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A SURFACE OF GENERAL TYPE WITH pg = q = 2 AND K 2
X = 5

JUNGKAI A. CHEN AND CHRISTOPHER D. HACON

We give an example of a minimal complex surface of general type with pg =

q = 2 and K 2
X = 5.

1. Introduction

Recently, there has been considerable interest in understanding the geometry of
irregular complex projective surfaces with χ(X, ωX )= 1+ pg(X)−q(X)= 1, and
in particular of surfaces with pg = q = 2. Let X be a smooth minimal complex
surface of general type. If χ(X, ωX )= 1, then one has the bound 1≤ K 2

X ≤ 9. If, in
addition, the surface is irregular, that is, q(X)=h0(X, �1

X )>0, then K 2
X ≥2pg(X)

and so pg(X) ≤ 4. In [Debarre 1982], it is shown that the case pg = q = 4
corresponds to the product of two curves of genus 2. In [Hacon and Pardini 2002]
and [Pirola 2002], surfaces with pg = q = 3 are completely classified. When
K 2

X = 2pg(X) = 6 they are symmetric products of curves of genus 3 and when
K 2

X = 8 they admit an irrational pencil. The case pg = q = 2 seems far more
delicate. At any rate Catanese suggests that, analogously to the pg = q = 3 case, a
surface of general type with pg = q = 2 and with no fibration over an elliptic curve
is a degree 2 covering of a principally polarized abelian surface (A,2) branched
along a divisor in the linear series |22|.

Zucconi [2003] has classified surfaces of general type with pg = q = 2 which
admit an irrational pencil. Manetti [2003] showed that a minimal surface of general
type with K X ample and K 2

X = 4, is a degree 2 covering of a principally polarized
abelian surface (A,2) branched along a divisor D ∈ |22|. Ciliberto and Mendes
Lopes [2002] conjecture that this should be the case for any minimal surface of
general type with pg = q = 2 and K 2

X = 4.
Here we give a counterexample to Catanese’s conjecture above. The example

we construct is birational to a triple cover of an abelian surface. Its canonical
divisor K X is ample, pg = q = 2 and K 2

X = 5. The construction is motivated in
Section 3, where we obtain restrictions on the structure of the sheaf albX,∗(ωX ).
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2. Construction and verification

We will need some results from the theory of Mukai transforms. Let Â be the
dual abelian variety of A and P be the normalized Poincaré line bundle on A× Â.
Following [Mukai 1981], define the functor Ŝ of OA-modules into the category of
O Â-modules by

Ŝ(M)= π Â,∗(P⊗π
∗

A M).

The derived functor RŜ of Ŝ then induces an equivalence of categories between
the two derived categories D(A) and D( Â). More precisely, from [Mukai 1981]
we know that there are isomorphisms of functors

RS ◦ RŜ∼= (−1A)
∗
[−g] and RŜ ◦ RS∼= (−1 Â)

∗
[−g],

where [−g] denotes “shift the complex g places to the right”. The Weak Index
Theorem (WIT) holds for a coherent sheaf F on A if there exists an integer i(F)
such that for all j 6= i(F), one has R j Ŝ(F)= 0. The coherent sheaf Ri(F)Ŝ(F) is
denoted simply by F̂.

Now consider (A,M), a simple polarized abelian surface of type (1, 2). Assume
M is symmetric, i.e., (−1)∗M∼=M . The linear series |M | has 4 isolated base points
{o, p, q, r}. We may assume that o is the identity of the abelian surface and that
p, q, r are 2-torsion elements with r = p+q (see [Barth 1987], for instance). Each
divisor D ∈ |M | is either a nonsingular curve of genus 3 or a singular curve with
a simple node distinct from the base points. M∨ satisfies the WIT of index 2. Let

F= M̂∨ := R2Ŝ(M∨)

be the Fourier–Mukai transform of M∨. The vector bundle F has rank 2. Let
E= F∨. One can check that

dim Hom
(
S3E,

∧2E
)
= h0( Â, (S3E)∨⊗

∧2E
)
= 2.

By Miranda’s triple covering construction [1985], there is a 2-dimensional family
of triple coverings f̂ : X̂→ Â with

f̂∗OX̂ = O Â⊕E.

