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We show that, in codimension higher than one, perturbing a quadric may
result in raising the dimension of the set of extremal discs.

Introduction

Lempert [1981] introduced extremal discs for a convex domain in C”, a very pro-
ductive notion which has had many applications. Tumanov [2001] introduced a
local theory of extremal discs attached to a real strictly pseudoconvex manifold of
higher codimension. For a hypersurface, his discs coincide with those of Lempert.
An important feature of extremal discs for a hypersurface is that of stability under
small perturbations. In particular, the dimension of the set of extremal discs de-
pends only on the dimension of the ambient space. We show that this property is
significantly violated in higher codimension.

Let (z, w) € C*, with z = (21, z2) and w = (w, wy), where z; = x| +iy; and
Zp =x2+iy;. Let 6 > 0 and let O, be the manifold defined by

) x1 = |wi >+ 0 Re(wawy), x3=|wal”.

Theorem 1. Extremal discs attached to Qg depend on 14 parameters. For ¢ > 0
there is a family of extremal discs attached to Q, which depend on 15 parameters.

This result has led Sukhov and Tumanov [2001] to the notion of an extended
indicatrix, the higher-codimensional analogue of Lempert’s indicatrix. They make
an adjustment to address the above instability.

1. Main Result

Consider a rigid, analytic, strictly pseudoconvex manifold M in C*, of codimension
two. We choose a neighborhood U of zero in C?, inside which M is described by

2 xi = hi(w) = |w;|* + g: ()
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fori =1, 2, with g; real analytic, and vanishing at O of order greater than two. Let
A be the standard unit disc, with boundary bA and closure A. An analytic disc
attached to M is amap f : A — C” that is holomorphic on A and continuous up
to the boundary b A, such that f(bA) C M (see [Tumanov 2001]).

In what follows, we consider only the set AY of analytic discs attached to M
and contained in U. A disc f in AM has the form f(¢) = (z(¢), w(¢)), where
x(@)=h(w()) for ¢ € A and y(¢) is related to x(¢) by the Hilbert transform

x(Q)==Ty()+x(1)
(see [Boggess 1991] or [Tumanov 2001]). We also consider the set

AM (W) = {(z(0), w(©)) € AM : w(0) =0, y(0) =0, w'(0) = wy}.

Let N*M denote the conormal bundle to M. The following definitions are from
[Lempert 1981] and [Tumanov 2001].

Definition 2. An analytic disc attached to M, f : A — C* is stationary if there
exists a nonzero smooth section f*(¢) of N*M, defined for || = 1, that is,
() € N;'E(é.)M such that ¢ f*(¢) extends to a continuous function on A that
is holomorphic on A.

The map f* is called a lift of f. Fortwo vectorsa, beC", weset (a, b)=2Xa;b;.

Definition 3. An analytic disc f : A — C* attached to M is extremal if there
exists a vector a € C* such that Re (Ez, g'0)— f’ (O)) > 0 for every analytic disc
g: A — C* attached to M where g # f and g(0) = £(0).

Let Q be the quadric in C? defined by the equation x| = |w |2. Then Qp= Q0 x Q.
An extremal disc f in A2° has components f|, f> that are extremal discs attached
to O and each depend on 7 parameters (see [Lempert 1981]). As a consequence,
f depends on 14 parameters, as stated in Theorem 1. When we perturb Qgp, we
lose the structure of product and we can not apply a similar argument.

We recall Tumanov’s existence theorem for stationary discs in our particular
case. Let p be the vector-valued function with components x; — &; (w).

Proposition 4. For every € > 0 there exists 9 > 0 such that, for every A, wo, w; € c?
and every ¢, yo € R? satisfying the conditions |wo| < 0, |yo| < 9, lwg| < 0, and

(3) Re(i¢+ci)>e€e(Al+c)) fori=1,2andall € C such that || =1,
there exists a unique stationary disc

= [ = @0, w(()

attached to M, with w(0) = wo, w'(0) = wy, y(0) = yo and f*|,n =Re(A{ +c)op.
This disc f is extremal.



ON THE DIMENSION OF THE SET OF STATIONARY DISCS 363

Let 9™ denote the family of extremal discs in AM described by Proposition
4. Given that extremal discs are always stationary, it follows that @* contains all
small extremal discs attached to M. It is sufficient to consider this family of discs
to prove our result.

The dimension of %M is at most 15. In fact, discs in @ are described by the
parameters 4, ¢, wy, yo, v that span C? x R? x C? x R? x C2. However, the depen-
dence of f on the parameters 1, c is not injective: if the vector (1, ¢) determines
the lift of a disc f in 9™, then for any real k, the vectors (kA, kc) determine lifts
of f as well.

