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EXISTENCE OF LIMIT CYCLES FOR REAL QUADRATIC
DIFFERENTIAL SYSTEMS WITH AN INVARIANT CUBIC

JAVIER CHAVARRIGA AND ISAAC A. GARCÍA

This work is part of a wider study of the significance of the existence of
invariant algebraic curves for planar polynomial differential systems. The
class of real quadratic systems having a cubic invariant algebraic curve is
examined. Using affine canonical forms for the members of this class we
show that no system of this type has limit cycles except for two cases. For
these cases, concrete examples are given with a limit cycle. We also include
a simple and short proof on the nonexistence of quadratic systems with an
algebraic limit cycle of third degree.

1. Introduction

We consider two-dimensional polynomial differential systems of the form

(1)

ẋ =
dx
dt
= P(x, y)=

2∑
i+ j=0

ai j x i y j ,

ẏ =
dy
dt
= Q(x, y)=

2∑
i+ j=0

bi j x i y j ,

in which P , Q ∈R[x, y] are relatively prime polynomials, at least one being of sec-
ond degree. Such a system will simply be called a quadratic system. This class of
systems have been studied intensively during this century; see the bibliographical
surveys [Reyn 1994] and [Kooij 1989].

A critical point of system (1) is a point (xi , yi ) ∈ C2 such that

P(xi , yi )= Q(xi , yi )= 0.

Limit cycles of plane vector fields were defined by Poincaré in his famous paper
[1885]: a limit cycle is a periodic orbit of (1) which is the α or ω limit set of
some point not on the periodic orbit. In other words, a limit cycle of (1) is a
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periodic solution which has an annulus-like neighborhood free of other periodic
solutions. The investigation of the limit cycles for polynomial systems, from their
inclusion in Hilbert’s famous list as part of 16th problem [Hilbert 1900], remains
the most important and difficult question in the study of differential systems. The
nonexistence, existence, uniqueness and other properties of limit cycles have been
studied extensively; see for example [Ye et al. 1986].

Another important question is to discover when some trajectory of (1) is an
algebraic set (the zero set of a polynomial f (x, y)).

Definition 1.1. An invariant algebraic curve of (1) is a set of points in C2 satisfying
an equation f (x, y)= 0, where f is a polynomial in x and y, and such that

ḟ = P
∂ f
∂x
+ Q

∂ f
∂y
= K f

for some polynomial K (x, y) of degree at most one, called the cofactor.

The existence of algebraic trajectories strongly influences the behavior of poly-
nomial systems. Darboux integrability theory tells us that if there are a certain
number of invariant algebraic curves, for system has a first integral (see [Chavar-
riga et al. 1997; Christopher and Llibre 1999; Darboux 1878], for instance). A
general study of polynomial plane systems having an invariant algebraic curve,
with no connection to limit cycles (the so-called Poincaré problem), can be found
in [Carnicer 1994; Cerveau and Lins Neto 1991; Tsygvintsev 2001].

A quadratic system with an invariant straight line can have at most one limit
cycle [Ye et al. 1986]. The existence of two invariant straight lines, as in the case
of quadratic Lotka–Volterra systems, precludes the presence of limit cycles [Bautin
1954]. As far as we know, the existence of invariant curves was used for the first
time in Bautin’s paper to prove the nonexistence of limit cycles.

Similarly, a quadratic system can have no limit cycles if it has an invariant
hyperbola [Cherkas 1977] or an invariant ellipse [Qin 1958] — except perhaps for
the ellipse itself. However, if the invariant conic is a parabola a quadratic system
can have limit cycles; see for instance [Christopher 1989].

The existence of invariant algebraic curves of differential systems has been con-
sidered by several authors. Druzhkova [1968] formulated, in terms of the coeffi-
cients of quadratic system (1), necessary and sufficient conditions for the existence
and uniqueness of an algebraic curve of second degree. The existence of invariant
algebraic curves of differential systems as a limit cycle was studied by Qin Yuan-
Xun [Qin 1958] when the invariant curve is of second degree and by Yablonskii
[1966], Filiptsov [1973] and Shen Bo-qian [Shen 1991] when the invariant curve
is of degree four. In this last case, two new classes were found in [Chavarriga et al.
2004] which are algebraically and topologically different from the classical exam-
ples of Yablonskii and Filiptsov. In this last paper the authors also proved that there
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are no other quartic algebraic limit cycles for quadratic systems. The uniqueness of
such examples is the main goal of [Chavarriga et al. 2001a]. Evdokimenko [1970;
1976; 1979] proved the nonexistence of a cubic invariant algebraic curve as a limit
cycle for system (1). Here we give a much simpler proof of this fact.

The paper is organized as follows: In Section 2 we give affine canonical forms
for the class of real quadratic systems with an invariant cubic and we explain some
theorems about limit cycles that we will use later. In Section 3 we give a very sim-
ple proof of the nonexistence of cubic algebraic limit cycles for quadratic systems.
Section 4 is devoted to the proof, using different methods, of the main result of
this work, Theorem 4.1.

