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We continue our study of the representations of the supergroup Q(n) over
a field of odd positive characteristic. The focus here is on the aspects of the
theory that depend in some way on the interpretation of induction in terms
of sheaf cohomology of certain equivariant vector bundles on the associated
flag superschemes.

1. Introduction

This is the second of two articles investigating the representation theory of the
supergroup G = Q(n) over an algebraically closed field k of characteristic p > 2.
In the first article, [Brundan and Kleshchev 2003], we extended from characteristic
0 to characteristic p many of the basic algebraic properties, such as the results of
[Penkov 1986]. The present article is concerned instead with results that depend
in some way on the interpretation of induction from a Borel subgroup B in terms
of sheaf cohomology on the flag superscheme G/B. These flag superschemes,
and their analogues G/P for arbitrary parabolic subgroups of G, were introduced
originally by Manin [1997; 1991], and have already played a fundamental role in
the work of Penkov and Serganova [1989; 1997a; 1997b] on the representation
theory of Q(n) over C; see also [Brundan 2004].

To sketch the results proved here in more detail, recall from [Brundan and
Kleshchev 2003] that the irreducible representations of G are parametrized by p-
strict dominant weights, that is, by the set

X+p (n) :=

{
λ= (λ1, . . . , λn) ∈ Zn

∣∣∣∣ λ1 ≥ · · · ≥ λn with
λi = λi+1 only if p |λi

}
.

The irreducible representation L(λ) corresponding to λ ∈ X+p (n) can be realized
as the unique irreducible submodule of the induced module

H 0(λ) := H 0(G/B, L(u(λ))
)
,
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where u(λ) is a certain irreducible B-supermodule of dimension a power of 2 cor-
responding to the weight λ. For λ ∈ X+p (n), we now study the higher cohomology
modules

H i (λ) := H i(G/P, L(u(λ))
)
,

where P is the largest parabolic subgroup that the B-supermodule u(λ) can be
inflated to. Let

Eλ :=

∑
i≥0

(−1)i ch H i (λ)

denote the corresponding Euler characteristic. In Theorem 4.3, we show that Eλ is
equal to the classical symmetric function known as Schur’s P-function, scaled by
dim u(λ). The method used to prove this goes back at least to Penkov [1988, §2.3],
but we have attempted here to fill in some of the details, as promised in [Brundan
2004; Brundan and Kleshchev 2002].

The Eλ’s are important because they form a natural basis for the character group
of G. We would of course like to be able compute the decomposition numbers dλ,µ

defined from the equation

Eλ =

∑
µ∈X+p (n)

dλ,µLµ,

where

Lµ := ch L(µ).

Note that dλ,µ ∈ Z, dλ,λ = 1 and dλ,µ = 0 unless µ ≤ λ in the usual dominance
ordering. It appears to be the case in all the examples we have computed that the
dλ,µ are always nonnegative. This is not obvious, since it can definitely happen
that H i (λ) 6= 0 for i > 0, unlike the analogous situation when G is a reductive
algebraic group; see Example 5.3. There is one further piece of information about
the decomposition numbers dλ,µ proved in Theorem 6.3: they are zero unless λ

and µ have the same residue content, a purely combinatorial notion originally
introduced by Leclerc and Thibon [1997] in their study of the canonical bases of
the Fock space of type A(2)

p−1 (see also [Brundan and Kleshchev 2003, §8]). We
refer to this result as the linkage principle for Euler characteristics.

At the end of the article, we have included by way of further examples tables
of the decomposition matrices D = (dλ,µ) for the polynomial representations of
Q(n) of degree d ≤ 12 in characteristic p = 3 (with n large). In that case, the
dominant weights we are considering satisfy λi ≥ 0 for all i , so we can represent
them simply as partitions. Some calculations here were made by computer, using
GAP 4.3.
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2. Geometric interpretation of induction

Throughout the article, we will work over a fixed algebraically closed field k of
characteristic p 6= 2. For our general conventions regarding superalgebras, su-
pergroups and superschemes, we refer to [Brundan and Kleshchev 2003, §2] and
[Manin 1997, chapter 3, §1–2 and chapter 4, §1]. We will simultaneously use
geometric and functorial languages when talking about superschemes, in the spirit
of [Demazure and Gabriel 1970; Jantzen 1987].

For a superscheme X , an OX -supermodule means a sheaf M of abelian groups on
the topological space underlying X such that M(U ) has the additional structure of
an OX (U )-supermodule for each open subset U ⊆ X . Moreover, for open subsets
U ⊆ V , the restriction M(V ) → M(U ) is required to be an even supermodule
homomorphism. Given superschemes X, Y , an OX -supermodule M, and an OY -
supermodule N, we will denote by M⊗ N their “outer” tensor product, i.e., the
OX×Y -supermodule pr∗X M⊗OX×Y pr∗Y N. If X, Y are noetherian and M, N are qua-
sicoherent, then M⊗N is again quasicoherent and moreover (M⊗N)(U × V ) =

M(U )⊗k N(V ) for affine open subsets U ⊆ X, V ⊆ Y .
Let modOX (resp. qcohOX

) denote the category of OX -supermodules (resp. qua-
sicoherent OX -supermodules). Note we allow arbitrary (not necessarily homoge-
neous) morphisms: a morphism f :M→ N of OX -supermodules satisfies

f (am)= (−1) f̄ āa f (m)

for each m ∈M(U ), each a ∈OX (U ) and each open subset U of X . Here, f̄ , ā ∈Z2

denote parity assuming f and a are homogeneous, and the formula should be
interpreted by extending additively from the homogeneous case if they are not.
The categories modOX and qcohOX

are not abelian categories, but the underlying
even categories consisting of the same objects and only even morphisms are. This
allows us to make use of all the usual machinery of homological algebra. We also
have the parity change functor

(1) 5 :modOX →modOX

defined on objects by letting (5M)(U ) equal M(U ) (for U ⊆ X open) as an abelian
group, but with the opposite Z2-grading and new OX (U )-action defined by a ·m :=
(−1)āam.

