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We obtain mixed norm estimates for averaging operators on R2 defined by
convolution with µ, where either µ is arclength measure on certain curves
in R2 or dµ= dx/xβ on the positive x-axis.

1. Introduction

Suppose µ is a positive Borel measure on R2 and θ ∈ [0, 2π ]. Write µθ for the
measure obtained by rotating µ through the angle θ around the origin. For suitable
functions f on R2, define the operator T by T f (x, θ)= f ∗µθ (x) for x ∈R2. This
paper is concerned with L p

→ Lq(Ls) estimates of the form

(1)
∥∥ ‖T f ‖Ls([0,2π ])

∥∥
Lq (R2)

≤ C ‖ f ‖L p(R2)

for some C = C(p, q, s, T ) when either µ is arclength measure on certain curves
in R2 or dµ is dx1/xβ1 on the positive x1-axis. Our motivation in the first case is the
paper [Ricci and Travaglini 2001], which deals with mixed norm estimates with
the θ norm on the outside. In the second case it is the paper [Christ et al. 1986]
of Christ, Duoandikoetxea, and Rubio de Francia, which gives (in n dimensions)
L p
→ L p(Ls) estimates for operators like T but with fractional integration replaced

by a maximal function or Hilbert transform along the x1-axis. Our main tool, a
particular application of the Sobolev embedding theorem, is borrowed from [Christ
et al. 1986].

We begin by recording necessary conditions for (1) to hold in a very simple
case: abusing notation, write θ for (cos θ, sin θ) ∈ R2 and consider the operator

T f (x, θ)=
∫ 1

0
f (x − tθ) dt.
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Assume that (1) holds and, as usual, test (1) when f = χE . Choosing for E an
eccentric rectangle [0, 1]× [0, δ] shows that

1
p
≤

1
q
+

1
s
.

Choosing E to be a large ball gives

1
q
≤

1
p
.

If E is a small ball of radius δ then the fact that T f (x, θ) ≈ δ for x in a set of
measure ≈ δ2 and for all θ gives

1
p
≤

1
2
+

1
q
,

while T f (x, θ)≈ δ for θ in a set of measure ≈ δ/|x | if 2δ ≤ |x | ≤ 1 leads to

2
p
≤ 1+

1
s

and to
2
p
< 1+

1
s

if
1
s
=

2
q
.

Our first main result shows that these necessary conditions are very nearly sufficient
when µ is (equivalent to) arclength measure on certain convex curves in R2.

Theorem 1. Suppose that u is continuously differentiable and convex on an in-
terval [a, b] containing 0. Suppose also that the signs of u(t)u′(t) and t agree on
[a, b] (which will be the case if , for example, u ≥ 0 and u′(0) = 0). Let dµ be
the measure dt on the graph of u over [a, b]. Suppose p, q, s ∈ (1,∞) satisfy the
inequalities

0≤ 1
p
−

1
q
≤

1
2
,

1
s
>max

{ 1
p
−

1
q
,

2
p
−1
}
.

Then (1) holds.

The proof of this theorem, given in Section 2, will show that certain endpoint
results are also valid.

Next define, for −1≤ β < 1 and functions f on R2,

Iβ f (x, θ)=
∫
∞

0
f (x − tθ)

dt
tβ
.

Theorem 2. If (1) holds for T = Iβ , then

1
p
−

1
q
=

1−β
2
,

1
s
>

2
p
− 1, 1

s
≥

1−β
2
.
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Conversely, if these conditions hold for p, q ∈ (1,∞) and with strict inequality in
the last, then (1) holds for T = Iβ .

The proof is given in Section 3, which also contains a corollary to the theorem.
As in [Christ et al. 1986], it is possible to obtain n-dimensional extensions of
Theorem 2. But the situation is much more complicated in higher dimensions and
the results we have there are far from sharp. So we have chosen to limit the scope
of this article to the case n = 2.

2. Proof of Theorem 1

The proof is by interpolation. Of the various endpoint results which will be re-
quired, the following is most interesting.

Lemma 1. Suppose that 1
2 ≤

1
p ≤

3
4 , that 1

p +
1
q = 1, and that 1

s >
1
p −

1
q =

2
p − 1.

Then the conclusion of Theorem 1 holds.

