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We study regular Dirichlet forms on locally compact Hausdorff spaces X in
the framework of the theory of commutative Banach algebras. We prove
that, suitably normed, the Dirichlet algebra Be = C0(X)∩Fe of continuous
functions vanishing at infinity in the extended domain Fe of a Dirichlet form
(E, F) is a semisimple Banach algebra. This implies that two strongly local
Dirichlet forms (E1, F1), (E2, F2) are quasi-equivalent (that is, c−1 E1≤E2≤

c E1 for some c > 0) if and only if they have the same domain.
We describe the ideal structure of Be, showing that the algebraic K -

theory K∗(Be) of the Dirichlet algebra Be is isomorphic to the topological
K -theory K ∗(X). This allows the construction of Dirichlet structures on
(sections of) finite-dimensional, locally trivial vector bundles over X .

1. Introduction

We study Dirichlet forms from the viewpoint of the theory of commutative Banach
algebras; this approach can be compared to the one illustrated in [Cipriani and
Sauvageot 2003], where it was shown how the study of regular Dirichlet forms can
be regarded as the study of closed derivations on algebras of continuous functions,
taking values in Hilbert modules.

In this section we consider some motivating questions concerning quadratic
forms, which will be answered using algebraic tools. A summary of the rest of
the paper can be found at the end of Section 2.

Question 1. To what extent does the Dirichlet integral

(1–1) E[a] =
∫

Rn
|∇a|2 dm

on L2(Rn,m) depend on its domain, that is, on the Sobolev space H 1,2(Rn) where
E is finite?

MSC2000: primary 31C25; secondary 46J10, 46J20, 60J45.
Keywords: Dirichlet form, Banach algebra, K -theory.

229

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2006.223-2


230 FABIO CIPRIANI

The energy integral (1–1) can be considered the prototype of a (regular, strongly
local) Dirichlet form; in addition to its lower semicontinuity, it has the contraction
property

E[a ∧ 1] ≤ E[a],

which characterizes, by definition, Dirichlet forms among the lower semicontinu-
ous ones.

Question 2. Can we describe all (regular, strongly local) Dirichlet forms on
L2(Rn,m) that are finite exactly on the Sobolev space H 1,2(Rn)?

For example, let us consider the (uniformly quasiconformal) perturbation of the
Dirichlet integral given by quadratic forms of the type

(1–2) Eg[a] =
n∑

i, j=1

∫
Rn

gi, j (x) ∂i a(x) ∂ j a(x)m(dx),

associated to symmetric matrices of measurable function, subject to a uniform el-
lipticity condition 0<λ≤ [gi, j

]
n
i, j=1 ≤3<+∞; since all the forms of type (1–2)

are Dirichlet forms, finite exactly on the same space, we may ask:

Question 3. Do the forms of the type above exhaust the class of regular, strongly
local Dirichlet forms that are finite precisely on the Sobolev space H 1,2(Rn)?

The answer, in the affirmative, relies, among other things, on the fact that the
space C0(R

n)∩ H 1,2(Rn) of continuous functions vanishing at infinity and having
finite Dirichlet integral is a uniformly dense subalgebra of C0(R

n), which is also
a semisimple algebra with respect to a suitable Banach norm, stronger than the
uniform one. This and other algebras with similar properties on locally compact
Hausdorff spaces, called in this work Dirichlet algebras (not to be confused with
those considered in [Wermer 1960]), represent the objects of our present investiga-
tion. The special case of the classical Dirichlet form on the unit interval [0, 1] ⊂R

was investigated by G. Shilov [1947] (see [Rickart 1960, Appendix §2]).

We conclude this introduction noticing that the algebraic point of view dates
back to the seminal work on the subject by A. Beurling and J. Deny [1959], where
they indicated, although without proof and in the very special case of the Dirichlet
integral on a line segment, that bounded continuous functions of finite energy form
a Banach algebra and that all of its prime ideals are primitive. In addition one can
detect the algebraic flavor at several stages along the development of the theory:
we just mention, in Silverstein’s boundary theory [1976] of Dirichlet forms, the
definition of extension of a Dirichlet form and its similarity with the algebraic
approach of Gelfand, Raikov and Shilov [Gelfand et al. 1960] to the compactifica-
tion of completely regular spaces, and the use of the Gelfand spectrum of various
algebras in M. Fukushima’s regularization technique [Fukushima et al. 1994].
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2. Dirichlet forms and Dirichlet algebras

Unless explicitly stated, the symbol (X,m) will denote a locally compact, metriz-
able space with countable base, endowed with a positive Radon measure m with
full topological support (that is, strictly positive on open sets).

As is customary, C0(X) will denote the algebra of continuous functions vanish-
ing at infinity on X , L∞(X,m) the algebra of (classes of) m-essentially bounded
functions on X , and L2(X,m) the Hilbert space of (classes of) square-integrable
functions on X .

The standing assumptions on (X,m) imply that C0(X)∩L2(X,m) can be viewed
both as a subspace of C0(X) as well as of L2(X,m), that these embeddings are
dense both in the uniform norm as well as in the L2-topologies, and that C0(X) is
weak∗-dense in L∞(X,m).

Our aim is to analyze from an algebraic point of view the following class of
functionals (see [Albeverio 2003; Beurling and Deny 1959; Fukushima et al. 1994;
Ma and Röckner 1992]).

Definition 2.1. A Dirichlet form on (X,m) is a quadratic, lower semicontinuous
functional

E : L2(X,m)→ [0,+∞]

which is finite on a dense set and satisfies

(2–1) E[a ∧ 1] ≤ E[a] a ∈ L2(X,m).

The domain F, called the Dirichlet space, is, by definition, the subspace where E

is finite
F := {a ∈ L2(X,m) : E[a]<+∞}.

In the following will have occasion to denote by E( · , · ) the symmetric sesquilinear
form on F associated by polarization to E[ · ].

Remark 2.2. It was proved in [Cipriani 1997, Proposition 4.10(i)] that this defi-
nition of a Dirichlet form is equivalent to the usual one [Fukushima et al. 1994],
where (2–1) is replaced by E[0∨a∧1] ≤E[a], thanks to the lower semicontinuity
of E.