We have the usual sheaf cohomology functors H i (X, ?) from the category of
sheaves of abelian groups on the underlying topological space to the category of
abelian groups. If M is an OX -supermodule, each H i (X, M) has a canonical struc-
ture as an OX (X)-supermodule (hence in particular as a vector superspace). This
follows because the category modOX has enough injectives and, as in [Hartshorne
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1977, III.2.4], injective OX -supermodules are acyclic for H 0(X, ?); so we can com-
pute H i (X, M) using an resolution of M by injective OX -supermodules. We recall
[Hartshorne 1977, III.2.7]:

Grothendieck’s vanishing theorem. For a noetherian superscheme X , we have
H i (X, ?) = 0 for all i > dim X , where dim denotes dimension as a topological
space.

To generalize other basic results, one can exploit the canonical filtration of an
OX -supermodule M, namely, the filtration

(2) M⊇ JX M⊇ J2
X M⊇ . . . .

Here, JX denotes the quasicoherent sheaf of superideals on X defined as the sheaf
associated to the presheaf U 7→OX (U )OX (U )1̄. The underlying purely even scheme
Xev is the scheme over k equal to X as a topological space, with structure sheaf
OX/JX . The factors Ji

X M/Ji+1
X M in the canonical filtration are OXev-modules, so

since
H i (X, Ji

X M/Ji+1
X M)= H i (Xev, Ji

X M/Ji+1
X M)

as the underlying topological spaces of X and Xev are equal, we can obtain in-
formation about H i (X, M) using the purely even theory, the long exact sequence
of cohomology and induction on the length of the canonical filtration (which is
always finite for noetherian X ). In particular, using [Hartshorne 1977, III.3.5 and
III.5.2], one obtains:

Serre’s vanishing theorem. For a noetherian superscheme X with Xev affine, we
have H i (X, M)= 0 for all quasicoherent OX -supermodules M and all i > 0.

Serre’s finiteness theorem. For a noetherian superscheme X with Xev projective,
H i (X, M) is finite-dimensional for all coherent OX -supermodules M and all i ≥ 0.

We say that X is decomposable if OX is isomorphic to the symmetric superalge-
bra of the OXev-supermodule JX/J2

X . If instead X has an open cover (Ui )i∈I such
that each (Ui , OX |Ui ) is decomposable, then X is called locally decomposable.

Lemma 2.1. If X is locally decomposable and M is a locally free OX -supermodule,
there is a natural isomorphism

Ji
X M/Ji+1

X M' Si (JX/J2
X )⊗OXev

M/JX M.

Proof. Without any assumptions on X or M, there is a natural map

Si (JX/J2
X )⊗OXev

M/JX M−→ Ji
X M/Ji+1

X M

induced by multiplication. To check that it is an isomorphism for M locally free
and X locally decomposable, reduce to the case that X is affine and decomposable
and M is free, and then argue directly. �
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Now let G be an algebraic supergroup in the sense of [Brundan and Kleshchev
2003, §2]. Thus G is a functor from the category of commutative superalgebras
to the category of groups which is an affine superscheme when viewed just as a
functor to sets, such that in addition the coordinate ring k[G] is finitely generated
as a k-superalgebra. Suppose we are given a right action ρ : X ×G→ X of G on
a noetherian superscheme X . There is a standard notion of a G-equivariant OX -
supermodule (OX G-supermodule for short), for example as in [Chriss and Ginzburg
1997, 5.1.6] or [Mumford and Fogarty 1982, 1.6]. We present here a somewhat
different formulation of the definition in the quasicoherent case, which we found
easier to work with.

Let µ : G × G → G be multiplication, e : Spec k → G be the identity. The
comorphisms are denoted

µ#
: OG→ µ∗(OG ⊗OG) and e#

: OG→ e∗k.

A quasicoherent OX G-supermodule means a quasicoherent OX -supermodule M

equipped with an even OX -supermodule map η : M→ ρ∗(M⊗ OG) such that the
following diagrams of sheaves on X commute:

(3)

M
η- ρ∗(M⊗OG)

ρ∗(idM⊗µ#)- ρ∗(idX ×µ)∗(M⊗OG ⊗OG)

M

wwwww
η- ρ∗(M⊗OG)

ρ∗(η⊗ idOG
)

- ρ∗(ρ× idG)∗(M⊗OG ⊗OG)

wwww

(4)

M
η - ρ∗(M⊗OG)

M⊗ k

wwwww
==== ρ∗(idX ×e)∗(M⊗ k)

ρ∗(idM⊗e#)
?

