Pacific Journal of Mathematics

INDEX THEORY OF TOEPLITZ OPERATORS ASSOCIATED TO TRANSFORMATION GROUP C*-ALGEBRAS

EFTON PARK

Volume 223 No. 1

January 2006

INDEX THEORY OF TOEPLITZ OPERATORS ASSOCIATED TO TRANSFORMATION GROUP C*-ALGEBRAS

EFTON PARK

Let Γ be a finite discrete group acting smoothly on a compact manifold X, and let D be a first-order elliptic self-adjoint Γ -equivariant differential operator acting on sections of some Γ -equivariant Hermitian vector bundle over X. We use these data to define Toeplitz operators with symbols in the transformation group C^* -algebra $C(X) \rtimes \Gamma$. If the symbol of such a Toeplitz operator is invertible, then the operator is Fredholm. In the case where X is a spin manifold and D is the Dirac operator, we give a geometric-topological formula for the index.

Let X be a smooth compact manifold without boundary, let V be a Hermitian vector bundle over X, and suppose D is a first-order elliptic self-adjoint differential operator acting on sections of V. Let P be the positive spectral projection of D. Then P is an order zero pseudodifferential operator, and it follows from standard facts about pseudodifferential operators on compact manifolds that given a smooth function f on X, the pointwise multiplication operator M_f acting on square-integrable sections $L^2(V)$ of V commutes with P modulo the ideal of compact operators. From this fact it is easy to show that if f is invertible, then the Toeplitz operator PM_f can be computed using the Atiyah–Singer Index Theorem; see [Baum and Douglas 1982].

Now suppose that a discrete group Γ acts smoothly on both X and V in a compatible way, and suppose that D commutes with the action of Γ on sections of V. Then P also commutes with this action. In addition, there is a natural action ρ of the transformation group C^* -algebra $C(X) \rtimes \Gamma$ on $L^2(V)$, and P commutes with the elements of $C(X) \rtimes \Gamma$ modulo the compacts. Therefore, whenever $F \in C(X) \rtimes \Gamma$ is invertible, $T_F := P\rho(F)$ is a Fredholm operator, and it is natural to ask what the index of this operator is.

Let X be an odd-dimensional oriented spin manifold and let Γ be a finite group acting on X by isometries that preserve the orientation and spin structure of X. In [Park 2002], the case of free actions was considered; in this paper we consider

MSC2000: primary 47A53; secondary 19K56, 47B35, 46L87.

Keywords: Toeplitz operators, index theory, transformation group C^* -algebras.

general actions. We use the Lefschetz theorem in [Fang 2005] to prove a theorem that computes the Fredholm index of T_F in terms of the geometry and topology of X and a "Chern character" form explicitly constructed from F.

We begin by more precisely defining the objects under discussion. Let *X* be a smooth compact manifold, and let Γ be a discrete group acting smoothly on *X* from the right. Let *V* be a Γ -equivariant complex vector bundle over *X*, and equip *V* with a Γ -invariant Hermitian structure. Then Γ acts on the left on both the smooth sections $C^{\infty}(V)$ and the square-integrable sections $L^2(V)$ of *V*:

$$(\gamma \cdot s)(x) = s(x\gamma)\gamma^{-1}.$$

If C(X) acts on $L^2(V)$ by pointwise multiplication, we have a covariant representation of $(C(X), \Gamma)$ on $L^2(V)$, and hence a representation ρ of $C(X) \rtimes \Gamma$ on $L^2(V)$.

Let *D* be a first-order, Γ -equivariant, elliptic self-adjoint differential operator acting on sections of *V*, and let $P = \chi_{[0,\infty)}(D)$ denote the positive spectral projection of *D*; this operator is also Γ -equivariant. For each *F* in $C(X) \rtimes \Gamma$, define the Toeplitz operator $T_F \in \mathfrak{B}(L^2(V))$ to be $T_F = P\rho(F)P + I - P$. More generally, for each positive integer *n*, let $P_n \in \mathfrak{B}((L^2(V))^n)$ be the matrix with *P* as each diagonal entry and all other entries zero, and let ρ_n denote the obvious representation of $M(n, C(X) \rtimes \Gamma)$ on $(L^2(V))^n$ determined by ρ . Then for each *F* in $M(n, C(X) \rtimes \Gamma)$, let $T_F = P_n \rho_n(F) P_n + I - P_n$. We note that while Toeplitz operators are typically defined as operators on the range of P_n , we have opted to extend our Toeplitz operators to all of $(L^2(V))^n$ in a way that does not affect their index theory.