2. Preliminary results

A complete classification of all real quadratic systems having an irreducible invari-
ant algebraic curve of third degree is given in [Chavarriga et al. 2000]. It can be
summarized as follows:

A quadratic system (1) having an irreducible cubic invariant curve f (x, y) is
affine-equivalent, after scaling the variable t if necessary, to one of the expressions
listed below (Table 1, down to page 205).

Systems (i), (ii) and (xii) are hamiltonian and systems (iii), (ix) and (x) are
Darboux integrable or have a Darboux integrating factor. More concretely:

System (iii) has the rational first integral

H(x, y)=
(b20m02− b02x)3

m00+m10x +m02 y2+ x3 .

Systems (ix) and (x) correspond to differential equations of Riccati type having
f (x, y)= 0 as a particular solution.

Table 1. Normal forms of quadratic systems having an irreducible
cubic invariant curve with equation f (x, y)= 0. Where it appears,
K is the cofactor.

(i) ẋ = ∂V
∂y
, ẏ =−∂V

∂x
,

f (x, y)=
∑2

i+ j=0 mi j x i y j
+ xy(αx +βy) with αβ 6= 0.

(ii) ẋ = ∂V
∂y
, ẏ =−∂V

∂x
,

f (x, y)=
∑2

i+ j=0 mi j x i y j
+ x(αx2

+βxy+ γ y2) with β2 < 4αγ.
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(iii) ẋ = 2
3 y(−b20m02+ b02x),

ẏ = 1
3(3b02m00+ b20m02m10+ 2b02m10x)/m02+ b20x2

+ b02 y2,

f (x, y)= m00+m10x +m02 y2
+ x3,

K (x, y)= 2b02 y with m02 6= 0.

(iv) ẋ = 2
3(b01x − y+ b11x2

+ b02xy),

ẏ = b01 y+ x2
+ b11xy+ b02 y2,

f (x, y)= y2
+ x3,

K (x, y)= 2(b01+ b11x + b02 y).

(v±) ẋ = 2(b01x + (B02∓ B20)y+ b01x2
+ 3B02xy),

ẏ = 2(B20∓ B02)x + 2b01 y+ 3B20x2
+ 3b01xy+ 9B02 y2,

f (x, y)= x2
± y2
+ x3,

K (x, y)= 2(2b01+ 3b01x + 9B02 y).

(vi) ẋ = 1
3(a+ bx + cx2

+ dxy),

ẏ = by− ax2
+ cxy+ dy2,

f (x, y)= y+ x3,

K (x, y)= b+ cx + dy.

(vii) ẋ = 3a11+ a10x + a20x2
+ a11xy,

ẏ = 3a20− 9a11x − a10 y− 3a10x2
+ 2a20xy+ 2a11 y2,

f (x, y)= 1+ xy+ x3,

K (x, y)= 3(a20x + a11 y).

(viii) ẋ =− 1
2a11−

1
2

(
b01+

1
2a11

)
x + 1

8(a11− 4b11− 2b01)x2
+ a11xy,

ẏ = 1
8(4b11− 2b01+ a11)+ b01 y+ b11xy− 2a11 y2,

f (x, y)= 1+ x + x2 y,

K (x, y)= 1
4(−2a11+ (−2b01+ a11)x).

(ix) ẋ = 1
2(2a20m01+ b02m10)+ a20x2,

ẏ =−
(
a20m10+

1
2 b02m2

10/m01
)
−
(
2a20+

1
2 b02m10/m01

)
xy+ b02 y2,

f (x, y)= m10x +m01 y+ x2 y,

K (x, y)= b02(−
1
2 m10x/m01+ y) with m01 6= 0.
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(x) ẋ = a20m01+
1
2 b01m01m10/m00−

1
2 b01x + a20x2,

ẏ =−a20m10−
1
2 b01m2

10/m00+ b01 y
−
(
2a20+

1
2 b01m10/m00

)
xy+ b01m01 y2/m00,

f (x, y)= m00+m10x +m01 y+ x2 y,

K (x, y)= 1
2(b01/m00)(−m10x + 2m01 y) with m00 6= 0.

(xi) ẋ = 2ax + 2y+ x2
∓ axy,

ẏ = 2(1∓ y)(±x + ay),

f (x, y)=∓x2
+ y2
+ x2 y,

K (x, y)= 4a(1∓ y).

(xii) ẋ = ∂V
∂y
, ẏ =−∂V

∂x
,

f (x, y)= m10x +m01 y+m02 y2
+ x2 y.

(xiii) ẋ = (2a20+4a3a20+b11)x − 2a2b11 y+ 2a2a20x2
− (2a20+b11)axy,

ẏ =−ab11x + (2a20+ 4a3a20+ b11+ 4a3b11)y
+ 2a2b11xy− 2(2a20+ b11)ay2,

f (x, y)=− 1
2 x2/a+ 2axy+ y2

+ x2 y,

K (x, y)= 2(2a20+ b11)(1+ 2a3
− 2ay+ a2x), with a 6= 0.