Remark 2.3. All the linear spaces of functions considered in this paper are on the
field of complex numbers. Correspondingly, we tacitly assume that the Dirichlet
forms considered are real in the sense that E[ā] = E[a] for all a in the Dirichlet
space F. This is equivalent to assuming that if a is in F then its real and imaginary
parts, Re a and Im a, also belongs to F and E[a] = E[Re a] +E[Im a]. This may
explains why in Definition 2.1 only real functions are involved.

Recall that Dirichlet forms on L2(X,m) are in one-to-one correspondence with
the class of symmetric Markov semigroups on L2(X,m), i.e., those symmetric,
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strongly continuous, positivity-preserving contraction semigroups on L2(X,m)
that extend to strongly continuous, positivity-preserving contraction semigroups
on L p(X,m) for all p∈ [0,+∞) and to a weakly continuous, positivity-preserving
contraction semigroup on L∞(X,m). See [Albeverio 2003; Fukushima et al. 1994;
Ma and Röckner 1992].

Besides (E,F) it is important to consider the extended Dirichlet space (E,Fe),
in view of its stronger stability. Here Fe is the space of those m-a.e. finite Borel
functions a on X for which there exists a sequence {an ∈ F : n ∈ N} such that
a = limn→∞ an m-a.e., E[an−am]→ 0 as n,m→∞, and then E[a] is defined as
the limit E[a] = limn→∞ E[an].

Notice that, in general, one has F=Fe∩L2(X,m), so that F=Fe if the measure
is finite. Moreover, as a consequence of the Potential Theory of Dirichlet spaces,
one can prove that even if, in general, Fe cannot be embedded in L2(X,m), it can
be always embedded in L1(X, µ) for a suitable measure µ. A Dirichlet form is
said to be recurrent if 1 ∈Fe and E[1] = 0. It is said to be transient if a ∈Fe and
E[a] = 0 imply a = 0.

For example, the Dirichlet integral (1–1) is recurrent if and only if the dimension
of the Euclidean space is 1 or 2, and it is transient if and only if the dimension is
at least 3.

We now introduce the main objects of our investigation: these will be natural
function algebras associated to Dirichlet spaces.

Definition 2.4. Let (E,F) be a Dirichlet form on L2(X,m) and consider the fol-
lowing spaces:

(i) the Dirichlet algebra

B := C0(X)∩F;

(ii) the extended Dirichlet algebra

Be := C0(X)∩Fe;

(iii) the weak Dirichlet algebra

A := L∞(X,m)∩F;

(iv) the extended weak Dirichlet algebra

Ae := L∞(X,m)∩Fe.

These are vector spaces that satisfy the obvious inclusion relations:

A⊆Ae, B⊆Be, B⊆A, Be ⊆Ae.
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The first relevant aspect concerning the structure of Dirichlet spaces was discov-
ered by Beurling and Deny in their first paper on the subject [1959]: as the chosen
names suggest, these spaces are function algebras.

Proposition 2.5. Let (E,F) be a Dirichlet form on L2(X,m). Then A,Ae,B and
Be are function algebras and√

E[ab] ≤
√

E[a] ‖b‖∞+‖a‖∞
√

E[b] for a, b ∈Ae.

Even if the theory of Dirichlet forms can be developed in fairly general measured
spaces (X,m), a more satisfactory and rich theory take places when (X,m) are
topological data. In this setting the key property on which this “topological” theory
relies is the following one (see [Fukushima et al. 1994]).

Definition 2.6. A Dirichlet form E is said to be regular if its Dirichlet algebra
B := C0(X) ∩ F is a core for E which is dense in C0(X), with respect to the
uniform topology (notice also that alternative definitions are also considered in
literature).

The core property can be expressed by saying that the closed quadratic form
(E,F) is the closure of its restriction (E,B) or by saying that E is the relaxation (in
the sense of the 0-convergence of functionals) of the functional E0

: L2(X,m)→
[0,+∞] which coincides with E in B but takes value +∞ in the complement of
B in L2(X,m).

Remark 2.7. The definition above is suitable in studying Dirichlet forms on lo-
cally compact Hausdorff spaces; otherwise, the space C0(X) can be very poor in
topological information and may even vanish, as in the case of infinite-dimensional
topological vector spaces (by Tychonoff’s theorem). However, thanks to regular-
ization procedures (see [Albeverio 2003; Fukushima et al. 1994; Ma and Röckner
1992]), one can apply the techniques we are going to develop to Dirichlet forms
on much more general Hausdorff topological spaces.

Among the striking consequences of the above regularity hypothesis, we recall
the following ones:

• E gives rise to a strongly subadditive Choquet capacity and a potential theory
on X which are the main tools to construct a canonical class of m-symmetric Hunt
processes M = (�,M, X t , Px) on X whose energy forms coincide with E (see
[Fukushima et al. 1994]). These processes coincide outside a set of zero capacity.
If 1 denotes the nonnegative, self-adjoint operator whose quadratic form is E and
{e−t1

: t ≥ 0} its associated Markov semigroup on L2(X,m), then the connection
with the Hunt process can be expressed through the formula

(Tt a)(x)= Em(a(X t)),
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valid for all t≥0 and for quasi-every x ∈ X , with respect to the appropriate capacity.
On the other hand, m-symmetric Hunt processes give rise to Dirichlet forms.

• E gives rise to a canonical differential calculus on X (see [Cipriani and Sauvageot
2003]): there exists a canonical L2-closable derivation ∂ : B→ H into a Hilbert
space H endowed with a structure of symmetric C0(X)-bimodule, such that

E[a] = ‖∂a‖2H for a ∈B;

in other words, the nonnegative, self-adjoint operator1 on L2(X,m) associated to
E can always be represented as the divergence of a derivation

1= ∂∗ ◦ ∂;

the Hilbert module H and the derivation ∂ are generalizations of the space of the
square-integrable vector fields on a Riemannian manifold X and the associated
gradient respectively.

