(3) Let u ∈ Pk and let v be a nontrivial cyclically reduced word in Fk . Then
the one-relator groups Gu and Gv are isomorphic if and only if there exists
α ∈ Aut(Fk) such that α(u) = v or α(u) = v−1 in Fk .

We now prove Theorem C stated in Section 3.

Proof of Theorem C. Let Qk = Pk ∩ Z , where Pk is from Proposition 9.2. The set
Z is exponentially C-generic by Proposition 8.7 and the set Pk is exponentially C-
generic by Proposition 9.2. Hence Qk is exponentially C-generic as the intersection
of two exponentially C-generic sets and part (1) of Theorem C follows from part (1)
of Proposition 9.2.

Suppose u ∈ Pk , as in part (2) of Theorem C. Let β be an automorphism of
Gu . By Proposition 9.2 β is induced by an automorphism α of Fk . Proposition 9.1
implies that α(u) is conjugate to either u or u−1 in Fk . The latter is impossible by
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Proposition 8.7 since u ∈ Z . Thus α(u) is conjugate to u. Since u ∈ TS, Lemma
8.2 implies that α ∈ Inn(Fk) and hence β ∈ Inn(G). Thus Aut(G) = Inn(G) and
Out(G) = 1. Since Gu is nonelementary torsion-free and word-hyperbolic, the
center of Gu is trivial and so Gu is complete.

Since Gu is torsion-free one-ended word-hyperbolic and Out(Gu) is finite, the
results of Paulin [1991] show that Gu does not admit any essential cyclic splittings.
By a theorem of Bowditch [1998], the boundary of Gu is therefore connected
and has no local cut-points. Since Gu is a torsion-free one-relator group, Gu has
cohomological dimension two. Thus Gu is one-ended torsion-free hyperbolic of
cohomological dimension two and such that ∂Gu is connected and has no local
cut-points. A theorem of Kapovich and Kleiner [2000] now implies that ∂Gu is
homeomorphic to either the Menger curve or the Sierpiński carpet and, moreover,
if the boundary is the Sierpiński carpet then Gu must have negative Euler charac-
teristic.

If k = 2, the presentation complex of Gu is topologically aspherical [Chiswell
et al. 1981] (since Gu is a torsion-free one-relator group) and can thus be used to
compute the Euler characteristic of Gu . The complex has one 0-cell, two 1-cells
and one 2-cell so that the Euler characteristic of Gu is 1 − 2 + 1 = 0. This rules
out the Sierpiński carpet and hence ∂Gu is homeomorphic to the Menger curve in
this case. This completes the proof of parts (2) and (3) of Theorem C.

Since Qk ⊆ TS, part (4) of Theorem C follows from Proposition 9.2 and Propo-
sition 8.1.

By construction the set Qk ⊆ TS ⊆ SM and Qk ⊆ Pk . Now part (5) of Theorem
C follows from Proposition 9.2 and Theorem A. �
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