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We relate zeta determinants of Dirac operators with generalized APS boun-
dary conditions for compact manifolds with boundary and parallel b-zeta
determinants of perturbed Dirac operators on the corresponding complete
manifolds with cylindrical end. We also derive, without invertibility condi-
tions, corresponding relative formulæ for the (b-) zeta determinants.

1. Introduction

Boundary problems of generalized APS type have special geometric and topolog-
ical importance, as can be seen in the Atiyah–Patodi–Singer index theorem (see
Section 1A). In [Atiyah et al. 1975], those authors found a connection between
their theorem and the index of the Dirac operator on a corresponding manifold
with cylindrical end. Melrose [1993] worked out this connection and developed
the b-calculus to give his “direct proof” of the APS index theorem. Recently, both
the index and the eta invariant of Dirac operators with generalized APS conditions
for manifolds with boundary were connected with parallel invariants of associated
perturbed Dirac operators on the corresponding manifolds with cylindrical end; see
[Melrose and Piazza 1997; Loya and Melrose 2003; Loya 2005]. Here we derive
a similar connection for the ζ -determinant. To motivate this connection, we begin
by reviewing the connection between the b-calculus and boundary value problems
for the index and the eta invariant.

1A. The b-calculus and the index theorem. We first state our assumptions. Let
D :C∞(X, E)−→C∞(X, F) be a compatible Dirac type operator associated to a
Z2-graded Hermitian Clifford module E⊕F over a compact Riemannian manifold
X with boundary Y . We assume that all the geometric structures are of product
type on a collar [−1, 0]u × Y of the boundary {u = 0} = ∂X = Y . Therefore, on
this collar we assume that E ∼= E |u=0, F ∼= F |u=0, and

D= G(∂u + DY ),
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   Attach [0,∞)u × Y
Y

X X ∼= [−1, 0]u × Y

-
-Y

X̂ X̂ ∼= [−1,∞)u × Y

Figure 1. Creating a manifold with cylindrical end.

where G : E |u=0 −→ F |u=0 is a unitary isomorphism and DY is a Dirac operator
on Y . Let 5+, 5−, and 50 denote the orthogonal projections of L2(Y, E0), where
E0 := E |u=0, onto the positive, negative, and zero eigenspaces, respectively, of
DY .

Let us assume for the moment that X is even-dimensional. Let T be a unitary
involution (that is, T 2

= Id) on V := ker DY . Then T has ±1 eigenvalues. We
define DT as the Dirac operator D with domain

(1–1) dom(DT ) := {φ ∈ H 1(X, E) |5T
−

(
φ|u=0

)
= 0},

where 5T
−
:= 5− +5−T with 5L :=

1
2(Id+ L)50 for any involution L on V .

Such a boundary condition is called a generalized APS boundary condition.
Let X̂ be the manifold formed by gluing the infinite cylinder [0,∞)u×Y to the

end of the collar [−1, 0]u × Y of X (see Figure 1):

X̂ := X t∂X
(
[0,∞)u × Y

)
.

All the geometric structures on X extend naturally to the manifold X̂ . We use the
same notations for these extended objects on X̂ as for the original objects on X ,
except we denote the extended Dirac operator by D̂.

Given a self-adjoint involution T on V , following [Melrose and Piazza 1997],
we show in Section 2 how to construct a corresponding b-smoothing operator T̂ ∈
9−∞b (X̂ , E, F) such that the L2 based operator

(1–2) D̂+ T̂ : H 1(X̂ , E)−→ L2(X̂ , F)

is “linked” to the operator DT on the compact manifold X . More precisely, in
[Melrose and Piazza 1997; Loya 2005], the index theoretic properties of X and X̂
were linked as follows. The operators D̂+ T̂ and DT have the same index theoretic
properties:

(a) ker(D̂+ T̂ )∼= ker DT and ker(D̂+ T̂ )∗ ∼= ker(DT )
∗.