• The Dirichlet algebra B= C0(X)∩F retains all the topological information of
X (see [Cipriani and Sauvageot 2003, Remark 7.6]): for example, the derivation ∂
is closed with respect to the uniform topology so that the algebraic K -theory of B

is isomorphic to the topological K -theory of X :

K∗(B)∼= K ∗(X);

by the methods developed in this paper, we give, in Section 4, an alternative proof
of the corresponding result for the extended Dirichlet space Be.

• E can be canonically represented by a family {µ〈a〉 : a ∈F} of energy measures
(see [Cipriani and Sauvageot 2003; Lejan 1978; Fukushima et al. 1994]): these
are positive Radon measures on X which represent the Dirichlet form as E[a] =
µ〈a〉(X) for a ∈ F. They are characterized by the identities∫

X
b dµ〈a〉 = 2E(ab, a)−E(a2, b) for a, b ∈B,∫

X
b dµ〈a〉 = (b ∂a, ∂a)H for a, b ∈B.

• In case (E,F) is strongly local in the sense that

E[a+ b] = E[a] +E[b]

whenever a, b ∈ B and a is constant in a neighborhood of the support of b, the
canonical differential calculus (∂B,B,H) is local (see [Cipriani and Sauvageot
2003]) in the sense that H is a direct integral

∫
⊕

X Hx of C0(X)-monomodules and
the derivation ∂ can be expressed as a direct integral

∫
⊕

X ∂x of derivations which
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satisfy the Leibniz property

∂x(ab)= (∂xa)b(x)+ a(x)(∂x b) for a, b ∈B and a.e. x ∈ X.

We now summarize the paper. The main result of Section 3 is that the ex-
tended Dirichlet algebras Ae,Be are semisimple Banach algebras with respect to
the sum of the uniform and energy norms so that they have a unique Banach algebra
topology. In Section 4 we prove that the spectrum of the Dirichlet algebra Be is
homeomorphic with X , that the Dirichlet algebra Be is stable under holomorphic
functional calculus and that its algebraic K -theory K∗(Be) is isomorphic to the
topological K -theory K ∗(X) of X . This last result is then applied to show how a
Dirichlet form on locally compact Hausdorff space X gives rise, in a natural way,
to modules of Dirichlet sections of finite-dimensional, locally trivial vector bundles
over X . In Section 5 we prove that the Dirichlet algebra Be is a completely regular
semisimple Banach algebra; this implies the existence of partitions of the identity
and the local (reconstruction) theorem. In Section 6 we complete the study of the
structure of the ideals of the Dirichlet algebra Be showing that every closed ideal is
the kernel of its support and proving that Be is an N -algebra and an N ∗-algebra too.
In Section 7 we use these results to answer the questions posed in the introduction
and their generalizations for arbitrary strongly local, regular Dirichlet forms. In
Section 8 we make some final considerations on the approach to Dirichlet forms
developed here and formulate natural problems suggested by the algebraic point
of view.

3. Dirichlet spaces as Banach algebras

The aim of this section is to introduce, for a fixed regular Dirichlet form (E,F),
a natural norm on the Dirichlet algebras Ae, Be making them Banach algebras;
we then prove that under this norm these are semisimple Banach algebras, so that
all other possible Banach algebra structures on them are actually equivalent to the
natural one. We will denote by ‖ · ‖∞ the uniform norm in L∞(X,m).

Proposition 3.1. The function spaces Ae and Be, endowed with the norm

(3–1) ‖a‖ := ‖a‖∞+
√

E[a] for a ∈Ae,

are complex Banach algebras.

Proof. Let {an ∈ Ae : n ∈ N} be a Cauchy sequence in Ae. Then it converges
uniformly to an element a ∈ L∞(X,m). By taking a subsequence, we can assume
that it converges pointwise m-a.e. on X . Since the sequence is also E-Cauchy,
this implies that a ∈ Fe, so a ∈ Ae. Since C0(X) is a norm closed subspace in
L∞(X,m), the same argument implies that Be is norm closed in Ae. �
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Let us consider now the pointwise defined product (a, b) 7→ ab and the involu-
tion given by the pointwise conjugation a 7→ ā on the Banach algebras C0(X) and
L∞(X,m).

Proposition 3.2. The Dirichlet spaces Ae and Be, endowed with the algebraic
structures above, are involutive complex Banach algebras. Ae is unital (i.e., 1∈Ae

and ‖1‖ = 1) if and only if (E,F) is recurrent, and Be is unital if and only if X
is compact and (E,F) is recurrent. The Dirichlet algebras Ae and Be are never
C∗-algebras unless E vanishes identically.

Proof. Since, by assumption, the Dirichlet form is real, the conjugation is a well
defined operation on Ae, Be and ‖ā‖ = ‖a‖ for all a belonging to Ae or Be.

It is well known that Ae is closed under this product and that

(3–2)
√

E[ab] ≤
√

E[a] ‖b‖∞+‖a‖∞
√

E[b] for a, b ∈Ae

(see [Fukushima et al. 1994]). This implies that for all a, b ∈Ae, we have

‖ab‖ = ‖ab‖∞+
√

E[ab] ≤ ‖a‖∞ ‖b‖∞+
√

E[a] ‖b‖∞+‖a‖∞
√

E[b]

≤ (‖a‖∞+E[a])(‖b‖∞+E[b])

= ‖a‖ ‖b‖,

which proves that Ae and Be are complex Banach algebras with involutions.
Since the constant function 1 always belongs to L∞(X,m), we see that Ae is an

involutive Banach algebra with unit if and only if 1 ∈ Fe and E[1] = 0. Likewise,
since 1 ∈ C0(X) if and only if X is compact, Be is an involutive unital Banach
algebra if and only if X is compact, 1 ∈ Fe and E[1] = 0.

