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We present an elementary construction of the multigraded Hilbert scheme
of d points of An

k = Spec(k[x1, . . . , xn]), where k is an arbitrary commu-
tative and unitary ring. This Hilbert scheme represents the functor from
k-schemes to sets that associates to each k-scheme T the set of closed sub-
schemes Z ⊆ T ×k An

k such that the direct image (via the first projection)
of the structure sheaf of Z is locally free of rank d on T . It is a special
case of the general multigraded Hilbert scheme constructed by Haiman and
Sturmfels. Our construction proceeds by gluing together affine subschemes
representing subfunctors that assign to T the subset of Z such that the di-
rect image of the structure sheaf on T is free with a particular set of d
monomials as basis. The coordinate rings of the subschemes representing
the subfunctors are concretely described, yielding explicit local charts on
the Hilbert scheme.

1. Introduction

1.1. The multigraded Hilbert scheme of points. The multigraded Hilbert scheme
of points is a special case of the multigraded Hilbert scheme introduced by Haiman
and Sturmfels [2004]. Let k be an arbitrary commutative and unitary ring, let S be
the polynomial ring

S = k[x1, . . . , xn] = k[x],

let An
k = Spec(S), and let

H d
An

k
: k-Sch→ Set

be the contravariant functor that assigns to the k-scheme T the set H d
An

k
(T ) of sub-

schemes
Z ⊆ T ×k An

k

such that the direct image (via the first projection) of the structure sheaf of Z is
locally free of rank d on T , and assigns to the map f : W → T of k-schemes the
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map
H d

An
k
( f ) : H d

An
k
(T )→ H d

An
k
(W ), Z 7→W ×T Z .

Lemma 1. The subschemes Z ∈ H d
An

k
(T ) are necessarily closed subschemes of

T ×k An
k .

Proof. Since An
k is an affine k-scheme, it is separated over Spec(k); it follows from

[Grothendieck and Dieudonné 1971, Prop. 5.3.1 (iv), p. 279] that the projection
T ×k An

k → T is separated; moreover, the composite map Z ⊆ T ×k An
k → T is

universally closed, since Z is finite (hence proper) over T . Then [Grothendieck
and Dieudonné 1971, Prop. 5.2.8, p. 279] yields that the inclusion Z ⊆ T ×k An

k is
universally closed. �

The general construction in [Haiman and Sturmfels 2004] implies that the func-
tor H d

An
k

is representable by a quasi-projective k-scheme Hd
An

k
; in other words, H d

An
k

is isomorphic to the functor of points of Hd
An

k
. In particular, the identity map

Hd
An

k
→Hd

An
k

corresponds to the universal closed subscheme

Zd
An

k
⊆Hd

An
k
×k An

k;

the representability of the functor H d
An

k
can be expressed as the following universal

property of the pair
(
Hd

An
k
, Zd

An
k

)
(see, for example, [Grothendieck and Dieudonné

1971, 0.1.1.8]):

(1)

The set of maps f : T → Hd
An

k
is in natural bijective correspon-

dence with the set of closed subschemes Z f ⊆ T ×k An
k such that

the direct image of the structure sheaf of Z f is locally free of rank
d on T ; the bijection f 7→ Z f is defined by Z f = T ×Hd

An
k

Zd
An

k
.

The goal of this paper is to present an elementary construction of the pair(
Hd

An
k
, Zd

An
k

)
that uses only polynomial arithmetic — nothing more advanced, such

as Grassmannians. It follows easily from our construction that Hd
An

k
is separated

and of finite type over Spec(k), but we do not establish the quasi-projectivity.

Remark 2. Since a k-scheme is determined by the restriction of its functor of
points to affine k-schemes (see, for example, [Eisenbud and Harris 2000, Prop.
VI-2, p. 253]), the multigraded Hilbert scheme of points Hd

An
k

can be defined as
the scheme representing the restriction of the functor H d

An
k

to k-algebras R, as in
[Haiman and Sturmfels 2004]. Precisely, if R is a k-algebra, then

H d
An

k
(R)=

{
ideals I ⊆ R⊗k S = R[x]

∣∣∣ R[x]/I is locally free of
rank d over R

}
.

In particular, if k is a field, then H d
An

k
(k) is the set of ideals I ⊆ k[x1, . . . , xn] such

that
dimk(k[x1, . . . , xn]/I )= colength of I = d.
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1.2. The Grothendieck Hilbert scheme of points. Hd
An

k
, the multigraded Hilbert

scheme of points, is a generalization of the “classical” Grothendieck Hilbert scheme
Hilbd

An
k

of d points of An
k over a Noetherian ring k (often an algebraically closed

field). The latter scheme can be constructed as an open subscheme of Hilbd
Pn

k
(a

projective scheme the existence of which is a consequence of Grothendieck’s gen-
eral construction given in [Grothendieck 1995]; see also, for example, [Eisenbud
and Harris 2000, VI.2.2; Kollár 1996, Ch. 1; Miller and Sturmfels 2005, Ch. 18;
Sernesi 1986, Ch. 7]) that arises from the inclusion of An

k in Pn
k as a standard affine.

We will briefly recall the basics of Hilbd
Pn

k
, describe the construction of Hilbd

An
k

as
an open subscheme of Hilbd

Pn
k
, and show that Hilbd

An
k

represents the functor H d
An

k
.

Basics of Hilbd
Pn

k
. Recall that Hilbd

Pn
k

represents the functor that assigns to any k-
scheme T the set of all closed (necessarily, by an easy adaptation of the proof of
Lemma 1) subschemes Z ⊆ T ×k Pn

k that are flat and proper over T , with fibers
having constant Hilbert polynomial d (in particular, Z is quasi-finite over T ). The
universal closed subscheme Zd

Pn
k
⊆ Hilbd

Pn
k
×k Pn

k corresponds to the identity map
Hilbd

Pn
k
→ Hilbd

Pn
k
, and

(
Hilbd

Pn
k
, Zd

Pn
k

)
satisfies the following universal property:

(2)

The set of maps f : T → Hilbd
Pn

k
is in natural bijective correspon-

dence with the set of closed subschemes Z f ⊆ T ×k Pn
k that are flat

and proper over T , with fibers having constant Hilbert polynomial
d; the bijection f 7→ Z f is defined by Z f = T ×Hilbd

Pn
k

Zd
Pn

k
.

Construction of Hilbd
An

k
. Let p : Zd

Pn
k
→ Hilbd

Pn
k

denote the flat and proper map in-
duced by the first projection, and define

W = Hilbd
Pn

k
\p
(

Hilbd
Pn

k
×k(P

n
k \An

k)∩ Zd
Pn

k

)
,

Zd
W = p−1(W )⊆ Zd

Pn
k
;

since p is proper, it maps the closed set on the right of the first displayed line (an
intersection of two closed sets) to a closed set, and therefore W is open in Hilbd

Pn
k
.

It is then clear that

Zd
W ⊆W ×k An

k ⊆ Hilbd
Pn

k
×kAn

k ⊆ Hilbd
Pn

k
×kPn

k .

Suppose we are given a closed subscheme

Z ⊆ T ×k An
k ⊆ T ×k Pn

k

such that Z is flat and proper over T with fibers of constant Hilbert polynomial
d . Then the induced map f : T → Hilbd

Pn
k

must factor through the inclusion W ⊆
Hilbd

Pn
k
, since the fiber of Zd

Pn
k

over any point of Hilbd
Pn

k
\W must contain a point of
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Hilbd
Pn

k
×k (P

n
k \An

k). Conversely, a map

T →W ⊆ Hilbd
Pn

k

induces by pullback a closed subscheme

Z ⊆ T ×Hilbd
Pn

k

Zd
Pn

k
= T ×W Zd

W ⊆ T ×k An
k

that is flat and proper over T with fibers of constant Hilbert polynomial d . In
short, the pair (W, Zd

W ) represents the “classical” Hilbert functor for An
k ; we write

W = Hilbd
An

k
and Zd

W = Zd
An

k
.

Hilbd
An

k
represents the functor H d

An
k
. Recall that we are for the moment assuming

that the ring k is Noetherian; therefore Hilbd
Pn

k
and Hilbd

An
k

are Noetherian. More-
over, the map Zd

An
k
→Hilbd

An
k

is finite, since it is quasi-finite and proper (see, for
example, [Eisenbud and Harris 2000, p. 92] or [Fulton 1984, App. B.2.4]); it
follows from [Mumford 1966, Prop. 7, p. 43] that the direct image Qd

An
k

of the
structure sheaf of Zd

An
k

is locally free; the rank of Qd
An

k
is d since the fibers have

Hilbert polynomial d. Consequently, a map f : T → Hilbd
An

k
corresponds to a

closed subscheme

Z f = T ×Hilbd
An

k

Zd
An

k
⊆ T ×k An

k ,

and the direct image Q f of the structure sheaf of Z f under the map Z f → T is
locally free of rank d, since Q f is the pullback of the direct image Qd

An
k
.

Conversely, a closed subscheme Z ⊆ T ×k An
k such that the direct image of the

structure sheaf OZ on T is locally free of rank d , is flat and proper over T , with
fibers of Hilbert polynomial d, and so gives rise to a map T → Hilbd

An
k
.

This demonstrates that Hilbd
An

k
represents the “multigraded” Hilbert functor H d

An
k

discussed in Section 1.1.

1.3. The main theorem. As previously stated, the goal of this paper is to present
an elementary construction of the universal pair

(
Hd

An
k
, Zd

An
k

)
that uses only polyno-

mial arithmetic. The construction is outlined in the proof of the following theorem.

Theorem 3. Let k be an arbitrary commutative and unitary ring. Then the functor
H d

An
k

is represented by a scheme Hd
An

k
that is separated and of finite type over the

ring k, together with a closed subscheme Zd
An

k
⊆ Hd

An
k
×k An

k such that the direct
image of the structure sheaf of Zd

An
k

on Hd
An

k
is locally free of rank d. That is, the

pair
(
Hd

An
k
, Zd

An
k

)
satisfies the universal property (1).

Proof. We construct Hd
An

k
by gluing together subschemes that represent open sub-

functors of the functor H d
An

k
. Each subfunctor corresponds to a basis set β of d
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monomials in the variables x1, . . . , xn; that is, β has the property that whenever
m ∈ β and m1|m, then m1 ∈ β. Given a basis set β, we define the subfunctor

Fβ
An

k
: k-Sch→ Set

of H d
An

k
by stipulating that Fβ

An
k
(T ) ⊆ H d

An
k
(T ) is the subset of closed subschemes

Z ⊆ T ×k An
k such that the direct image of the structure sheaf of Z on T is free

with basis β (see Section 2.1). The technical heart of the paper is the demonstration
that the subfunctors Fβ

An
k

are representable by pairs (Uβ, Zβ); the gluing argument
is relatively straightforward.

The theorem is thus an immediate consequence of Lemma 7 (which carries out
the gluing) and Theorem 37 (which completes the construction of the universal
pairs (Uβ, Zβ) that extends over several sections). �

Lemma 7. Suppose that for all basis sets β ⊆ k[x] of size d , the functor Fβ
An

k
is

represented by an affine k-scheme Uβ =Spec(Rβ), and universal closed subscheme
Zβ ⊆Uβ ×k An

k . Furthermore, suppose that the schemes Uβ are of finite type over
k (that is, the rings Rβ are finitely generated k-algebras). Then there exists a k-
scheme Hd

An
k

that is separated and of finite type over k, and a closed subscheme
Zd

An
k
⊆Hd

An
k
×k An

k , that together satisfy the universal property (1).

Theorem 37. Let β ⊆ k[x] be a basis set of d monomials. Then there exists a
pair (Uβ, Zβ) consisting of an affine scheme Uβ of finite type over k, and a closed
subscheme Zβ ⊆Uβ ×k An

k , that represents the functor Fβ
An

k
.

1.4. Sketch of the construction of (Uβ, Zβ). We now present a sketch of the con-
struction of the universal pair (Uβ, Zβ) in the special case β = {1, x1} ⊆ k[x1, x2],
to give a more detailed sense of the contents of the paper (notation used is that
of later sections). Roughly speaking, we want Uβ = Spec(Rβ) = Spec(R) to be
the base scheme of the “universal” closed subscheme Zβ ⊆ Uβ ×k An

k such that
the direct image of the structure sheaf of Zβ on Uβ is free with basis β. In other
words, if

Ĵ ⊆ R⊗k k[x1, x2] = R[x1, x2]

is the ideal cutting out Zβ , then the quotient R[x1, x2]/ Ĵ should be R-free with
basis β, and “universal” among such quotients.

Let B be a k-algebra, and consider a quotient B[x1, x2]/I that is B-free with
basis β. Since the quotient is free, we know that every monomial xr1

1 xr2
2 is congru-

ent to a unique B-linear combination of 1 and x1 modulo the ideal I . Put another
way, I contains a unique polynomial of the form

F(r1,r2) = xr1
1 xr2

2 − c(r1,r2)
(0,0) · 1− c(r1,r2)

(1,0) · x1
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for every monomial xr1
1 xr2

2 . One sees easily (Proposition 11) that I is generated by
these polynomials; in fact, I is generated by the three polynomials F(0,1), F(1,1),
and F(2,0) associated to the boundary monomials of β (Proposition 12), which are
shown in boldface in the following diagram.

x2 x1x2
1 x1 x2

1.

From this we see that our quotient B[x1, x2]/I is determined by a choice of six
coefficients

(3) c(r1,r2)
( j1, j2) ∈ B, (r1, r2) ∈ {(0, 1), (1, 1), (2, 0)}, ( j1, j2) ∈ {(0, 0), (1, 0)}.

However, these coefficients cannot be chosen arbitrarily, for the following reason.
Consider the following B[x1, x2]-linear combination of our three ideal generators.

− x1 · F(0,1)+ 1 · F(1,1)− c(0,1)(1,0) · F(2,0) =(
−c(1,1)(0,0)+ c(0,1)(1,0)c

(2,0)
(0,0)

)
· 1+

(
c(0,1)(0,0)− c(1,1)(1,0)+ c(0,1)(1,0)c

(2,0)
(1,0)

)
· x1

Since the result is a B-linear combination of the monomials in β, we call the tuple
of coefficients

(
−x1, 1,−c(0,1)(1,0)

)
a pseudosyzygy of the polynomials F(0,1), F(1,1),

and F(2,0). Since the left-hand side is an element of the ideal I , so is the right-
hand side; that is, the right-hand side is congruent to 0 modulo I . But the quotient
B[x1, x2]/I is supposed to be B-free with basis β, which means that the only B-
linear combination of 1 and x1 that can be congruent to 0 modulo I is the trivial
one. It follows that the right-hand side is equal to 0, and therefore the coefficients
of 1 and x1 must be 0 in B, which yields the following polynomial relations on the
coefficients (3).

(4)
−c(1,1)(0,0)+ c(0,1)(1,0)c

(2,0)
(0,0) = 0,

c(0,1)(0,0)− c(1,1)(1,0)+ c(0,1)(1,0)c
(2,0)
(1,0) = 0.