(xiv) ẋ = 6x − (a+ 4k)y+ 2(3b− a2
− ak)x2

− b(a+ 4k)xy,

ẏ = 9y+ 6kx2
+ 2(3b− a2

+ 2ak)xy+ b(2k− a)y2,

f (x, y)= y2
+ x(x2

+ axy+ by2), b 6= 0, a2
− 4b 6= 0,

K (x, y)= 3
(
6+ 2(3b− a2)x − aby

)
.

Table 1 (conclusion).

Planar hamiltonian systems cannot have limit cycles, since their flow preserves
area. Hence systems (i), (ii) and (xii) have no limit cycles.

If a planar polynomial system has a rational first integral, it cannot have limit
cycles. Hence system (iii) does not have limit cycles.

If a quadratic system has a limit cycle, it is known that inside the limit cycle
there is a real finite critical point (x0, y0)∈R2 of focus type. Now if the system has
the form ẋ = P(x), ẏ = Q(x, y), we have P(x0) = 0, and x = x0 is a real invari-
ant straight line through the focus — a contradiction. Hence systems (ix) and (x)
cannot have limit cycles. In fact such systems cannot have any nontrivial periodic
solutions, since ẋ = P(x) implies, for any T , that T =

∫ T
0 dt =

∫ x(T )
x(0) dx/P(x)= 0.
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We shall need a number of well-known results and we briefly summarize them.
We make use of the familiar Poincaré method of tangential curves:

Theorem 2.1 (Poincaré). A continuous autonomous system

ẋ = P(x, y), ẏ = Q(x, y)

has no periodic solutions in a region D ⊂ R2 if there exists a continuously differ-
entiable function F : D→ R such that

Ḟ = P(x, y)∂F
∂x
+ Q(x, y)∂F

∂y

is of constant sign in D and does not vanish identically on a whole orbit.

Indeed, if γ were a limit cycle, we would have
∫
γ Ḟdt = 0, contrary to the

assumption.
The following theorem (see [Ye et al. 1986], for example) is a classical method

for proving the nonexistence of limit cycles in a simply connected region.

Theorem 2.2 (Bendixson–Dulac criterion). A C1 system ẋ = P(x, y), ẏ= Q(x, y)
defined in U ⊂ R2 has no periodic solution in a simply connected region D ⊂
U if there exists a continuously differentiable function B : D → R such that the
divergence (B P)x + (B Q)y is of constant sign in D and is not identically zero in
any open subset in D.

Cherkas [1997] proved the following result, which gives an upper bound for the
number of limit cycles that can have a planar differential system under certain hy-
pothesis. In fact he estimates the number of limit cycles according to the topology
of a curve F(x, y)= 0; see [Giacomini 1999].

Theorem 2.3. Consider the polynomial system ẋ = P(x, y), ẏ= Q(x, y). Suppose
that in a connected domain W ⊂ R2 there exists a function F(x, y) ∈ C1(W ) and
a number β ∈ R such that the function

M(x, y) := Ḟ +βF div(P, Q)= P ∂F
∂x
+ Q ∂F

∂y
+βF

(
∂P
∂x
+
∂Q
∂y

)
satisfies M(x, y) > 0 in W . Then the limit cycles of the system do not intersect
the set 6 = {(x, y) ∈ W : F(x, y) = 0} and, in each k-connected domain Wi with
boundary ∂Wi ⊂6∪∂W , the number of these cycles is at most k−1. The condition
M > 0 for M can be replaced by M ≥ 0, but in this case we must assume that the
curve F = 0 contains no limit cycles.

Following [Darboux 1878], we can think of the polynomial vector field X =

P(x, y) ∂/∂x + Q(x, y) ∂/∂y of R2 associated to (1) as living in the complex pro-
jective plane CP2, via homogeneization (x = X/Z , y = Y/Z ; see also [Chavarriga
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and Llibre 2001]). Hence, X is embedded in the homogeneous polynomial vector
field given by

X̃= L(X, Y, Z) ∂
∂X
+M(X, Y, Z) ∂

∂Y
on CP2, where L(X,Y,Z)= Z2 P(X/Z ,Y/Z) and M(X,Y,Z)= Z2 Q(X/Z ,Y/Z).
The vector field X̃ is the complex projectivization of X.

It is easy to show that if f (x, y) = 0 is an invariant algebraic curve of de-
gree n for system (1) with associate cofactor K (x, y), that is, if X f = K f , then
F̃(X, Y, Z) = Zn f (X/Z , Y/Z) = 0 is an invariant algebraic curve of X̃ with co-
factor K̃ (X, Y, Z)= Z K (X/Z , Y/Z). That is to say, X̃F̃ = K̃ F̃ .