Assume that Ae and Be are a C∗-algebra: this means that ‖āa‖ = ‖a‖2 for all
a in Ae and all a in Be. Using (3–2) and the fact thatE is real, we have

‖a‖2
∞
+ 2‖a‖∞

√
E[a] +E[a] = ‖a‖2 = ‖āa‖ = ‖āa‖∞+

√
E[āa]

≤ ‖a‖2
∞
+ 2‖a‖2

∞

√
E[a],

which implies that E[a] ≤ 0 for all a in Ae and all a in Be. Hence, if Ae (resp. Be)
is a C∗-algebra, E vanishes identically on A (resp. B). Since A is always a form
core for (E,F), we have that the Dirichlet form is identically zero. The same
implication holds true for Be since the Dirichlet form is regular. �

Theorem 3.3. The spectral radius ρ(a) of an element a of the involutive com-
plex Banach algebra Ae (resp. Be) coincides with its spectral radius ‖a‖∞ as an
element of the involutive complex Banach algebra L∞(X,m) (resp. C0(X)).

In particular, the Dirichlet algebras Ae and Be are semisimple, involutive, com-
plex Banach algebras.
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Proof. Recall that the spectral radius of an element a of a normed algebra U
is defined by ρ(a) := limn→∞ ‖an

‖
1/n
U . In our situation, since ‖a‖∞ ≤ ‖a‖ for

all a in Ae, we certainly have ‖a‖∞ ≤ ρ(a). On the other hand (3–2) implies
√

E[an] ≤ n‖a‖n−1
∞

√
E[a] for all n ∈ N∗. We then have, for all n ∈ N∗:

‖an
‖ = ‖an

‖∞+

√
E[an] ≤ ‖a‖n

∞
+ n‖a‖n−1

∞

√
E[a].

This implies
ρ(a)≤ lim

n→∞
(‖a‖n

∞
+ n‖a‖n−1

∞

√
E[a])1/n

= lim
n→∞
‖a‖(n−1)/n
∞

(‖a‖∞+ n
√

E[a])1/n

= ‖a‖∞.

As a consequence, the set N := {a ∈Ae : ρ(a)= 0} of the topologically nilpotent
elements of Ae reduces to {0}. Since the radical < (defined as the intersection
of the kernels of all irreducible representations of Ae) of any normed algebra is
always contained in N (see [Rickart 1960]), this proves that < = {0} and that Ae

is semisimple. The same argument applies to Be. �

Corollary 3.4. The Dirichlet algebras Ae, Be have a unique Banach algebra
topology; in particular, any norm ‖ · ‖′ making Ae or Be Banach algebras, is
equivalent to the one described in Proposition 3.1:

1
k

(
‖a‖∞+

√
E[a]

)
≤ ‖a‖′ ≤ k

(
‖a‖∞+

√
E[a]

)
for some constant k and all a belonging to Ae or Be.

4. Spectrum and K -theory of Dirichlet algebras

In this section we investigate the relationship between regular Dirichlet spaces and
the topology of the underlying space X .

Our first goal is to show that the Gelfand spectrum of the extended Dirichlet
algebra Be, that is, the space of complex homomorphisms of Be, topologized with
the weak∗-topology of its dual space, is homeomorphic to X ; moreover, not only
does the spectral radius of an element a ∈Be coincide with its supremum norm, but
the whole spectrum of a is the same with respect to Be or C0(X). In other words,
the Gelfand transform coincides with the natural embedding of Be into C0(X).

Theorem 4.1. Let (E,F) be a regular Dirichlet form on L2(X,m).

(i) The set Rep(Be) of all Hilbert space representations of the Banach algebra
Be coincides with the corresponding set Rep(C0(X)) of the commutative C∗-
algebra C0(X).

(ii) The Gelfand spectrum (or carrier space) of Be is homeomorphic with X.
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(iii) The spectrum SpBe
(a) of an element a of Be coincides with the spectrum of a

as an element of C0(X):

SpBe
(a)= {a(x) ∈ C : x ∈ X}.

Proof. (i) Consider the map R : Rep(C0(X))→ Rep(Be) which associates to the
representation π of C0(X) its restriction R(π) := π |Be to the subalgebra Be. By
the regularity of the Dirichlet form, Be is uniformly dense in C0(X), so the map R
is injective. Let us consider now a representation π :Be→B(H) of Be in a Hilbert
space H. Since Be is an involutive Banach algebra we have ‖π(a)‖≤‖a‖Be for all
a ∈ Be. Since B(H) is a C∗-algebra, the spectral radius of π(a) is ‖π(a)‖ [Dixmier
1964, §1.3]. We then have, by Theorem 3.3:

‖π(a)‖ = lim
k→∞
‖π(ak)‖1/k

≤ lim
k→∞
‖ak
‖

1/k
Be
= ‖a‖∞

for all a in Be. By the regularity of the Dirichlet form, π can then be extended
continuously to a representation of C0(X) whose restriction to Be coincides with
π . This proves that the map R is surjective.

(ii) is a consequence of (i) and of the fact that the irreducible representations of
C0(X), X being a locally compact Hausdorff space, correspond to the points of
X , and of the characterization of the (locally compact Hausdorff) topology of
the Gelfand spectrum as the weakest topology with respect to which all complex
homeomorphisms are continuous.

(iii) follows from (ii) since a Dirichlet algebra is semisimple. �

In case X is compact and the Dirichlet form (E,F) is recurrent, the Dirichlet
algebra is unital. Then Theorem 4.1(iii) tells us that an element a of the Dirich-
let algebra Be is invertible in Be if and only if it is invertible in the algebra of
continuous functions C(X). (In the case of noncompact spaces X where C0(X)
and Be have no units, the latter property holds true for quasi-invertible elements;
see [Rickart 1960, I.5].) Since, moreover, the existence of nontrivial invertible
(matrices of) continuous functions reveals topological properties of the underly-
ing space X , we may suspect that the Dirichlet algebra itself could encode some
topological information such as that contained in the K -theory K ∗(X) of X . See
[Atiyah 1967].

By the Arens–Eidlin–Novodvorskii theorem (see for instance [Taylor 1976]),
Theorem 4.1 implies:

Theorem 4.2. Let (E,F) be a regular Dirichlet form on L2(X,m). Then the alge-
braic K -theory K∗(Be) of the Dirichlet algebra Be is isomorphic to the algebraic
K -theory K∗(C0(X)) of the C∗-algebra C0(X), which in turn is isomorphic to the
topological K -theory K ∗(X) of the locally compact Hausdorff space X.
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The isomorphism between the groups K∗(Be) and K ∗(X) can be regarded as
a regularization or smoothing result. For example, it implies a generalization of
a classical theorem of H. Whitney in differential topology to the effect that finite-
dimensional locally trivial vector bundles over smooth manifolds admits smooth
structures.