(b) D̂+ T̂ : H 1(X̂ , E)−→ L2(X̂ , F) and DT : dom(DT )−→ L2(X, F) are Fred-
holm with equal indices (by (a)).
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(c) The following index formula holds:

ind(D̂+ T̂ )= ind DT =

∫
X

AS+ 1
2(η(DY )+ sign T ),

where AS is the Atiyah–Singer index density and where η(DY ) is the eta
invariant of DY (see Section 1B). Note that Y is a “right boundary”; this
accounts for the + instead of − in front of the eta term.

The connections (b) and (c) were first observed in [Melrose and Piazza 1997].
This theorem holds even when dim X is odd, but in this case

∫
X AS vanishes. As

a trivial corollary, we get the following relative formula: for any two such maps T
and S on V , we have

(1–3) ind(D̂+ T̂ )− ind(D̂+ Ŝ)= ind DT − ind DS =
1
2 (sign T − sign S ).

1B. The b-calculus and the eta invariant. We now review the connection be-
tween the eta invariants of D̂+ T̂ and DT established in [Loya 2005; Loya and
Melrose 2003]. Henceforth we assume that E = F and X can be of arbitrary
dimension. Then G is a unitary isomorphism on E0 only, since E = F . Moreover,
Clifford algebra and self-adjointness considerations impose the relations

G2
=−Id, G∗ =−G, G DY =−DY G.

The last of these equalities implies that G acts on V . We denote by L(V ) the set
of unitary involutions T on V such that G T =−T G; for such a T , we denote the
+1 eigenspace of T by 3T . There is a distinguished subspace 3σ of V defined by

3σ :=
{
50
(
φ|u=0

)
| φ ∈ H 1(X, E), Dφ = 0, 5−

(
φ|u=0

)
= 0

}
.

If 5σ is the orthogonal projection onto 3σ , then σ := 25σ − Id, acting on V ,
is in L(V ) with associated +1 eigenspace 3σ . The unitary map σ is called the
scattering matrix and 3σ is called the scattering Lagrangian.

We now recall the definition of the eta invariant of DT for T ∈ L(V ); compare
[Douglas and Wojciechowski 1991; Grubb and Seeley 1996]. Since T ∈ L(V ), it
turns out that the operator DT is self-adjoint and has real discrete spectrum. If {λ j }

are the eigenvalues of DT , then the eta function of DT ,

ηDT (s) :=
∑
λ j 6=0

sign λ j

|λ j |
s ,

extends from Re s � 0 to be a meromorphic function of s ∈ C that is regular at
s = 0. The eta invariant is by definition η(DT ) := ηDT (0).

The operator D̂+ T̂ over the noncompact manifold X̂ has a corresponding in-
variant, called the b-eta invariant, which we denote by bη(D̂+ T̂ ). In [Loya 2005;
Loya and Melrose 2003], the eta invariant theoretic properties of X and X̂ were
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linked as follows (for odd-dimensional manifolds, but the even-dimensional case
is similar). For T ∈L(V ), the perturbed operator D̂+ T̂ in (1–2) and the operator
DT with domain (1–1) have the same eta invariant theoretic properties:

(a) bη(D̂+ T̂ )= η(DT ).

(b) The following formula holds:

bη(D̂+ T̂ )= η(DT )= η(D−σ )+m(3T ,3σ ),

where σ is the scattering matrix.

Here, the “m-function” was introduced in [Lesch and Wojciechowski 1996] (com-
pare [Bunke 1995]): For T, S ∈ L(V ),

m(3T ,3S) := −
1

iπ

∑
eiθ
∈spec(−[(i+G)/2i]T S)

θ∈(−π,π)

iθ.

As a trivial corollary, we get the following relative formula:

(1–4) bη(D̂+ T̂ )− bη(D̂− σ̂ )= η(DT )− η(D−σ )= m(3T ,3σ ).

This formula is related to the gluing problem for the (b-)eta invariant, which has
been investigated by many authors; see for instance [Dai and Freed 1994; Bunke
1995; Mazzeo and Melrose 1995; Hassell et al. 1995; Wojciechowski 1995; Müller
1996; Brüning and Lesch 1999; Kirk and Lesch 2004; Loya and Park 2006; [2005]],
and see also the survey article [Mazzeo and Piazza 1998] for more on this topic.