Equivalently, the pseudosyzygy must be a syzygy of the polynomials F(0,1),
F(1,1), and F(2,0). (This is a special case of Lemma 13.) The reader can check that
the following tuple of coefficients is also a pseudosyzygy — and hence a syzygy —
of the polynomials: (

c(2,0)(0,0), c(2,0)(1,0)− x1,−c(1,1)(1,0)+ x2

)
.

The polynomial relations associated to this syzygy are

(5)
−c(0,1)(0,0)c

(2,0)
(0,0)+ c(1,1)(1,0)c

(2,0)
(0,0)− c(1,1)(0,0)c

(2,0)
(1,0) = 0,

c(1,1)(0,0)− c(0,1)(1,0)c
(2,0)
(0,0) = 0.
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The two pseudosyzygies presented are the basic pseudosyzygies in this case. (As
syzygies, they in fact generate the full B[x1, x2]-module of syzygies of the three
generators of the ideal I ; this is part of the first statement of Theorem 22.)

So how do we construct the universal free quotient? We want the coefficients (3)
to be as “generic” as possible. Therefore, we introduce a set of six indeterminates

C=
{

C (r1,r2)
( j1, j2)

∣∣ (r1, r2) ∈ {(0, 1), (1, 1), (2, 0)}, ( j1, j2) ∈ {(0, 0), (1, 0)}
}
,

and let the ideal cutting out the universal family be generated by the functions

G(r1,r2) = xr1
1 xr2

2 −C (r1,r2)
(0,0) · 1−C (r1,r2)

(1,0) · x1, (r1, r2) ∈ {(0, 1), (1, 1), (2, 0)}.

However, we know that to get a free quotient, it is necessary that the basic pseu-
dosyzygies be syzygies, which imposes the polynomial relations (4) and (5) on
the indeterminates Cr1,r2

j1, j2 (replace the c’s by the corresponding C’s). Let R⊆ k[C]
denote the ideal generated by these polynomials. The coordinate ring of the scheme
Uβ is then

R = Rβ = k[C]/R,

and the ideal cutting out the universal family Zβ is

Ĵ =
(
G(0,1),G(1,1),G(2,0)

)
⊆ R[x1, x2].

To see that this works, one still has to check two details:

(1) That the quotient R[x1, x2]/ Ĵ is in fact R-free with basis β.

(2) That the pair (Uβ, Zβ) represents the functor Fβ
An

k
.

To check the first detail, one proves that it is sufficient for a free quotient that
the basic pseudosyzygies be syzygies; this is the last statement of Theorem 22.
(The basic pseudosyzygies of the G’s are syzygies over R by construction.) The
second detail is checked in general in the proof of Theorem 37; the basic idea can
be seen by returning to the free quotient B[x1, x2]/I considered earlier. If we let
T = Spec(B), then the closed subscheme

Z = Spec(B[x1, x2]/I )⊆ T ×k An
k

is an element of Fβ
An

k
(T ), and so must correspond to a unique map T → Uβ such

that Z is the pullback of Zβ . One checks that the desired map is induced by the
map

k[C] → B, C (r1,r2)
( j1, j2) 7→ c(r1,r2)

(s1,s2)
,

under which the ideal R maps to 0, because the basic pseudosyzygies of the three
polynomials F(0,1), F(1,1), and F(2,0) (that generate I ) are all syzygies.
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Before leaving this section, we extend our discussion of the example a little
further. One checks that the ideal

R=
(
−C (1,1)

(0,0) +C (0,1)
(1,0)C

(2,0)
(0,0) ,C (0,1)

(0,0) −C (1,1)
(1,0) +C (0,1)

(1,0)C
(2,0)
(1,0)

)
is generated by just two of the original generators, as shown. From this it follows
that

k[C]/R= k
[
C (0,1)
(1,0) ,C (1,1)

(1,0) ,C (2,0)
(0,0) ,C (2,0)

(1,0)

]
is a polynomial ring in the four indicated variables; whence, Uβ is isomorphic to
A4

k. See Section 8.3 for another example of the same phenomenon.

1.5. Connection to previous papers. M. Haiman [1998] introduced and studied
the schemes Uβ in the case of the affine plane (that is, n = 2 variables, and k an
algebraically closed field). In [Huibregtse 2002], we gave a fuller description of the
Uβ in this case; in particular, we expressed the coordinate rings of the Uβ concretely
as quotients of polynomial rings. As an application, we presented conditions on
β sufficient to imply that Uβ is isomorphic to a 2d-dimensional affine space (the
example considered in Section 1.4 is of this type). The orientation in [Huibregtse
2002] was descriptive; that is, we began with the (known) existence and basic
properties of the Hilbert scheme, and on that basis, we studied the open subschemes
Uβ .

By contrast, the orientation of the present paper is constructive. We establish the
existence of the schemes Uβ in an elementary fashion, independent of the existence
of Hd

An
k
; in so doing, we obtain a concrete description of the coordinate rings of the

Uβ , as before. As previously explained, we construct the pair (Uβ, Zβ) to represent
the functor Fβ

An
k

over an arbitrary commutative, unitary ring k; the entire Hilbert
scheme Hd

An
k

is then constructed by patching, yielding a special case of the multi-
graded Hilbert scheme of Haiman and Sturmfels [2004]. In addition to the shift
from description to construction, the present paper also goes beyond [Huibregtse
2002] by treating all cases n ≥ 1 in a uniform fashion, rather than just the case
n = 2.

Note 4. Shortly after submitting the final version of this article in June 2005,
I learned of a preprint [Gustavsen et al. 2005] that presents another elementary
proof of the existence of Hilbert schemes of points.

2. Reduction to the construction of the pairs (Uβ, Zβ)

Let k be a commutative ring and let

S = k[x1, . . . , xn] = k[x], An
k = Spec(k[x]).
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Recall from Section 1.1 that Hd
An

k
, the multigraded Hilbert scheme of d points of

An
k , together with the universal closed subscheme Zd

An
k
⊆Hd

An
k
×k An

k , represents the
functor H d

An
k
: k-Sch→ Set, defined by

H d
An

k
(T )=

{
closed subschemes Z ⊆ T ×k An

k

∣∣∣ the direct image of OZ on T
is locally free of rank d,

}
,

where OZ denotes the structure sheaf of Z . Our goal in this paper is to construct
the pair

(
Hd

An
k
, Zd

An
k

)
in an elementary fashion, using essentially only polynomial

arithmetic. We take the first step in this section, by reducing the problem of repre-
senting the functor H d

An
k

to the problem of representing certain of its sub-functors.

2.1. Subfunctors of H d
An

k
. Recall that a basis set β of monomials is defined by the

property that if m ∈ β and a monomial m1|m, then m1 ∈ β. For each basis set β of
d monomials in x1, . . . , xn , we define the functor Fβ

An
k

as follows.

(6)

Fβ
An

k
: k-Sch→ Set,

Fβ
An

k
(T )=

{
closed subschemes Z ⊆ T ×k An

k

∣∣∣ the direct image of OZ

on T is free with basis β.

}
Assuming that each functor Fβ

An
k

is represented by a pair (Uβ, Zβ), such that Uβ

is a k-scheme and Zβ ⊆ Uβ ×k An
k is the universal closed subscheme, we obtain

(in Lemma 7) the scheme Hd
An

k
by gluing the pairs (Uβ, Zβ) together along the

isomorphic open subschemes on which they “overlap.” In order to identify these
subschemes and to verify the compatibility conditions that permit the gluing, we
must consider a generalization of the functors (6). Let

(7) B= {β1, β2, . . . , βs}

be a set of s ≥ 1 basis sets, each of which has cardinality d , and define the functor
FB

An
k

as follows.

(8)

FB
An

k
: k-Sch→ Set,

FB
An

k
(T )=

{
closed
subschemes

Z ⊆ T ×k An
k

∣∣∣ the direct image of OZ on T is
free and each β j ∈B is a basis

}
.

2.2. Fβ

An
k

representable implies FB
An

k
representable. Let β ⊆ k[x] be a basis set

consisting of d monomials, and suppose that we have shown that the functor Fβ
An

k

from (6) is represented by an affine k-scheme Uβ = Spec(R), together with a
universal closed subscheme Zβ ⊆ Uβ ×k An

k . Let Qβ denote the direct image on
Uβ of the structure sheaf OZβ , so that Qβ is free with basis β. Given another basis
set β ′ ⊆ k[x] of size d , we can view the monomials in β ′ as global sections of
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Qβ ; therefore, viewing β and β ′ as column vectors, there is a unique (d×d)-matrix
P = (pi j ) of elements of R such that β ′ = P ·β. Let δ = det(P), and let

(9) Wβ ′ = Spec(Rδ)⊆Uβ

be the principal open subset on which δ does not vanish. It is then clear that, as a
subset,

Wβ ′ =

{
x ∈Uβ

∣∣∣ the stalk Qβ, x is OUβ ,x -free
with basis β ′

}
,

and Wβ ′ is the largest open subscheme on which the restriction of Qβ is free with
basis β ′. (Note in particular that Wβ = Uβ .) Moreover, we have the following
lemma.

Lemma 5. Let T be a k-scheme, f : T → Uβ a map of k-schemes corresponding
to the closed subscheme Z f ⊆ T ×k An

k , and QT the direct image of the structure
sheaf of Z f on T . Then, for any t ∈ T , the stalk QT,t is Ot -free with basis β ′ if and
only if f (t) ∈Wβ ′ .

Proof. We denote the residue fields at t and f (t) by k(t) and k( f (t)).
(⇐): If f (t) ∈ Wβ ′ , then by definition the stalk Qβ, f (t) has the set β ′ as O f (t)-

basis. It follows that the fiber of Zβ over f (t) is Spec(A), where A=Qβ, f (t)⊗O f (t)

k( f (t)) is an Artin ring that is k( f (t))-free with basis β ′. Since the fiber of Z f

over t is Spec(A⊗k( f (t)) k(t)), we have that the latter ring is k(t)-free with basis
β ′. This implies by Nakayama’s Lemma that QT,t is Ot -free with basis β ′.

(⇒): Arguing by the contrapositive, suppose that f (t) /∈ Wβ ′ . Then β ′ is not
a local basis of Qβ at f (t); therefore, β ′ is a k( f (t))-linearly dependent set in
A = Qβ, f (t) ⊗O f (t) k( f (t)), which has dimension d over k( f (t)). Since the map
k( f (t)) → k(t) is injective, we conclude that β ′ is a linearly dependent set in
A⊗k( f (t)) k(t), whence QT,t cannot be Ot -free with basis β ′. �

Now let
B= {β = β1, β2, . . . , βs}

be a set of s ≥ 1 basis sets of size d , where the functor Fβ
An

k
is assumed to be

representable as described above. Then the functor FB
An

k
is representable:

Lemma 6. The functor FB
An

k
is represented by the pair (UB, ZB), where

UB =
⋂s

j=1{Wβ j } ⊆Uβ,

and ZB is the restriction of Zβ to UB.

Proof. Suppose given a k-scheme T and a closed subscheme Z ⊆ T ×k An
k such

that the direct image QT of OZ on T is free, with each of the bases in B as basis.
In particular, QT is free with basis β1 = β; therefore, the universal property of
(Uβ, Zβ) yields a unique map f : T → Uβ such that Z = Z f is the pullback of
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Zβ under f . Since for every t ∈ T the stalk QT,t is k(t)-free with basis β j , for
1≤ j ≤ s, Lemma 5 implies that the map f factors through UB; whence, Z f is the
pullback of ZB. Conversely, given a map f : T →Uβ with image in UB, we pull
back ZB to obtain Z f ⊆ T ×k An

k , and the corresponding direct image QT . Lemma
5 now implies that QT is free with each of the basis sets in B being a basis. This
shows that the pair (UB, ZB) represents the functor FB

An
k
. �

2.3. Fβ

An
k

representable implies H d
An

k
representable. The following lemma reduces

the construction of the multigraded Hilbert scheme of points to the construction of
the pairs (Uβ, Zβ) that represent the functors Fβ

An
k

from (6).

Lemma 7. Suppose that for all basis sets β ⊆ k[x] of size d , the functor Fβ
An

k
is

represented by an affine k-scheme Uβ =Spec(Rβ), and universal closed subscheme
Zβ ⊆Uβ ×k An

k . Furthermore, suppose that the schemes Uβ are of finite type over
k (that is, the rings Rβ are finitely generated k-algebras). Then there exists a k-
scheme Hd

An
k

that is separated and of finite type over k, and a closed subscheme
Zd

An
k
⊆Hd

An
k
×k An

k , that together satisfy the universal property (1).

Proof. We proceed to glue the pairs (Uβ, Zβ) together to construct
(
Hd

An
k
, Zd

An
k

)
; we

begin by identifying the “overlaps.” For each pair (βi , β j ) of basis sets of size d ,
we let

U(βi ,β j ) =Wβ j ⊆Uβi ,

where Wβ j is the principal open subscheme from (9), and let

Z(βi ,β j ) ⊆U(βi ,β j )×k An
k

denote the restriction of Zβi to U(βi ,β j ). By Lemma 6, the pairs(
U(βi ,β j ), Z(βi ,β j )

)
,

(
U(β j ,βi ), Z(β j ,βi )

)
both represent the functor F {βi ,β j }

An
k

in (8). Hence there is a canonical isomorphism

ϕi j : U(βi ,β j )→U(β j ,βi )

over which the universal closed subscheme Z(β2,β1) pulls back to Z(β1,β2); we let
ψi j : Z(β1,β2)→ Z(β2,β1) denote the second projection map

ψi j : Z(β1,β2) =U(β1,β2)×U(β2,β1 )
Z(β2,β1) −→ Z(β2,β1);

it is clear that
ϕ−1

i j = ϕ j i , ψ−1
i j = ψ j i .

For any triple (βi , β j , βk) of basis sets of size d, note that

U(βi ,β j ,βk) =U(βi ,β j ) ∩U(βi ,βk) =Wβi ∩Wβ j ∩Wβk
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in the notation of Section 2.2. It follows easily from Lemma 5 that

ϕi j
(
U(βi ,β j ,βk)

)
⊆U(β j ,βi ,βk);

whence, ϕi j restricts to an isomorphism

ϕi jk : U(βi ,β j ,βk)→U(β j ,βi ,βk).