(If X is a point these are just the usual comodule axioms.)
There is a functor SpecX which defines a contravariant equivalence from the

category of quasicoherent OX -superalgebras to the category of superschemes over
X which are affine over X . The definition is the same as in the purely even case;
see for example [Demazure and Gabriel 1970, I, §2, no. 3]. For a quasicoherent
OX -supermodule M, we can consider the associated fibration

V(M) := SpecX S(M)
σ
−→ X,

where S(M) denotes the symmetric superalgebra. If M is a quasicoherent OX G-
supermodule, the structure map η extends in a unique way to an OX -superalgebra
map

η̃ : S(M)→ ρ∗(S(M)⊗OG).
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This in turn defines a morphism SpecX (ρ∗(S(M)⊗ OG))→ SpecX (S(M)) of su-
perschemes over X . Composing with the canonical map

V(M)×G ∼= SpecX×G(S(M)⊗OG)→ SpecX (ρ∗(S(M)⊗OG)),

we obtain a commutative diagram

V(M)×G
6 - V(M)

X ×G

σ × idG
?

ρ
- X

σ
?

Now (3) implies that 6 satisfies associativity; that is, there is a commutative cube
analogous to that on [Mumford and Fogarty 1982, p. 31], while (4) gives that 6 is
unital in the obvious sense. So, 6 is a “linear” right action of G on the fibration
V(M). Conversely, we can recover the original structure map η of M from such an
action 6 since η̃ = σ∗6

#.
There is a natural notion of morphism between two quasicoherent OX G-super-

modules, giving us the category qcohOX G . Its underlying even category is abelian,
and moreover:

Lemma 2.2. (i) The category qcohOX G has enough injectives.

(ii) Injective objects in qcohOX G are acyclic for H 0(X, ?).

Proof. (i) One first checks that the forgetful functor res : qcohOX G→ qcohOX
has a

right adjoint, namely, the functor ind := ρ∗(?⊗ OG). Here for any quasicoherent
OX -supermodule M, ind M= ρ∗(M⊗OG) is viewed as an OX G-supermodule with
structure map ρ∗(idM⊗µ#) : ind M→ ρ∗(ind M⊗OG).

Now take any OX G-supermodule M with structure map η : M→ ρ∗(M⊗ OG).
Embed res M into an injective quasicoherent OX -supermodule N (which we can do
since qcohOX

has enough injectives; see [Hartshorne 1977, III.3, ex. 6]). Applying
the left exact functor ind, we get a monomorphism ind ◦ res(M)→ ind(N), with
ind(N) being injective. It remains to see that M embeds into ind ◦ res(M); but this
is immediate since η :M→ ind ◦ res(M) is a monomorphism thanks to axiom (4).

(ii) By the proof of (i), any injective object in qcohOX G embeds into (hence is
a summand of) ρ∗(M⊗ OG) for an injective object M ∈ qcohOX

. So it suffices to
check that H i (X, ρ∗(M⊗OG))= 0 for all i > 0. Note ρ is the composite

X ×G
f
−→ X ×G

prX
−→ X,

where f is the isomorphism defined by (x, g) 7→ (xg, g). Hence, ρ is an affine
morphism, so (Riρ∗)(M⊗OG)= 0 for all i > 0. Hence the Leray spectral sequence
degenerates to give H i (X, ρ∗(M⊗ OG)) ' H i (X ×G, M⊗ OG). Now by Serre’s
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vanishing theorem and the Kunneth formula, this is isomorphic to H i (X, M) ⊗

k[G], which is zero for i > 0 by the injectivity of M. �

Let M be a quasicoherent OX G-supermodule with structure map η. The space
H 0(X, M) of global sections has the structure of a G-supermodule, with structure
map obtained as the composite

H 0(X, M)
η
−→ H 0(X, ρ∗(M⊗OG))' H 0(X, M)⊗ k[G].

It follows from this and Lemma 2.2 that each H i (X, M) carries a canonical G-
supermodule structure. Indeed, we can compute H i (X, M) using a resolution of M

by injective OX G-supermodules, these being acyclic for H 0(X, ?). In other words,
we can regard each H i (X, ?) as a functor from qcohOX G to modG .

Suppose next that H is a closed subgroup of our fixed algebraic supergroup G.
By a quotient of G by H (“H\G”) we mean here a noetherian superscheme X
together with a morphism π : G→ X such that:

(Q1) π is constant on the right H(A)-cosets H(A)g in G(A) for each commutative
superalgebra A and each g ∈ G(A);

(Q2) given any other morphism f : G → Y of superschemes that is constant on
the right H(A)-cosets in G(A) for each commutative superalgebra A, there
is a unique f̃ : X→ Y such that f = f̃ ◦π ;

(Q3) π : G→ X is a faithfully flat, affine morphism.

Assume that X is a quotient of G by H . Let ρ : X ×G→ X be the right action
of G on X induced by multiplication in G. We have commutative diagrams

G×G
µ - G

X ×G

π × idG
?

ρ
- X

π
?