The idea is this: to construct a triple covering f̂ : X̂→ Â over Â with Tschirn-
hausen module E [Miranda 1985], we first construct a triple covering f : X → A
with Tschirnhausen module φ∗M∨E. In Claim 1 we identify those coverings of this
type that descend to a triple covering f : X̂ → Â. In Claim 2 we verify that
for a general such covering the singularities of X are rational. It follows that the
singularities of X̂ are also rational. Finally, we compute the invariants of X̂ via the
invariants of X .
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Let φM∨ : A → Â be the isogeny defined by M∨. We have the commutative
diagram

X = A× Â X̂
φ - X̂

A

f
? φM∨ - Â

f̂
?

where φ : X → X̂ is a 4 : 1 étale covering and f : X → A is a triple covering
determined by a section of

φ∗M∨ Hom
(
S3E,

∧2E
)
⊂ Hom

(
S3φ∗M∨E,

∧2
φ∗M∨E

)
.

By [Mukai 1981], φ∗M∨E∼= M∨⊕M∨. Thus

Hom
(
S3φ∗M∨E,

∧2
φ∗M∨E

)
∼= H 0(A,M)⊕4.

To determine the corresponding 2-dimensional subspace, we consider the Hei-
senberg group action on H 0(A,M). The Heisenberg group can be identified with

G(δ) := {(α, t, l) | α ∈ k∗, t ∈ Z2, l ∈ Ẑ2}

with group law (α, t, l)(α, t ′, l ′) = (αα′l ′(t), t+t ′, l+l ′). Moreover, H 0(A,M)
corresponds to Hom(Z2, k). The action of G(δ) on Hom(Z2, k) is given by

(α, t, l) f (x)= αl(x) f (t + x).

Let X, Y be the sections in H 0(A,M) corresponding to the characteristic functions
of 0, 1 in Hom(Z2, k) respectively.

Claim 1. The 2-dimensional subspace is determined as

φ∗M∨ Hom
(
S3E,

∧2E
)
∼= {(s X, tY,−t X,−sY ) | s, t ∈ k} ⊂ H 0(A,M)⊕4.

Grant this for the time being. Following [Miranda 1985], we can then construct
a triple covering f : X→ A by using the data a= s X , b= tY , c=−t X , d =−sY .
Over an affine open subset U of A, the triple covering can be described in U ×A2

as the covering by the 2× 2 minors of(
Z + a W − 2d c

b Z − 2a W + d

)
where Z ,W are coordinates for A2.

Following [Miranda 1985, §4], we have A = s2 X2
+ stY 2, B = (t2

− s2)XY
and C = s2Y 2

+ st X2. The branch locus is defined by D= B2
−4AC ∈ H 0(M)⊗4

and one can see that it corresponds to a divisor D1+D2+D3+D4 with Di ∈ |M |.
For a general choice of s, t , the Di are all distinct and nonsingular. It is easy to
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check, as in [Miranda 1985, §5], that for general choices of s, t , the only possible
singularities of X lie over the 4 base points {p, q, r, o}. We remark that f is totally
ramified only over these 4 base points.

Let x ∈ X be a point lying over one of {p, q, r, o}.

Claim 2. For general s, t , the singularity of X at x is locally isomorphic to a cone
over a twisted cubic.

Therefore, X has only rational singularities and so does X̂ . A resolution µ̂ :
X̂ ′→ X̂ can be obtained by blowing up along the singularity. The corresponding
resolution µ : X ′→ X is the blow up of X along the 4 points lying over {p, q, r, o}.
Let {Ei }i=1,...,4 be the exceptional divisors and {Ri }i=1,...,4 the proper transform of
the Di . Then

K X ′ =
∑

i=1,...,4

Ri +
∑

i=1,...,4

Ei .

Note that Ri · R j = 0, Ri · E j = 1 for all i, j and E2
i =−3, Ei · E j = 0 for i 6= j .

Thus we have K 2
X ′ = 20, and

pg(X ′)= h0(X ′, ωX ′)= h2(X ′,OX ′)= h2(X,OX )

= h2(A,OA)+ 2h2(A,M∨)= 5.