Proposition 1. If F is in $GL(n, C(X) \rtimes \Gamma)$, then T_F is Fredholm.

Proof. It suffices to show that *P* commutes with elements of $C(X) \rtimes \Gamma$ modulo the compacts, for then it follows easily that $T_F T_{F^{-1}} = I = T_{F^{-1}} T_F \mod \mathcal{K}((L^2(V))^n)$. The operator *P* is Γ -equivariant and therefore commutes with $\rho(\gamma)$ for each γ in Γ . On the other hand, for all *f* in C(X), the commutator $[P, \rho(f)]$ is in $\mathcal{K}(L^2(V))$, by [Baum and Douglas 1982, Lemma 2.10]. These elements are dense in $C(X) \rtimes \Gamma$, so the desired conclusion follows.

Our goal is to find a geometric-topological formula for the index of T_F that can be computed directly from F. To this end, we will show that the Fredholm index of T_F is equal to the Γ -invariant index of a certain Γ -equivariant operator.

Definition 2. Let *V* be a Γ -equivariant complex vector bundle over *X*, and let *R* be a Γ -equivariant elliptic pseudodifferential operator acting on sections of *V*. The Γ -*invariant index* of *R* is denoted by $\operatorname{Ind}_{\Gamma-inv}(R)$, and is the dimension of the Γ -invariant subspace of ker *R* minus the dimension of the Γ -invariant subspace of ker *R**.

Proposition 3. Let R be a Γ -equivariant elliptic operator. Then

$$\operatorname{Ind}_{\Gamma-inv}(R) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \operatorname{Ind}_{\gamma}(R),$$

where $\operatorname{Ind}_{\gamma}(R)$ is the trace of the Γ -equivariant index of R evaluated at γ .

Proof. Let σ be a representation of Γ on a finite-dimensional complex vector space *W*, and decompose σ as

$$\sigma = n_0 \mathbf{1} + \sum_{i=1}^k n_i \sigma_i,$$

where the σ_i are irreducible and distinct, and **1** denotes the trivial representation. Let W^{Γ} be the subspace of W that is fixed by Γ . The fact that each of the σ_i fixes only 0 implies that $n_0 = \dim W^{\Gamma}$. Then, by [Serre 1977, Exercise 2.5],

dim
$$W^{\Gamma} = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \chi(\gamma) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \operatorname{Tr}(\sigma(\gamma)),$$

whence the result follows.

For each natural number *n*, let Map(Γ , M(*n*, *C*(*X*))) denote the *C**-algebra of all functions from the group Γ to M(*n*, *C*(*X*)). The algebra M(*n*, *C*(*X*)) acts on Map(Γ , M(*n*, *C*(*X*))) via pointwise multiplication; let $\mathscr{L}(Map(\Gamma, M(n, C(X))))$ be the algebra of M(*n*, *C*(*X*))-linear maps on Map(Γ , M(*n*, *C*(*X*))). We define a homomorphism

$$\mu: \mathbf{M}(n, C(X)) \rtimes \Gamma \longrightarrow \mathscr{L}(\mathbf{Map}(\Gamma, \mathbf{M}(n, C(X))))$$

as follows: for all ψ in Map(Γ , M(n, C(X))), all functions f in M(n, C(X)), and all elements α and γ in Γ , set ($\mu(f)\psi)(\alpha) = \mu(\alpha \cdot f)\psi(\alpha)$ and ($\mu(\gamma)$)(α) = $\psi(\gamma^{-1}\alpha)$, and then extend μ to all of M(n, C(X)) $\rtimes \Gamma$ by stipulating that μ be an algebra homomorphism. If M(n, C(X)) acts on ($L^2(V)$)ⁿ by pointwise multiplication and if λ denotes the left regular representation of M(n, C(X)) on the Hilbert space Map(Γ , ($L^2(V)$)ⁿ), then $\lambda(F)$ is matrix multiplication by $\mu(F)$ for every Fin M(n, $C(X) \rtimes \Gamma$.