Theorem 4.3. Let (E,F) be a regular Dirichlet form on L2(X,m). Then ev-
ery finite-dimensional, locally trivial, vector bundle E over X admits a Dirichlet
structure, that is, a compatible vector bundle atlas whose transition matrices have
entries in the Dirichlet algebra Be.

The space of sections Be(E, X) of this Dirichlet structure has a canonical Ba-
nach space topology and it is densely and continuously embedded in the space
C0(E, X) of continuous sections of E endowed with its canonical Banach space
topology. Be(E, X) is a Banach module over the Dirichlet algebra Be.

Proof. Assume, for simplicity, that X is compact. By a theorem of Serre and
Swan [Karoubi 1978, I.6.18], a finite dimensional, locally trivial vector bundle E
over X is determined by the C(X)-module C(E, X) of its continuous sections.
The local triviality of E implies that C(E, X) is projective, and therefore of the
form p(C(X)n) for some projection p in some algebra Mn(C(X)) of matrices with
continuous entries. The isomorphism between K0(Be) and K0(C(X)) implies that
there exists n′ and an equivalent projection p′ in Mn′(Be)⊂ Mn′(C(X)) such that
C(E, X)= p′(C(E, X)n

′

). The existence of an atlas having the desired properties
follows from the Serre–Swan construction applied to the projection p′.

As shown in [Karoubi 1978, I.6.20], the space C(E, X) of continuous sections
of the bundle (E, X) over the compact space X carries a canonical Banach space
topology which depends only upon the class [E] in K 0(X). For example, it can be
defined as the quotient topology associated to the surjection

p : C(E, X)n→ C(E, X),

whenever p is any projection in Mn(C(X)) which represents [E] in the K -theory
K0(C0(X))∼= K 0(X). Moreover, the quotient norms associated to equivalent pro-
jections representing E , give rise to equivalent Banach C(X)-module structures
over C(E, X). This is a consequence of the fact that E is projective and that C(X)
is a C∗-algebra.

Now, having at our disposal the Dirichlet form (E,F) over X , we can easily
construct a dense subspace Be(E, X) of C(E, X), which is the space of sections of
the Dirichlet structure of E defined by (E,F): Be(E, X) := p(Bn

e ). Here p is any
equivalent projection in Mn(Be) which represents [E] in the K -theory K0(Be) ∼=

K 0(X).
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Using projectivity and the fact that Be is an involutive, semisimple Banach alge-
bra, we can endow the space Be(E, X) with a canonical topology induced by the
family of equivalent quotient norms associated to the equivalent representing pro-
jections. Obviously Be(E, X) is densely and continuously embedded in C(E, X)
and supports a canonical Be-module structure. �

Example 4.4. Suppose that X is a compact riemannian manifold, that (E,F) is the
Dirichlet form defined by the Dirichlet integral E[a] =

∫
X |∇a|2 over the Sobolev

space F= H 1,2(X) associated to the riemannian metric over X , and that E is the
exterior bundle 3∗(X). Then our construction is equivalent to the construction
of the Sobolev space H 1,2(3∗(X)) of exterior forms on X . Notice, however, that
there exist compact metric spaces that do not admit any differentiable manifold
structure (e.g., fractal and other singular quotient metric spaces), but on which one
can construct nontrivial regular Dirichlet forms. See, for example, [Kigami 2001;
Sturm 1998].

5. Complete regularity of regular Dirichlet space

We now prove that regular Dirichlet algebras are completely regular. Recall that,
by definition, a semisimple Banach algebra U with Gelfand spectrum X (U) is
completely regular if, for any closed set F ⊂ X (U) and any point x not belonging
to F , there exists a ∈U vanishing on F and not at x .

Theorem 5.1. Let X be a locally compact Hausdorff , metrizable space with
countable base and let (E,F) be a regular Dirichlet form on L2(X,m). Then
the Dirichlet algebra Be is completely regular.

Proof. By Theorem 4.1, the Gelfand spectrum of Be coincides with X . To prove
the result we have to construct, for any closed F ⊆ X and x /∈ F , an element of
Be vanishing on F but not at x . Since X is locally compact and Hausdorff, it is
a completely regular topological space, so there exists a function a ∈ C0(X − F)
such that a(x)= 2. The regularity of the Dirichlet space implies the existence of a
function b ∈B such that ‖a− b‖∞ < 1. The function c := (b− 1)∨ 0 belongs to
B since it is a normal contraction of b ∈B; in other words, c= φ ◦b for a suitable
Lipschitz continuous, real-valued function φ of a real variable, vanishing at the
origin, with Lipschitz constant at most 1 (see [Fukushima et al. 1994, Chapter 1,
Theorem 1.5.3]). Since moreover c ∈ C0(X − F)⊂ C0(X) and c(x) > 0, we have
found an element of B⊆Be with the required properties. �

From the theorem, the following result can be deduced applying the general
theory of completely regular, semisimple Banach algebras (see [Rickart 1960]).
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Corollary 5.2. For any pair F1, F2 of disjoint closed subsets of X , there exists a
element a in the Dirichlet algebra Be that vanishes on F1 and assumes a constant
value 1 on F2.

Corollary 5.3 (Partition of the identity). The Dirichlet algebra Be admits parti-
tions of the identity: for every compact set F ⊆ X and every open cover {Un ⊂ X :
n = 1, . . . , N } of it, there exists a sequence {hn ∈Be : n = 1, . . . , N } such that hn

vanishes on the complement of Un , for every n = 1, . . . , N , and

N∑
n=1

hn = 1 on F.

Corollary 5.4 (Local theorem). A function a : X → C which coincides in suitable
neighborhoods of every point of a compact set F ⊂ X with an element of the
Dirichlet algebra Be, actually coincides on F with an element of Be.