Also notice that any finite critical point (x0, y0) ∈ C2 of (1) satisfies

L(x0, y0, 1)= M(x0, y0, 1)= 0.

The following theorem of Chavarriga, Giacomini and Llibre provides sufficient
conditions for a quadratic system to have all its limit cycles algebraic.

Theorem 2.4 [Chavarriga et al. 2001a]. Let f (x, y) = 0 be a real invariant alge-
braic curve of degree at least 2 of a real quadratic system (1) with associate vector
field X. (Recall that P and Q are assumed coprime.) Let K be the cofactor of f .
Suppose that there are points p1, p2 ∈CP2 such that L(pi )= M(pi )= K̃ (pi )= 0
for i = 1, 2, where

L = Z2 P(X/Z , Y/Z), M = Z2 Q(X/Z , Y/Z), K̃ = Z K (X/Z , Y/Z).

Then all limit cycles of (1) lie in the algebraic set f (x, y)= 0.

Notice that if there are two singular points p1, p2 ∈ CP2 of the complex pro-
jectivized vector field X̃ = L(X, Y, Z) ∂/∂X + M(X, Y, Z) ∂/∂Y which do not
belong to the complex projective curve F̃(X, Y, Z) = 0, i.e. L(pi ) = M(pi ) = 0
and F̃(pi ) 6= 0 for i = 1, 2, then from equation X̃F̃ = K̃ F̃ we conclude that such
points should satisfy K̃ (pi )= 0 and therefore we can apply the preceding theorem.

3. Nonexistence of cubic algebraic limit cycles for quadratic systems

The following theorem was proved by Evdokimenko [1970; 1976; 1979]. A sim-
pler proof was given in [Chavarriga and Llibre 1998]. Here we include a new and
shorter proof.

Theorem 3.1. A real quadratic system does not have algebraic limit cycles of third
degree.

The basic tools we will use in the proof of Theorem 3.1 are algebraic geometry
results of Darboux [1878]. Thus we start by recalling some definitions and results
on planar algebraic curves in CP2.
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Let F(X, Y, Z) be a homogeneous complex polynomial of degree n in X, Y, Z .
Then F(X, Y, Z) = 0 is an algebraic curve of CP2. Let p be a point of CP2,
which without loss of generality we assume to be p = (0, 0, 1). Suppose that the
expression of F(X, Y, Z) restricted to Z = 1 is

F(X, Y, 1)= Fm(X, Y )+ Fm+1(X, Y )+ . . .+ Fn(X, Y ),

where 0 ≤ m ≤ n and the F j (X, Y ) are homogeneous polynomials of degree j in
the variables X and Y , with Fm not identically zero. We say that m =m p(F) is the
multiplicity of the curve F = 0 at the point p. If m = 0 the point p does not belong
to the curve. If m = 1 we say that p is a simple point, and if m > 1 a multiple
point, of the curve F = 0. Thus p is a multiple point if and only if

∂F
∂X

(p)= 0, ∂F
∂Y
(p)= 0, ∂F

∂Z
(p)= 0.

Suppose that for m > 0 we have Fm =
∏r

i=1 Lri
i , where the L i are distinct straight

lines, called tangent lines to the curve at p, and ri is the multiplicity of the tangent
line L i at p. For m>1 we say that p is an ordinary multiple point if the multiplicity
of all tangents at p is 1; otherwise we say that p is a nonordinary multiple point.

We denote by I (p, F ∩G) the intersection index of the algebraic curves F = 0
and G = 0 at a point p of CP2 and we think of it as the number of times that
these two curves intersect at p. More formally, let Gi = 0, for i = 1, . . . , s,
be algebraic curves and p a point of CP2. The intersection index of the curves
G1 = 0, . . . ,Gs = 0 at p is defined as

I (p,G1 ∩ · · · ∩Gs)= dimC

Op

(G1, . . . ,Gs)
,

where Op is the ideal of homogeneous polynomials vanishing at p.
Consider a polynomial vector field X = P(x, y) ∂/∂x + Q(x, y) ∂/∂y of de-

gree m defined in R2, with P and Q coprime, and let X̃ = L(X, Y, Z)∂/∂X +
M(X, Y, Z)∂/∂Y be its complex projectivization: L = Zm P(X/Z , Y/Z), M =
Zm Q(X/Z , Y/Z). Let f (x, y) = 0 be an irreducible invariant algebraic curve
of degree n of X. As mentioned earlier, F̃(X, Y, Z)= Zn f (X/Z , Y/Z)= 0 is an
invariant algebraic curve of degree n of the vector field X̃ with cofactor K̃ (X, Y, Z)
and therefore

X̃F̃ = L ∂ F̃
∂X
+M ∂ F̃

∂Y
= K̃ F̃,

where deg K̃ =m−1. Using Euler’s Theorem on the homogeneous function F̃ of
degree n we get

F̃ = 1
n

(
X ∂ F̃
∂X
+ Y ∂ F̃

∂Y
+ Z ∂ F̃

∂Z

)
,
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and the above equation becomes

(2) ∂ F̃
∂X

(nL − X K̃ )+ ∂ F̃
∂Y
(nM − Y K̃ )+ ∂ F̃

∂Z
(−Z K̃ )≡ 0.