Similarly, q(X ′)= 2 and χ(X ′, ωX ′)= 4. One can also check that K X ′ is ample.
Since X ′→ X̂ ′ is an étale cover of degree 4, one has

χ(X̂ ′, ωX̂ ′)= 1, (K X̂ ′)
2
= 5,

and K X̂ ′ is ample. X̂ has only rational singularity. It is easy to see that q(X̂ ′)= 2
and hence pg(X̂ ′)= 2. Therefore X̂ ′ is a surface of general type with pg = q = 2
and K 2

= 5.

Proof of Claim 1. We follow [Mumford 1970]. Let H(M∨) be the kernel of φM∨ :

A→ Â, i.e., the set of points x ∈ A such that T ∗x M∨∼=M∨. Then H(M)= H(M∨).
Let G(M) be the set of pairs (x, ϕ) such that x ∈ H(M) and ϕ is an isomorphism
ϕ : M→ T ∗x M . Then G(M) is a group sitting in the exact sequence

0→ k∗→ G(M)→ H(M)→ 0.

There is an isomorphism of groups G(M) ∼= G(δ). Under this identification, the
representation of G(M) on H 0(A,M) corresponds to the unique representation of
G(δ) on V = V (δ) := Hom(Z2, k), which is defined by

((α, t, l) f )(x)= α · l(x) · f (t + x).
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With respect to the ordered basis formed by the characteristic functions of 0 and
1, this representation is induced by

(1, 1, 1) 7→
(

0 1
−1 0

)
, (1, 1, 0) 7→

(
0 1
1 0

)
, (1, 0, 1) 7→

(
1 0
0 −1

)
.

The corresponding G(δ) representation on S3V∨ ⊗
∧2V ⊗ V can easily be com-

puted. By [Mukai 1981, Proposition 3.11] we have

φ∗M∨F∼= H 2(A,M)⊗M ∼= (H 0(A,M)⊗M∨)∨ ∼= φ∗M∨E∨.

One sees that

H 0(A, S3φ∗M∨E∨⊗
∧2
φ∗M∨E)∼= S3 H 0(A,M)∨⊗

∧2 H 0(A,M)⊗ H 0(A,M).

This vector space is in turn isomorphic to
⊕4

i=1 H 0(A,M). We can now compute
the corresponding G(M) representation in terms of the above G(δ) representation.

Let pi , i = 1, . . . , 4 denote the projection onto the i-th factor. With respect to
the ordered basis

{e1, e2, . . . , e8}

= {p∗1 X, p∗1Y, . . . , p∗4 X, p∗4Y }

= {X̂3
⊗X ∧ Y⊗X, X̂3

⊗X ∧ Y⊗Y, X̂2Ŷ⊗X ∧ Y⊗X, X̂2Ŷ⊗X ∧ Y⊗Y,

X̂ Ŷ 2
⊗X ∧ Y⊗X, X̂ Ŷ 2

⊗X ∧ Y⊗Y, Ŷ 3
⊗X ∧ Y⊗X, Ŷ 3

⊗X ∧ Y⊗Y },

the element (1, 1, 1) maps to R ∈ M8(k) defined by Ri, j = 0 if i + j 6= 8 and
Ri,8−i = {−1, 1, 1,−1,−1, 1, 1,−1}, and (1, 1, 0) maps to M ∈M8(k) defined by
Mi, j = 0 if i + j 6= 8 and Mi,8−i = {1, 1, 1, 1, 1, 1, 1, 1}. In particular,

R2
= M2

= 1 and RM = M R.

There is an induced representation of H(M∨)∼= Z2×Z2. It is easy to see that the
(Z2×Z2)-invariant elements form the subspace

{s(e1− e8)+ t (e4− e5) | s, t ∈ k} = {(s X, tY,−t X,−sY ) | s, t ∈ k}.