Proof. For each x ∈ F let Ux be a neighborhood of x on which a coincides with
an element ax of Be. Since F is compact, there exists a finite set

{xn ∈ X : n = 1, . . . , N }

such that {Uxn ⊂ X : n = 1, . . . , N } is a finite open cover of F . Let us choose a
partition of the identity {hn ∈ Be : n = 1, . . . , N } subordinated to it. The element
b :=

∑N
n=1 hnaxn belongs to Be and coincides with a on F . �

6. Ideals in Dirichlet algebras

We now investigate some properties of the ideals of Dirichlet algebras.
Recall that for every ideal I of Be, its support F(I ) denotes the closed subset

of X on which every element of I vanishes. For every closed set F ⊂ X , let us
define the kernel k(F) of F as the set of all elements of Be vanishing on F . It is
clearly a closed ideal of the Dirichlet algebra Be. On the other hand, denote by
J (F) the set of all elements of Be vanishing in suitable neighborhoods of F . It is
well known that J (F) is minimal among the ideals whose support is F and that its
closure is minimal among closed such ideals. Clearly J (F) ⊆ k(F); see [Rickart
1960, II §7].

The following result was proved in [Shilov 1947] for the Dirichlet integral (1–1)
on unit intervals of the real line.

Theorem 6.1. Let (E,F) be a regular Dirichlet form on L2(X,m). Then for every
closed subset F ⊆ X one has J (F) = k(F). In other words the Dirichlet algebra
is an N-algebra (hence an N ∗-algebra).

Proof. Let a be an element of k(F). For every ε > 0 define aε := a− (−ε)∨a∧ε.
Clearly aε lies in Be since it is a normal contraction of a ∈Be (see [Fukushima et
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al. 1994, Theorem 1.5.3]). Also aε vanishes in the open neighborhood

Gε := {x ∈ X : |a(x)|< ε}

of F , so aε lies in J (F). Moreover, aε→ a uniformly on X . In view of [Gelfand et
al. 1960, §36 Theorem 1], it suffices to show that E[aε−a] =E[(−ε)∨a∧ε]→ 0
as ε→ 0. This follows from [Fukushima et al. 1994, Theorem 1.4.2]. �

The next results completely describe the structure of the closed ideals of ex-
tended Dirichlet algebras.

Theorem 6.2. Let (E,F) be a regular Dirichlet form on L2(X,m). Then every
closed ideal I of the Dirichlet algebra Be is the kernel k(F(I )) of its support.

Proof. In view of Theorem 6.1, what remains to be checked is that J (F)⊆ I if F is
the support of I . Let a be an element of J (F) and let G be the open neighborhood
of F on which a vanishes. Then Gc is a closed subset which is disjoint from F .
By Corollary 5.2, there exists b ∈ I which assumes the constant value 1 on Gc.
Then by construction a = ab ∈ I since I is an ideal. �

Recall that, given a regular Dirichlet form (E,F) on L2(X,m) and a fixed open
set G ⊂ X , its part (EG,FG) on G is, by definition, the restriction of the quadratic
form E on the domain FG of those elements of F which vanish m-a.e. on the
complement X − G. It is a regular Dirichlet form on the space L2(G,m) (see
[Fukushima et al. 1994, Theorem 4.4.3]).

Corollary 6.3. Every closed ideal I of the Dirichlet algebra Be(E,F) is the
Dirichlet algebra Be(EG,FG) associated to the part (EG,FG) of the Dirichlet
form (E,F) on the complement G := F(I )c of the support of I .

As next example shows, sometimes the quotient algebra Be/I is itself isomor-
phic as a Banach algebra to a Dirichlet algebra.

Example 6.4. Let D⊂Rn be a bounded, Euclidean domain with Lipschitz bound-
ary ∂D, endowed with the trace of the Lebesgue measure Hn . Notice that, by
the smoothness assumption, Hn(∂D) = 0 so L2(D,Hn) = L2(D,Hn), where
D := D ∪ ∂D. With respect to the compact space D, the Dirichlet integral

(6–1) E[a] :=
∫

D
|∇a|2 dm

defines a regular Dirichlet form on L2(D,Hn), finite on the Sobolev space

H 1(D) := {a ∈ L2(D,Hn) : ∇a ∈ L2(D,Hn)}.

Since the measure is finite, H 1
e (D) and H 1(D) coincide, so the Dirichlet algebra

reduces to H 1(D) ∩ C(D). The kernel k(∂D) of the closed subset ∂D ⊂ D is a
closed ideal in H 1(D)∩C(D) coinciding with the Dirichlet algebra H 1

0 (D)∩C0(D)
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associated with the part of the Dirichlet form on the open set D, i.e., the regular
Dirichlet form on L2(D,Hn) defined by (6–1) on H 1

0 (D) (the latter being the
Sobolev space with vanishing boundary condition, defined as the closure in H 1(D)
of the subspace of smooth functions with compact support). Again by the finiteness
of the measure, we have H 1

0,e(D)= H 1
0 (D). To describe the quotient algebra

L :=
H 1(D)∩C(D)
H 1

0 (D)∩C0(D)
,

recall that the trace operator tr∂D : H 1(D)→ L2(∂D,Hn−1) associates to each
Sobolev function a a well defined measurable function tr∂D(a) on ∂D, square-
integrable with respect to the (n−1)-dimensional Hausdorff measure Hn−1. More-
over, the range of the trace operator coincides with the fractional Sobolev space

H 1/2(∂D) :=
{

a ∈ L2(∂D,Hn−1) :
|a(x)− a(y)|
|x − y|(n+1)/2 ∈ L2(∂D×∂D,Hn−1

×Hn−1)
}
,

its kernel is exactly H 1
0 (D) and the map is continuous with respect to the natural

norm in H 1/2(∂D) (see [Brezis 1983]). Consider now the restriction

tr∂D : H 1(D)∩C(D)→ H 1/2(∂D)∩C(∂D)

of the trace operator to the Dirichlet algebra. It is a Banach ∗-algebra morphism
whose kernel coincides with our closed ideal. For any b ∈ H 1/2(∂D) ∩ C(∂D)
consider the weak solution a ∈ H 1(D) to the Dirichlet problem{

−1a+ a = 0 on D,

a = b on ∂D.