The group Γ acts on Map $(\Gamma, (L^2(V))^n)$ by the formula

$$(\gamma \cdot \psi)(\alpha) = \gamma \cdot (\psi(\gamma^{-1}\alpha)),$$

and the subspace $\operatorname{Map}(\Gamma, (L^2(V))^n)^{\Gamma}$ of elements fixed by Γ contains precisely the ψ for which $\gamma \cdot (\psi(e)) = \psi(\gamma)$ for all γ in Γ ; here *e* denotes the identity element of Γ . Thus the elements of $\operatorname{Map}(\Gamma, (L^2(V))^n)^{\Gamma}$ are determined by their value at *e*. Conversely, specifying a value at *e* uniquely determines an element of $\operatorname{Map}(\Gamma, (L^2(V))^n)^{\Gamma}$.

Define
$$U: (L^2(V))^n \to \operatorname{Map}(\Gamma, (L^2(V))^n)^{\Gamma}$$
 as
 $(U(s_1, s_2, \dots, s_n))(\alpha) = \frac{1}{\sqrt{|\Gamma|}} (\alpha \cdot s_1, \alpha \cdot s_2, \dots, \alpha \cdot s_n)$

Because the inner product on $L^2(V)$ has been chosen to be Γ -invariant, U is a unitary operator, and $U^*\psi = \sqrt{|\Gamma|}\psi(e)$ for every ψ .

Define \widetilde{D} on Map $(\Gamma, (L^2(V))^n)$ by the formula $(\widetilde{D}\psi)(\alpha) = D(\psi(\alpha))$. Let \widetilde{P} be the positive spectral projection of \widetilde{D} , and for each F in M $(n, C(X) \rtimes \Gamma)$, define

$$\widetilde{\mathbf{T}}_F = \widetilde{\mathbf{P}}\,\lambda(F)\,\widetilde{\mathbf{P}} + I - \widetilde{\mathbf{P}}\,.$$

We can express the Fredholm index of Toeplitz operators T_F in terms of the \widetilde{T}_F : **Proposition 4.** For every F in $GL(n, C(X) \rtimes \Gamma)$,

Ind
$$T_F = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \operatorname{Ind}_{\gamma} \widetilde{\mathrm{T}}_F$$
.

Proof. For each *F*, the operator \widetilde{T}_F is Γ -equivariant with symbol $\mu(F)$. Furthermore, when \widetilde{T}_F is restricted to the Hilbert space $\operatorname{Map}(\Gamma, (L^2(V))^n)^{\Gamma}$, we have $\widetilde{T}_F = UT_F U^*$. Thus the result follows immediately from Propositions 1 and 3. \Box

For the remainder of the paper, we will assume that X is a (2m+1)-dimensional spin manifold with spinor bundle S and Dirac operator D, and that Γ acts on X by orientation-preserving isometries that preserve the spin structure. In this case, we can combine Proposition 4 with the index theorem in [Fang 2005] to get a geometric-topological index formula for the index of T_F .

Theorem 5. For each γ in Γ , let X_1^{γ} , X_2^{γ} , ..., $X_{K_{\gamma}}^{\gamma}$ be the connected components of the fixed point set of γ , and for each $1 \le k \le K_{\gamma}$, let NX_k^{γ} denote the normal bundle of X_k^{γ} in X. Then for all F in $GL(n, C^{\infty}(X) \rtimes \Gamma)$,