1C. The b-calculus and the ζ -determinant. To paraphrase the previous two sec-
tions: D̂+ T̂ and DT have identical index and eta invariant theoretic properties;
moreover, we have exact (no integer ambiguities) relative invariant formulæ (1–3)
and (1–4). The purpose of this paper is to investigate the ζ -determinant connection
of X and X̂ , which we now explain. Recall that if {λ j } are the eigenvalues of DT ,
then the zeta function of D2

T := (DT )
2 is

(1–5) ζD2
T
(s) :=

∑
λ j 6=0

λ−2s
j ,

which is defined a priori for Re s � 0 and has an analytic continuation to the
whole complex plane with 0 as a regular point [Grubb and Seeley 1996]. Then the
ζ -determinant of D2

T is by definition

(1–6) detζD2
T := exp

(
−

d
ds

∣∣∣
s=0
ζD2

T
(s)
)
.

Since (D̂+ T̂ )2 has discrete and continuous spectrum, it does not have a ζ -function
as in (1–5). However, there is a natural generalization called the b-zeta function
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bζ(D̂+T̂ )2(s) (see Section 2) and then the b-zeta determinant detbζ (D̂+ T̂ )2 can be
defined in terms of bζ(D̂+T̂ )2(s) by the formula (1–6).

Now the question arises: Given T ∈ L(V ), what is the “defect” of

detbζ (D̂+ T̂ )2

detζD2
T

= ?

One may conjecture that there is no defect (that is, the ratio is unity) in view of the
fact that there are no “defects” for the index and the eta invariant. The first main
result of this paper shows that this is not the case. To detail this theorem, recall that
ker(D̂+ T̂ )|X ≡ ker DT . On the finite-dimensional vector space γ0 ker(D̂+ T̂ ) =
γ0 ker DT , where γ0 is the restriction map from X to {u = 0}, we define

L̂T :=
∑

γ0φ̂k ⊗ γ0φ̂k, LT :=
∑

γ0φk ⊗ γ0φk,

where {φ̂k} and {φk} are orthonormal bases for the kernels of D̂ + T̂ and DT ,
respectively. We can now state our first result.

Theorem 1.1. For any T ∈ L(V ), the perturbed Dirac operator D̂+ T̂ and the
operator DT have the following relation:

(1–7)
detbζ (D̂+ T̂ )2

detζD2
T

= 2
−

1
2 ζD2

Y
(0)
(

det L̂T

det LT

)−2((detbζ1d)(detbζ1ν)

4

)hY /2

,

where hY = dim ker DY , ζD2
Y
(s) is the ζ -function of D2

Y , and where 1d and 1ν
are perturbed one-dimensional Dirichlet and Neumann Laplacians (defined inde-
pendently of T ∈ L(V )), respectively, acting on scalar functions over the half-line
[0,∞); see (3–2).

We remark that the value of the right-hand side of (1–7) varies with T and is
maximized when T = σ . To see this, by Proposition 4.1, we have

(1–8)
(

det L̂T

det LT

)−2

=

( dim ker(D̂+T̂ )∏
k=1

∫
X
|φ̂k |

2 dg
)−2

.

By Theorem 2.2, dim ker(D̂+ T̂ ) = dim(3T ∩3σ )+ dim ker D−σ , so the value
of (1–8) can be changed by varying T so that the number of elements of the inter-
section 3T ∩3σ increases or decreases. In particular, (1–8) has a maximum when
T = σ since

∫
X |φ̂k |

2dg < 1 (because
∫

X̂ |φ̂k |
2dg = 1). Therefore, the right-hand

side of (1–7) can vary with T and is maximized when T = σ , since 2
−ζD2

Y
(0)/2

and
detbζ1d · detbζ1ν are independent of T .