Because the boundary data is assumed to be continuous, and by the regularity
theory of the weak solutions of the Dirichlet problem (see [Brezis 1983]), we have
a ∈ H 1(D)∩C(D), so the trace operator above is surjective too. This shows that
the quotient algebra L can be identified with the Dirichlet algebra associated to the
Dirichlet form on ∂D:

E∂D[a] :=
∫
∂D×∂D

|a(x)− a(y)|2

|x − y|(n+1) Hn−1
×Hn−1(dx, dy)

on the fractional Sobolev space H 1/2(∂D) and +∞ otherwise in L2(∂D,Hn−1).

In case D is the unit disk in the plane R2, the Dirichlet space at the boundary is
just the Douglas integral (see [Fukushima et al. 1994]).
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7. Applications to representations and comparisons of strongly local
Dirichlet forms

In this section we apply the previous analysis to show that a strongly local, reg-
ular Dirichlet form is determined by its Dirichlet algebra. Consider, on the space
D(X,m) of all Dirichlet forms on the space L2(X,m), the semi-order � defined
by

(7–1) E1 � E2 ⇐⇒ E2[a] ≤ cE1[a] for all a ∈ L2(X,m) and some c > 0.

By Lejan’s domination principle [1978], if the forms are strongly local the order
relation is equivalent, in terms of energy measures, to the condition µ2

〈a〉 ≤ cµ1
〈a〉

for all a ∈ F1; that is, µ2
〈a〉 is absolutely continuous with respect to µ1

〈a〉 and the
Radon–Nikodym derivative is µ1

〈a〉-a.e. uniformly bounded above by a constant c.
Two Dirichlet forms are said to be quasi-equivalent, in symbols E1 ' E2, if

E1 � E2 and E2 � E1, that is, if

c−1 E1[a] ≤ E2[a] ≤ cE1[a]

for some constant c > 0 and all a ∈ L2(X,m).
Notice that, implicitly, if E1 � E2 then F1 ⊆ F2. We are going to see that the

opposite implication is also true for strongly local, regular Dirichlet forms.

Theorem 7.1. Let E1, E2 ∈ D(X,m) be strongly local, regular Dirichlet forms on
(X,m). Then

E1 � E2 ⇐⇒ F1 ⊆ F2 ⇐⇒ B1
e ⊆B2

e .

In particular they are quasi-equivalent, E1 ' E2, if and only if they have the same
domain F1 = F2 or the same Dirichlet algebra B1

e =B2
e .

Proof. Suppose that B1
e ⊆ B2

e . Our assumptions allow us to consider the identity
map from B1

e to B2
e as a morphism of algebras. Since, by Theorem 3.3, B2

e is
a semisimple Banach algebra, the identity map is continuous by [Rickart 1960,
Theorem 2.5.17]. We then have

‖a‖∞+
√

E2[a] ≤ c(‖a‖∞+
√

E1[a]) for a ∈B1
e,

for some constant c > 0. In turn we have

(7–2) ‖a‖2
∞
+E2[a] ≤ c(‖a‖2

∞
+E1[a]) for a ∈B1

e,

for some other constant c > 0. Consider now the two families of normal contrac-
tions defined by φλ(s) := λ−1 sin(λs), ψλ(s) := λ−1(1−cos(λs)) for all s ∈R and
λ 6= 0. Noticing that |φ′λ(s)|

2
+ |ψ ′λ(s)|

2
= 1 for all s ∈ R and λ 6= 0 and applying
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the chain rule for the energy measures µi
〈 · 〉

, i = 1, 2 representing E1 and E2 (see
[Fukushima et al. 1994]), we have the identities

(7–3) Ei [φλ(s)] +Ei [ψλ(s)] =
∫

X
dµi
〈φλ(a)〉+

∫
X

dµi
〈ψλ(a)〉

=

∫
X
|φ′λ(a)|

2dµi
〈a〉+

∫
X
|ψ ′λ(a)|

2dµi
〈a〉

=

∫
X

dµi
〈a〉 = Ei [a]

for all B1
e , λ 6= 0 and i = 1, 2. Combining (7–2) and (7–3) and noticing that

lim
λ→+∞

‖φλ(a)‖∞ = lim
λ→+∞

‖ψλ(a)‖∞ = 0,

we have, for a suitable constant c > 0, that E2[a] ≤ cE1[a] for all a ∈ B1
e . We

conclude by noticing that B1
e ∩ F1 is a form core for E1 and that E2 is lower

semicontinuous, so the same bound holds true for all a ∈ F1. �

Applying Lejan’s domination principle we have:

Theorem 7.2. Let E1, E2 ∈ D(X,m) be strongly local, regular Dirichlet forms on
(X,m) and denote by µ1

〈 · 〉
, µ2
〈 · 〉

their energy measures. Then

F1 ⊆ F2 ⇐⇒ µ2
〈a〉 ≤ cµ1

〈a〉 for some c > 0 and all a ∈ F1;

F1 = F2 ⇐⇒ c−1 µ1
〈a〉 ≤ µ

2
〈a〉 ≤ cµ1

〈a〉 for some c > 0 and all a ∈ F1 = F2.

Let D be a Euclidean domain, with its Lebesgue measure m. A result of Beurling
and Deny [1959] describes all strongly local, regular Dirichlet forms on L2(D,m)
that have the space of test functions C∞c (D) as a core. Their energy measures have,
for a ∈ C∞c (D), the form

µ〈a〉 =

n∑
i, j=1

∂i a ∂ j a µi j

for a system of Radon measures µi j satisfying µi j
=µ j i for all i, j = 1, . . . , n and∑n

i, j=1 ξi ξ jµ
i j
≥ 0 for all (ξ1, . . . , ξn) ∈ Rn .

We will see that if more information is known about the form domain, a more
detailed description of the Dirichlet from and its energy measures is possible. The
following result answers the questions considered in the introduction.