Ind
$$T_F = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \sum_{k=1}^{K_{\gamma}} (\frac{-i}{2\pi})^{(1+\dim X_k^{\gamma})/2} \int_{X_k^{\gamma}} \widehat{A}(X_k^{\gamma}) \operatorname{ch}(\mu(F)) \Lambda^{-1},$$

where

$$\operatorname{ch}(\mu(F)) = \sum_{k=0}^{\infty} (-1)^k \frac{k!}{(2k+1)!} \operatorname{Tr}((\mu(F))^{-1} d\mu(F))^{2k+1})$$

and

$$\Lambda = \Pr\left(2\sin\left(\frac{i}{2}\left(R(NX_k^{\gamma}) + \ln J(X_k^{\gamma})\right)\right)\right);$$

here Pf is the Pfaffian, $R(NX_k^{\gamma})$ is the curvature of NX_k^{γ} , and $J(X_k^{\gamma})$ is the Jacobian matrix of the action of γ on NX_k^{γ} .

For this theorem to be useful to us, we need to be able to express $ch(\mu(F))$ in terms of *F*.

The action of *F* on *X* induces an action on the algebra $\Omega^*(X)$ of smooth differential forms, and we can extend our map μ to an algebra homomorphism

$$\mu: \mathbf{M}(n, \Omega^*(X)) \rtimes \Gamma \longrightarrow \mathscr{L}\big(\mathrm{Map}(\Gamma, \mathbf{M}(n, \Omega^*(X)))\big).$$

Take $\sum_{\gamma \in \Gamma} \omega_{\gamma} \gamma$ in $M(n, \Omega^*(X)) \rtimes \Gamma$. Then for all ψ in $Map(\Gamma, M(n, \Omega^*(X)))$,

$$\left(\mu\left(\sum_{\gamma\in\Gamma}\omega_{\gamma}\gamma\right)\psi\right)(\alpha)=\sum_{\gamma\in\Gamma}(\alpha\cdot\omega_{\gamma})\psi(\alpha\gamma).$$

For any element *B* of $\mathscr{L}(Map(\Gamma, M(n, \Omega^*(X))))$, its trace is computed by the formula

$$\operatorname{Tr}(B) = \sum_{\alpha \in \Gamma} (B\delta_{\alpha})(\alpha),$$

where δ_{α} is the constant function 1 when evaluated at $\alpha \in \Gamma$, and is otherwise zero. Thus

$$\operatorname{Tr}\left(\mu\left(\sum_{\gamma\in\Gamma}\omega_{\gamma}\gamma\right)\right) = \sum_{\alpha,\gamma\in\Gamma}\left(\mu(\omega_{\gamma}\gamma)\delta_{\alpha}\right)(\alpha)$$
$$= \sum_{\alpha,\gamma\in\Gamma}(\alpha\cdot\omega_{\gamma})\delta_{\alpha}(\alpha\gamma)$$
$$= \sum_{\alpha\in\Gamma}\alpha\cdot\omega_{e}.$$

Definition 6. Let $\nu : M(n, \Omega^*(X)) \rtimes \Gamma \to \Omega^*(X)$ be given by the formula

$$\nu\left(\sum_{\gamma\in\Gamma}\omega_{\gamma}\gamma\right)=\sum_{\alpha\in\Gamma}\alpha\cdot\omega_{e},$$

and for all *F* in $GL(n, C^{\infty}(X) \rtimes \Gamma)$, define

$$\widehat{\mathrm{ch}}(F) = \sum_{k=0}^{\infty} (-1)^k \frac{k!}{(2k+1)!} \nu((F^{-1}dF)^{2k+1}),$$

where the exterior derivative *d* is extended to $M(n, \Omega^*(X)) \rtimes \Gamma$ by applying *d* entrywise in $M(n, C^{\infty}(X))$ and setting

$$d\left(\sum_{\gamma\in\Gamma}\omega_{\gamma}\gamma\right)=\sum_{\gamma\in\Gamma}(d\omega_{\gamma})\gamma.$$

Combining Theorem 5 and Definition 6, we have:

Theorem 7. For all F in $GL(n, C^{\infty}(X) \rtimes \Gamma)$,

Ind
$$T_F = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \sum_{k=1}^{K_{\gamma}} \left(\frac{-i}{2\pi}\right)^{(1+\dim X_k^{\gamma})/2} \int_{X_k^{\gamma}} \widehat{A}(X_k^{\gamma}) \widehat{ch}(F) \Lambda^{-1}.$$

This formula looks rather daunting, but in many cases it simplifies considerably.