H ×G
µ̄ - G

H × X

idH ×π
?

prX

- X

π
?

where µ is the multiplication in G and µ̄ is its restriction to H ×G.
The first diagram gives that π∗OG is a quasicoherent OX G-supermodule with

structure map π∗µ
#
: π∗OG → ρ∗(π∗OG ⊗ OG). Hence, for any vector super-

space M , M⊗π∗OG is also a quasicoherent OX G-supermodule with structure map
idM ⊗π∗µ

#. We will usually denote this by Mtr ⊗π∗OG to indicate that the action
on M is trivial. In particular, k[H ]tr⊗π∗OG is a quasicoherent OX G-supermodule
in this way. From the second diagram, we get a natural OX G-supermodule map
δ := π∗µ̄

#
: π∗OG → k[H ]tr ⊗ π∗OG . If M is an H -supermodule with structure

map η : M → M ⊗ k[H ] (see [Brundan and Kleshchev 2003, §2]), we define
the “induced” quasicoherent OX G-supermodule L(M) to be the kernel of the map
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∂ = η⊗ idπ∗OG − idM ⊗δ in the following exact sequence of quasicoherent OX G-
supermodules:

(5) 0−→ L(M)−→ Mtr ⊗π∗OG
∂
−→ Mtr ⊗ k[H ]tr ⊗π∗OG .

If f : M→ M ′ is a morphism of H -supermodules, L( f ) :L(M)→L(M ′) can be
defined as the restriction of f ⊗ idπ∗OG , giving that

L :modH → qcohOX G

is a functor, where modH denotes the category of all H -supermodules.
Conversely, recall that e : Spec k → G denotes the identity of G; we let ē :

Spec k→ X denote π ◦ e. There is a natural H -supermodule structure on M(ē) :=
Mē⊗OX,ē k. In other words, “evaluation at ē” gives a functor

E : qcohOX G→modH .

In terms of the associated action of G on the fibration V(M), the restriction of the
action to H induces a right action of H on the fiber V(M)ē. There is a natural
isomorphism V(M)ē = SpecX (S(M))×X Spec k ∼= Spec S(M(ē)) (see [Demazure
and Gabriel 1970, I, §2, 3.6] and [Hartshorne 1977, II, ex. 5.16(e)]), so that H
acts on the right on Spec S(M(ē)). Now the structure map on M(ē) is precisely the
restriction to M(ē) of the comorphism of this right action of H on Spec S(M(ē)).

We are ready state the following fundamental result, for which see [Demazure
1969/1970, p. 249] or [Cline et al. 1983, Theorem (2.7)]. We omit the proof,
but note that it depends in an essential way on the property (Q3) of quotients as
formulated above.

Theorem 2.3. The functors L and E are mutually inverse equivalences. Moreover,
for an H-supermodule M , L(M) is locally free of rank equal to the superdimension
of the vector superspace M .

There are induction and restriction functors

indG
H :modH →modG, resG

H :modG→modH

defined in [Brundan and Kleshchev 2003, §6]. We recall that restriction is exact
and indG

H is right adjoint to resG
H . Comparing the formula [Brundan and Kleshchev

2003, (6.1)] with (5), it is immediate that there is an isomorphism

indG
H ' H 0(X, ?) ◦L

of functors from modH to modG . By the theorem, the functor L is exact and maps
injectives to injectives. So, letting Ri indG

H denote the i th right derived functor of
induction, we have:
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Corollary 2.4. For each i ≥ 0, we have

Ri indG
H ' H i (X, ?) ◦L.

The goal in the remainder of the section is to sketch the proof of a result from
[Penkov 1988, §2.3] about Euler characteristics. Let π : G→ X be a quotient of
G by H as before. We now make the following additional assumptions:

(Q4) the restriction πev : Gev→ Xev of π to the underlying purely even schemes
is a quotient of Gev by Hev;

(Q5) X is locally decomposable.

Write i : Xev → X for the canonical closed immersion. The map i is Gev-
equivariant, so taking direct and inverse images as OX -supermodules give functors

i∗ :modOXev Gev →modOX Gev, i∗ :modOX Gev →modOXev Gev .

There is a natural restriction functor resG
Gev
: qcohOX G→ qcohOX Gev

, and obviously

(6) H i (X, resG
Gev

M)' resG
Gev

H i (X, M)

for any quasicoherent OX G-supermodule M. Finally, by a special case of the above
theory, applied to the quotient πev : Gev → Xev of Gev by Hev, we have inverse
equivalences

Lev :modHev → qcohOXev Gev
, Eev : qcohOXev Gev

→modHev .

Lemma 2.5. For any H-supermodule M , we have

i∗(resG
Gev

L(M))' Lev(resH
Hev

M).

Proof. Let M be a quasicoherent OX G-supermodule. Then,

V(i∗M)ē ' (V(M)×X Xev)ē = V(M)×X Xev×Xev Spec k

' V(M)×X Spec k = V(M)ē.

Hence, Eev(i∗M) ' E(M) as Hev-supermodules. The lemma follows on applying
the functor Lev to both sides. �

Suppose that M is a quasicoherent OX G-supermodule. The canonical filtration
(2) of M is a filtration as an OX Gev-supermodule (for instance, JX M is the kernel
of the canonical map M→ i∗i∗M). The factors are OXev Gev-supermodules.