In order to state the next lemma (see [Tumanov 2001]), which is the starting
point for our proof, we introduce a few objects and some notation. We denote by
[4, c] the classes of pairs (4, ¢) that are equivalent up to a proportionality factor.
We set

B— Re(41¢ +¢1) 0
B 0 Re(Aal +¢2) |

Condition (3) implies the existence of unique a; € R™ and b; € C such that |b;| > 1
and Re(4;¢ +¢;) = a; (¢ — bi)(gz — l;i) for|¢|=1andi =1,2. Let a = (a;, az)
and b = (b1, by). For k € RT we denote the equivalence class of pairs (ka, b) by
[a, b]*. The correspondence between the classes [4, ¢] and [a, b]* is bijective. We

define
P 0
P =
S
where P; = ,/a;({ — b;) and we denote the conjugate of P by P*. We set
98i.

owq

08i
aw2

Vg,' =

Finally, we introduce the Cauchy-type operator

1
KOO =57 g%ds

for fin C°(bA) where, for || = 1, we understand K ( f)(¢") to be the inner bound-
ary value of the expression. We set Ko(f)(¢) = K(f)(¢) — K(f)(0) and write
Ko(f1, f2) for (Ko(f1), Ko(f2))-

Let f(0)=(z(¢), w(¢)) be adiscin ﬂM(wé) and define u(¢) by u(0)=w()/¢
(recall that w(0) = 0).
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Lemma 5. The disc f () is extremal with lift determined by (1, ¢) if and only if
@ u@ =P (PO

—P N OKo(EP* T PI PV +EPF T Py PV ) ()
onbA.

(With an abuse of notation, we use ¢ in the argument of K to indicate the
identity function.)

Proof. By Definition 2 and Proposition 4 the disc f is extremal with lift f* =
Re(A¢ 4 ¢)dp if and only if ¢ Re(A¢ + ¢)hy, (w()), defined on A, extends to a
continuous function on A holomorphic on A.

Given the above notations, and equation (2), we have

CRe(A +o)hy(w()) = PP i+ P PIVg +( PSP,V

for || =1.
Therefore the function ¢ Re(A¢ +c¢)h,, (w()) extends to a holomorphic function
on A if and only if

Ko(PP*u+¢PFPIVgI +EPy PV g2)(() =0.

The matrix P*~! is anti-holomorphic, and defined in A as |b;| > 1. Therefore the
last equality becomes

Ko(Pu)(0) = —Ko(EP* P\ P*Vg +EP* ' P, P,*Vg))

and yields the conclusion, given that Pu(¢) = P(0)u(0)+ Ko(Pu(()), since Pu(()
is holomorphic on A O

A straightforward rescaling of coordinates shows that Q, is biholomorphically
equivalent to Q if ¢ # 0, therefore we restrict our consideration to this last man-
ifold. We denote by DY (wy) the set

{@(©), w() e DM+ w(0) =0, y(0) =0, w'(0) = wp}.
Theorem 1 follows from the following proposition.

Proposition 6. There exists € > 0 such that if f € 9<! (wy) is extremal with respect
to a class [A, c], where |w6| < €, then f is extremal only with respect to [1, c].

Proof. Our manifold Q is defined by (1) with ¢ = 1, so (4) becomes

b _
() = ———u; (0) — Ko(EPruait) ()
{—h

1
Jac —by)
by 1
5" Jme=m

&)

ur($) =— Ko(A&P 1Py Piud®) ().
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We set u(0) = tv, for t € Rt and v € C? with |v| = 1. Then u is a function
u(¢,a,b,v,t) holomorphic in ¢ for || < 1, for every choice of the parameters
a,b,v and ¢ (recall that a; > 0 and |b;| > 1). We determine its Taylor expansion
up to the second order in ¢ at 0, starting from (5). If # =0, then (5) gives equations
of type u = O(u) where O, denotes terms vanishing at O of order at least 2 in u.
This system has the unique solution

(6) u(C,a,b,v,0)=0.

We differentiate (5) twice with respect to ¢ and evaluate the resulting expressions
at t = 0; denoting (0u/0t)(¢, a, b, v, 0) by 11(0), we obtain

b b
(7) u1<0)=—4_1b1m, b'tz(O):—C_zbzvz
and
1 - .
N ii1(0) = —mKo(é‘PlZﬂz(O)ﬁl(o))(C),

ii»(0) = Ko(& Py Py* P1201(0)) (0).

1
2@ (; —bo)

We evaluate K in (8) and obtain

. _ 51(192—191)) 4
O =—2 = s
i1(0) ”2”1( 1—byby ) (C—b2)(C —b1)
©) )
. ar ».9 1 —1|b1] ) ¢
0)=——0vb = .
uz( ) azvl ! (1 —bi1by (C_bZ)(C_bl)

In conclusion, we fix v and consider ¢ small enough that we can neglect terms of
order greater than 2 in the expansion of u. For a given solution u of (4), there
exists a unique pair (by, by) satisfying (7), and there is a unique pair (a;, a2), up
to proportionality, that satisfies equations (9). This proves that u(¢) and, with it,
w(¢), is determined by a unique class [a, b]*.

Given the equivalence between classes [a, b]* and [1, J], we conclude that, for
w,, suitably small, an extremal disc f = (z(¢), w({)) attached to Q1 with w’(0) =
w,, is extremal only with respect to one class [/, J]. O
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