We now extend the relative formulæ (1–3) and (1–4) to the ζ -determinant. For a
linear operator L over a finite-dimensional vector space, set det∗L := det L|(ker L)⊥ .
Our second main result is the following relative formula.
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ind(D̂+ T̂ )= ind DT

bη(D̂+ T̂ )= η(DT )

detbζ (D̂+ T̂ )2

detζD2
T

= 2
−

1
2 ζD2

Y
(0)
(

det L̂T

det LT

)−2((detbζ1d)(detbζ1ν)

4

)hY /2

Table 1. b-calculus and BVP relative formulæ (no integer ambiguities).

Theorem 1.2. Given T ∈ L(V ), the following formulas hold:

detbζ (D̂+ T̂ )2

detbζ (D̂− σ̂ )2
=

(
det L̂T

det L̂−σ

)−2

det∗
(2Id− σ+T−− T+σ−

4

)
,

detζD2
T

detζD2
−σ

=

(
det LT

det L−σ

)−2

det∗
(2Id− σ+T−− T+σ−

4

)
.

In the case that ker DT = ker D−σ = 0, the second formula in Theorem 1.2 can
be derived from [Scott 2002; Scott and Wojciechowski 2000]. We emphasize that
the term (det L−σ )

2/(det LT )
2 in this formula is new, and this factor is nontrivial

in general. For reference we summarize the relationships between the b-calculus
and BVPs in Table 1.

Though the eta invariant and ζ -determinant are nonlocal quantities, the ζ -deter-
minant is more nonlocal in the following variational sense (see [Atiyah et al. 1976,
Propositions (2.9) and (2.10)]): the variation of the eta is “local” in that it only
involves finitely many terms of the local symbol expansions of the original oper-
ator while the variation of the ζ -determinant is “nonlocal” because the variation
involves the inverse of the operator. With this in mind, we remark that the first
two lines of Table 1 hold, basically, because the index and the variation of the eta
invariant are “local” objects so these invariants are not able to distinguish between
X and X̂ . Because the ζ -determinant and its variation are “nonlocal”, the last line
of Table 1 shows that the ζ -determinant is able to distinguish between X and X̂ .

This paper is organized as follows. In Section 2 we explicitly construct the b-
smoothing perturbation T̂ corresponding to the matrix T ∈L(V ). In Section 3 we
derive gluing formulæ for the ζ -determinants on X and X̂ from the gluing theorems
proved in [Loya and Park 2006; 2005]. Lastly, in Section 4 we use these gluing
theorems to prove Theorems 1.1 and 1.2.



THE b-CALCULUS AND BOUNDARY VALUE PROBLEMS 323

2. Perturbed Dirac operators and the b-zeta function

Let us henceforth fix T ∈ L(V ). In this section, we construct the perturbation T̂
in Theorem 1.1 and we review the b-trace and the b-zeta determinant.

2A. Perturbations of Dirac operators. We first define an auxiliary b-smoothing
operator acting on scalar functions on the half-line [0,∞). Let χ ∈ C∞(R) be a
cut-off function, where χ(u) = 1 for u ≥ 2 and χ(u) = 0 for u ≤ 1. Let % ≥ 0
be a smooth compactly supported even function on R with %(0) > 0. Then %̂(τ ) is
an even entire function — throughout the rest of this paper, the functions χ and %
shall remain fixed. Define an operator Q acting on Schwartz functions over [0,∞)
by setting

(2–1) Qψ :=
1

2π
χ(u)

∫
R

eiuτ %̂(τ ) χ̂ψ(τ) dτ,

where χ̂ψ is the Fourier transform of χψ :

χ̂ψ(τ)=

∫
R

e−iuτ χ(u) ψ(u) du.