Lemma 2.6. There is an isomorphism

JX/J2
X ' Lev((Lie G/ Lie H)∗1̄)

as OXev Gev-supermodules.
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Proof. The sheaf �X of (super) Kähler differentials on X (over k) has a natural G-
structure, and the closed immersion i : Xev→ X induces a standard exact sequence

JX/J2
X

δ
−→�X ⊗OX OXev −→�Xev −→ 0

of OXev Gev-supermodules (see [Hartshorne 1977, II.8.12], with appropriate modi-
fications in the super case). Using the assumption that X is locally decomposable,
one checks by reducing to the case that X is affine and decomposable that the
map δ is a monomorphism. Now we note that E(�X ) ' (Lie(G)/ Lie(H))∗ and
Eev(�Xev) ' (Lie(Gev)/ Lie(Hev))

∗. Applying the equivalence of categories Eev

and Lemma 2.5, we obtain an exact sequence

0−→ Eev(JX/J2
X )−→ (Lie(G)/ Lie(H))∗ −→ (Lie(Gev)/ Lie(Hev))

∗
−→ 0

of Hev-supermodules. Since Lie(Gev) = Lie(G)0̄ and similarly for H , we deduce
that

Eev(JX/J2
X )' (Lie(G)/ Lie(H))∗1̄

and the lemma follows. �

Theorem 2.7. Let M be an H-supermodule. Then, the factors in the canonical
filtration of L(M) satisfy

Ji
X L(M)/Ji+1

X L(M)' Lev(Si
[(Lie G/ Lie H)∗1̄]⊗ resH

Hev
M)

as OXev Gev-supermodules.

Proof. Note L(M) is locally free by Theorem 2.3. So we obtain from Lemma 2.1
an isomorphism

Ji
X L(M)/Ji+1

X L(M)' Si (JX/J2
X )⊗OXev

M/JX M.

This is actually an isomorphism as OXev Gev-supermodules. So the theorem follows
using Lemmas 2.5 and 2.6. (We have noted that the usual operations of tensor
algebra commute with the functor Lev). �

For the final corollary, we make one further assumption:

(Q6) Xev is projective.

Corollary 2.8. For any finite-dimensional H-supermodule M , we have∑
i≥0

(−1)i(resG
Gev

Ri indG
H M

)
=

∑
i≥0

(−1)i(Ri indGev
Hev

(
S((Lie G / Lie H)∗1̄)⊗M

))
,

where the equality is written in the Grothendieck group of finite-dimensional Gev-
supermodules.
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Proof. By Theorem 2.3, Corollary 2.4 and Serre’s finiteness theorem, the func-
tor Ri indG

H sends finite-dimensional H -supermodules to finite dimensional G-
supermodules, and similarly for Ri indGev

Hev
. So all modules appearing in the formula

are finite-dimensional. Moreover, only finitely many terms in either summation
are nonzero by Grothendieck vanishing. So the formula at least makes sense. Now
combine (6), Corollary 2.4, Theorem 2.7 and additivity of Euler characteristics. �

3. Flag superschemes of type Q(n)

Now we are ready to introduce the supergroup G = Q(n) into the picture. Recall
from [Brundan and Kleshchev 2003, §3] that G is the functor from the category of
commutative superalgebras to the category of groups defined on a superalgebra A
so that G(A) is the group of all invertible 2n× 2n matrices of the form

(7) g =
(

S S′

−S′ S

)
where S is an n×n matrix with entries in A0̄ and S′ is an n×n matrix with entries
in A1̄. The underlying even group Gev is isomorphic to GL(n).

We also need the closed subgroup H of G defined on a commutative super-
algebra A so that H(A) consists of all matrices of the form (7) with S, S′ being
diagonal matrices, and the standard Borel subgroup B of G defined so that B(A)

consists of matrices with S, S′ being lower triangular. Let T = Hev be the standard
n-dimensional maximal torus of Gev. Let X (T ) be the character group of T , the
free abelian group on generators ε1, . . . , εn where εi : T → Gm picks out the i th
diagonal entry. The root system associated to Gev is denoted R = R+ ∪ (−R+),
where R+ = {εi − ε j | 1 ≤ i < j ≤ n} ⊂ X (T ). We partially order X (T ) by the
usual dominance order, so λ≤ µ if and only if µ− λ is a sum of positive roots.

For λ =
∑n

i=1 λiεi ∈ X (T ), we write xλ
= xλ1

1 . . . xλn
n ∈ Z[x±1

1 , . . . , x±1
n ].

The Weyl group W ∼= Sn associated to Gev acts naturally on X (T ) hence on
Z[x±1

1 , . . . , x±1
n ]. The character

ch M :=
∑

λ∈X (T )

(dim Mλ)xλ

of a finite-dimensional G-supermodule M is naturally W -invariant, so is an element
of the ring Z[x±1

1 , . . . , x±1
n ]

W of symmetric functions.
The irreducible G-supermodules are classified in [Brundan and Kleshchev 2003,

Theorem 6.11] by their highest weights. For every λ =
∑n

i=1 λiεi ∈ X (T ), there
is by [Brundan and Kleshchev 2003, Lemma 6.4] a unique irreducible H -super-
module denoted u(λ) with character 2b(h p′ (λ)+1)/2cxλ, where h p′(λ) denotes the
number of i = 1, . . . , n for which p - λi . Let X+p (T ) denote the set of all λ =
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i=1 λiεi ∈ X (T ) such that λ1 ≥ · · · ≥ λn , and moreover λi = λi+1 implies p |λi

for each i = 1, . . . , n − 1. Then, according to [Brundan and Kleshchev 2003,
Theorem 6.11], the induced module

(8) H 0(λ) := indG
B u(λ)

is nonzero if and only if λ ∈ X+p (T ), and in that case H 0(λ) has a unique irre-
ducible submodule denoted L(λ). The {L(λ) | λ ∈ X+p (T )} form a complete set
of pairwise nonisomorphic irreducible G-supermodules. Also by [Brundan and
Kleshchev 2003, Lemma 6.10], L(λ)λ ' u(λ) and the lowest weight of L(λ) is
w0λ, where w0 is the longest element of W .