Letting Z(βi ,β j ,βk) denote the restriction of Zβi to U(βi ,β j ,βk), we see that the pull-
back of Z(β j ,βi ,βk) under ϕi jk is Z(βi ,β j ,βk). Lemma 6 implies that for all permuta-
tions of i, j and k, the pair

(U(βi ,β j ,βk), Z(βi ,β j ,βk))

represents the functor F {βi ,β j ,βk}

An
k

; moreover, we have just seen that the restriction
maps ϕi jk are the canonical isomorphisms, to which are associated the restrictions

ψi jk : Z(βi ,β j ,βk)→ Z(β j ,βi ,βk)

of the isomorphisms ψi j . The compatibility conditions

ϕik j = ϕ jki ◦ϕi jk, ψik j = ψ jki ◦ψi jk

are therefore immediate, so we can glue the pairs (Uβ, Zβ) along the isomor-
phisms (ϕi j , ψi j ) (see, for example, [Eisenbud and Harris 2000, I.2.4, p. 33] or
[Hartshorne 1977, Ex. 2.12, p. 80]). We obtain a scheme Hd

An
k

and a subscheme
Zd

An
k
⊆Hd

An
k
×k An

k such that the direct image Qd
An

k
of the structure sheaf of Zd

An
k

on
the scheme Hd

An
k

is locally free of rank d — this holds because the restriction of
Qd

An
k

to the open subscheme Uβ is equal to the direct image Qβ of Zβ , which is (by
hypothesis) free with basis β, a basis set of cardinality d . In consequence, we find
that Zd

An
k

is in fact a closed subscheme of Hd
An

k
×k An

k by the proof of Lemma 1.
It is evident that the scheme Hd

An
k

is of finite type over k, since it is covered by
the finitely many open subschemes Uβ , each of which is by hypothesis an affine
scheme of finite type over k. To show that Hd

An
k

is separated over Spec(k), we use
the criterion given by [Grothendieck and Dieudonné 1971, Prop. 5.3.6, p. 281]: it
suffices to show that the intersections Uβi ∩Uβ j in Hd

An
k

are affine, and that the ring

0
(

Uβi ∩Uβ j ,OHd
An

k

)
is generated by the union of the images (under the restriction maps) of the rings

0i = 0
(

Uβi ,OHd
An

k

)
and 0 j = 0

(
Uβ j ,OHd

An
k

)
.

However, Uβi ∩Uβ j is isomorphic to the principal open subscheme in (9),

Wβ j = Spec
(
0
(

Uβi ,OHd
An

k

)
δ

)
⊆Uβi ,
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where δ is the determinant of the matrix P , with entries in 0i , such that β j = P ·βi

in the sheaf Qβi . The coordinate ring of Wβ j is generated by quotients of the form
a/δ, where a ∈ 0i . Since the sheaf Qβ j is free with basis β j on Uβ j , there is
a unique matrix P ′ with entries in 0 j such that βi = P ′ · β j . It is then clear that
δ′= det(P ′) restricts to 1/δ on Wβ j ; whence, the coordinate ring of the intersection
is generated by the images of the coordinate rings of Uβi and Uβ j , as desired.

It remains to show that the pair
(
Hd

An
k
, Zd

An
k

)
satisfies the universal property (1).

To this end, let T be a k-scheme, and Z ⊆ T ×k An
k a closed subscheme such that

the direct image QT of the structure sheaf of Z is locally free of rank d on T . For
each basis set βi ⊆ k[x] of size d , let Vβi ⊆ T denote the open subscheme such that

t ∈ Vβi if and only if the stalk QT,t is OT,t -free with basis βi .

The Vβi cover T : indeed, letting k(t) denote the residue field of t , the fiber of Z over
Spec(k(t)) has the form Spec(k(t)[x]/It), where the quotient k(t)[x]/It is a k(t)-
vector space of dimension d, and accordingly has at least one of the basis sets βi as
basis (see, for example, [Haiman 1998, Proof of Prop. 2.1, p. 207]). Nakayama’s
Lemma then implies that βi generates QT,t over OT,t ; whence, t ∈ Vβi .

Let ZVβi
denote the restriction of Z to Vβi ; it is then clear that the direct image

of the structure sheaf of ZVβi
on Vβi is free with basis βi . The universal property

of (Uβi , Zβi ) then yields a unique map fi : Vβi →Uβi such that the pullback of Zβi

is ZVβi
. It is clear that these maps patch to yield a unique map fZ : T →Hd

An
k

such
that the pullback of Zd

An
k

is Z . Conversely, every map f : T →Hd
An

k
induces, by

pulling back Zd
An

k
, a closed subscheme Z f ⊆ T ×k An

k such that the direct image of
the structure sheaf of Z f on T is locally free of rank d . This completes the proof
of the lemma. �

2.4. Locus of reduced subschemes in Uβ . In this subsection we restrict k to be an
algebraically closed field, and assume that the construction of the Hilbert scheme(
Hd

An
k
, Zd

An
k

)
has been completed. We study the locus of k-points in Uβ ⊆ Hd

An
k

representing reduced closed subschemes of An
k : subschemes supported at d distinct

points p1, . . . , pd ∈ An
k . We write [p1, . . . , pd ] ∈Hd

An
k

for the point corresponding
to the closed subscheme determined by the d points pi ; of course, the subscheme
does not depend on the order in which the points are listed. We have the following

Proposition 8. There is a nonempty principal open subscheme

V ◦β ⊆ (A
n
k)

d

such that [p1, . . . , pd ] ∈Uβ if and only if (p1, . . . , pd) ∈ V ◦β .

Proof. Given distinct points p1, . . . , pd ∈ An
k , let

mi ⊆ k[x1, . . . , xn] = k[x]
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denote the maximal ideal of pi , 1 ≤ i ≤ d , and

I =
d⋂

i=1

mi

be the ideal defining the subscheme [p1, . . . , pd ]. For any g ∈ k[x], we write
g(pi ) ∈ k for g evaluated at pi . Then, by the Chinese Remainder Theorem, the
(k-linear) map

(10) k[x]/I →
d⊕

i=1

k[x]/mi , g 7→ (g(p1), . . . , g(pd)),

is an isomorphism. The basis set β = {m1, . . . ,md} is a k-basis of the quotient
k[x]/I if and only if the determinant of the matrix

m1(p1) m2(p1) . . . md(p1)

m1(p2) m2(p2) . . . md(p2)
...

...
...

m1(pd) m2(pd) . . . md(pd)


is nonzero. We now replace the coordinates of each point

pi = (pi1, pi2, . . . , pin)

with indeterminates Pi1, . . . Pin , and consider the determinant as a polynomial in
the Pi j . This polynomial is nonzero, since it consists of a sum of d! terms of the
form

±1 ·
d∏

i=1

mi (Pπ(i)1, . . . , Pπ(i)n),

where π is a permutation of {1, . . . , d}, and a moment’s reflection shows that the d!
monomials (in the Pi j ) appearing in these terms are all distinct. Letting V ◦β be the
principal open subscheme whose complement is the zero-locus of the determinant,
we see that the proposition holds provided that V ◦β is nonempty. However, since
k is infinite (being algebraically closed), and the determinant is nonzero, we can
find values pi j ∈ k that when substituted into the indeterminates Pi j make the
determinant nonzero (see, for example, [Eisenbud 1995, Sec. 1.6, p. 31]); this
implies that V ◦β is nonempty, and we are done. �

It is clear that the open subscheme V ◦β is invariant under the natural action of
the symmetric group Sd on

(
An

k

)d . The quotient map

πβ : V ◦β → V ◦β /Sd =W ◦β
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is finite-to-one, and the k-points πβ(p1, . . . , pd) ∈ W ◦β are in bijective correspon-
dence with the points [p1, . . . , pd ] ∈ Uβ , where the pi = (pi1, pi2, . . . , pin) are
distinct k-points of An

k . Therefore, each open subscheme Uβ ⊆ Hd
An

k
meets the

principal component Hd
◦
⊆ Hd

An
k

(the closure of the open set of points represent-
ing closed subschemes supported at d distinct points of An

k — see, for example,
[Iarrobino 1972, p. 72]) in at least an (n · d)-dimensional locus; in particular,

Hd
◦
∩Uβ 6=∅.

We have the following corollary.

Corollary 9. Let k be an algebraically closed field, and β, β ′ two basis sets of d
monomials in k[x1, . . . , xn]. Then

(1) Uβ ∩Hd
◦

is open dense in Hd
◦
;

(2) dim(Uβ)≥ n · d; and

(3) Uβ ∩Uβ ′ 6=∅.

Proof. It is well-known that the irreducible component Hd
◦

has dimension n · d.
Therefore, the non-empty open subset Hd

◦
∩Uβ is dense in Hd

◦
, as statement (1)

asserts, and has dimension n · d . Statement (2) is then immediate, and statement
(3) follows since the dense open subsets

Hd
◦
∩Uβ and Hd

◦
∩Uβ ′

of Hd
◦

must intersect nontrivally. �

Remark 10. The discussion in Haiman’s article [1998, proof of Prop. 2.6], when
generalized from 2 to n variables, shows how to find the values of the coor-
dinate functions Cb

j at the point [p1, . . . , pd ] ∈ Uβ , given a d-tuple of points
(p1, . . . , pd) ∈ V ◦β .

3. Free quotients of polynomial rings with basis β

Recall that k denotes our commutative and unitary ground ring. Let β ⊆ k[x] be
a basis set of size d , and let B be a commutative k-algebra. If the pair (Uβ, Zβ)
exists and represents the functor Fβ

An
k

from (6), as assumed in Section 2.2 and
Section 2.3, then a map f : Spec(B)→ Uβ corresponds to a closed subscheme
Z f ⊆ Spec(B)×k An

k such that the direct image of the structure sheaf of Z f on
Spec(B) is free with basis β, or, equivalently, to an ideal I ⊆ B[x] such that the
quotient B[x]/I is B-free with basis β. In this section, we prepare to construct
the pairs (Uβ, Zβ) by introducing the boundary monomials of β and the associated
polynomial generators of the ideal I , as exemplified in Section 1.4.
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3.1. Notation for monomials. We have already introduced the shorthand x to rep-
resent the list of indeterminates x1, x2, . . . , xn . We will similarly abbreviate the
monomial xr1

1 xr2
2 . . . x

rn
n by xr, where r denotes the tuple of exponents (r1, . . . , rn),

and will relax the notation further by writing, for example, j ∈ β instead of xj
∈ β.

We will reserve the letter j for monomials in β, the letter b for monomials xb in
the boundary of β (see the next section), and the letter r for general monomials xr.

3.2. Boundary monomials of β. Let B be a commutative k-algebra, and let I ⊆
B[x] be an ideal such that the quotient B[x]/I is B-free with basis β. Then every
monomial xr1

1 xr2
2 . . . x

rn
n = xr is congruent modulo I to a unique B-linear combi-

nation
xr
≡

∑
j∈β

cr
j · x

j (mod I )

of monomials in β; equivalently, I contains, for every monomial xr, a unique
polynomial of the form

(11) Fr = xr
−

∑
j∈β

cr
j · x

j.

Proposition 11. The polynomials Fr generate the ideal I ∈ B[x].

Proof. Let J ⊆ I be the ideal generated by the polynomials Fr. It is then evident
that B[x]/J is generated as a B-module by the monomials xj in β; furthermore,
the natural surjection B[x] → B[x]/I induces a surjection σ : B[x]/J → B[x]/I
given by (g + J ) 7→ (g + I ) for any g ∈ B[x]. On the other hand, since B[x]/I
is B-free with basis β, we can define a map τ : B[x]/I → B[x]/J of B-modules
by sending (xj

+ I ) to (xj
+ J ) for each j ∈ β and extending linearly. Since τ ◦ σ

maps (xj
+ J ) to itself for each j ∈ β, and these elements generate the source as

a B-module, it follows that τ ◦ σ is the identity; whence, the surjection σ is also
injective, and hence an isomorphism. It follows that J = I , as desired. �

In fact, the ideal I is generated by a finite subset of the polynomials Fr; we now
present one convenient such subset. We say that the monomial xr is a boundary
monomial of β provided that xr /∈ β but xr/x j ∈ β for at least one variable x j . For
example, consider the basis set β = {x2

2 , x2, 1, x1} ⊆ k[x1, x2]. Then the boundary
monomials of β are the monomials shown in boldface in the diagram

(12)

x3
2

x2
2 x1x2

2
x2 x1x2
1 x1 x2

1.

We write B(β) for the set of boundary monomials associated to β; note that it
can be generated by the following simple algorithm: Multiply each monomial in
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β by each of the variables, and record the products that fall outside of β, deleting
duplicates.

Proposition 12. The set of polynomials Fb such that b ∈B(β) is a generating set
for the ideal I ⊆ B[x].

Proof. Let J ′ be the ideal generated by the Fb. In light of Proposition 11, it suffices
to prove that Fr ∈ J ′ for all monomials xr. Clearly this is so for the polynomials
Fb, and also for the polynomials Fj associated to monomials j ∈ β (by definition
Fj is the zero polynomial, since xj is congruent to itself modulo I ). Proceeding by
induction on the total degree, we suppose that xr is a monomial of minimal total
degree (greater than zero) such that Fr /∈ J ′. Let xi be a variable that appears with
a positive exponent in xr, and let xr′

= xr/xi . Then by the induction hypothesis we
have that

Fr′ = xr′
−

∑
j∈β

cr′
j · x

j
=

∑
b∈B(β)

gr′
b · Fb, gr′

b ∈ B[x].

Multiplying the second of the preceding equalities by xi , we find that

xr
−

∑
j∈β

cr′
j · (x

j
· xi )=

∑
b∈B(β)

(gr′
b · xi ) · Fb

Now the monomials (xj
· xi ) are either in β or in B(β) (equal, say, to xb); if,

whenever in the latter case, we add the corresponding cr′
j · Fb to both sides, we

eventually achieve an equation of the form

xr
−

∑
j∈β

c̃j · xj
=

∑
b∈B(β)

g̃b · Fb ∈ J ′ ⊆ I, c̃j ∈ B, g̃b ∈ B[x].

Since the left-hand side has the same form as Fr and lies in I , it must be equal
to Fr, since I contains a unique polynomial of this form for every monomial xr.
Therefore Fr ∈ J ′, which is a contradiction; whence the proposition. �

Let q denote the number of elements in B(β). Then, by the last proposition,
the ideal I corresponds to a B-point in affine (q · d)-space over B, namely, the
point whose coordinates are the coefficients cb

j of the polynomials Fb. The locus
of B-points corresponding in this way to ideals I such that B[x]/I is B-free with
basis β is closed. Central to this paper is the problem of finding generators of an
ideal cutting out this locus.

4. Syzygies of the polynomials Fb

As in Section 3.2, we let B be a commutative k-algebra, and I ⊆ B[x] an ideal
such that the quotient B[x]/I is B-free with basis β. By Proposition 12, we know
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that the finite set of polynomials (recall (11))

Fb = xb
−

∑
j∈β

cb
j · x

j, b ∈B(β),

generates the ideal I . In this section, we study the relations among the Fb; more
precisely, we describe a set of generators of the first syzygy module of the Fb. The
ideas of this section (and the next) are generalized from [Huibregtse 2002, Sec. 4],
which considered the case of two variables.

4.1. Lemma for finding syzygies. Recall that a syzygy of the polynomials Fb is a
q-tuple (recall that q denotes the number of boundary monomials) of coefficients
(gb)b∈B(β) such that

(13)
( ∑

b∈B(β)

gb · Fb

)
= 0, gb ∈ B[x].

The set of all such syzygies is a B[x]-submodule of B[x]q , the first sygyzy module
of the Fb.

The key result for finding syzygies is the following lemma.

Lemma 13. If the B[x]-linear combination

L =
∑

b∈B(β)

hb · Fb

of the Fb is equal to a B-linear combination of the monomials in β, then in fact L
is equal to 0, and the tuple (hb) is a syzygy of the polynomials Fb.