We will use the following result from [Darboux 1878] on enumerative geom-
etry. (Its original statement was not correct. Two elementary proofs are given in
[Chavarriga et al. 2001b].)

Lemma 3.2. Let A, A′, B, B ′, C and C ′ be homogeneous polynomials in X, Y, Z,
of degrees `, `′, m, m′, n and n′ respectively. Assume that A, B,C, A′, B ′,C ′ never
vanish all at once on CP2 and that the curves A=0, B=0, C=0 have no common
component with the curves A′=0, B ′=0, C ′=0, respectively. If AA′+B B ′+CC ′

vanishes identically then∑
p

I (p, A∩ B ∩C)+
∑

p

I (p, A′ ∩ B ′ ∩C ′)≥
`mn+ `′m′n′

λ
,

where λ= `+ `′ = m+m′ = n+ n′.

Define h as the intersection number (the number of intersection points in CP2,
taking multiplicities and intersection indices into account) of the curves

nL − X K̃ = 0, nM − Y K̃ = 0, −Z K̃ = 0;

note that h ≤ m2, by Bézout’s Theorem. Likewise define h′ as the intersection
number of the curves

∂ F̃
∂X
= 0, ∂ F̃

∂Y
= 0, ∂ F̃

∂Z
= 0.

Then h′ =
∑

p IM(p, F̃), where the sum runs over all multiple points p of the
curve F̃(X, Y, Z)= 0 and

IM(p, F̃) := I
(

p, ∂ F̃
∂X
=
∂ F̃
∂Y
=
∂ F̃
∂Z
= 0

)
is the Milnor index of the curve at p ∈ CP2.

Applying Lemma 3.2 to identity (2) we obtain:

Corollary 3.3. Let X be a planar polynomial vector field of degree m with coprime
components and let f (x, y) = 0 be an irreducible invariant algebraic curve of
degree n of X. Then h+ h′ ≥

(
m3
+ (n− 1)3

)
/(m+ n− 1).

The following theorem is proved in [Chavarriga and Llibre 2001].

Theorem 3.4. Let f = 0 be an invariant algebraic curve of degree n with asso-
ciated cofactor K of the polynomial vector field X = P∂/∂x + Q∂/∂y such that
m = deg X > 1. If h = m2 then the complex projectivization X has a rational first
integral.
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Proof of Theorem 3.1. Let X be a real quadratic vector field with a real invariant
cubic irreducible curve f (x, y) = 0. Then m = 2, n = 3 and, from Corollary 3.3,
h+ h′ ≥ 4. If h′ = 0 then h ≥ 4= m2 and by Theorem 3.4 the field X possesses a
rational first integral. Hence in this case X has no limit cycle.

Assume instead that h′ 6=0. Then f =0 must have a multiple point p1= (x0, y0),
and it must be real, since otherwise the complex conjugate p̄1 = (x̄0, ȳ0) would
also be a multiple point of f — impossible because a cubic in CP2 has at most one
multiple point. Suppose there is a limit cycle γ of X such that γ ⊂ 6 = {(x, y) ∈
R2
: f (x, y)=0}. Let D⊂R2 be the simply connected domain bounded by γ . Take

a point p2 ∈ D and the line R(x, y)= 0 through p1 and p2. This line intersects γ
twice, say at q1 and q2; moreover∑

p I (p, R ∩ f )≥ I (p1, R ∩ f )+ I (q1, R ∩ f )+ I (q2, R ∩ f )

≥ 2+ 1+ 1= 4.

This is a contradiction, since Bézout’s Theorem says that
∑

p I (p, R ∩ f ) =
deg R deg f = 3. So γ 6⊂6 and we conclude with the statement of the theorem. �

4. Proof of main result

We now apply the facts collected above to prove our main theorem:

Theorem 4.1. A quadratic system having a cubic invariant curve and a limit cycle
must be of type (v+) or type (viii) in Table 1. Both possibilities do in fact occur.

The theorem is a consequence of the next four lemmas, which exclude all com-
plementary cases. Examples showing that the allowed possibilities do occur are
given at the end of the section.

Lemma 4.2. Cases (ix), (x), (xi) and (xiii) of Table 1 have no limit cycles.

Proof. Clearly P and Q are coprime for (ix), (x), (xi) and (xiii). The cubic curve
f (x, y) = 0 is an invariant algebraic curve for these systems, and, as we will see
next for each case, there are two critical points outside the zero set of F̃ (other
than in particular cases easily disposed of). Applying Theorems 3.1 and 2.4 we
conclude that such systems have no limit cycles.