Next we introduce the standard Levi subgroups of G. Just as for GL(n), these
can be parametrized by compositions of n, i.e., tuples γ = (γ1, . . . , γs) of positive
integers summing to n. Given such a γ , the standard Levi subgroup

Gγ
∼= Q(γ1)× · · ·× Q(γs)

of G is defined on a commutative superalgebra A so that Gγ (A) is the subgroup
of G(A) consisting of all elements of the form (7) with S, S′ being block diago-
nal matrices, block sizes γ1, . . . , γs down the diagonal. The standard parabolic
subgroup Pγ with Levi factor Gγ is defined similarly, so Pγ (A) consists of all
elements of the form (7) with S, S′ being lower triangular block matrices, block
sizes γ1, . . . , γs down the diagonal. Also let U+γ denote the unipotent radical of
the opposite parabolic subgroup to Pγ . Thus, U+γ (A) consists of all matrices of the
form (7) with S, S′ being upper unitriangular block matrices, block sizes γ1, . . . , γs

down the diagonal. The root system associated to Gγ will be denoted Rγ ⊆ R, and
its Weyl group is Wγ ≤W , with longest element denoted wγ .

Lemma 3.1. Let λ∈ X+p (T ) and γ be a composition of n satisfying wγ λ=λ. Then,
indPγ

B u(λ)' u(λ), i.e., the H-action on u(λ) extends uniquely to a Pγ -action.

Proof. As in [Brundan and Kleshchev 2003, Lemma 6.10(i)], the lowest weight of
indPγ

B u(λ) is wγ λ= λ. �

We need the parabolic analogue of the big cell. For 1 ≤ i, j ≤ n, let si, j resp.
s ′i, j be the coordinate function picking out the i j-entry of the matrix S resp. S′ of
g ∈ G(A) written in the form (7). As in [Brundan and Kleshchev 2003, §3], the
coordinate ring k[G] is the free commutative superalgebra on even generators si, j

and odd generators s ′i, j localized at det :=det((si, j )1≤i, j≤n). Instead, for 1≤m≤n,
define detm to be the determinant of the m × m matrix (si, j )1≤i, j≤m . Given a
composition γ = (γ1, . . . , γs) of n, set

detγ = detγ1 detγ1+γ2 . . . detγ1+γ2+···+γs .
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We will denote the principal open subset of G defined by detγ by �γ ; so �γ is an
affine superscheme with coordinate ring k[�γ ] being the localization of k[G] at
detγ . Proceeding by induction on the number s of blocks, one shows as in [Brundan
and Kleshchev 2003, Theorem 3.5] that:

Lemma 3.2. Multiplication defines an isomorphism of affine superschemes be-
tween Pγ ×U+γ and �γ .

Let V be the natural G-supermodule. Thus, V is the vector superspace on basis
v1, . . . , vn, v

′

1, . . . , v
′
n , where vi is even and v′i is odd. For a superalgebra A, we

identify elements of V ⊗ A with column vectors

n∑
i=1

(vi ⊗ ai + v′i ⊗ a′i )←→



a1
...

an

a′1
...

a′n


.

Then, the action of G(A) on V ⊗ A defining the supermodule structure is the
obvious action on column vectors by left multiplication. Moreover, the map J :
V → V taking each vi to v′i and each v′i to −vi is an odd automorphism of V as a
G-supermodule.

Instead, let Ṽ denote the affine superscheme defined on a superalgebra A by
Ṽ (A) := Homk(V, A) and on a morphism θ : A→ B of superalgebras by Ṽ (θ) :

Ṽ (A)→ Ṽ (B), f 7→ θ ◦ f . Note Ṽ (A) is a free left A-supermodule of rank n|n,
with action defined by (a · f )(v)= a( f (v)). Indeed, we can identify functions in
Ṽ (A) with row vectors so that

f ←→
(

f (v1), . . . , f (vn), f (v′1), . . . , f (v′n)
)
.

Now right multiplication defines a right action of G(A) on Ṽ (A) by A-supermodule
automorphisms for each A. Hence we have a right action ρ : Ṽ ×G→ Ṽ of G on
the superscheme Ṽ . There is a G-equivariant morphism J̃ : Ṽ → Ṽ , defined by
J̃ ( f )(v)= (−1) f̄ f (J (v)) for each v ∈ V, f ∈ Ṽ (A) and each superalgebra A.