The technical tool required for the proof of Lemma 1 is an analog of a lemma of
Podkorytov [1991], which also figured in the proof in [Ricci and Travaglini 2001].

Lemma 2. Suppose that u is continuously differentiable and convex on an interval
I . Suppose that ψ is either an appropriate cutoff function on I or χI . Define, for
ρ > 0,

kρ(θ)=
∫

e−2π iρ(t cos θ+u(t) sin θ)ψ(t) dt.

Then kρ satisfies the following Sobolev norm estimate uniformly in ρ:

‖kρ‖L2
1/2(θ)
≤ C(u, ψ).

Proof of Lemma 2. Podkorytov’s lemma is the statement that

‖kρ‖L2(θ) ≤
C(u, ψ)
(1+ |ρ|)1/2

.

We will follow the proof of that lemma given in [Brandolini et al. 2001] to observe
that also

(2)
∥∥∥∥ d

dθ
kρ

∥∥∥∥
L2(θ)

≤ C(u, ψ)(1+ |ρ|)1/2.

Interpolation of these two estimates proves Lemma 2. �

We note, for future reference, that the constants C(u, ψ) in Podkorytov’s lemma
and in (2) depend on u only through the L∞ norms of u and u′ on [a, b].

Writing
γ (θ, t)= u(t) cos θ − t sin θ
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we have

d
dθ

kρ(θ)=−2π iρ
∫
γ (θ, t)e−2π iρ(t cos θ+u(t) sin θ)ψ(t) dt

and so∫ 2π

0

∣∣∣∣ d
dθ

kρ(θ)

∣∣∣∣∣
2

dθ

= 4π2ρ2
∫ 2π

0

∫ ∫
γ (θ, t1)γ (θ, t2)e−2π iρ((t1−t2) cos θ+(u(t1)−u(t2)) sin θ)

×ψ(t1)ψ(t2) dt1 dt2 dθ.

Now γ (θ, t1)γ (θ, t2) is a linear combination of four terms T j (θ, t1, t2), like

T2(θ, t1, t2)= u(t1) cos(θ)t2 sin(θ).

To establish (2) it is enough to show that∣∣∣∣∫ ∫ ∫ 2π

0
T j (θ, t1, t2)e−2π iρ((t1−t2) cos θ+(u(t1)−u(t2)) sin θ) dθ ψ(t1)ψ(t2) dt1 dt2

∣∣∣∣
≤

C(u, ψ)
1+ |ρ|

for each j . The case j = 2 is typical. If

sinφ =
t1−t2√

(t1−t2)2+(u(t1)−u(t2))2
, cosφ =

u(t1)−u(t2)√
(t1−t2)2+(u(t1)−u(t2))2

,

then the inner integral is

u(t1)t2

∫ 2π

0
cos(θ +φ) sin(θ +φ)e−2π iρ

√
(t1−t2)2+(u(t1)−u(t2))2 cos θdθ.

This is again a linear combination of four terms, of which

u(t1)t2

(
u(t1)−u(t2)

)2

(t1−t2)2+(u(t1)−u(t2))2

∫ 2π

0
cos θ sin θ e−2π iρ

√
(t1−t2)2+(u(t1)−u(t2))2 cos θdθ

is typical. The integral in this expression is a linear combination of Bessel functions

Jm
(
2πρ

√
(t1− t2)2+ (u(t1)− u(t2))2

)
,

for m =−2, 0, 2, and so it is enough to write

v(t1, t2)=
(u(t1)− u(t2))2

(t1− t2)2+ (u(t1)− u(t2))2
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and then to show that∣∣∣∣∫ ∫ u(t1) t2 v(t1, t2) Jm
(
2πρ

√
(t1−t2)2+(u(t1)−u(t2))2

)
ψ(t1)ψ(t2) dt1 dt2

∣∣∣∣
≤

C(u, ψ)
1+ |ρ|

.

To obtain this inequality we essentially repeat (for the reader’s convenience) part
of the proof of [Brandolini et al. 2001, Lemma 2]. By splitting the original curve
if necessary we can assume that u′(t) is of one sign on [a, b]. Restricting, without
loss of generality, to the range t1 ≥ t2, we change variables in the inner integral by
setting

z = z(t1, t2)=
√
(t1− t2)2+ (u(t1)− u(t2))2.