Since % is compactly supported, %̂(τ ) vanishes to infinite order as |τ | → ∞ for
| Im τ | within any fixed bound and therefore, Q is by definition a b-pseudodiffer-
ential operator of order −∞ (a “b-smoothing operator”). Moreover, since % is
even, %̂(τ ) is also even, so K Q(u, u′)=K Q(u′, u), which implies that Q is formally
self-adjoint. Here is another of the main properties of Q:

Lemma 2.1 [Loya 2005; Loya and Melrose 2003]. If W is a subspace of the kernel
V of DY and w ∈W is arbitrary, the boundary value problem

v ∈ H 1([0,∞), V ),
(
∂u + Q2T

)
v = 0, v|u=0 = w,

has a nontrivial solution if and only if w ∈ 3T ∩W , in which case the solution is
unique and also takes values in 3T ∩W .

As in [Melrose and Piazza 1997], we define T̂ : L2(X̂ , E) −→ H∞(X̂ , E),
which is completely supported on the cylindrical end [0,∞)u × Y , by

T̂ := G Q2 T,

where Q is in (2–1). Note that T is a finite rank smoothing operator acting over the
cross section Y while Q acts over the half-line [0,∞)u . Then T̂ ∈ 9−∞b (X̂ , E),
the space of b-pseudodifferential operator of order −∞, by definition of this space
[Loya 2005; Melrose 1993]. The following theorem, a consequence of Lemma 2.1,
gives one of the main properties of the perturbation T̂ .
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Theorem 2.2 [Loya 2005; Loya and Melrose 2003]. The operator

D̂+ T̂ : H 1(X̂ , E)−→ L2(X̂ , E)

is Fredholm, and ker(D̂+T̂ ) is canonically isomorphic to ker DT by ker(D̂+T̂ )|X ≡
ker DT . Moreover, these are canonically isomorphic to (3T ∩3σ )⊕ ker D−σ .

We remark that the operator D̂ is Fredholm if and only if V = 0 [Melrose 1993],
so D̂ alone is almost never Fredholm. As this theorem shows, the main impetus
for introducing perturbations is to achieve the Fredholm property.

2B. The b-zeta function. Recall that the heat operator e−t (D̂+T̂ )2 is b-trace class
[Melrose 1993, Chapter 4] with a long time expansion [Loya 2005; Loya and Mel-
rose 2003; Melrose and Piazza 1997]:

(2–2) bTr e−t (D̂+T̂ )2
∼ b0+ b1e−εt as t→∞,

where b0= dim ker(D̂+ T̂ ) and where ε > 0. The reason for the exponential decay
is that D̂+ T̂ is Fredholm so has discrete spectrum near 0. Also, there is the usual
short time asymptotic expansion [Loya 2005; Loya and Melrose 2003; Melrose
and Piazza 1997]:

bTr e−t (D̂+T̂ )2
∼

∞∑
k=0

ak tk− n
2 +

∞∑
k=1

a′k tk as t→ 0,

where n = dim X̂ . Using this and (2–2), a straightforward computation shows that

bζ(D̂+T̂ )2(s)=
1
0(s)

( ∫ 1

0
+

∫
∞

1

)
t s−1 bTr e−t (D̂+T̂ )2 dt,

where the first integral is defined a priori for Re s� 0 and the second one a priori
for Re s � 0, extend to be meromorphic functions on C that are regular at s = 0.
In particular, the b-zeta determinant

detbζ (D̂+ T̂ )2 := exp
(
−

d
ds

bζ(D̂+T̂ )2(s)
∣∣
s=0

)
is well-defined.

3. Gluing formulæ for the ζ -determinant

In this section, applying the gluing formulae of the ζ -determinant in [Loya and
Park 2006; 2005], we prove two propositions which will be used in the proof of
Theorems 1.1 and 1.2.
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   Cut at a

X ∼= [−1, 0]u × Y
X

−1 a 0 −1 a

Ma

a 0

Na

Figure 2. Cutting X into two pieces.