At last we can introduce the flag superscheme Xγ corresponding to a composi-
tion γ = (γ1, . . . , γs) of n. Let di = γ1+· · ·+γi for short. Given a superalgebra A,
a J -invariant γ -flag in Ṽ (A) means a chain ( f1 ⊆ · · · ⊆ fs) of J -invariant direct
summands of the free A-supermodule Ṽ (A), where each fi has rank di |di as a
projective A-supermodule. Let Xγ denote the functor mapping a superalgebra A
to the set Xγ (A) of all such J -invariant γ -flags in Ṽ (A). For a morphism θ : A→ B,
Xγ (θ) : Xγ (A)→ Xγ (B) is the map induced by composing with θ .
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The right action of G on Ṽ induces a right action ρ : Xγ × G → Xγ of G on
Xγ . Let fγ = ( f1 ⊆ · · · ⊆ fs) ∈ Xγ (k) denote the standard γ -flag, where fi is
the direct summand of Ṽ (k)=Homk(V, k) consisting of all functions annihilating
vdi+1, . . . , vn, v

′

di+1, . . . , v
′
n . Note that stabG fγ = Pγ , i.e. Pγ (A) is the stabilizer

in G(A) of the canonical image of fγ in Xγ (A) for each superalgebra A. We get
a corresponding orbit map

πγ : G→ Xγ

defined for each superalgebra A and g∈G(A) by πγ (g) := fγ ·g, which is constant
on right Pγ (A)-cosets in G(A) for each A. In fact, according to a result of Manin,
πγ : G→ Xγ is the quotient of G by the parabolic subgroup Pγ :

Theorem 3.3. πγ : G→ Xγ satisfies the properties (Q1)–(Q6) from the previous
section.

The properties (Q4) and (Q6) hold because the underlying even scheme Xγ,ev

is precisely the usual flag variety of GL(n). For the remaining properties, the main
step is to show that Xγ really is a superscheme, for which we refer to [Manin 1997,
ch. 4, §3; 1991, §3.1]. One can also give a proof directly in the functorial language
that Xγ is a superscheme along the lines of the arguments in [Demazure and Gabriel
1970, I, §1, 3.13], by constructing an affine open cover and checking directly that
Xγ is local in the sense of [Demazure and Gabriel 1970, I, §1, 3.11]. We just
describe the construction of the affine open cover here; all the other properties
claimed follow easily given this.

Let eγ = (e1 ⊆ · · · ⊆ es) be the J -invariant γ -flag in the vector superspace
V with ei = span{v1, . . . , vdi , v

′

1, . . . , v
′

di
}. Let U1 denote the subfunctor of Xγ

defined by

U1(A)=

{
( f1 ⊆ · · · ⊆ fs) ∈ Xγ (A)

∣∣∣∣ fi is a complement to
annṼ (A)(ei ) in Ṽ (A)

}
for each superalgebra A. Then, U1 is an open subfunctor of Xγ , π−1

γ (U1) is the big
cell Pγ U+γ = �γ ⊂ G (see Lemma 3.2), and the restriction of πγ to U+γ gives an

isomorphism U+γ
∼
→U1. It follows that for any w∈W , the translate Uw :=U1 ·w

−1

is isomorphic to U+γ , hence it is a decomposable open affine subfunctor of Xγ . For
each A that is a field, the {Uw(A) | w ∈W } cover Xγ (A). Moreover, Uw =Uw′ if
and only if wWγ = w′Wγ . Hence

{Uw | w ∈W γ
}

is the desired affine open cover of Xγ , where W γ denotes the set of minimal length
W/Wγ -coset representatives.
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4. Euler characteristics and Schur’s P-functions

Now we combine the results of the previous two sections. Continue with the no-
tation of §3. Let λ=

∑n
i=1 λiεi ∈ X+p (T ). Gathering together equal parts, we can

write (λ1, . . . , λn)= (aγ1
1 , aγ2

2 , . . . , aγs
s ) with a1 > a2 > · · ·> as and

∑s
i=1 γi = n.

We thus obtain from λ a composition γ (λ) := (γ1, . . . , γs) of n. Schur’s P-function
pλ is defined by:

(9) pλ =

∑
w∈W γ (λ)

w

(
xλ

∏
1≤i< j≤n

λi >λ j

xi + x j

xi − x j

)
.

This is the definition from [Macdonald 1995, III (2.2)] with t there equal to −1;
compare [Macdonald 1995, III.8]. (Actually, Macdonald only describes the case
when all λi ≥ 0, but everything easily extends to λi ∈ Z.) For any λ ∈ X (T ), let
aλ =

∑
w∈W sgn(w)wxλ. Writing ρ =

∑n
i=1(n− i)εi ∈ X+(T ), aρ is the Weyl de-

nominator and equals
∏

1≤i< j≤n(xi − x j ) by [Macdonald 1995, I.3]. The classical
Schur function sλ can then be defined for arbitrary λ ∈ X (T ) by sλ := aλ+ρ/aρ .

Lemma 4.1. For λ ∈ X+p (T ),

(i) pλ =

∑
w∈W

sgn(w) w

(
xλ+ρ

∏
1≤i< j≤n

λi >λ j

(1+ x−1
i x j )

)/ ∏
1≤i< j≤n

(xi − x j );

(ii) pλ =

∑
S⊆R+−R+γ (λ)

sλ−
∑

S.