These invariant elements correspond to the subspace φ∗M∨ Hom
(
S3E,

∧2E
)
. �

Proof of Claim 2. On a neighborhood of one of the base loci o, p, q, r we may
assume that X, Y (or any two distinct sections of H 0(A,M)) are local coordinates.
By [Harris 1992, p. 14, exercise 1.25], the 2× 2 minors mentioned above define a
twisted cubic if and only if for all [u : v] ∈ P1 the linear forms

u(Z + s X)− vtY, u(W + 2sY )− v(Z − 2s X), −ut X − v(W − sY )
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are linearly independent: in other words, if and only if the matrix us −vt u 0
2vs 2us −v u
−ut vs 0 −v


has a nonzero 3× 3 minor for every u, v. By inspection one sees that this is the
case for general s, t (more precisely for t 6= 0 and t2

6= 9s2). �

3. Computation of albX,∗(ωX)

Using the techniques of [Hacon and Pardini 2002], we now find restrictions on the
structure of the coherent sheaf albX,∗(ωX ). It was this computation that suggested
to us the possibility of constructing the example of Section 2.

Proposition 3.1 [Ciliberto and Mendes Lopes 2002, Proposition 2.3]. Let X be a
minimal surface of general type with pg=q=2. Then a :=albX : X→Alb(X)=: A
is not surjective if and only if B := a(X) is a curve of genus 2 and a : X → B has
smooth connected fibers of genus 2 with constant modulus and K 2

X = 8.

We now therefore consider the situation where a : X→Alb(X)=: A is surjective.
For any coherent sheaf F on X , define

V i (X, F) := {P ∈ Pic0(X) | hi (X, F⊗ P) 6= 0}.

Since a is generically finite, Ri a∗ωX = 0 for all i > 0 and so V i (X, ωX ) =

V i (A, a∗ωX ) for all i .

Lemma 3.2. Let X be a minimal surface with pg = q = 2 and surjective Albanese
map. If dim V 1(X, ωX )≥ 1, there exists an elliptic pencil X→ E with g(E)= 1.

Proof. By the generic vanishing theorems of Green and Lazarsfeld, we have
dim V 1(X, ωX ) < 2, and if T is a component of V 1(X, ωX ) of dimension 1,
then T is a translate of an elliptic curve T0 ⊂ Pic0(X). The pencil X → E is
induced by a : X → Alb(X) composed with the dual map of abelian varieties
Alb(X)→ E := T∨0 . �

Corollary 3.3. Let X be a minimal surface of general type with pg = q = 2 without
irrational pencils. Then a : X → A is surjective with V 1(A, a∗ωX ) supported on
finitely many points. �

A vector bundle U on an abelian variety A is unipotent if it has a filtration

0=U0 ⊂U1 ⊂ · · · ⊂Un−1 ⊂Un =U

such that Ui/Ui−1 ∼= OA. A vector bundle is homogeneous if and only if it is iso-
morphic to

⊕n
i=1(Pi⊗Ui ) with Pi ∈ Pic0(A) and Ui unipotent vector bundles. By

[Mukai 1981], there is an one-to-one correspondence between sheaves supported
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on finitely many points and homogeneous vector bundles via the Fourier–Mukai
transform.

Lemma 3.4. Let F be a coherent sheaf on an abelian surface. Then

Ri SR j Ŝ(F)= 0 for (i, j) ∈ {(1, 2), (2, 2), (0, 0), (1, 0)}.

Moreover, there exist an injection d : R0SR1ŜF→ R2SR0ŜF and a surjection
d ′ : R0SR2ŜF→ R2SR1ŜF). In particular, R0ŜF and R2ŜF satisfy the WIT of
index 2 and 0, respectively.

Proof. As mentioned above, by [Mukai 1981], there is an isomorphism of functors

RS ◦ RŜ∼= (−1A)
∗
[−2].

In particular there is a spectral sequence E p,q
2 = R pSRqŜF with E p,q

∞ = 0 if
p+ q 6= 2. The only possibly nonvanishing differentials d2 are

d : R0SR1ŜF→ R2SR0ŜF and d ′ : R0SR2ŜF→ R2SR1ŜF.

One sees that E p,q
2 = E p,q

∞ =0 for (p, q)∈{(1, 2), (2, 2), (0, 0), (1, 0)}. Moreover,
ker d = E0,1

3 = E0,1
∞
= 0, so d is an injection. Similarly d ′ is a surjection. �

Theorem 3.5. Let X be a minimal surface of general type with pg = q = 2 without
any irrational pencil. Then there exist homogeneous vector bundles H, and a neg-
ative definite line bundle L on Â = Pic0(A) (i.e. L∨ is ample) such that a∗ωX fits
into the exact sequences

0→ OA→ a∗ωX → F→ 0,

0→H→ L̂→ (−1A)
∗F→ 0.