A calculation shows that

∂z
∂t1
=

1+ u(t1)−u(t2)
t1−t2

u′(t1)√
1+

(u(t1)−u(t2)
t1−t2

)2
.

It follows from the convexity of u that ∂z/∂t1 is a quotient of monotone functions
of t1 (which will be needed later) and also that

1√
1+‖u′‖2L∞([a,b])

≤
∣∣ ∂z
∂t1

∣∣≤ 1+‖u′‖2L∞([a,b]).

Setting

ω(z, t2)=
∣∣∣∣∂t1
∂z

∣∣∣∣,
we have∫ ∫

u(t1)t2v(t1, t2) Jm
(
2πρ

√
(t1− t2)2+ (u(t1)− u(t2))2

)
ψ(t1)ψ(t2) dt1 dt2

=

∫ ∫
u
(
t1(z, t2)

)
v
(
t1(z, t2), t2

)
Jm(2πρz)ψ

(
t1(z, t2)

)
ω(z, t2) dz t2ψ(t2) dt2

= ρ−1
∫ ∫

u
(
t1(w/ρ, t2)

)
v
(
t1(w/ρ, t2), t2

)
Jm(2πw)ψ

(
t1(w/ρ, t2)

)
ω(w/ρ, t2) dw t2ψ(t2) dt2,

where t1(z, t2) is the inverse of the change of variables t1 7→ z. To bound the last
integral, note first that the convexity of u implies the monotonicity of

u(t1)− u(t2)
t1− t2



354 DANIEL M. OBERLIN

and so of v(t1, t2) as a function of t1; secondly, that∣∣∣∣∫ w

0
Jm(2πs) ds

∣∣∣∣≤ c;

and then apply the following easily-established lemma:

Lemma. Suppose that α j (t), for 1 ≤ j ≤ J , are monotone functions on [c, d] and
that β(t) is such that ∣∣∣∣∫ t

c
β(s) ds

∣∣∣∣≤ c

for some c and all t ∈ [c, d]. Then∣∣∣∣∫ d

c

J∏
j=1

α j (w)β(w) dw
∣∣∣∣≤ 3J c

J∏
j=1

‖α j‖L∞([c,d]).

Proof of Lemma 1. First, Lemma 2 implies the estimate

(3)
∥∥ ‖T f ‖L2

1/2(θ)

∥∥
L2(R2)

≤ C ‖ f ‖L2(R2).

One way to check this is by observing that if the kernel Kn on R2 satisfies

Kn ∗ f (x)= ̂T f (x, · )(n)
(
=

1
2π

∫ 2π

0
T f (x, θ)e−inθdθ

)
,

then

K̂n(y)=
1

2π

∫ 2π

0

∫
e−2π iy·x dµθ (x) e−inθdθ

and so Lemma 2 is essentially the statement that
∞∑

n=−∞

|K̂n(y)|2(1+ |n|)≤ C

uniformly for y ∈ R2.
Since (3) implies an L2

→ L2(BMO) estimate for T , it is natural to think of
interpolating that estimate with an L1

→ L∞(L1) estimate for T (though this would
lead to Lemma 1 without the restriction 1

p ≤
3
4 ). Such an L1

→ L∞(L1) estimate
would be equivalent to the inequality

(4)
∫ 2π

0

∫ b

a
f
(
t cos θ + u(t) sin θ,−t sin θ + u(t) cos θ

)
ψ(t) dt dθ

≤ C
∫

R2
f (x) dx

for nonnegative measurable f on R2. The absolute value of the Jacobian of

(5) (θ, t) 7→
(
t cos θ + u(t) sin θ,−t sin θ + u(t) cos θ

)
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is |t + u(t)u′(t)|. Since |t + u(t)u′(t)| ≥ |t | because of the hypotheses on u, (4)
will hold if 0 is not in the support of ψ , but may fail otherwise. It follows by
interpolation that Lemma 1 holds (and for 1

2 ≤
1
p ≤ 1) if 0 is not in the support of

ψ . Thus we may assume for the remainder of the proof of Lemma 1 that 0 belongs
to the support of ψ . The idea now is to consider an analytic family defined by

Tz f (x, θ)=
∫

f
(
x − (t cos θ + u(t) sin θ, −t sin θ + u(t) cos θ)