Proof. The polynomial L lies in the ideal I generated by the Fb, and so L ≡ 0
modulo I . But by hypothesis B[x]/I is B-free with basis β, so L must be the
trivial B-linear combination of the monomials in β, which implies that L = 0. �

4.2. Construction of syzygies. In view of the lemma, we seek to find B[x]-linear
combinations of the Fb that involve only monomials in β (that is, basis mono-
mials). For example, let β =

{
x2

2 , x2, 1, x1
}
⊆ k[x1, x2], and recall that B(β) ={

x3
2 , x1x2

2 , x1x2, x2
1

}
by (12). If I ⊆ B[x1, x2] is such that B[x1, x2]/I is B-free

with basis β, then by Proposition 12 it is generated by four polynomials of the
form

F(0,3) = x3
2 − c(0,3)(0,2) · x

2
2 − c(0,3)(0,1) · x2− c(0,3)(0,0) · 1− c(0,3)(1,0) · x1,

F(1,2) = x1x2
2 − c(1,2)(0,2) · x

2
2 − c(1,2)(0,1) · x2− c(1,2)(0,0) · 1− c(1,2)(1,0) · x1,

F(1,1) = x1x2− c(1,1)(0,2) · x
2
2 − c(1,1)(0,1) · x2− c(1,1)(0,0) · 1− c(1,1)(1,0) · x1,

F(2,0) = x2
1 − c(2,0)(0,2) · x

2
2 − c(2,0)(0,1) · x2− c(2,0)(0,0) · 1− c(2,0)(1,0) · x1.
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Consider the product

−x1 · F(0,3) =−x1x3
2 + c(0,3)(0,2) · x1x2

2 + c(0,3)(0,1) · x1x2+ c(0,3)(0,0) · x1+ c(0,3)(1,0) · x
2
1 .

With reference to the diagram (12), each monomial in F(0,3) has been shifted one
place to the right by this operation. We will call the terms that were shifted from
“inside β” to “outside β” exposed terms; in this case they are

c(0,3)(0,2) · x1x2
2 , c(0,3)(0,1) · x1x2, c(0,3)(1,0) · x

2
1 .

We can remove the exposed terms by adding the appropriate scalar multiples of the
Fs corresponding to the exposed terms’ boundary monomials; more precisely, in
the following linear combination, the only term that is not a scalar times a mono-
mial in β is −x1x3

2 :

−x1 · F(0,3)− c(0,3)(0,2) · F(1,2)− c(0,3)(0,1) · F(1,1)− c(0,3)(1,0) · F(2,0).

To remove the term −x1x3
2 , we add x2 ·F(1,2), which of course “exposes” the terms

−c(1,2)(0,2)x
3
2 , −c(1,2)(1,0)x1x2

by vertical shifting. We remove these exposed terms as before, and conclude that
the expression(
−x1+ c(1,2)(0,2)

)
· F(0,3)+

(
x2− c(0,3)(0,2)

)
· F(1,2)+

(
c(1,2)(1,0)− c(0,3)(0,1)

)
· F(1,1)− c(0,3)(1,0) · F(2,0)

is equal to a B-linear combination of monomials in β. Therefore, the coefficients
in this expression are a syzygy of the Fb, by Lemma 13. Similarly, we can remove
the exposed terms from the expressions

(x2 · F(1,1)− 1 · F(1,2)) and (−x1 · F(1,1)+ x2 · F(2,0))

to obtain syzygies from the coefficients of the expressions

c(1,1)(0,2) · F(0,3)− 1 · F(1,2)+
(
x2+ c(1,1)(1,0)

)
· F(1,1)+ 0 · F(2,0)

and

c(2,0)(0,2) · F(0,3)− c(1,1)(0,2) · F(1,2)+
(
−x1− c(1,1)(0,1)+ c(2,0)(1,0)

)
· F(1,1)+

(
x2− c(1,1)(1,0)

)
· F(2,0),

respectively, each of which is equal to a B-linear combination of basis monomials.
We claim that the three syzygies found so far (the basic syzygies in this case) gen-

erate the full B[x1, x2]-module of syzygies of the polynomials F(0,3), F(1,2), F(1,1),
and F(2,0). To prove this, and to lay the groundwork for our construction of the
pair (Uβ, Zβ), we must undertake a more general treatment of the syzygy-making
process, beginning with the next section. (Note that in the case of two variables,
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the basic syzygies are in fact free generators of the syzygy module; this is proved
in [Huibregtse 2002, Sec. 4]. This is not so in three or more variables.)

5. Pseudosyzygies

5.1. Definition of pseudosyzygy. Again we let B be a commutative k-algebra, and
β a basis set of monomials (in the variables x1, . . . , xn) of cardinality d . Suppose
that one is given arbitrary polynomials

(14) Gb = xb
−

∑
j∈β

cb
j · x

j, cb
j ∈ B,

one for each b∈B(β) (the set of boundary monomials), and that these polynomials
generate the ideal J ⊆ B[x].

Lemma 14. The quotient B[x]/J is generated as a B-module by the monomials in
β.

Proof. It suffices to prove that every monomial m is congruent (mod J ) to a B-linear
combination of basis monomials. This is immediate for the basis monomials, and is
also clearly true for the boundary monomials, by definition of the Gb. In particular,
1 ∈ β, the unique monomial of total degree 0, has this property. Proceeding by
induction on the total degree, suppose that every monomial of total degree less
than s is congruent (mod J ) to a B-linear combination of basis monomials, and let
m have total degree s. Let x j be a variable that appears in m, so that m′ =m/x j is
a monomial of total degree less than s. Then the induction hypothesis yields

m = x j ·m′ ≡ x j ·

(∑
j∈β

aj · xj
)

≡

∑
j∈β

aj · (x j · xj) (mod J ).

If any of the monomials x j ·xj is not a basis monomial, then it is a boundary mono-
mial, and can be expanded (mod J ) as a B-linear combination of basis monomials,
showing that such a representation also obtains for m, as desired. �

We define a pseudosyzygy of the polynomials Gb to be a q-tuple ( f1, . . . , fq)

of elements of B[x] such that

(15)
∑

b∈B(β)

fb ·Gb =

(
a B-linear combination of
basis monomials

)
.

We can construct “basic pseudosyzygies” using the syzygy-making process de-
scribed in Section 4.2 (where the quotient B[x]/J was B-free with basis β). The
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details will be presented below, following some preliminaries on boundary mono-
mials. Note that Lemma 13 immediately yields the following corollary.

Corollary 15. If the quotient B[x]/J is B-free with basis β, then any pseudosyzygy
of the generators Gb, in (14), of J is in fact a syzygy of these polynomials. �

5.2. Preliminaries on boundary monomials. We begin with the following simple
but useful lemma.

Lemma 16. If xj is a basis monomial, then x j · xj is either a basis monomial or a
boundary monomial, for 1≤ j ≤n. Furthermore, if xb is a boundary monomial that
involves the variable x j nontrivially, then xb/x j is either a boundary monomial or
a basis monomial.

Proof. The first statement is immediate from the definition of boundary monomial.
For the second statement, we reason as follows: If xb is a boundary monomial, then
xb/xi is a basis monomial for some i . If i = j , we are done; otherwise, xb/xi ∈ β

implies that xb/(xi x j ) ∈ β. It then follows from the first statement that xb/x j is
either a basis or a boundary monomial, as desired. �

Next we define a relation of “adjacency” among boundary monomials. By def-
inition, two distinct boundary monomials xb1 and xb2 are adjacent if they each
differ from their least common multiple by at most multiplication by a variable,
that is,

deg(lcm(xb1, xb2))≤ deg(xbi )+ 1 for i = 1, 2.

For example, the adjacent pairs among the boundary monomials shown in (12)
are, up to order,

(
x3

2 , x1x2
2

)
,
(
x1x2

2 , x1x2
)
, and

(
x1x2, x2

1

)
. We will see that a ba-

sic pseudosyzygy can be constructed starting with any adjacent pair of boundary
monomials; indeed, we have already seen examples of this in Section 4.2.

We conclude our boundary monomial preliminaries with a partition of the set
B(β) that plays an important role in our proofs of the main results on pseudosy-
zygies. We first define the boundary monomial xb to be x j -exposable provided
that xb/x j is a basis monomial. (The idea is that multiplication by x j moves the
basis monomial xb/x j to the “exposed” position xb /∈ β.) We then say that the
boundary monomial xb is on face i of β provided that xb is xi -exposable but not
x j -exposable for n≥ j > i . For example, observe that the monomial xwi

i is on face
i , where wi > 0 is the minimum exponent e such that xe

i is not a basis monomial.
In particular, this shows that every face is nonempty. We will call wi the xi -width
of the basis set β. The following result is then immediate.

Lemma 17. The set of faces of β defines a partition of B(β). Furthermore, if xj is
a basis monomial such that x j · xj is a boundary monomial on face i , then i ≥ j .

For example, the first and second faces of the basis set shown in (12) are, re-
spectively,

{
x2

1 , x1x2
2

}
and

{
x1x2, x3

2

}
.
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5.3. Basic pseudosyzygies. Suppose given polynomials Gb of the form (14), one
for each b ∈B(β). For each adjacent pair of boundary monomials b1,b2, we now
define a basic pseudosyzygy P(b1,b2) of the polynomials Gb, by repeating the
sygygy-making process discussed in Section 4.2. To do this, we let

zi = lcm(b1,b2)/bi , for i = 1, 2,

(each of z1, z2 is either a variable or the constant 1, and at least one of them is a
variable) and then compute

(16) −z1 ·Gb1 + z2 ·Gb2 .

The terms −z1 · xb1 and z2 · xb2 cancel out, leaving behind a B-linear combination
of basis and boundary monomials. We let ab ∈ B denote the coefficient of the
boundary monomial xb in (16), and observe that the expression

(17) −z1 ·Gb1 + z2 ·Gb2 −

∑
b∈B(β)

ab ·Gb

is a B-linear combination of basis monomials. By definition, P(b1,b2) is the
pseudosyzygy defined by the coefficients of (17); precisely,

(18)

P(b1,b2)= (pb)b∈B(β), where

pb1 =−z1− ab1,

pb2 = z2− ab2, and

pb =−ab for b 6= b1,b2.

We can specify the constants ab more precisely; indeed,

(19) ab =


cb1

j1
if xb/z1 = xj1 ∈ β and xb/z2 /∈ β;

−cb2
j2

if xb/z2 = xj2 ∈ β and xb/z1 /∈ β;

cb1
j1
− cb2

j2
if xb/z1 = xj1 ∈ β and xb/z2 = xj2 ∈ β;

0 otherwise.

Remark 18. It is clear from the construction that the basic pseudosyzygy P(b1,b2)

is the unique pseudosyzygy of the form (18); that is, the constants ab are uniquely
determined. In particular, one has that P(b2,b1)=−P(b1,b2).

Lemma 19. Let x j be the variable of minimum index j in the set {z1, z2}. Then the
constants ab = 0 for all xb on faces 1, 2, . . . , j−1.

Proof. The boundary monomials in the expression (16) are exposed by multipli-
cation by x j and (possibly) by multiplication by xk for k > j , and therefore lie on
faces j or greater, by Lemma 17. �
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Lemma 20. Suppose that z1 = 1 and z2 = x j . Then for all boundary monomials
xb that are not x j -exposable, the corresponding constant ab is zero. In particular,
ab1 = 0, or, equivalently, pb1 =−1.

Proof. By (19) and the hypothesis, the constant ab can only be nonzero if xb is x j -
exposable. If xb1 were x j -exposable, then xb2=xb1/x j would be a basis monomial,
which is a contradiction. �

Lemma 21. Let δ : B → B ′ be a ring homomorphism, and let δ̂ denote the map
B[x] → B ′[x] induced by δ. Then δ̂(P(b1,b2)), obtained by applying δ̂ to each
component of P(b1,b2), is the basic pseudosyzygy of the polynomials δ̂(Gb) cor-
responding to the adjacent pair (b1,b2).

Proof. It is clear that the polynomials δ̂(Gb) are of the form (14), with coefficients
lying in B ′. Since P(b1,b2) · (Gb) is a B-linear combination of basis monomials,
it is clear that

δ̂(P(b1,b2) · (Gb))= δ̂(P(b1,b2)) ·
(
δ̂(Gb)

)
is a B ′-linear combination of basis monomials. Therefore δ̂(P(b1,b2) is a pseu-
dosyzygy having the same form as the basic pseudosyzygy of the δ̂(Gb) corre-
sponding to the adjacent pair (b1,b2), and so is equal to it by Remark 18. �

Let J ⊆ B[x] denote the ideal generated by the polynomials Gb. By Corollary
15, we know that if B[x]/J is B-free with basis β, then the basic pseudosyzygies
P(b1,b2) are syzygies of the polynomials Gb. In fact, the basic (pseudo)syzygies
generate the full B[x]-module of syzygies in this case. Conversely, if the basic
pseudosyzygies are syzygies, then the quotient B[x]/J is B-free with basis β. The
goal of the next section is to prove these statements (in Theorem 22).

6. Main results on pseudosyzygies

We continue to use the notation of Section 5. Let S denote the B[x]-linear span
of the basic pseudosyzygies P(b1,b2) associated to a set of polynomials Gb of
the form (14). The two basic technical facts demonstrated in this section can be
summarized as follows.

Lemma 33. An arbitrary q-tuple (hb)b∈B(β) of elements of B[x] can be expressed
in the form

(20) (hb)= (element of S)+ (“reduced” tuple).

In other words, every coset of S contains at least one reduced representative.

Lemma 26. A reduced tuple that is a pseudosyzygy of the polynomials Gb must be
the zero-tuple.
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Our main result (Theorem 22) on pseudosyzygies follows easily from these two
lemmas. We will first state and prove the main theorem, assuming the lemmas
and deferring the definition of “reduced” tuple. The proofs of the lemmas and
other preliminary results are then presented. These are somewhat complicated and
tedious, and can be skipped on first reading, but they rely on nothing more than
polynomial arithmetic.

6.1. Main theorem on pseudosyzygies. Recall that J ⊆ B[x] denotes the ideal
generated by the chosen set of polynomials Gb, for b ∈B(β).

Theorem 22. Let the hypotheses be those given at the start of Section 5.1. If
the quotient B[x]/J is B-free with basis β, then the basic pseudosyzygies are
syzygies that generate the entire B[x]-module of syzygies of the polynomials Gb.
Conversely, if the basic pseudosyzygies of the Gb are all syzygies, then the quotient
B[x]/J is B-free with basis β.

Proof. First suppose that the quotient B[x]/J is B-free with basis β. Corollary
15 implies that the basic pseudosyzygies are syzygies of the polynomials Gb. We
must prove that an arbitrary syzygy ( fb) of the Gb can be written as a B[x]-linear
combination of the basic pseudosyzygies, that is, ( fb) ∈ S. However, by Lemma
33, we know that ( fb)= ( f ′b)+ (reduced tuple), with ( f ′b)∈S. It follows easily that
the reduced tuple is a syzygy, and therefore a pseudosyzygy, of the Gb. Lemma
26 now yields that the reduced tuple is the zero-tuple; whence, ( fb) = ( f ′b) ∈ S,
as desired.