Corollary 7.3. Let D ⊆ Rn be a bounded domain and consider the Sobolev space
H 1

0 (D). Then any strongly local, regular Dirichlet form (E,F) on L2(D,m) whose
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domain F contains H 1
0 (D) has the representation

(7–4) E[a] =
n∑

i, j=1

∫
D

gi j ∂i a ∂ j a dm a ∈ H 1
0 (D)

for a symmetric matrix [gi j
]i, j of measurable functions on D satisfying

(7–5) 0≤
n∑

i, j=1

ξi ξ j gi j
≤ c ‖ξ‖2

m-a.e. on D, for some c > 0 and all (ξ1, . . . , ξn) ∈ Rn .
If the domain F coincides with the Sobolev space H 1

0 (D), the metric [gi j
]
n
i, j=1

appearing in the representation (7–4) is uniformly quasi-conformal to the Eu-
clidean one:

(7–6) c−1
‖ξ‖2 ≤

n∑
i, j=1

ξi ξ j gi j
≤ c ‖ξ‖2

m-a.e. on D, for some c > 0 and all (ξ1, . . . , ξn) ∈ Rn .

Proof. By assumption, the domain F of E contains the Sobolev space H 1
0 (D),

which is the domain of the strongly local, regular Dirichlet form on D given by
the Dirichlet integral

ED[a] =
∫

D
|∇a|2dm.

Then H 1
0 (D)⊆F implies, by Theorem 7.1, that ED �E. By Theorem 7.2 we then

have the bound

(7–7)
n∑

i, j=1

∂i a ∂ j a µi j
≤ c |∇a|2dm,

for all a ∈ H 1
0 (D) and then also for all a in the space (C(D) ∩ H 1(D))loc of

functions locally contained in the Dirichlet algebra C(D)∩ H 1(D). We can then
apply (7–7) to the coordinate functions ai (x) := xi , i = 1, . . . , n, obtaining that
µi i
:=µ〈ai 〉≤ cm for some c> 0 and all i = 1, . . . , n. The Schwartz rule for energy

measures (see [Fukushima et al. 1994]) then implies that µi j
≤ cm for some other

c> 0, so a measurable matrix with the property (7–5) is guaranteed to exist. If the
domain F coincides with H 1

0 (D), Theorem 7.2 then yields

c−1
|∇a|2 dm ≤

n∑
i, j=1

∂i a ∂ j a µi j
≤ c |∇a|2dm,
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for some c> 0 and for all a ∈ H 1
0 (D). From this the uniformly elliptic bound (7–6)

follows easily. �

Whenever the boundary ∂D is sufficiently smooth, we may, by slightly modi-
fying the above argument, also consider reflecting boundary conditions in place of
the absorbing ones.

Corollary 7.4. Let D be a bounded Lipschitz domain with closure D and consider
the Sobolev space H 1(D). Then, any strongly local, Dirichlet form on L2(D,m),
whose domain F contains H 1(D), has the representation (7–4) for all a ∈ H 1(D),
for a suitable symmetric matrix [gi j

]
n
i, j=1 of measurable functions on D satisfying

the bound (7–5).
If the domain of E coincides with the Sobolev space H 1(D), the metric [gi j

]
n
i, j=1

in the representation (7–4) satisfies the bound (7–6).

Proof. By assumption, the domain F of E contains the Sobolev space H 1(D),
which is the domain of the strongly local, regular Dirichlet form on D given by
the Dirichlet integral

ED[a] =
∫

D
|∇a|2dm.

See [Fukushima et al. 1994, Example 4.4.1]. Then H 1(D)⊆F implies, by Theo-
rem 7.1, that ED � E. By Theorem 7.2 we then have the bound

n∑
i, j=1

∂i a ∂ j a µi j
≤ c |∇a|2dm,

for all a ∈ H 1(D) and then for all a in the space (C(D)∩ H 1(D))loc of functions
locally contained in the Dirichlet algebra C(D)∩ H 1(D). Applying the argument
above we conclude the proof. �

8. Concluding remarks

We conclude by pointing out some considerations and problems which, in our
opinion, arise naturally from the preceding analysis.

Dirichlet forms, commutative or not, arise in various fields of mathematics: in
connection with Markov processes and Markov semigroups in classical and quan-
tum probability; in connection with semibounded, self-adjoint operators represent-
ing the Hamiltonian of a physical system in mechanics, quantum mechanics and
quantum field theory; and as quadratic forms of the Laplace–Beltrami operator or
Dirac’s laplacian in riemannian geometry. In each one of these frameworks, the
contraction property E[a∧1] ≤E[a] translates a precise symmetry property of the
energy E of a probabilistic, physical or geometric nature.
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The results of Section 7 then show that a knowledge of the set F of configura-
tions of finite energy imposes severe restrictions on the structure of the allowable
energy forms E: specifically, in the strongly local case, F determines the uniformly
quasi-conformal class of E. This is a consequence of the fact that, normed in a nat-
ural way, spaces of bounded functions of finite energy realize semisimple Banach
algebras.

On the other hand, the description of the ideal structure of the Dirichlet algebra
B led us to prove that the K -theory of the compact Hausdorff space X can be
detected from the K -theory of B. A geometric way to look at this result is that
Dirichlet forms on a compact, Hausdorff X , give rise to Dirichlet structures on
finite-dimensional, locally trivial vector bundles over X.

In [Cipriani and Sauvageot 2003] we showed that regular Dirichlet forms, com-
mutative or not, give rise to a canonical first-order differential calculus, namely,
a closable derivation ∂ in symmetric tangent Hilbert bimodule H, by which the
energy form can be represented as E[a]=‖∂a‖2H. Notice that ∂ is naturally defined
precisely on the Dirichlet algebra B.

In this respect it should be interesting to extend the differential calculus from the
Dirichlet algebra B to the bimodule B(E, X) of bounded, finite energy sections of
finite, locally trivial vector bundles E over X .

Finally, two problems of functional analytic nature arise naturally: i) which uni-
formly dense subalgebras of C0(X) arise as (extended) Dirichlet algebras of regular
Dirichlet forms on X? ii) which subalgebras of L∞(X,m) arise as the (extended)
weak Dirichlet algebras of regular Dirichlet forms on X?
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