Proof. Notice that ωA = OA. By assumption, X has no irrational pencils; thus a :
X→ A is surjective and dim V 1(X, ωX )=0, hence V 1(X, ωX )={OX , P1, . . . , Pn}.
Let F be the coherent sheaf defined by the short exact sequence

0→ OA→ a∗ωX → F→ 0.

Since Ri a∗ωX = 0 for i > 0, one sees that for i ≥ 0,

H i (A, a∗ωX )∼= H i (X, ωX )∼= H i (A, ωA)

and therefore h1(F) = h2(F) = 0. Moreover, for all OX 6= P ∈ Pic0(A), one
has hi (A, F⊗ P) = hi (X, ωX ⊗ P) for all i . In particular V 2(A, F) = ∅ and
V 1(A, F) = {P1, . . . , Pn}. We have R2ŜF = 0 and R1ŜF =

⊕
Bi , where the

sheaves Bi are supported at the points Pi (and are artinian O Â,Pi
-modules; see

[Mukai 1981, Example 2.9]). In particular, R1ŜF satisfies the WIT of index 0.
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Now consider the spectral sequence of the proof of Lemma 3.4. The only
nonzero E2 terms are E0,1

2 and E2,0
2 . Therefore, one has the exact sequence

0→ R0SR1ŜF→ R2SR0ŜF→ (−1A)
∗F→ 0.

First note that R1ŜF is supported on finitely many points. It follows that
R0SR1ŜF = RSR1ŜF is a homogeneous vector bundle; call it H. It suffices
to show that R0ŜF is a negative line bundle.

Let U = Pic0(A)−{OA, P1, . . . , Pn}. Then, for all P ∈U ,

h0(A, F⊗ P)= h0(A, a∗ωX ⊗ P)= χ(X, ωX )= 1.

Thus R0ŜF|U is locally free of rank 1. Let L = (R0ŜF)∨∨. Then L is a reflexive
sheaf of rank 1 on a nonsingular surface and hence a line bundle. Since R0ŜF =

R0Ŝa∗ωX is torsion-free, we have an exact sequence of coherent sheaves on Â:

0→ R0ŜF→ L→ Q→ 0

where Q is supported at most on the points Pi .
We claim that Q = 0. Suppose on the contrary that Q 6= 0. By Lemma 3.4,

Ri SR0ŜF = 0 for i = 0, 1, hence R0L ∼= R0 Q. So for general P ∈ A = Pic0( Â)
one has

h0(L ⊗ P)= h0(Q⊗ P) 6= 0,

since Q 6= 0 is supported on points. It follows that L is an ample line bundle and
therefore satisfying I.T of index 0. In particular, R2SL = 0. On the other hand,
since Q is supported on points, we have that R1SQ = 0. The exact sequence

R1SQ→ R2SR0ŜF→ R2SL

yields R2SR0ŜF= 0. It follows that F= 0, since there is a surjection

R2SR0ŜF→ (−1)∗F.

One concludes that OA = a∗ωX , and so that X → A is birational, which is the
required contradiction.

We may therefore assume that Q = 0 and hence L = R0ŜF is a line bundle.
By Lemma 3.4, L satisfies the WIT of index 2, hence it is a negative definite line
bundle. �

Remark. It follows that if X → A has degree 2, then F has rank 1. The only
possibility is that a∗ωX = OA⊕OA(−2), where 2 is a principal polarization. This
is a 2 : 1 covering branched along a divisor D ∈ |22|.
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We have given an example with a∗ωX = OA ⊕ L̂ , where L∨ is an ample line
bundle of type (1, 2). We have not been able to rule out the cases in which H 6= 0.
For example, is it possible to have a∗ωX = OA⊕ F, with F as follows?

Example. Let (A, L) be a general polarized abelian surface of type (1, 3) and x ∈ A
a closed point. Then hi (A, L⊗Ix ⊗ P)= 0 for all i > 0 and all P ∈ Pic0(A). Let
E= L̂ ⊗Ix and F= E∨. Then we have an exact sequence

0→ P∨x → L̂∨→ F→ 0.
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