(ix) Here m01 6=0, and we can assume that a20 6=0 and α :=−2a20m01−b02m10 6=0
(otherwise either ẋ is constant or there are two invariant lines, x = 0 and y = 0;
either way the existence of limit cycles is precluded). Under these hypotheses there
are two critical points (±x0,±y0) ∈ C2, where

x0 =

√
α

2a20
, y0 =

m10

2

√
α

2a20m01
;

in CP2 they satisfy F̃(±x0,±y0, 1) 6= 0.
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(xi) Let x±i , with i = 1, 2, be the solutions of x2
+ ax ± 2 = 0. There are two

critical points (x±i ,±1) ∈ C2 and they satisfy F̃(x±i ,±1, 1) 6= 0.

(xiii) Here a 6= 0. We have the following cases.

• If b11− 2a20 6= 0, let x± be the roots of quadratic equation

2ab11(1+ 2a3)+
(
b11(4a3

− 1)− 2a20(1+ 2a3)
)
x + a2(b11− 2a20)x2

= 0,

and let y± be the solutions of the linear equation

b11
(
β1±β2

√
α
)
+ a(b11− 2a20)

(
β3∓ (b11+ 2a20)

√
α
)
y = 0,

where

α = 4a2
20+ 16a3a2

20+ 16a6a2
20+ 4a20b11+ 8a3a20b11+ b2

11− 16a3b2
11,

β1 = 4a2
20+ 16a3a2

20+ 16a6a2
20+ 4a20b11− 16a3a20b11+ b2

11− 4a3b2
11,

β2 = 2a20− 4a3a20+ b11,

β3 =−4a2
20− 8a3a2

20− 4a20b11+ 12a3a20b11− b2
11.

The points (x±, y±) ∈ C2 are critical and satisfy F̃(x±, y±, 1) 6= 0.

• If b11 − 2a20 = 0, the projective point p1 = (2, a, 0) ∈ CP2 satisfies L(p1) =

M(p1)= K̃ (p1)= 0 and F̃(p1) 6= 0. Next, if a 6= 1 the system has a finite critical
point

(x0, y0)=

(
a(1+ 2a3)

1− a3 ,
1+ 2a3

2a(1− a3)

)
,

such that F̃(x0, y0, 1) 6= 0. Finally, if a = 1 the points p1 and p2 coalesce to give
one point (2, 1, 0) ∈ CP2. Then the intersection index

∑
p I (p, L ∩ M ∩ K̃ ) is 2

and Theorem 2.4 works also. �

Lemma 4.3. Cases (iv), (vi) and (vii) of Table 1 have no limit cycles.

Proof. For these systems we exhibit below functions F(x, y) whose derivative Ḟ
along trajectories is of constant sign; applying the Poincaré method (Theorem 2.1)
we conclude that there are no periodic solutions.

In each case f (x, y) denotes the cubic polynomial given in Table 1. Since f = 0
is an invariant curve, any limit cycle must be either contained in or disjoint from
it. The first possibility is in contradiction with Theorem 3.1.

(iv) Taking F(x, y)= y/
√
| f (x, y)| we get Ḟ =±x2/

√
| f (x, y)|.

(vi) Taking F(x, y)= x/ f 1/3(x, y) we get Ḟ = a/
(
3 f 1/3(x, y)

)
, which has con-

stant sign. (If a = 0 the system has two invariant lines x = 0 and y = 0, and
therefore cannot have a limit cycle.)
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(vii) Taking F(x, y)=
(
−3a10a11+(9a2

11+a10a20)x2
+6a2

11 y
)
/ f 2/3(x, y) we get

Ḟ = 2a20(3a11+ a10x)2/ f 2/3(x, y). �

Lemma 4.4. Case (iv) of Table 1 has no limit cycles.

Proof. We apply the Bendixson–Dulac criterion, Theorem 2.2. Consider the Dulac
function B(x, y)= f −1(x, y), where f = y2

+ x(x2
+axy+by2)= 0 is the cubic

invariant curve. The divergence of the vector field (P B, Q B) is

(P B)x + (Q B)y =
−1

2 f (x, y)
.

The unique finite multiple point of f = 0 is the cusp at the origin. Hence we have
two cases:

• If f = 0 does not contains ovals, it partitions the plane into simply connected
domains Di ; that is, R2

=
⋃

i Di ∪ {(x, y) ∈ R2
: f (x, y) = 0}. Applying the

Bendixson–Dulac criterion to each Di , with the Dulac function B, we conclude
that there are no limit cycles.

• If there is some oval in f = 0, it cannot be a limit cycle of the system, thanks
to Theorem 3.1. Hence it must belongs to the period annulus of a center. But
quadratic systems with a center cannot coexist with limit cycles. �

Lemma 4.5. Case (v−) of Table 1 has no limit cycles.