3A. Gluing formulæ for X. Let −1 < a < 0. We shall apply the gluing formula
in [Loya and Park 2006, Theorem 1.1] to the operator DT over the manifold X ,
which we decompose at u = a:

X = Ma ∪ Na, Ma, Na = the left, right half of {u = a} in X;

see Figure 2. Let CMa and CNa denote the Calderón projectors of DT |Ma and
DT |Na , respectively, at the hypersurface {u = a}. Since DT has the boundary
condition 5T

−
=5−+

1
2(Id− T )50 at {u = 0}, one can check that CNa =5

−T
+ =

5+ +
1
2(Id+ T )50, which is independent of a. Thus, DCNa

is just the operator
G(∂u + DY ) over [a, 0] × Y with boundary conditions 5−T

+ at {u = a} and 5T
−

at
{u = 0}. By [Loya and Park 2004, Theorem 1.1], we have

(3–1) detζD2
CNa
= e−Ca 2

ζD2
Y
(0)+hY

,

where C = −(2
√
π)−1

(
0(s)−10

(
s − 1

2

)
ζD2

Y

(
s − 1

2

))
′(0). Now we recall that the

Calderón projectors CMa ,5
−T
+ have the forms

CMa =
1
2

(
Id κ−1

a
κa Id

)
, 5−T

+
=

1
2

(
Id κ−1

T
κT Id

)
with respect to L2(Y, E0)= L2(Y, E+)⊕L2(Y, E−) where E± are the subbundles
of E0 consisting of the (±i)-eigensections of G. Let UT,a := −κaκ

−1
T , which is a

unitary operator on L2(Y, E−), and let ÛT,a denote the restriction of UT,a to the
orthogonal complement of its (−1)-eigenspace. Finally let LT,a :=

∑
γaφk⊗γaφk

with γa the restriction map from X to {u = a} and {φk} an orthonormal basis for
ker DT . Then by [Loya and Park 2006, Theorem 1.1] and (3–1), we obtain:

Proposition 3.1.

detζD2
T

detζD2
CMa

= e−Ca (det LT,a)
−2 detF

(2 Id+ ÛT,a + Û−1
T,a

4

)
.

3B. Gluing formulæ for X̂. Again assume that −1 < a < 0. We now apply the
preceding argument to D̂+ T̂ over X̂ separated at u = a:

X̂ = Ma ∪ N̂a, Ma, N̂a = the left, right half of {u = a} in X̂ .
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   Cut at 0-
-

a 0

-
-
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Figure 3. Cutting the cylinder.

Let CMa (just as before) and CN̂a
denote the Calderón projectors of (D̂+ T̂ )|Ma =

D|Ma (since T̂ vanishes on X ) and (D̂+ T̂ )|N̂a
at {u = a}, respectively. Splitting

H 1([a,∞)× Y, E) into its projections onto V = ker DY and V⊥, it follows that

(D̂+ T̂ ) |N̂a
=

{
G(∂u + Q2T ) over 50 H 1([a,∞)× Y, E),

G(∂u + DY ) over 5⊥0 H 1([a,∞)× Y, E).

Lemma 3.2. We have CN̂a
=5−T

+ , which equals CNa .

Proof. Lemma 2.1 immediately implies that CN̂a
= 5−T

+ when a = 0. To see
that this holds even for the nonzero a, we recall that the statement of Lemma 2.1 is
independent of the choice of χ , %, which define the operator Q in (2–1). Therefore,
we can show that the same statement is true for nonzero a by shifting χ , %. Hence,
the Calderón projector at {a}× Y is also given by 5−T

+ even for nonzero a. �
In the next proposition we compute detbζ (D̂+ T̂ )2CN̂a

.

Proposition 3.3. Over H 1([0,∞)), define

1d :=− (∂u − Q2)(∂u + Q2) with Dirichlet condition at u = 0

1ν :=− (∂u + Q2)(∂u − Q2) with Neumann condition at u = 0.
(3–2)

These are one-dimensional “perturbed Laplace-type operators”. Then

detbζ (D̂+ T̂ )2CN̂a
=
(
(detbζ1d)(detbζ1ν)

)hY /2
· e−Ca

· 2
1
2 ζD2

Y
(0)
.

Proof. We apply [Loya and Park 2005, Theorem 1.1] to detbζ (D̂+ T̂ )2CN̂a
with the

decomposition

[a,∞)× Y =
(
[a, 0]× Y

)
∪
(
[0,∞)× Y

)
.