To prove the converse assertion, suppose now that all the basic pseudosyzygies
are syzygies of the Gb. By Lemma 14, the B-module B[x]/J is generated by the
basis monomials; it remains to prove that the latter are B-linearly independent. To
this end, we assume given a B-linear combination of basis monomials L such that
L ≡ 0 (mod J ). Since L ∈ J , there exists a pseudosyzygy ( fb) such that

L = ( fb) · (Gb)=
∑

b∈B(β)

( fb ·Gb).

Let ( f ′b) ∈ ( fb)+S be a reduced tuple, the existence of which is a consequence of
Lemma 33. Since the basic pseudosyzygies are assumed to be syzygies of the Gb,
we have

L = ( fb) · (Gb)= ( f ′b) · (Gb);

that is, ( f ′b) is a reduced pseudosyzygy of the Gb, and is therefore the zero-tuple,
again by Lemma 26. We conclude that L = 0, which implies that the basis mono-
mials are B-linearly independent (mod J ). This completes the proof. �

Remark 23. The theorem just proved is a direct generalization of [Huibregtse
2002, Theorem 4.3.6, p. 119] from the case of the affine plane (n = 2) to an affine



MULTIGRADED HILBERT SCHEME OF POINTS 293

space of arbitrary dimension n. The proof just presented is essentially the same as
the proof of the cited theorem.

As noted earlier, the balance of this section is devoted to the development and
proof of the lemmas needed to prove Theorem 22. The reader impatient to see how
the theorem is used to construct the universal pairs (Uβ, Zβ) can skip to Section 7
without loss of understanding.

6.2. Extreme monomials and reduced tuples. We call a boundary monomial xb

extreme if it satisfies the following condition: xb lies on face i and only involves
the variables x1, x2, . . . , xi (where, of course, xi must be present). We say that a
q-tuple (hb)b∈B(β) of elements of B[x] is reduced if it satisfies the conditions

(21)
• When xb is extreme and on the i-th face, then the tuple entry

hb only involves the variables xi , xi+1, . . . , xn , and

• when xb is non-extreme, then the tuple entry hb is 0.

For example, consider the boundary monomials in (12). There is only one extreme
monomial on face 1, namely x2

1 = xb1 , but both of the monomials on face 2 are
extreme: x1x2 = xb2 and x3

2 = xb4 . The monomial x1x2
2 = xb3 on face 1 is not ex-

treme. Therefore, the following tuples (hb1, hb2, hb3, hb4) ∈ (B[x])4 are examples
of reduced tuples:

(22) (0, 0, 0, 0);
(
x2

1 + x1x2
2 , x3

2 , 0, x4
2
)
; (1, x2, 0, 1).

Remark 24. It is clear that, in general, all monomials on face n are extreme,
whereas only xw1

1 is extreme on face 1 (recall that w1 is the x1-width of β, that is,
w1 is the smallest exponent e such that xe

1 is not a basis monomial).

6.3. Reduced pseudosyzygies. The purpose of this subsection is to prove Lemma
26, which states that a reduced q-tuple that is a pseudosyzygy of the polynomials
Gb must be the zero-tuple. For this we need the following lemma.

Lemma 25. Let xb
= xe1

1 xe2
2 . . . x

e j
j be an extreme boundary monomial on face j

of β, and let xb′ be a boundary monomial on face j ′ > j . Then any term in the
polynomial Gb′ with monomial

xe1
1 xe2

2 . . . x
e j−1
j−1 x

e′j
j x

e′j+1
j+1 . . . x

e′n
n

(that is, which has the same “prefix” as xb through position j−1) satisfies the
inequality e′j < e j . In particular, any basis monomial xj with the same prefix as xb

through position j−1 satisfies this inequality.

Proof. First of all, note that if there were a basis monomial having the prefix
xe1

1 . . . x
e j−1
j−1 x

e′j
j and e′j ≥ e j , then xb would divide a basis monomial, which implies
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that xb would be a basis monomial, which is a contradiction. So, if the polynomial
Gb′ is to have a term with prefix xe1

1 xe2
2 . . . x

e j−1
j−1 x

e′j
j with e′j ≥ e j , this term must

be the boundary monomial xb′ . However, this monomial lies on face j ′ > j , by
hypothesis; therefore, xb′/x j ′ is a basis monomial that xb divides, so we again
obtain a contradiction. It follows that e′j < e j must hold, as asserted. �

We may now prove the following lemma.

Lemma 26. If (hb)b∈B(β) is reduced and is a pseudosyzygy of the polynomials Gb,
then (hb) is the zero-tuple.

Proof. By definition, it suffices to prove that all of the tuple components at extreme
positions are 0. We begin with the first face. There is only one extreme monomial
on face 1, namely xw1

1 = xb1 . Now, the component hb1 can involve all of the
variables, but the definition of reduced tuple implies that this is the only component
that can involve x1 nontrivially. Write hb1 as a polynomial in x1 with coefficients
in B[x2, . . . , xn], and let a · x t

1 be the term of highest degree. We claim that in the
dot product (hb) · (Gb), the term a · x (t+w1)

1 coming from

(highest degree term of hb1) · (boundary monomial of Gb1)

cannot cancel out. Then, since x (t+w1)
1 is not a basis monomial, (hb) can’t be a

pseudosyzygy unless a = 0, which implies that the component hb1 = 0. To prove
the claim, we note that a cancelling term can only come from hb′ ·Gb′ for xb′ an
extreme monomial on face j ≥ 1. If j > 1, we know by definition of reduced tuple
that hb′ only involves the variables x j , . . . , xn , and so does not involve x1. We
therefore cannot produce a cancelling term containing the monomial x (t+w1)

1 from
h′b ·Gb′ , because the polynomial Gb′ can only involve x1 to powers at most w1−1,
by the preceding lemma. If j = 1, then a cancelling term can only arise from a
product of the form hb1 ·c

b1
j xj for some j∈β (recall (14) for the notation). However,

the preceding lemma implies that the x1-degree of xj is ≤ w1 − 1, and since the
maximal x1-degree of hb1 is t , we again cannot produce a term of x1-degree t+w1.
This completes the proof of the claim.

Working now by induction on j , suppose that all the tuple entries hb associ-
ated to extreme monomials xb on faces 1, . . . , j−1 have been shown to be zero.
Consider the extreme monomials on face j : these are the boundary monomials
xb1, xb2, . . . , xbr that involve only the variables x1, x2, . . . , x j , and such that xbi /x j

is a basis monomial for i = 1, 2, . . . , r . The corresponding tuple components
hbi can only involve x j , x j+1, . . . xn nontrivially; moreover, these are the only
components that can involve x j nontrivially (a consequence of the definition of
a reduced tuple and the induction hypothesis). Let t be the maximum exponent of
x j that occurs among the nonzero hbi , and suppose without loss of generality that
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x t
j occurs in hb1 . Let

hb1 = a · x t
j + (terms with lower x j -degree),

where a ∈ B[x j+1, . . . , xn]. Now, the boundary monomial of Gb1 , namely xb1 ,
only involves the variables x1, . . . , x j ; say xb1= xe1

1 xe2
2 . . . x

e j
j . When the boundary

monomial of Gb1 is multiplied by hb1 (in computing the dot product (hb) · (Gb)),
the terms
(23) a · xe1

1 . . . x
e( j−1)
( j−1) · x

(e j+t)
j where a ∈ B[x j+1, . . . , xn]

are produced, and these terms must cancel out if the tuple (hb) is to be a pseu-
dosyzygy.

We first claim that these terms cannot cancel with any terms produced by the
products hb′ ·Gb′ corresponding to extreme monomials xb′ on faces j+1, . . . , n. To
see this, recall that Lemma 25 implies that any term of Gb′ with monomial “prefix”
xe1

1 xe2
2 . . . , xe j−1

j−1 x
e′j
j must have e′j < e j . Moreover, the coefficients hb′ (with xb′ on

some face k > j) can only involve variables in the range xk, . . . , xn . A moment’s
reflection shows that the only terms with monomial prefix xe1

1 . . . x
e( j−1)
( j−1) that occur

in hb′ ·Gb′ will have x j -exponent < e j + t , which proves the claim.
We next claim that the terms (23) cannot cancel with any other terms in the

product hb1 ·Gb1 , that is, terms of the form
(
cb1

j xj)
· hb1 . Since hb1 only involves

the variables x j , x j+1, . . . , xn , with t the maximum x j -degree, in order for the
latter terms to cancel with the former, the basis monomial xj would have to have
the monomial prefix xe1

1 xe2
2 . . . , xe j−1

j−1 x
e′j
j with e′j ≥e j . However, Lemma 25 implies

that e′j < e j .
Therefore, the terms (23) can only cancel with like terms generated by the prod-

ucts hbi ·Gbi for 1< i ≤ k. Note that the various extreme monomials xbi on face j
must all differ from one another in the variables x1, . . . , x( j−1), since otherwise two
distinct monomials on face j would differ only by a power of x j , but this clearly
cannot occur. Hence, since none of the hbi involve x1, . . . , x j−1, we see that the
terms produced by the products hbi · xbi cannot cancel with the terms (23). The
last hope for cancelling these terms lies in the products of the form hbi ·

(
cbi

j xj).
However, since t was chosen as the maximum x j degree among all the hbi , we
can repeat the reasoning of the preceding paragraph to see that such cancellation is
impossible. We conclude that hbi = 0 for 1≤ i ≤ r , which completes the induction
step and the proof of the lemma. �

Having proved Lemma 26, we now proceed to the proof of Lemma 33, which
states that an arbitrary q-tuple (hb)b∈B(β) can be written as the sum of an element of
S and a reduced tuple, as in (20). We accomplish this goal by repeated application
of certain q-tuple rewriting steps called “degree lowering” and “column clearing,”
which we proceed to discuss.
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6.4. Degree lowering. We say that the basic pseudosyzygy P(b1,b2) lowers x j -
degree at b1 provided that (recall (18))

pb1 =−x j − ab1 .

The reason for the terminology is the following: Suppose that we have an arbitrary
q-tuple (hb)b∈B(β) of elements of B[x], and that the maximum x j -degree of the
component hb1 is t > 0. Write

hb1 = γ · x
t
j + (lower x j -degree terms), γ ∈ B[x1, . . . , x j−1, x j+1, . . . , xn].

Then

(24) (hb)=−γ · x
(t−1)
j · P(b1,b2)+

(
(hb)+ γ · x

(t−1)
j · P(b1,b2)

)
,

which shows that, modulo the B[x]-linear span of the basic pseudosyzygies S, the
coset of (hb) contains a representative

(25) (h′b)= (hb)+ γ · x
(t−1)
j · P(b1,b2)

such that the x j -degree of component h′b1
is ≤ t−1.

Lemma 27. If the boundary monomial xb1 is xi -exposable, then for all variables
x j 6= xi , there is a basic pseudosyzygy P(b1,b2) that lowers x j -degree at b1. For
b 6= b1, the components h′b of the resulting q-tuple differ from the corresponding
components hb of the original q-tuple only by terms of x j -degree t−1, where t is
the maximum x j -degree of the component hb1 . Furthermore, if xb1 is on face i , and
j < i , then we can choose P(b1,b2) to lower x j -degree at b1 and to ensure that
the components hb and h′b are equal for all xb on faces 1, 2, . . . , j−1.

Proof. If xb1 is xi -exposable, then xb1/xi = m is a basis monomial. If x j ·m is a
basis monomial, then we must have that (x j ·m) ·xi = xb2 is a boundary monomial.
(If not, it would be a basis monomial, but then by definition its divisor m · xi = xb1

would have to be a basis monomial, which is a contradiction.) The only other
possibility is that x j ·m = xb2 is a boundary monomial. In either case, one sees
easily that (b1,b2) is an adjacent pair such that

z1 = lcm(b1,b2)/b1 = x j ,

z2 = lcm(b1,b2)/b2 =

{
1 if x j ·m is a basis monomial

xi if x j ·m is not a basis monomial.

By definition, the basic pseudosyzygy P(b1,b2) lowers x j -degree at b1. This
proves the first statement.

The second statement follows from the observation that

(26) h′b = hb+ γ · x
(t−1)
j · pb
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(recall (18) and (25)) where, for b 6= b1, we have that pb is either a constant (in
B) or a linear polynomial over B involving a variable other than x j .

To prove the last statement we will show that the basic pseudosyzygy P(b1,b2)

constructed above has the desired property; for this it suffices to prove that the
component pb in equation (26) vanishes for xb on face 1, 2, . . . , j−1. However,
since xb1 and xb2 lie on faces j or higher, and the associated components pb1 , pb2

of P(b1,b2) are the only ones that can involve a variable, we have that for any xb

on face j−1 or lower, the component pb in equation (26) is equal to the constant
−ab, which is zero by Lemma 19. �

6.5. Column clearing. We begin by partitioning the non-extreme boundary mono-
mials of β into subsets called “columns.” Let xb be a non-extreme boundary mono-
mial belonging to face i , for 1≤ i < n (recall from Remark 24 that all monomials
on face n are extreme). Since xb is not extreme, it must involve at least one of the
variables xi+1, . . . , xn nontrivially; let j denote the smallest index greater than i
such that x j divides xb. Then the column containing xb consists of all the non-
extreme monomials on face i that are divisible by x j and can be obtained from
xb by multiplying or dividing by powers of x j . We say that this column is in the
x j -direction.

Lemma 28. The members of the column containing xb are

xb
· x−s

j , xb
· x−s+1

j , . . . , xb
· x−1

j , xb, xb
· x j , xb

· x2
j , . . . , xb

· x t
j

where s, t are nonnegative integers, and all the listed monomials are boundary
monomials on face i that are divisible by x j but not divisible by any xv for i<v< j .
Furthermore, xb

· x t+1
j (which clearly cannot be a basis monomial) is either not a

boundary monomial or else is a boundary monomial on face l for some l < i , and
xb
· x−s−1

j is a boundary monomial (called the lower bound of the column) such
that exactly one of the following holds:

• xb
· x−s−1

j is an extreme monomial on face i ;

• xb
· x−s−1

j is a non-extreme monomial on face i that is not divisible by x j , and
so belongs to a column in the x j ′-direction for some j ′ > j ;

• xb
· x−s−1

j is on face k for some k satisfying j ≤ k ≤ n.