Proof. If b01 = 0, the system has an invariant straight line `(x, y) = B02+ B20+

3B02x = 0, and it is easy to show that H(x, y)= f (x, y)/`3(x, y) is a rational first
integral; therefore there are no limit cycles in this case.

We therefore assume that b01 6= 0 and indeed, by a time rescaling, that b01 = 1.
With the simplifying notation a := B02 and b := B20 the system becomes

ẋ = 2
(
x + (a+ b)y+ x2

+ 3axy
)
, ẏ = 2

(
(a+ b)x + y

)
+ 3(bx2

+ xy+ 3ay2).

There are four critical points, namely

p1 = (0, 0), p2 =−
2

3b

(
a+ b,−1

3

)
,

p3,4 =

(
1− 6a(a+ b)±

√
1

18a2 ,
−1− 9a(a− b)±

(
−1+ 3a(a+ b)

)√
1

54a3

)
,

where 1 := 1+12a(2a−b). The only one that does not lie on the invariant cubic
f (x, y)=0 is p2. Since this cubic (shown in Figure 1, left) has no isolated multiple
points, we conclude that p2 is the only critical point that can be a focus.



LIMIT CYCLES FOR QUADRATIC SYSTEMS WITH AN INVARIANT CUBIC 213

−1 −0.5 0.5 1
x

−1

−0.5

0.5

1

y

−3

−2

−1

1

2

3

4

5

k

b2

A B

−1 1/2

Figure 1. Left: The cubic f (x, y) = x2
− y2

+ x3
= 0. Right:

Graph of b2(k). In the domains A and B there is a focus p2.

If b= 0 there is no finite focus and we are done. Otherwise we make the change
of parameters a = kb with b 6= 0 and the system adopts the form

(3)
ẋ = P(x, y)= 2

(
x + b(1+ k)y+ x2

+ 3kbxy
)
,

ẏ = Q(x, y)= 2
(
b(k+ 1)x + y

)
+ 3(bx2

+ xy+ 3kby2).

An easy computation shows that the eigenvalues associated with the critical point
p2 are (k− 1±

√
�)/3, where

� := 13− 36b2
− 2k+ k2

+ 108b2k2
+ 72b2k3.

From the equation � = 0 we obtain b2
= (−13+ 2k − k2)/

(
36(1+ k)2(2k − 1)

)
,

whose graph is given in Figure 1, right. The condition �< 0 ensures the existence
of a focus in p2 and it is only satisfied in the regions A and B of parameter space,
in particular requiring that k lie in I1 := (−∞,−1)∪ (−1, 1

2).
We now distinguish two cases:

• k 6= 0: Consider the line where L = x + (1+ k)/(3k) vanishes. Since

d L
dt

∣∣∣
L=0
=

2(1− 2k)(1+ k)
9k2

does not change sign in the regions A and B, this line is transversal to the vector
field. We will find a function F(x, y)= L f α with α ∈ R that can be used to apply
Theorem 2.3. Recall that p2 is a weak focus — that is,

div(P, Q)(p2)=
∂P(p2)

∂x
+
∂Q(p2)

∂y
= 0
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— if and only if k = 1; but this value of k leads to � > 0, so this possibility can
be discarded. Hence div(P, Q)(p2) 6= 0. Now, our invariant cubic has no isolated
multiple points, and the line L = 0 is transversal; thus f (p2)L(p2) 6= 0 for all
k ∈ I1. So p2 does not lie in 6 = {(x, y) ∈ R2

: F(x, y)= 0}.
The set 6 partitions the plane into simply connected domains. Let W ⊂ R2

be one of those components containing p2. Then F ∈ C1(W ). In this situation a
possible limit cycle γ must satisfy γ ⊂W .

Recall the function M(x, y)= Ḟ+βF div(P, Q) (Theorem 2.3) and the equality
ḟ = K f , where K is the cofactor. Combining these two equations we get

M(x, y)= f α(x, y)9(x, y),

where 9(x, y) := L̇ +
(
αK + βdiv(P, Q)

)
L . Taking β =− 1

4(1+ 3α) reduces 9
to a quadratic polynomial in x :

9(x)=
1

12k

(
4(1+ k)(α− 1)+ (−7+ 5k+ 3α+ 15kα)x + 3k(1+ 3α)x2).

We will see that for all k in a large subset of I1 there are real values of α such
that 9(x) has sign constant in x . Indeed, the discriminant δ of 9 is a quadratic
polynomial in α:

δ(α)=
1

144k2

(
49− 22k+ 73k2

+ 6(−7− 14k+ 41k2)α+ 9(3k− 1)2α2).
This is nonpositive for some α (implying the desired behavior for 8) if disc δ =
8(k − 1)(k + 1)(2k − 1)/(9k3) > 0, which in turn is equivalent to k ∈ I2 =

(−1, 0) ∪ (1/2, 1). Since W is a simply connected domain, applying Theorem
2.3 we conclude that if k 6∈ I1 ∩I2 = (−1, 0) the system (3) cannot have a limit
cycle.