(see Figure 3). By Lemmas 2.1 and 3.2, it follows that the Calderón projectors
at the left and right side of the dividing hypersurface {0} × Y are 5T

−
and 5−T

+ ,
respectively. In particular, the induced operator on [a, 0] × Y is just the operator
G(∂u + DY ) over [a, 0] × Y with boundary conditions 5−T

+ at {u = a} and 5T
−

at
{u = 0}, which has ζ -determinant equal to

e−Ca 2
ζD2

Y
(0)+hY

;
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see (3–1). Combining this value and [Loya and Park 2005, Theorem 1.1], one can
derive

detbζ (D̂+ T̂ )2CN̂a
= e−Ca

· detbζ (D̂+ T̂ )2
5−T
+

.

It remains to compute detbζ (D̂+ T̂ )2
5−T
+

on [0,∞)× Y . To do so, we observe that

detbζ (D̂+ T̂ )2
5−T
+

= detbζ A2
· detbζ B2,

where
A := G(∂u + Q2T )5T over 50 H 1([0,∞)× Y, E),

B := G(∂u + DY )5+ over 5⊥0 H 1([0,∞)× Y, E).

By [Loya and Park 2005, Lemma 2.2], we have detbζ B2
= 2

1
2 ζD2

Y
(0)

, so it now
remains to compute detbζ A2. To this end, we recall that

dom(A)=
{
φ ∈ H 1([0,∞), V ) |5T

(
φ|u=0

)
= 0

}
,

so

dom(A2)=
{
φ ∈ H 2([0,∞), V ) |5T

(
φ|u=0

)
= 0, 5T

(
Aφ|u=0

)
= 0

}
.

Now the heat operator e−t A2
takes an initial condition ψ to a function φt that

satisfies

(∂t + A2)φt = 0 ; φ0 = ψ , 5T
(
φt |u=0

)
= 0 5T

(
Aφt |u=0

)
= 0.

Near u = 0, Q = 0, so at u = 0 we have 5T A =5T G∂u = G5−T ∂u . Thus,

(∂t + A2)φt = 0 ; φ0 = ψ , 5T
(
φt |u=0

)
= 0 , 5−T

(
∂uφt |u=0

)
= 0.

Since 5T is the orthogonal projection onto 3T and 5−T is the one onto 3⊥T , we
have Dirichlet conditions on 3T and Neumann conditions on 3⊥T . Moreover,

A2
= G(∂u + Q2T )G(∂u + Q2T )=−(∂u − Q2T )(∂u + Q2T )

=

{
−(∂u − Q2)(∂u + Q2) over 3T

−(∂u + Q2)(∂u − Q2) over 3⊥T .

Thus, by definition of 1d and 1ν ,

e−t A2
= e−t1d 5T + e−t1ν 5−T .

Since Tr5T = dim3T = hY /2 with the same for Tr5−T , we obtain

bζA2(s)=
hY

2

(bζ1d (s)+
bζ1ν (s)

)
.

Using the definition of the b-zeta determinant finishes the proof. �
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Again applying [Loya and Park 2005, Theorem 1.1] together with Proposition
3.3, we have:

Proposition 3.4.

detζ (D̂+ T̂ )2

detζD2
CMa

= e−Ca 2
−

1
2 ζD2

Y
(0)
·

(
(detbζ1d)(detbζ1ν)

4

)hY /2

· (det L̂T,a)
−2
· detF

(2Id+ ÛT,a + Û−1
T,a

4

)
,

where L̂T,a :=
∑
γaφ̂k ⊗ γaφ̂k with {φ̂k} an orthonormal basis for ker(D̂+ T̂ ).

4. Proof of main theorems

In this final section we put together the results obtained in the previous section to
prove Theorems 1.1 and 1.2.

First of all, Theorem 1.1 is easy to prove: dividing the formulas in Propositions
3.1 and 3.4, we obtain

detbζ (D̂+ T̂ )2

detζD2
T

= 2
−

1
2 ζD2

Y
(0)
(

det L̂T,a

det LT,a

)−2 ((detbζ1d)(detbζ1ν)

4

)hY /2

.