)
|t |zψ(t) dt,

though, for technical reasons, we shall actually consider the related family

Tz f (x, θ)=
∞∑

n=0

2−nzTn f (x, θ),

where

Tn f (x, θ)=
∫

f
(
x − (t cos θ + u(t) sin θ,−t sin θ + u(t) cos θ)

)
φ(2n
|t |) dt

for some appropriate cutoff function φ supported away from 0. If z = 1+ is then
the inequality |t + u(t)u′(t)| ≥ |t | between |t | and the Jacobian of (5) shows that
Tz : L1

→ L∞(L1) with a norm bound which is independent of s. Since T ≈ T0,
Lemma 1 will follow from interpolation if we establish that Tz : L2

→ L2(BMO)
uniformly in s whenever z = −1 + ε + is for small ε > 0. And this will be a
consequence of the estimate

(6) ‖ ‖Tn‖L2
1/2(θ)
‖L2(R2) ≤

C ‖ f ‖L2(R2)

2n .

Letting

kρ,n(θ)=
∫

e−2π iρ(t cos θ+u(t) sin θ)φ(2n
|t |) dt,

inequality (6) will follow (as in the beginning of this proof) from the estimate,
uniform in ρ,

(7) ‖kρ,n‖L2
1/2(θ)
≤ 2−nC.

To see (7) write

k̃ρ,n(θ)=
∫

e−2π iρ(t cos θ+(u(t)−u(0)) sin θ)φ(2n
|t |) dt

= 2−n
∫

e−2π iρ2−n(s cos θ+2n(u(s/2n)−u(0)) sin θ)φ(|s|) ds.

If
un(s)= 2n(u(s/2n)− u(0)

)
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then |un| and |un
′
| are bounded on the support of φ by

C(φ)‖un
′
‖L∞([a,b]).

The remark concerning uniformity in the proof of Lemma 2 now shows that

‖k̃ρ,n‖L2(θ) ≤
C(u, ψ)

2n(1+ |ρ|)1/2

and ∥∥∥∥ d
dθ

k̃ρ,n

∥∥∥∥
L2(θ)

≤
C(u, ψ)(1+ |ρ|)1/2

2n .

Since
kρ,n(θ)= e−2π iρu(0) sin θ k̃ρ,n(θ),

similar inequalities hold for kρ,n . Interpolating these inequalities gives (7), com-
pleting the proof of Lemma 1. �

To complete the proof of Theorem 1 it is enough, by interpolation, to show that
the conclusion holds whenever either 1

p −
1
q = 0 or 1

p −
1
q =

1
2 . For the first case,

recall that Lemma 1 gives an L2
→ L2(Ls) estimate for s <∞. Interpolating this

with the obvious L1
→ L1(L1) and L∞→ L∞(L∞) estimates provides the desired

result. For the second case, 1
p −

1
q =

1
2 , the argument splits depending on whether

1
2 <

1
p ≤

3
4 or 3

4 ≤
1
p < 1. For 1

2 <
1
p ≤

3
4 we begin by noting that if E ⊆ R2 is a

Borel set, then, for any x ∈ R2,∫ 2π

0

(
TχE(x, θ)

)2dθ

=

∫ 2π

0

(∫
χE
(
x − (t cos θ + u(t) sin θ,−t sin θ + u(t) cos θ)

)
ψ(t) dt

)2

dθ.

Since (∫
χF (t) dt

)2

≤ 4
∫
χF (t) |t | dt

for measurable F ⊆ R, it follows that∫ 2π

0

(
TχE(x, θ)

)2dθ

≤ C
∫ 2π

0

∫ b

a
χE
(
x − (t cos θ + u(t) sin θ,−t sin θ + u(t) cos θ)

)
|t | dt dθ

≤ C
∫ 2π

0

∫ b

a
χE
(
x − (t cos θ + u(t) sin θ,−t sin θ + u(t) cos θ)

)
× |t + u(t)u′(t)| dt dθ

≤ C |E |.
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We interpret this as an L2,1
→ L∞(L2) estimate which implies an L2,1