• k = 0: Again in this case (3) does not have limit cycles. To see it is sufficient
to apply Theorem 2.3 with F = f α. We get M(x, y) = f α(x, y)9(x), where
9 = αK + β div(P, Q) = 4(α+ β)+ (6α+ 7β)x . Taking any values of α and β
such that 6α+ 7β = 0 we obtain the claim.

There remains to show that there are no limit cycles also even if k ∈ (−1, 0), and
we do this using Theorem 2.1. Consider the function F(x, y) := 0(x, y) f λ(x, y),
where λ is real and 0(x, y) = γ0 + γ1x + γ2 y + x2 is a real quadratic poly-
nomial. As above we compute the derivative of F along the orbits, obtaining
Ḟ = f λ(x, y)8(x, y), where 8(x, y) = 0̇+ λK0. If we take λ = − 2

3 , the poly-
nomial 8(x, y) is of second degree.

Now we impose that 8(x, y) be a perfect square and therefore 8(x, y)≥ 0 for
all (x, y) ∈ R2. Let δ(y) be the discriminant of 8 with respect to x . This is also a
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quadratic polynomial in y given by δ(y)= δ0+ δ1 y+ δ2 y2 and we seek to make it
vanish identically. Set 11 :=

(
1+ 18b2k2(1+ k)

)2
+ 36b2k. We have two cases:

• 11 6= 0: Here δ(y)≡ 0 if we take

γ0 =
2
91
−1
1

(
1+ 3k+ 9(1+ k)3(6k− 1)b2

+ 162k2(1+ k)4b4

− 2(1+ 9b2(1+ k)2(1+ 2k))
√
12
)
,

γ1 =
4
31
−1
1 (1+ k)

(
1+ 9(3+ 3k+ 2k2)kb2

+ 162k3(1+ k)2b4
− 18b2k

√
12
)
,

γ2 = 41−1
1 b

(
1+ k+ 2k2

+ 18(1+ k)2(2k− 1)k2b2
+ 2

√
12
)
,

where 12 := k(1− 9b2
+ 2k + 27b2k2

+ 18b2k3). These γi are always real since
12 is always positive for (k, b) ∈B∩ {k ∈ R : k ∈ (−1, 0)}.

• 11 = 0: Here δ(y)≡ 0 if we take

γ0 =
1
91
−1
3 (1+k2)

(
3(1−3b2)+8k+ (4−9b2)k2

+18b2k3
+108b2k4

+72b2k5),
γ1 =−

2
271

−1
3 (1+ k)

(
1+ 9b2k(1+ k)

)2
/(b2k),

γ2 = 21−1
3 b(1+ k)2(2k− 1)2,

where 13 := 1+ k+ 2(1− 9b2)k2
+ 18b2(3+ 2k)k4. Notice that no denominator

in this computation vanishes since b 6= 0 and the resultant

R[11,13, b] = k6(1+ k)4(−1− k+ 4k3)2

in nonzero for k ∈ (−1, 0). �

Example of a system of the form (v+) having a limit cycle. Choose b01= 1 in the
normal form. For notational simplicity, set a = B02 and b = B20, so that

(4) ẋ = 2
(
x+(a−b)y+x2

+3axy
)
, ẏ= 2(b−a)x+2y+3bx2

+3xy+9ay2.

The invariant cubic is f (x, y)= y2
+x2
+x3. For b 6= 0 there is finite critical point

p =
(

2(a− b)
3b

,
−2
9b

)
.

If b = −a and 1 − 12a2 < 0 this point is a weak focus and the first Liapunov
constant is

V1 =
3
√

3a2
(
(1+
√

1+ 36a2)2− 1
)

4
√

12a2− 1
.

Since V1 is nonzero, a Hopf bifurcation occurs at p when a + b = 0. In short,
V1 > 0 and then decreasing a + b we obtain a unique unstable limit cycle in the
Hopf bifurcation. �
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Example of a system of the form (viii) having a limit cycle. This example is due
to Xu Changjiang [Xu 1992]. The system

(5)
ẋ = 1

2 x(1− x)+ 1
2µ(−1+ 2x + xy)− 1

2λx2,

ẏ =−1− y+ λ(1+ xy)−µy(1+ y),

possesses the invariant cubic f (x, y)= yx2
+ 2x − 1. For λ= (µ− 1)/(3µ) with

1<µ< 3
2 there is a first-order weak focus at (µ, λ−1). By changing λ slightly a

limit cycle bifurcates out, while the cubic f = 0 remains invariant. After a change
of variables (x, y)→ (−x/2,−4y) this system acquires the form (viii). �

Kooij and Zegeling (private communication) have proved the uniqueness of the
limit cycle for (5). The nonexistence of limit cycles for the weak focus case follows
immediately from that proof. The same authors also have shown the nonexistence
of limit cycles for (4) in the weak focus case.
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