It follows that the ratio det L̂T,a/ det LT,a does not depend on a. In particular, we
can take a→ 0 in this equality, which completes the proof of Theorem 1.1.

Theorem 1.2 takes a little more work. By Theorem 1.1, we can derive the ratio
of detbζ (D̂+ T̂ )2 with detbζ (D̂− σ̂ )

2 from the ratio of detζD2
T with detζD2

−σ , so
we shall focus on the latter ratio. Applying Proposition 3.1 to T and −σ , then
dividing the resulting formulas, we obtain

detζD2
T

detζD2
−σ

=

(
det LT,a

det L−σ,a

)−2

detF

((2Id+ÛT,a+Û−1
T,a

4

)(
2Id+Û−σ,a+Û−1

−σ,a

4

)−1)
.

We can find the right-hand determinant as follows. First, we can write

L2(Y, E−)= V−⊕ (V⊥)−,

where (V⊥)− = Id+iG
2 V⊥; this allows us to consider the above determinant over

V− and (V⊥)− separately. Second, we notice that

CMa =
Id+ σ

2
over V H⇒ κMa = σ

+ over V+

because the intersection of the Cauchy data space with V does not change with
respect to a by the description of the dynamics of the Cauchy data space in [Nico-
laescu 1995]. Hence, by the definition of UT,a and U−σ,a , we have

UT,a =−σ
+T−, U−σ,a =−σ+(−σ−)= Id over V−.
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Third, since 5−T
+ =5

σ
+

(which is equal to 5+) over V⊥, it follows that

UT,a =U−σ,a over (V⊥)−.

Hence,

detF

(2Id+ÛT,a+Û−1
T,a

4

)(
2Id+Û−σ,a+Û−1

−σ,a

4

)−1

=det∗
(

2Id−σ+T−−T+σ−

4

)
,

since (σ+T−)−1
= T+σ−. Thus,

detζD2
T

detζD2
−σ

=

(
det LT,a

det L−σ,a

)−2

· det∗
(

2Id− σ+T−− T+σ−

4

)
.

It follows that the ratio det LT,a/ det L−σ,a does not depend on a. In particular, we
can take a→ 0 in this equality, which completes our proof of Theorem 1.2. �

Finally, we end our paper with a proof of the following “explicit” formula for
the ratio of the kernel determinants.

Proposition 4.1. We have

det L̂T

det LT
=

dim ker(D̂+T̂ )∏
k=1

∫
X
|φ̂k |

2 dg.

Proof. Recall from Theorem 2.2 that ker(DT )≡ker(D̂+T̂ )|X ; in particular, {ak φ̂k}

is an orthonormal basis for ker DT , where {φ̂k} an orthonormal basis for ker(D̂+T̂ )
and ak := 1/‖φ̂k‖X with ‖φ̂k‖

2
X :=

∫
X |φ̂k |

2 dg. Therefore, setting vk := γ0φ̂k , we
have

LT :=

hT∑
k=1

a2
k vk ⊗ vk, L̂T :=

hT∑
k=1

vk ⊗ vk,

where hT = dim ker(D̂+ T̂ )= dim ker DT . Now with respect to the basis {vk}, we
can write

LT =


a2

1〈v1, v1〉 a2
1〈v2, v1〉 · · · a2

1〈vhT , v1〉

a2
2〈v1, v2〉 a2

2〈v2, v2〉 · · · a2
2〈vhT , v2〉

...
...

. . .
...

a2
hT
〈v1, vhT 〉 a2

hT
〈v2, vhT 〉 · · · a2

hT
〈vhT , vhT 〉


where 〈 , 〉 denotes the L2 inner product on Y . It follows that

det LT = a2
1 · · · a

2
hT
· det L̂T =

( hT∏
k=1

‖φ̂k‖
2
X

)−1

· det L̂T ,

and this formula implies our result. �
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