Example 8. Let SO(2m + 2) act on \mathbb{R}^{2m+2} in the usual way, let Γ be a finite subgroup of SO(2m + 2), and let S^{2m+1} be the unit sphere in \mathbb{R}^{2m+2} . The action of Γ on \mathbb{R}^{2m+2} restricts to an action on S^{2m+1} , and because spheres have unique spin structures [Lawson and Michelsohn 1989], the action of Γ on S^{2m+1} trivially preserves the spin structure. Now, each γ in Γ fixes a subspace of \mathbb{R}^{2m+2} , and so the fixed point set X^{γ} of γ acting on S^{2m+1} is an equatorial sphere, and in particular, the fixed point set is connected. Furthermore, all spheres have stably trivial tangent bundles, so $\widehat{A}(X^{\gamma}) = 1$ for all γ in Γ . Finally, a straightforward computation shows that the normal bundle of an equatorial sphere has curvature zero, and so

$$\operatorname{Ind} T_F = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \left(\frac{-i}{2\pi} \right)^{(1+\dim X^{\gamma})/2} \int_{X^{\gamma}} \widehat{\operatorname{ch}}(F) \left(\operatorname{Pf}\left(2\sin\left(\frac{1}{2}\ln J(X^{\gamma})\right) \right) \right)^{-1}.$$

Given γ in Γ , there exists an orthonormal frame of NX^{γ} for which the action of γ on NX^{γ} decomposes into blocks

$$\begin{pmatrix} \cos heta_j^{\gamma} & \sin heta_j^{\gamma} \ -\sin heta_j^{\gamma} & \cos heta_j^{\gamma} \end{pmatrix}$$
,

with $0 < \theta_j^{\gamma} < 2\pi$ and $j = 1, 2, ..., L^{\gamma} = m - \frac{1}{2}(\dim X^{\gamma} + 1)$ (see [Lawson and Michelsohn 1989]). Incorporating this into our formula we obtain

Ind
$$T_F = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \left(\frac{-i}{2\pi}\right)^{(1+\dim X^{\gamma})/2} \frac{1}{\sin(\theta_1^{\gamma}/2) \cdots \sin(\theta_{L^{\gamma}}^{\gamma}/2)} \int_{X^{\gamma}} \widehat{\operatorname{ch}}(F).$$

Acknowledgment

The author thanks Ken Richardson for helpful discussions.

References

- [Baum and Douglas 1982] P. Baum and R. G. Douglas, "Toeplitz operators and Poincaré duality", pp. 137–166 in *Toeplitz centennial* (Tel Aviv, 1981), edited by I. Gohberg, Operator Theory: Adv. Appl. **4**, Birkhäuser, Basel, 1982. MR 84m:58139 Zbl 0517.55001
- [Fang 2005] H. Fang, "Equivariant spectral flow and a Lefschetz theorem on odd-dimensional spin manifolds", *Pac. J. Math.* **220** (2005), 299–312.

- [Lawson and Michelsohn 1989] H. B. Lawson, Jr. and M.-L. Michelsohn, *Spin geometry*, Princeton Mathematical Series 38, Princeton University Press, Princeton, NJ, 1989. MR 91g:53001 Zbl 0688.57001
- [Park 2002] E. Park, "The index of Toeplitz operators on free transformation group C^* -algebras", *Bull. London Math. Soc.* **34**:1 (2002), 84–90. MR 2002m:58034 Zbl 1030.58016

[Serre 1977] J.-P. Serre, *Linear representations of finite groups*, Graduate Texts in Mathematics **42**, Springer, New York, 1977. MR 56 #8675 Zbl 0355.20006

Received December 10, 2003. Revised July 22, 2005.

EFTON PARK DEPARTMENT OF MATHEMATICS TEXAS CHRISTIAN UNIVERSITY BOX 298900 FORT WORTH, TX 76129

e.park@tcu.edu