Proof. The first statement being immediate from the definition, we turn to the
second. Suppose that xb

· x t+1
j is a boundary monomial. If it were on face i , then it

would belong to the listed column, which it does not. If it were on face k > i , then(
xb
· x t+1

j

)
/xk would be a basis monomial, hence

(
xb
· x t+1

j

)
/(xk x j )=

(
xb
· x t

j

)
/xk

would be too, and we would conclude that xb
· x t

j is xk-exposable for k > i , a
contradiction. It follows that if xb

· x t+1
j is a boundary monomial, then it lies on

face l < i , as the second statement asserts.
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To prove the last statement, we first claim that xb
· x−s−1

j = m is a boundary
monomial. Indeed, by Lemma 16, m = xb

· x−s
j /x j is either a basis or a boundary

monomial, but if the former were true, then xb
· x−s

j would be x j -exposable for
j > i , a contradiction. Furthermore, since m = xi ·

((
xb
· x−s

j

)
/(xi x j )

)
, it follows

that m is xi -exposable, and so lies on face k ≥ i . In addition, m is not divisible
by any xv for i < v < j , since otherwise all of its multiples (including xb) would
be divisible by xv, contradicting the hypothesis that the column of xb is in the x j -
direction. Suppose now that m lies on face k = i . If m is extreme, we have the
first bulleted possibility. If m is not extreme, then it cannot be divisible by x j — if
it were, then it would belong to the column of xb, which is a contradiction — nor
can it be divisible by xv for i < v < j , as already noted. Therefore, m’s column
would be in the x j ′-direction for some j ′ > j , and we have the second bulleted
possibility. The only other possibility is that m lies on face k > i . Since again m
is not divisible by any xv for i < v < j , we see that in fact k ≥ j must hold, which
is the third bulleted possibility. This completes the proof of the lemma. �

For example, there is only one non-extreme monomial in diagram (12), namely,
xb
= x1x2

2 , which is on face i = 1. Hence there is only one column, consisting of
the single monomial x1x2

2 , that is in the x j = x2-direction. In this case, s = t = 0,
the monomial xb

· x t+1
2 = x1x3

2 is not a boundary monomial, and xb
· x−s−1

2 = x1x2

is on face 2= j .
We say that the basic syzygy P(b1,b2) = (pb)b∈B(β) clears the b1-entry pro-

vided that
pb1 =−1 and pb2 = x j − ab2

for some x j (recall that z1 = 1 implies that pb1 = −1 by Lemma 20). The reason
for the terminology is the following: Suppose that we have a q-tuple (hb)b∈B(β).
Then we may write

(27) (hb)=−hb1 · P(b1,b2)+
(
(hb)+ hb1 · P(b1,b2)

)
,

which shows that, modulo the B[x]-linear span of the basic pseudosyzygies S, the
coset of (hb) contains a representative

(h′b)= (hb)+ hb1 · P(b1,b2)

such that h′b1
= 0.

The basic idea of column clearing is to compose a series of these operations
to clear the components of a q-tuple (hb) that correspond to an entire column of
boundary monomials. In fact, by clearing columns in the right order, we can clear
all of the non-extreme positions in the q-tuple (hb) that correspond to monomials
on faces i and higher without disturbing any of the positions corresponding to
monomials on faces lower than i . The details are given in the following lemmas.



MULTIGRADED HILBERT SCHEME OF POINTS 299

Lemma 29. Let (hb)b∈B(β) be an arbitrary q-tuple of elements of B[x], and xb0 a
non-extreme boundary monomial on face i , for 1 ≤ i < n, whose column is in the
x j -direction, where i < j ≤ n. Then the coset (hb)+ S contains a q-tuple (h′b)
such that h′b = 0 for all xb in the column of xb0 , and hb = h′b for all xb on faces
1, 2, . . . , j−1 except for those in the column of xb0 and the column’s lower bound
xb0 ·x−s−1

j , if the latter is on face i . (Recall from Lemma 28 that the lower bound of
the column will either lie on face i or on some face k≥ j .) In addition, for x j ′ 6= x j ,
the differences h′b − hb have x j ′-degree at most equal to the maximum x j ′-degree
among the components hbk corresponding to monomials xbk in the cleared column.

Proof. Using the notation of Lemma 28, we let xbk = xb0 · x t−(k−1)
j for 1 ≤ k ≤

t+s+2, so xb1 = xb0 · x t
j is the “top” of the column, xbt+s+2 = xb0 · x−s−1

j is the
lower bound of the column, and the remaining xbl are intermediate members of
the column. Beginning at the top of the column, we note that xb1 and xb2 are an
adjacent pair of boundary monomials such that

z1 = lcm
(
xb1, xb2

)
/xb1 = 1 and z2 = lcm

(
xb1, xb2

)
/xb2 = x j ,

so the basic pseudosyzygy P(b1,b2) clears the b1-entry; that is, the b1-entry in
the q-tuple

(h1
b)= (hb)+ hb1 · P(b1,b2)

is zero. Moreover, the constants ab (18) corresponding to xb in faces 1, 2, . . . , j−1
are all zero by Lemma 19. Therefore, since the entries pb of P(b1,b2) are equal
to the corresponding ab except at b1 and b2, we conclude that h1

b= hb for all xb on
faces 1, 2, . . . , j−1, except for xb1 and xb2 , if the latter lies on face i . (Note that
if xb2 is not on face i , then it is the lower bound of the column and lies on some
face k ≥ j , by Lemma 28.) Since

h1
b− hb = hb1 · pb,

where pb is either a constant (possibly 0) or, when b= b2, a linear polynomial in
x j , we have that the x j ′-degree of this difference is at most equal to the x j ′-degree
of hb1 , for x j ′ 6= x j .

If the column consists of only one monomial xb1 (that is, s = t = 0), then we
are done. Otherwise, we proceed by induction. Suppose that for some l, where
1< l < t+s+2, we have constructed a q-tuple

(
hl−1

b
)
∈ (hb)+S such that

hl−1
b1
= hl−1

b2
= · · · = hl−1

bl−1
= 0,

hl−1
b = hb

for all xb on faces 1, 2, . . . , j−1, except for xb1, xb2, . . . , xbl (all of which are in
the column of xb0 , and hence on face i); and the differences hl−1

b − hb have maxi-
mum x j ′-degree at most equal to the maximum x j ′-degree among the components
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hb1, hb2, . . . , hbl−1 . We then use the basic pseudosyzygy P(bl,bl+1) to clear the
bl-entry of the tuple (hl−1

b ) and obtain the tuple(
hl

b
)
=
(
hl−1

b
)
+ hl−1

bl
· P(bl,bl+1),

in which hl
bl
=0. Since the entries pb of P(bl,bl+1) are equal to the corresponding

ab except at bl and bl+1, we find as before that hl
b = hl−1

b for all xb on faces
1, 2, . . . , j−1, except for xbl and xbl+1 , if the latter is on face i . In view of the
induction hypothesis, this implies that

hl
b1
= hl

b2
= · · · = hl

bl−1
= hl

bl
= 0,

hl
b = hb

for all xb on faces 1, . . . , j−1 except for xb1, . . . , xbl , and for xbl+1 if the latter is
on face i (it might not be if it were the lower bound of the column). As before, the
differences hl

b− hl−1
b have x j ′-degree at most equal to the x j ′-degree of

hl−1
bl
= hbl +

(
hl−1

bl
− hbl

)
.

Since the x j ′-degree of the difference hl−1
bl
− hbl is at most equal to the maximum

x j ′-degree among the components hb1, hb2, . . . , hbl−1 , by the induction hypothesis,
we see that the differences hl

b − hl−1
b have maximum x j ′-degree at most equal to

the maximum x j ′-degree among the components hb1, hb2, . . . , hbl . It follows that
the same estimate applies to the differences

hl
b− hb =

(
hl

b− hl−1
b
)
+
(
hl−1

b − hb
)
,

since, by the induction hypothesis, the x j ′-degree of the second summand is at
most equal to the maximum x j ′-degree among the components hb1, hb2, . . . , hbl−1 .
It now follows that the desired coset representative is obtained after the entire
column is cleared, that is,

(
h′b
)
=
(
ht+s+1

b
)
. �

Corollary 30. Let (h′b) be the result of clearing a column in the x j -direction on
face i , as in the lemma, of a given q-tuple (hb). Then

• h′b = hb for all xb on faces 1, 2, . . . , i−1, and

• h′b = hb for all xb in any column in the xv-direction for 2≤ v ≤ j , other than
the cleared column.

Proof. The lemma ensures that hb=h′b for all monomials xb on faces 1, 2, . . . , j−1
except for those in the cleared column and its lower bound m, if the latter is on face
i . It suffices to show that this set of monomials includes the monomials named in
each bulleted statement. Since i < j , we know that the faces i−1 and lower are
included among the faces j−1 and lower. Moreover, an “excepted” monomial
either belongs to the cleared column, and is therefore on face i , or is equal to m,
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which is either on face i or a face j or higher, by Lemma 28. This shows that
there are no “exceptions” among the monomials on faces i−1 or lower, which
establishes the first bulleted statement. Now suppose that xb is a monomial in a
column in the xv-direction for 2≤ v ≤ j , other than the cleared column. It follows
by definition that xb lies on a face ≤ v−1≤ j−1. Since xb does not belong to the
cleared column, by hypothesis, the only way that it can be “excepted” is for xb

=m
to belong to face i , in which case, by Lemma 28, xb is either extreme or a member
of a column in the x j ′-direction for j ′ > j , both of which are contradictions. This
establishes the second bulleted statement and completes the proof. �

We will call two distinct columns of B(β) that lie in the same direction parallel
columns.

Remark 31. The preceding corollary shows that if (h′b) is the result of clearing
a column of a tuple (hb) on face i in the x j -direction, then parallel columns are
unaffected, that is, h′b= hb for all xb in any column parallel to the cleared column.
In particular, this means that if we then clear any column of (h′b) parallel to the
first cleared column, to obtain a third tuple (h′′b), then the components of (h′′b)
corresponding to the first cleared column are still all equal to 0 (that is, still cleared).
Furthermore, if the parallel column is on face i or higher, then hb = h′b = h′′b for
all xb on faces i−1 or lower, by the first statement of the corollary. Finally, for
j ′ 6= j , (in particular, for 1≤ j ′ ≤ i), the differences

h′′b− hb = (h′′b− h′b)+ (h
′

b− hb)

have x j ′-degree at most equal to the maximum x j ′-degree among the components
hbk corresponding to monomials xbk in the cleared columns. (This follows easily
from the last statement of Lemma 29, together with the fact that h′b = hb for all xb

in the second column to be cleared, since clearing the first column leaves parallel
columns unaffected.) These observations enable us to clear parallel columns in
succession, a technique that we exploit in the following lemma.

Lemma 32. Let (hb)b∈B(β) be an arbitrary q-tuple of elements of B[x], and let
1 ≤ i < n. Then the coset (hb)+S contains a q-tuple (h∗b) such that h∗b = 0 for
all non-extreme xb on faces i and higher, and h∗b = hb for all xb on faces lower
than i . Furthermore, for 1≤ j ′≤ i , the differences h∗b−hb have x j ′-degree at most
equal to the maximum x j ′-degree among the components hb corresponding to the
non-extreme monomials xb on faces i and higher — that is, the components hb that
are cleared.

Proof. We begin by clearing all the columns on face i that are in the (i+1)-
direction, one at a time. In light of Remark 31, the result is a tuple (h1

b)∈ (hb)+S

such that: h1
b = 0 for all non-extreme xb on the i-th face that lie in a column in the

xi+1-direction; h1
b= hb for all xb on faces lower than i ; and the differences h1

b−hb



302 MARK E. HUIBREGTSE

have x j ′-degree at most equal to the maximum x j ′-degree among the components
of (hb) that were cleared in the operation. If i = n−1, we are done. If i < n−1, we
proceed by induction, and assume that we have constructed a tuple (hk

b)∈ (hb)+S

such that: k < n − i ; hk
b = 0 for all non-extreme xb on faces i, i+1, . . . , i+k−1

that lie in a column in the x j -direction for i+1 ≤ j ≤ i+k; hk
b = hb for all xb

on faces lower than i ; and the differences hk
b − hb have x j ′-degree at most equal

to the maximum x j ′-degree among the components of (hb) that have been cleared
so far. We then clear all the columns of (hk

b) in the xi+k+1-direction on faces
i, i+1, . . . , i+k, to obtain a q-tuple (hk+1

b ) ∈ (hb)+S. Corollary 30 and Remark
31 ensure that clearing these columns will leave unchanged all positions associated
to monomials in columns that have already been cleared, and on faces lower than i .
They also ensure that the differences hk+1

b −hk
b have x j ′-degree at most equal to the

maximum x j ′-degree among the components hk
bl

corresponding to monomials xbl

belonging to the columns in the xi+k+1-direction that we just cleared. The induction
hypothesis on the x j ′-degree of the differences hk

b− hb holds in particular for the
differences hk

bl
− hbl , whence we obtain that the x j ′-degree of the components

hk
bl
= (hk

bl
− hbl )+ hbl

is at most equal to the maximum x j ′-degree among the components of (hb) corre-
sponding to all of the cleared positions including those on the parallel columns in
the xi+k+1-direction. It now follows easily that the same is true for the differences

hk+1
b − hb = (hk+1

b − hk
b)− (h

k
b− hb).

The desired tuple is therefore obtained after the (n − i)-th iteration, which clears
the columns in the xn-direction on faces i, i+1, . . . , n−1; that is, (h∗b)= (h

n−i
b ). �

We will call the process described in the preceding lemma (for producing (h∗b)
from (hb)) clearing all columns on faces i or higher.

6.6. A reduced normal form for q-tuples. We can now establish the last technical
result needed for the proof of Theorem 22. It is convenient to define a q-tuple (hb)

to be i-reduced provided that

• when xb is extreme and on the j-th face, then the tuple entry hb only involves
the variables xl , xl+1,. . . , xn , for l =min(i, j), and

• when xb is non-extreme, then the tuple entry hb is 0.

It is then clear that (hb) is reduced (21) if and only if (hb) is n-reduced.

Lemma 33. Let (hb)b∈B(β) be an arbitrary q-tuple of elements of B[x]. Then we
can express (hb) in the form

(hb)= (element of S)+ (reduced tuple).
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In other words, every S-coset contains at least one reduced representative.

Proof. We begin by clearing all columns on faces 1 or higher, to obtain a tuple
(hc

b)∈ (hb)+S that is zero at all non-extreme positions. Let t be the maximum x1-
degree among the components hc

b corresponding to extreme monomials xb on faces
2 or higher. If t > 0, apply the operation of lowering the x1-degree at each b1 such
that the x1-degree of hc

b1
is t . Recalling Lemma 27, we see that the result is a tuple

(hd
b) ∈ (hb)+S such that the x1-degree of every component hd

b, with the possible
exception of the component corresponding to the unique extreme monomial xw1

1 on
face 1, is at most t−1. We again clear all columns on faces 1 and higher to obtain
a tuple (hcc

b ) such that hcc
b = 0 at all non-extreme positions and the maximum

x1-degree among the extreme positions on faces 2 and higher is still at most t−1,
by Lemma 32. It is now clear that we can repeat the operations of lowering the
maximal x1-degree and column clearing as often as necessary until we construct a
tuple (h1

b) ∈ (hb)+S that is zero in all non-extreme positions and has x1-degree
zero at every extreme position on faces 2 and higher — that is, (h1

b) is 2-reduced.
If n = 2, we are done: the tuple (h1

b) is reduced. If n > 2, we proceed by
induction. Suppose that we have constructed a q-tuple (hk

b) ∈ (hb)+S such that
(hk

b) is (k+1)-reduced for k+1 < n. We then carry out on (hk
b) the alternation

of reduction of xk+1-degree at extreme positions on faces k+2 and higher having
maximum xk+1-degree, followed by the clearing of all columns on faces k+1 and
higher, until the maximum xk+1-degree on faces k+2 and higher has dropped to
zero. The result is a tuple

(hk+1
b ) ∈ (hb)+S,

which we claim is (k+2)-reduced. Assuming the claim, we see that the desired re-
duced tuple is produced after n−1 iterations, since (hn−1

b ) is n-reduced. It remains
to prove the claim, which we proceed to do.