→ L∞(Ls)

estimate if 1≤s<2. Lemma 1 gives an L4/3
→ L4(Ls) estimate for the same values

of s, and so interpolation gives an L p
→ Lq(Ls) estimate whenever 1

p −
1
q =

1
2 ,

4
3 ≤ p < 2, and 1 ≤ s < 2. For 3

4 ≤
1
p < 1, let the positive kernel K (x) on R2 be

defined so that ∫ 2π

0
T f (x, θ) dθ = f ∗ K (x)

for appropriate f on R2. As we will observe below, K ∈ L2,∞(R2). This implies an
L p
→ Lq(L1) estimate whenever 1

p−
1
q =

1
2 . That estimate can be interpolated with

the aforementioned L4/3
→ L4(Ls) estimate for 1≤ s < 2 to provide the required

L p
→ Lq(Ls) estimate whenever 1

p −
1
q =

1
2 , 3

4 ≤
1
p < 1, and 1≤ s < p/(2− p).

Finally, to see that K ∈ L2,∞(R2), observe that for Borel E ⊆ R2 we have∫
E

K (x) dx

=

∫ 2π

0

∫ b

a

χE
(
t cos θ+u(t) sin θ,−t sin θ+u(t) cos θ

)
ψ(t)∣∣t + u(t)u′(t)

∣∣ ∣∣t + u(t)u′(t)
∣∣ dt dθ.

Since |t + u(t)u′(t)| is the Jacobian of (5), it is enough to note that, for λ > 0 and
since |t | ≤ |t + u(t)u′(t)|,∫

{1/|t+u(t)u′(t)|≥λ}

∣∣t + u(t)u′(t)
∣∣ dt ≤

∫
{|t |≤1/λ}

1
λ

dt =
2
λ2 .

This completes the proof of Theorem 1. �

Perhaps surprisingly, the analog of Theorem 1 fails for the function u(t) =
1− t2/2: if

Aδ = {1− δ ≤ |x | ≤ 1} and f = χAδ

then T f (x, θ)≈ δ1/4 for |x | ≤ δ/10 and (1) taken together lead to 1+ 8
q ≥

4
p , an in-

equality violated by some triples (p, q, s) satisfying the hypotheses of Theorem 1.

3. Proof of Theorem 2

The necessary conditions are easily established: the first is a consequence of the
homogeneity of the operator Iβ , the second and third follow by testing on the
indicator function of a ball and of an eccentric rectangle.

The remainder of the proof is also somewhat parallel to the proof of Theorem 1.
We begin with a lemma analogous to Lemma 1.

Lemma 3. Suppose that 1
2 <

1
p ≤ 1, that 1

p +
1
q = 1, and that 1

s >
2
p − 1 .

=
1−β

2 .
Then the conclusion of Theorem 2 holds.
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Proof. When p= 1 the lemma holds trivially and with s = 1. So, by interpolation,
it is enough to prove the lemma when p is close to 2. Recall that θ , by abuse of
notation, will sometimes mean (cos θ, sin θ). We fix a suitable f and calculate

2π ̂Iβ f (x, ·)(n)=
∫ 2π

0
Iβ f (x, θ)e−inθdθ

=

∫ 2π

0

∫
∞

0
f (x − tθ)e−inθ dt

tβ
dθ = f ∗ Kn(x)

if

Kn(tθ)=
e−inθ

tβ+1 .

Now

K̂n(y)
.
= K̂n(|y|φ)=

∫ 2π

0

∫
∞

0
e−inθe−2π i |y|t cos(θ−φ) dt

tβ
dθ

= e−inφ
∫ 2π

0
e−inθ

∫
∞

0
e−2π i |y|t cos θ dt

tβ
dθ.

Since ∫
∞

0
e−2π iρt dt

tβ
= c ρβ−1

for ρ > 0, the observation∣∣∣∣ ∫ 2π

0
(cos θ)β−1e−inθdθ

∣∣∣∣= O(|n|−β)

gives

(8) |K̂n(y)| = O(|y|β−1n−β).