We first remark that hk
b = hk+1

b for all xb on faces k and lower, because both
the degree reduction and the column clearing steps leave these faces unaffected:
Indeed, we lower xk+1-degree on faces k+2 and higher, and such operations (can
be chosen to) preserve faces k and lower by Lemma 27, and we clear all columns on
faces k+1 and higher, and this operation preserves faces k and lower by Lemma
32. In particular, hk+1

b = 0 for all non-extreme monomials xb on faces k and
lower, and hk+1

b involves only the variables xl , xl+1, . . . , xn for extreme xb on
faces 1 ≤ l ≤ k. By construction, hk+1

b = 0 at all non-extreme positions on faces
k+1, . . . , n−1, and the extreme positions on faces k+2 and higher do not involve
the variable xk+1. To show that (hk+1

b ) is (k+2)-reduced, it now suffices to show
that the extreme positions on faces k+1 and higher in this tuple cannot involve
x1, . . . , xk . However, the induction hypothesis shows that this condition is true for
(hk

b), and neither the degree reduction nor the column clearing steps can introduce
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these variables. For degree reduction, this follows from equation (25): We are
lowering xk+1-degree at b1 on face k+2 and higher, and we can choose the basic
pseudosyzygy P(b1,b2) so that its components pb are either constants or involve a
variable, either xk+1 or xl , where l > k+1 is the face that xb1 lies on (see the proof
of Lemma 27). Since we are assuming that hb1 and (hence) γ do not involve the
variables x1, . . . , xk , we see from (25) that the tuple components that result from
the operation cannot involve x1, . . . , xk if the corresponding original components
do not. For column clearing, recall that we are clearing all the columns on faces
k+1 and higher, assuming that the components of the original tuple corresponding
to monomials on faces k+1 and higher do not involve the variables x1, . . . , xk ;
in particular, the maximal degree of any of these variables appearing among the
components that are to be cleared is 0. It now follows from Lemma 32 that the
resulting components can differ from the original components by at most degree 0
in x1, . . . , xk , showing that if any original component lacks these variables, then so
does the corresponding resulting component. This completes the proof that (hk+1

b )

is (k+2)-reduced, and we are done. �

Remark 34. The base case of the inductive argument just presented was used (in
slightly different form) to prove [Huibregtse 2002, Lemma 4.3.3, p. 116].

7. Construction of (Uβ, Zβ)

Let k be any commutative and unitary ring, and β a basis set of d monomials in the
variables x1, x2, . . . , xn . In this section of the paper we construct an affine scheme
Uβ of finite type over Spec(k), and a family of subschemes Zβ⊆Uβ×kAn

k such that
the direct image Qβ of the structure sheaf of Zβ on Uβ is free with basis β, and the
pair (Uβ, Zβ) represents the functor Fβ

An
k

from (6). By Lemma 7, the pairs (Uβ, Zβ)
can be glued to yield the multigraded Hilbert scheme of points

(
Hd

An
k
, Zd

An
k

)
. We

present several examples of the schemes Uβ in Section 8.

7.1. Preliminary definitions and notation. We introduce the set of indeterminates

(28) C=
{
Cb

j
∣∣ b ∈B(β), j ∈ β

}
,

and define the polynomials

(29) Gb = xb
−

∑
j∈β

Cb
j · x

j, b ∈B(β),

which are of the form (14). For each basic pseudosyzygy P(b1,b2) of the Gb, we
write (recalling (15))

(30) P(b1,b2) · (Gb)=
∑
j∈β

ρ
(b1,b2)
j xj, ρ

(b1,b2)
j ∈ k[C].
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For example, recall the discussion in Section 1.4 of the basis set β = {1, x1} ⊆

k[x1, x2]. The boundary monomials are

xb1 = x2, xb2 = x1x2, xb3 = x2
1 ,

and the adjacent pairs (up to order) are

(b1,b2) and (b2,b3).

We can re-express (4) and (5) in our current notation as

ρ
(b1,b2)
(0,0) =−C (1,1)

(0,0) +C (0,1)
(1,0)C

(2,0)
(0,0) ,

ρ
(b1,b2)
(1,0) = C (0,1)

(0,0) −C (1,1)
(1,0) +C (0,1)

(1,0)C
(2,0)
(1,0) ,

ρ
(b2,b3)
(0,0) =−C (0,1)

(0,0)C
(2,0)
(0,0) +C (1,1)

(1,0)C
(2,0)
(0,0) −C (1,1)

(0,0)C
(2,0)
(1,0) ,

ρ
(b2,b3)
(1,0) = C (1,1)

(0,0) −C (0,1)
(1,0)C

(2,0)
(0,0) .

Remark 35. By equating coefficients in equation (30), while recalling the form of
the entries of P(b1,b2) given in equations (18) and (19), one sees that the coef-
ficients ρ(b1,b2)

j can involve only linear and quadratic terms in the indeterminates
Cb

j (possibly reducing to zero, as in Section 8.2). Moreover, the only way that the
indeterminate Cb′

j′ can occur linearly in ρ(b1,b2)
j is as the coefficient of one of the

two following products on the left-hand side of (30), if present.

−z1 ·
(
−Cb1

j′ xj′), where z1 · xj′
= xj
;

z2 ·
(
−Cb2

j′ xj′), where z2 · xj′
= xj.

In other words, in order for Cb′
j′ to occur linearly in ρ(b1,b2)

j , it is necessary that
b′ = bi for i = 1 or 2, and that xj/zi = xj′ (in particular, there can be at most two
linear terms in any of the polynomials ρ(b1,b2)

j ). These observations will be useful
in Section 8.4 and Section 8.5.

7.2. The coordinate ring Rβ of Uβ . Let R ⊆ k[C] denote the ideal generated by
the polynomials ρ(b1,b2)

j , and

R = Rβ = k[C]/R

the quotient ring. We write δ̂ : k[C][x] → R[x] for the natural map induced by
the quotient map δ : k[C] → R, and let Ĝb = δ̂(Gb) for b ∈B(β). We denote by
Ĵ ⊆ R[x] the ideal generated by the Ĝb.

Lemma 36. The quotient R[x]/ Ĵ is R-free with basis β.
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Proof. Lemma 21 shows that δ̂(P(b1,b2))= P̂(b1,b2) is the basic pseudosyzygy
of the Ĝb corresponding to the adjacent pair (b1,b2). Moreover, using (30), we
see that

P̂(b1,b2) ·(Ĝb)= δ̂(P(b1,b2) ·(Gb))= δ̂
(∑

j∈β

ρ
(b1,b2)
j xj

)
=

∑
j∈β

δ
(
ρ
(b1,b2)
j

)
xj
= 0,

since the coefficients ρ(b1,b2)
j all map to 0 under δ. In other words, the basic pseu-

dosyzygies of the Ĝb are syzygies; therefore, Theorem 22 applies and yields the
result. �

7.3. The universal pair (Uβ, Zβ).

Theorem 37. Let β ⊆ k[x] be a basis set of d monomials. Then there exists a
pair (Uβ, Zβ) consisting of an affine scheme Uβ of finite type over k, and a closed
subscheme Zβ ⊆Uβ ×k An

k , that represents the functor Fβ
An

k
from (6).

Proof. We define

(31)
Uβ = Spec(R),

Zβ = Spec(R[x]/ Ĵ )⊆Uβ ×k An
A = Spec(R[x]).

It is clear that Uβ is an affine scheme of finite type over k, and Zβ is a closed
subscheme of Uβ ×k An

k ; furthermore, by Lemma 36, the direct image Qβ of the
structure sheaf of Zβ on Uβ is free with basis β.

Most importantly, the pair (Uβ, Zβ) represents the functor Fβ
An

k
. Indeed, let T

be a k-scheme. We must show that a map f : T → Uβ corresponds uniquely to a
closed subscheme Z f ⊆ T ×k An

A whose direct image Q f on T is free with basis
β, the correspondence being defined by f 7→ f ∗(Zβ).

Given f : T →Uβ , it is clear that Z f = f ∗(Zβ) has the desired property, since
Zβ does. So, let Z ⊆ T×kAn

A be such that its direct image Q on T is free with basis
β. In particular, this means that the module of global sections of Q is a quotient of
0(OT )[x] that is 0(OT )-free with basis β; therefore, by Proposition 12, there are
unique global functions tb

j on T such that

0(Q)= 0(OT )[x]/(Fb),

where
Fb = xb

−

∑
j∈β

tb
j xj, b ∈B(β).

Furthermore, the basic pseudosyzygies of the Fb are all syzygies, by Theorem 22.
Let z : k[C]→0(OT ) be the ring homomorphism defined by Cb

j 7→ tb
j , and let ẑ

denote the induced map k[C][x]→0(OT )[x]. By Lemma 21, the basic pseudosyzy-
gies of the Fb = ẑ(Gb) are of the form ẑ(P(b1,b2)) (applied componentwise),
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where the P(b1,b2) are the basic pseudosyzygies of the Gb. Accordingly, since
the basic pseudosyzygies of the Fb are syzygies, we see (again using (30)) that

0= ẑ(P(b1,b2)) · (Fb)= ẑ(P(b1,b2)) · (ẑ(Gb))= ẑ(P(b1,b2) · (Gb))

= ẑ
(∑

j∈β

ρ
(b1,b2)
j xj

)
=

∑
j∈β

z
(
ρ
(b1,b2)
j

)
xj
∈ 0(OT )[x],

which implies that z(ρ(b1,b2)
j ) = 0 for all adjacent pairs (b1,b2) and all xj

∈ β. It
follows that z induces a map R→ 0(OT ) which in turn yields a map f : T →Uβ

that one sees is the unique possible map such that f ∗(Zβ)= Z = Z f . �

Remark 38. Since P(b2,b1)=−P(b1,b2), as noted in Remark 18, we have that
ρ
(b2,b1)
j = −ρ

(b1,b2)
j . Therefore, in computing generators of the ideal R, we only

need to use one of the members of each subset

{(b1,b2), (b2,b1)}

of adjacent pairs. Furthermore, it suffices to consider only the adjacent pairs that
are needed for the degree lowering and column clearing operations used to prove
Lemma 33.

8. Examples

To conclude this paper, we present a series of examples of the schemes Uβ . Recall
that we are working over a commutative and unitary base ring k, unless otherwise
stated.

8.1. Example 1. Let n = 1, let d be any positive integer, and let

β =
{
1, x1, x2

1 , . . . , xd−1
1

}
.

In one variable, there is only one basis set β for each colength. The set of bound-
ary monomials is the singleton set B(β) =

{
xd

1

}
; therefore, there are no adjacent

pairs of boundary monomials, and hence no basic pseudosyzygies. Consequently,
there are no relations ρ(b1,b2)

j among the coefficients of the (single, in this case)
polynomial (29)

G(d) = xd
1 −C (d)

(d−1)x
d−1
1 − · · ·−C (d)

(1) x1
1 −C (d)

(0) ;

whence, the coefficient set C=
{
C (d)
(d−1), . . . ,C (d)

(0)

}
, and the ideal R= 0. It follows

that (recall (31))

Hd
A1

k
=Uβ = Spec(R)= Spec(k[C]/R)= Spec(k[C]),

Zd
A1

k
= Zβ = k[C][x1]/(G(d)).
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Now let t1, t2, . . . , td be indeterminates, let T = Spec(k[t1, . . . , td ]), let A1
k =

Spec(k[x1]), and let

1=

d∏
j=1

(x1− t j )= xd
1 −

d∑
i=1

(−1)i−1si xd−i
i ∈ k[t1, . . . , td ][x1],

where the si are the elementary symmetric polynomials in the t j . It is clear that the
quotient k[t1, . . . , td ][x1]/(1) is k[t1, . . . , td ]-free with basis β; therefore, the uni-
versal property of Uβ yields a map T→Uβ with comorphism k[C]→ k[t1, . . . , td ]
given by C (d)

(d−i) 7→ (−1)i−1si , which is evidently an isomorphism onto the ring of
invariants

k[s1, . . . , sd ] = k[t1, . . . , td ]Sd ⊆ k[t1, . . . , td ]

under the natural action of the symmetric group on d letters. In this way we recover
the fact that the Hilbert scheme of d points of the affine line is isomorphic to the d-
fold symmetric product of the affine line, with the universal subscheme cut out by
the polynomial 1. Skjelnes [2002] gives an alternative demonstration of this fact,
and, more generally, constructs the Hilbert schemes of d points of localizations of
the affine line.

8.2. Example 2. Let n = 2 (for simplicity; any positive integer would work), let
d = 1, and let β = {1}.

If the colength is 1, there is again only one possible basis set. The set of boundary
monomials is B(β)= {x1, x2}. The polynomials (29) are then

G(1,0) = x1−C (1,0)
(0,0) , G(0,1) = x2−C (0,1)

(0,0) .

There is only one adjacent pair of boundary monomials (up to order), namely
(x1, x2), or (b1,b2) = ((1, 0), (0, 1)) in exponent-list notation. The associated
basic pseudosyzygy P(b1,b2) is easily computed to be

P(b1,b2)=
(
−x2+C (0,1)

(0,0) , x1−C (1,0)
(0,0)

)
.

The ρ(b1,b2)
j are then the coefficients of the basis monomials in the expression

P(b1,b2) · (G(1,0),G(0,1))=
(
−x2+C (0,1)

(0,0) , x1−C (1,0)
(0,0)

)
·
(
x1−C (1,0)

(0,0) , x2−C (0,1)
(0,0)

)
= 0 · 1,

of which there is only one, namely

ρ
((1,0),(0,1))
(0,0) = 0.

Therefore, the set of coefficients C = {C (1,0)
(0,0) ,C (0,1)

(0,0)}, and the ideal R = 0. It
follows that
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Uβ = Spec(R)= Spec(k[C]/R)= Spec(k[C]),

Zβ = k[C][x1, x2]/
(
x1−C (1,0)

(0,0) , x2−C (0,1)
(0,0)

)
.

This confirms the general fact that Hilb1
X is isomorphic to X , with the universal

subscheme Z1
X ⊆ X ×k X being the diagonal, when X is the affine plane.

8.3. Example 3. Let n = 2, let d = 3, and let β = {1, x1, x2}.
The basis and boundary monomials are shown in the following diagram, with

the latter in bold face.
x2

2
x2 x1x2
1 x1 x2

1

The set of polynomials (29) in this case contains the three members

G(2,0) = x2
1 −C (2,0)

(0,0) −C (2,0)
(1,0)x1−C (2,0)

(0,1)x2,

G(1,1) = x1x2−C (1,1)
(0,0) −C (1,1)

(1,0)x1−C (1,1)
(0,1)x2,

G(0,2) = x2
2 −C (0,2)

(0,0) −C (0,2)
(1,0)x1−C (0,2)

(0,1)x2.

Up to order, there are two adjacent pairs of boundary monomials, namely
(
x2

1 , x1x2
)

and
(
x1x2, x2

2

)
, or in exponent-list notation, ((2, 0), (1, 1)) and ((1, 1), (0, 2)). The

associated basic pseudosyzygies are

P((2, 0), (1, 1))=
(
−x2+C (1,1)

(1,0) , x1−C (2,0)
(1,0) +C (1,1)

(0,1) ,−C (2,0)
(0,1)

)
,

P((1, 1), (0, 2))=
(
C (0,2)
(1,0) ,−x2−C (1,1)

(1,0) +C (0,2)
(0,1) , x1−C (1,1)

(0,1)

)
.

The two dot products P(b1,b2)·(Gb) yield six relations ρ(b1,b2)
j among the Cb

j that
we do not list here; see [Huibregtse 2002, Section 5.2, p. 125], where this example
is discussed in detail (using slightly different notation). The relations imply that

R = k[C]/R= k
[
C (2,0)
(1,0) ,C (2,0)

(0,1) ,C (1,1)
(1,0) ,C (1,1)

(0,1) ,C (0,2)
(1,0) ,C (0,2)

(0,1)

]
is a polynomial ring in six indeterminates, so that

Uβ = Spec(R)≈ A6
k.

This example is generalized in [Huibregtse 2002], where sufficient conditions for
Uβ to be an affine space (in the case of n = 2 variables) are established; in particular,
these conditions hold for all basis sets in two variables of the form

β =
{
monomials m

∣∣ total degree of m ≤ s
}
, s = 0, 1, 2, . . .
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8.4. Example 4. Let n = 3, let d = 4, and let β = {1, x1, x2, x3}.
In this case the boundary monomials are the six quadratic monomials in three

variables:

(32) B(β)=
{

x2
1 , x1x2, x1x3, x2

2 , x2x3, x2
3
}
.

There are accordingly six polynomials Gb from (29), and twenty-four indetermi-
nates Cb

j . An adjacent pair consists in this case of two distinct boundary monomials
that share a variable. There are 9 such pairs in all, up to order; for example, here
are the three in which x1 is the shared variable, in exponent-list notation:

((2, 0, 0), (1, 1, 0)), ((2, 0, 0), (1, 0, 1)), ((1, 1, 0), (1, 0, 1)).

Accordingly, there are 4 · 9 = 36 coefficients ρ(b1,b2)
j that generate the ideal R ⊆

k[C].
We remark that for any adjacent pair (b1,b2), the values z1 and z2 used in

constructing the basic pseudosyzygy P(b1,b2) (see Section 5.3) are both variables.
Recalling now the necessary condition for the indeterminate Cb′

j′ to appear linearly
in ρ(b1,b2)

j that we observed in Remark 35, we find that the indeterminate Cb′
j′ can

appear linearly in ρ(b1,b2)
j only if j′= (0, 0, 0). From this it follows that the 6·3=18

indeterminates

(33) Cb
j with j 6= (0, 0, 0),

must be k-linearly independent modulo the square of the ideal generated by the set
of indeterminates C, from (28), in the coordinate ring k[C]/R of Uβ .

Now restrict to the case of an algebraically closed field k. Let p denote the
“origin” of Uβ ⊆ H4

A3
k

; that is, the k-point at which all the coordinate functions
Cb

j vanish. One sees easily that p corresponds to the monomial ideal generated
by the six boundary monomials (32). Let m ⊆ k[C]/R denote the maximal ideal
of p; it is clear that m is generated by the set of indeterminates C. In light of the
last paragraph, we observe that the k-vector space m/m2 has dimension at least
18. If p were a smooth point of Hd

A3
k

, then the 18 indeterminates (33) would be
algebraically independent in the coordinate ring of Uβ . However, this is not the
case; for example,

ρ
((1,1,0),(1,0,1))
(1,0,0) =−C (0,2,0)

(1,0,0)C
(1,0,1)
(0,1,0) +C (0,0,2)

(1,0,0)C
(1,1,0)
(0,0,1) +C (0,1,1)

(1,0,0) ·
(
−C (1,0,1)

(0,0,1) +C (1,1,0)
(0,1,0)

)
= 0 ∈ k[C]/R.

We conclude that the origin is a singular point on H4
A3

k

. It is known (see, for ex-
ample, [Iarrobino 1985, Sec. 1, p. 147; Notari and Spreafico 2000, Sec. 5.1, p.
443]) that H4

A3
k

is irreducible and of dimension 3 · 4= 12; it follows that the same
is true of the open subscheme Uβ . With a little more work, one can show that the
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k-dimension of the tangent space at p is equal to 18 (see, for example, [Miller and
Sturmfels 2005, Ex. 18.31, p. 370]). Well-known examples such as this one (and
Section 8.5) show that the nonsingularity and irreducibility of the Hilbert scheme
of points of a nonsingular surface (first proved by Fogarty [1968]) do not carry
over to An

k for n ≥ 3.

Connection to the Notari–Spreafico stratification. We continue for the moment to
restrict k to an algebraically closed field. Before leaving this example, we note that
the open subscheme Uβ under consideration can be obtained as the dense stratum
in a stratification of Hilb4

P3
k

constructed by Notari and Spreafico [2000]. In general,
they stratify Hilbp(z)

Pn
k

by locally closed subschemes of the form{
x ∈ Hilbp(z)

Pn
k

∣∣ in(Ix)= I0
}
,

where x is a closed point, where in(Ix) denotes the initial ideal of the saturated
ideal Ix corresponding to x , and I0 is a fixed monomial ideal. They treat the case
of Hilb4

P3
k

in [Notari and Spreafico 2000, Sec. 5.1, p. 443], writing as follows:

Using the rlex order, there is only one Borel-fixed, saturated monomial ideal
with Hilbert function equal to (1, 4, 4, . . . ) and it is the monomial ideal I0

generated by x2
0 , x0x1, x2

1 , x0x2, x1x2, x2
2 . Following the construction of ṼI0

[an affine scheme isomorphic to the stratum under construction in this case],
we set

f1 = x2
0 + a1,1x0x3+ a1,2x1x3+ a1,3x2x3+ a1,4x2

3

f2 = x0x1+ a2,1x0x3+ a2,2x1x3+ a2,3x2x3+ a2,4x2
3

...

f6 = x2
2 + a6,1x0x3+ a6,2x1x3+ a6,3x2x3+ a6,4x2

3

and, by imposing that { f1, . . . , f6} is a reduced Gröbner basis, we get the
generators of an ideal J in k[a1,1, . . . , a6,4] . . . The scheme V [defined by
J ] has dimension 12 and its singularity is a dimension 3 subscheme, corre-
sponding to the fat points . . .Moreover, V is irreducible because it is an open
subscheme of the irreducible and generically smooth scheme Hilb4

P3
k

.

To “impose that { f1, . . . , f6} is a reduced Gröbner basis,” we must require that the
various S-polynomials reduce to the zero polynomial modulo { f1, . . . , f6}. For
example, the S-polynomial involving f1 and f2 is

x1 · f1− x0 · f2 = x1 · (a1,1x0x3+ a1,2x1x3+ a1,3x2x3+ a1,4x2
3)

−x0 · (a2,1x0x3+ a2,2x1x3+ a2,3x2x3+ a2,4x2
3)

= a1,1x3(x0x1)+ a1,2x3(x2
1)+ a1,3x3(x1x2)+ a1,4x1x2

3

−a2,1x3(x2
0)− a2,2x3(x0x1)− a2,3x3(x0x2)− a2,4x0x2

3 .
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To reduce this polynomial modulo the fi , we add appropriate multiples of the fi to
eliminate the “exposed terms”, which are indicated by the parentheses in the last
two displayed lines. That is, the expression

x1 · f1− x0 · f2+ (a2,1x3) · f1+ (a2,2x3− a1,1x3) · f2

− (a1,2x3) · f3+ (a2,3x3) · f4− (a1,3x3) · f5+ (0) · f6

simplifies to a k[ai, j ]-linear combination of the monomials x0x2
3 , x1x2

3 , x2x2
3 , and

x3
3 . The coefficients of this linear combination (and others similarly obtained) are

then the generators of the ideal J . It should be clear that the de-homogenized
version of the computation just outlined (set x3 = 1 throughout) is identical to the
construction of a pseudosyzygy and the corresponding coefficients ρ(b1,b2)

j for the
basis set β, with the variables indexed from 0 rather than 1, and the indeterminates
Cb

j re-coded as ai, j . Therefore, the variety V is defined by an ideal that contains all
the generators of the ideal cutting out Uβ , and possibly more (since S-polynomials
can be formed using all pairs of functions, not just the “adjacent” pairs); that is, V is
a closed subscheme of Uβ . However, both Uβ and V are irreducible of dimension
12, hence equal. The other strata in this case will be lower-dimensional locally
closed subschemes of Hilb4

P3
k

.

Remark 39. The subscheme Uβ ⊆ Hd
An

k
is not always a Notari–Spreafico stratum

as just described. Indeed, they “prove that, on every irreducible component H
of Hilbp(z)

Pr
k

, the initial ideal corresponding to the element of the stratification that
contains an open subset of H is Borel-fixed . . . ” [Notari and Spreafico 2000, p.
430]. Since Uβ is open in Hd

An
k
, it cannot be a stratum unless the monomial ideal

associated to β is Borel-fixed.

8.5. Example 5. Let n = 4, let d = 8, and let

β =
{
1, x1, x2, x3, x4, x2

3 , x3x4, x2
4
}
.

We again restrict k to be an algebraically closed field. Iarrobino and Emsalem
[1978] show that Hilb8

P4
k

is reducible, by exhibiting k-points x ∈ Hilb8
P4

k

at which
the tangent space has dimension less than 4 ·8= 32, the dimension of the principal
component Hd

◦
⊆ Hd

An
k

(see Section 2.4). Here we observe that the same example
shows that the open subscheme Uβ is reducible.

One can check that there are seven boundary monomials of degree 2:

x2
1 , x1x2, x1x3, x1x4, x2

2 , x2x3, x2x4,

and ten boundary monomials of degree 3:

x1x2
3 , x2x2

3 , x3
3 , x2

3 x4, x1x3x4, x2x3x4, x3x2
4 , x1x2

4 , x2x2
4 , x3

4 .
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Therefore, there are 7 · 3 = 21 indeterminates Cb′
j′ such that both the boundary

monomial xb′ and the basis monomial xj′ are of degree 2; we will call these inde-
terminates special.

Lemma 40. A special indeterminate Cb′
j′ cannot occur linearly in any of the poly-

nomials ρ(b1,b2)
j . Furthermore, if Cb′

j′ occurs in a quadratic term ±Cb′
j′ · C

b∗
j∗ of

ρ
(b1,b2)
j , then the other factor Cb∗

j∗ is not special.

Proof. By Remark 35, Cb′
j′ can occur linearly in ρ(b1,b2)

j only if b′ = bi for i = 1 or
2, and zi · xj′

= xj. However, if we multiply any of the quadratic basis monomials
xj′ by a variable, we land outside of the basis set; therefore, zi must equal ±1
(notation is that of Section 5.3). On the other hand, this means that xb′

= xbi is
the least common multiple of the adjacent pair (xb1, xb2), but this is impossible
because xb′ is a boundary monomial of minimal degree 2. Therefore, Cb′

j′ cannot
occur linearly in ρ(b1,b2)

j .
Recall that ρ(b1,b2)

j is the coefficient of xj in the dot product of the basic pseu-
dosyzygy P(b1,b2) and the tuple of functions (Gb) (see (30)). Consequently, there
are two ways that Cb′

j′ can occur quadratically in ρ(b1,b2)
j :

• Cb′
j′ can occur in the xb∗-component of P(b1,b2), whence it multiplies Gb∗ to

yield the term ±Cb′
j′ ·C

b∗
j in ρ(b1,b2)

j . In this case, Cb′
j′ = Cbi

j′ (for i = 1 or 2)
is “exposed” when Gbi is multiplied by ±zi , where zi is a variable. In turn,
this implies that

zi · xj′
= xb∗ implies deg

(
xb∗)
= 3, which implies Cb∗

j is not special.

• Cb′
j′ = Cb′

j can occur as (−1×) the coefficient of xj in the polynomial Gb′ ,
which is then multiplied by ±Cb∗

j∗ residing in the xb′-component of the basic
pseudosyzygy P(b1,b2) to yield the term ±Cb′

j ·C
b∗
j∗ in ρ(b1,b2)

j . In this case,
Cb∗

j∗ =Cbi
j∗ (for i = 1 or 2) is “exposed” when Gbi is multiplied by ±zi , where

zi is a variable. In turn, this implies that

xb′
= zi · xj∗ implies deg

(
xj∗)
= 1, which implies Cb∗

j∗ is not special.

Since both possibilities imply that Cb∗
j∗ is not special, we are done. �

Recall that C denotes the set of all the indeterminates Cb
j , and let C′ denote the

subset of special indeterminates. Consider the surjection of polynomial rings

(34) k[C] → k[C′], Cb
j 7→

{
Cb

j if Cb
j is special,

0 otherwise.

Corollary 41. The surjection (34) factors through the coordinate ring k[C]/R of
Uβ , where R is the ideal generated by the polynomials ρ(b1,b2)

j . Consequently, Uβ

contains a closed subscheme T isomorphic to 21-dimensional affine space, and
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whose k-points are obtained by assigning arbitrary scalars to the special indeter-
minates Cb

j , and 0 to the non-special Cb
j .

Proof. From Lemma 40, it is clear that if each non-special indeterminate is replaced
with 0, then the polynomials ρ(b1,b2)

j all reduce to 0. �

Iarrobino and Emsalem [1978] prove that sufficiently general k-points in the
closed subscheme T have “small” tangent space as points of H8

A4
k

; that is, the k-
dimension of the tangent space is less than n · d = 4 · 8 = 32. They show this
specifically for the point with coordinates

C (2,0,0,0)
(0,0,2,0) =−1, C (1,1,0,0)

(0,0,0,2) =−1, C (1,0,1,0)
(0,0,1,1) =−1,

C (0,2,0,0)
(0,0,2,0) =−1, C (0,1,1,0)

(0,0,0,2) =−1, Cb
j = 0 otherwise.

In fact, the k-dimension of the tangent space at this point is equal to 25= 21+ 4:
21 is the dimension of T , and 4 is the number of degrees of freedom in A4

k in
which the closed subschemes represented by the points of T can be translated.
(It is not hard to verify that all the subschemes of A4

k represented by points of T
are concentrated at the origin.) Using computer algebra, the author has confirmed
that the (co)tangent space dimension at the displayed point is 25 by translating the
scheme Uβ so that the point in question is at the origin, and then directly computing
the k-dimension of (maximal ideal)/(maximal ideal)2. Since the dimension of Uβ

is at least 4 ·8= 32, by Corollary 9, the presence of such points in Uβ implies that
Uβ is reducible.
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