The method of T T ∗ shows that if 1
p +

1
q = 1, if m(y) is a nonnegative L p

→ Lq

Fourier multiplier, and if the measurable function n satisfies |n(y)| ≤m(y), then n
is also an L p

→ Lq Fourier multiplier, and with multiplier norm bounded by that
of m. Thus (8) and the fractional integration theorem show that

‖Kn‖p,q = O(n−β),

where the norm is that of the convolution operator with kernel Kn from L p(R2)

into Lq(R2). Now, for γ > 0,∥∥ ‖Iβ f ‖L2
γ (θ)

∥∥
Lq (R2)

=

∥∥∥(∑(
|Kn ∗ f | (1+ |n|)γ

)2
)1/2∥∥∥

Lq (R2)

≤

(∑(
‖Kn ∗ f ‖Lq (R2)(1+ |n|)

γ
)2
)1/2

≤ ‖ f ‖L p(R2)

(∑(
‖Kn‖p,q(1+ |n|)γ

)2
)1/2

.
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By (8), the sum in the last inequality will be finite whenever γ − β < − 1
2 . The

Sobolev embedding theorem thus yields an L p
→ Lq(Ls) estimate for Iβ whenever

1
2−

1
s <β−

1
2 or 1

s >1−β. To replace 1−β by the 1−β
2 in the statement of Lemma 3

requires another interpolation: noting that 1
p =

3−β
4 , fix a point

P0 =

( 1
p0
,

1
s0

)
in S

.
=
{
( 1

p ,
1
s ) : 0≤

1
p ,

1
s ≤ 1

}
such that

1
p0
=

3−β0

4
, 1−β0 ≥

1
s0
>

1−β0

2
, β0 > 0.

(We may assume β0 > 0 after an interpolation with the trivial case β = −1.) Let
L be the line segment in S parametrized by

1
p
=

3−β
4

,
1
s
= 1−β

and choose a point P above L so that the line L ′ through P and (1, 1) passes below
P0. Note that the conclusion of Lemma 3 holds if the point ( 1

p ,
1
s ) lies on L ′ and

let Q1 be the point on L ′ directly below P0. Next choose Q2 directly above P0 and
above L (so that the conclusion of Lemma 3 holds at Q2). Interpolating between
the (p, q, s) points corresponding to Q1 and Q2 shows that Lemma 3 holds at P0,
completing the proof of Lemma 3. �

To complete the proof of Theorem 2, it is enough (by interpolation with the
trivial case β =−1) to show that the conclusion of Theorem 2 holds when β > 0.
So fix such a β. Fix 1

p ∈
( 1−β

2 , 1
)

and q with 1
p −

1
q =

1−β
2 . There are two cases to

considering, depending on whether 1
p <

3−β
4 or 1

p >
3−β

4 (the case 1
p =

3−β
4 being

the subject of Lemma 3).
To deal with the first case begin by noting that, for Borel sets E ⊆ R2,

(9)
∫ 2π

0

(∫
∞

0
χE(x + tθ)

dt
tβ

)2/(1−β)

dθ ≤ C(β)
∫ 2π

0

∫
∞

0
χE(x + tθ) t dt dθ,

since (∫
F

dt
tβ

)2/(1−β)

≤ C(β)
∫

F
t dt

for Borel F ⊆R. With 1
p0
=

1−β
2 , we interpret (9) as an L p0,1→ L∞(L p0) estimate

for Iβ . This provides an L p0,1→ L∞(Ls) estimate whenever 1
s >

1−β
2 which can

be interpolated with the estimate of Lemma 3 to provide the desired result.
For the second case, note that, so long as 1

p−
1
q =

1−β
2 , an L p

→ Lq(L1) estimate
for Iβ follows from boundedness of the appropriate Riesz potential. Interpolating
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this with Lemma 3 shows that

Iβ : L p
→ Lq(Ls)

whenever 1
p −

1
q =

1−β
2 , 3−β

4 ≤
1
p < 1 and 1

s >
2
p − 1. This completes the proof of

Theorem 2. �

Analogously to [Christ et al. 1986, Corollary 4.2], the following result on oper-
ators with variable kernels is an easy consequence of Theorem 2.

Corollary. Suppose 1 < p < q <∞ and 1
p −

1
q =

1−β
2 . Suppose the Borel kernel

K (x, y) on R2
×R2 satisfies the homogeneity condition

K (x, λy)= λ−1−βK (x, y)

for λ > 0 and the growth condition

sup
x∈R2
‖K (x, · )‖Ls′ (θ) <∞,

where s ′ is the exponent dual to s and the triple (p, q, s) satisfies the hypotheses of
Theorem 2. Define the operator T by

T f (x)=
∫

R2
f (x − y) K (x, y) dy.

Then T maps L p(R2) into Lq(R2).
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