Proof. (i) The given expression equals

∑
w∈W

w

(
xλ+ρ

∏
λi >λ j

(1+ x−1
i x j )∏

i< j (xi−x j )

)
=

∑
w∈W

w

(
xλ

∏
1≤i< j≤n

λi >λ j

xi+x j

xi−x j

∏
1≤i< j≤n

λi=λ j

xi

xi−x j

)
.

Now [Macdonald 1995, III(1.4)] with t = 0 shows that∑
w∈W

w

(∏
i< j

xi

xi − x j

)
= 1.

The conclusion now follows on observing that w ∈Wγ (λ) fixes

xλ
∏

λi >λ j

(xi + x j )

(xi − x j )
.
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(ii) We note that ∏
λi >λ j

(1+ x−1
i x j )=

∑
S⊆R+−R+γ (λ)

x−
∑

S.

Now (ii) follows immediately using (i). �

Schur’s P-functions arise naturally for us as certain Euler characteristics. Sup-
pose that λ ∈ X+p (T ), and define γ = γ (λ) as above. By Lemma 3.1, we can view
u(λ) as a Pγ -supermodule. For any i ≥ 0, define

H i (λ) := Ri indG
Pγ

u(λ).

We note that indG
B u(λ)' indG

Pγ
(indPγ

B u(λ))= indG
Pγ

u(λ) by transitivity of induc-
tion, i.e. the new definition of H 0(λ) agrees with the old one from (8).

By Theorem 3.3, the flag superscheme Xγ is the quotient of G by Pγ . So we
also have

H i (λ)= H i (Xγ , L(u(λ))),

invoking Corollary 2.4. Moreover, as in the proof of Corollary 2.8, Grothendieck’s
vanishing theorem and Serre’s finiteness theorem imply:

Lemma 4.2. Each H i (λ) is finite-dimensional, and is 0 for i > dim Xγ (λ).

So we obtain a well-defined element of the character group of G:

Eλ :=

∑
i≥0

(−1)i ch H i (λ) ∈ Z[x±1
1 , . . . , x±n

n ]
W .

We can compute these explicitly using Corollary 2.8:

Theorem 4.3. For λ ∈ X+p (T ), Eλ = 2b(h p′ (λ)+1)/2c pλ.

Proof. Let γ = γ (λ), P = Pγ . For G = Q(n), it is obvious that

(Lie(G)/ Lie(P))∗1̄ '5(Lie(Gev)/ Lie(Pev))
∗

as a Gev-supermodule. So Corollary 2.8 tells us that∑
i≥0

(−1)i ch H i (λ)=
∑
i≥0

(−1)i ch Ri indGev
Pev

(∧
(Lie(Gev)/ Lie(Pev))

∗
⊗ u(λ)

)
.

We note that for any Pev-module M , Ri indGev
Pev

M ∼= Ri indGev
Bev

M by [Jantzen 1987,
II.4.11] and the tensor identity. Since Euler characteristic is additive on short exact
sequences, it therefore suffices to determine the composition factors of the Bev-
module

∧
(Lie(Gev)/ Lie(Pev))

∗
⊗ u(λ): its character is

dim u(λ)
∑

S⊆R+−R+γ

xλ−
∑

S.
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By Weyl’s character formula [Jantzen 1987, II.5.10], we have∑
i≥0

ch Ri indGev
Bev

kµ = sµ.

So ∑
i≥0

ch H i (λ)= dim u(λ)
∑

S⊆R+−R+γ

sλ−
∑

S.

Now we are done using Lemma 4.1(ii), recalling finally that

dim u(λ)= 2b(h p′ (λ)+1)/2c. �

For λ ∈ X+p (T ), set Lλ := ch L(λ). The sets

{Lλ | λ ∈ X+p (T )}

form a Z-basis for the character group of G. So we can write

(10) Eλ =

∑
µ∈X+p (T )

dλ,µLµ

for dλ,µ∈Z. The resulting integer matrix D= (dλ,µ)λ,µ∈X+p (T ) is the decomposition
matrix of G. By Theorem 4.3, Eλ equals xλ

+(∗) where (∗) is a linear combination
of xµ for µ < λ, and similarly Lλ has this form. So we have dλ,λ = 1 and dλ,µ = 0
if µ 6≤ λ. Hence, D is a unitriangular matrix if rows and columns are ordered in
some way refining dominance, and in particular

{Eλ | λ ∈ X+p (T )}

gives us another natural basis for the character group of G. If p = 0, the decom-
position matrices are known explicitly, see [Brundan 2004]. For some examples of
decomposition matrices in positive characteristic, see the tables at the end of the
article.

We record here one other consequence of Theorem 2.7, giving complete infor-
mation about the characters of all Ri indG

B u(λ) in the case G = Q(2):

Lemma 4.4. Suppose that G = Q(2) and λ ∈ X (T ).

(i) For λ ∈ X+p (T ),

ch indG
B u(λ)= 2b(h p′ (λ)+1)/2c(xλ

+ 2xλ−α
+ · · ·+ 2xw0λ+α

+ xw0λ).

(ii) For λ /∈ X+p (T ), ch indG
B u(λ)= 0.

(iii) ch R1 indG
B u(λ)= ch indG

B u(w0λ).

In particular, indG
B k ' k, R1 indG

B k '5k.
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Proof. Let X denote the quotient of G by B. By Theorem 2.7, the canonical
filtration gives rise to a short exact sequence of quasicoherent OX Gev-supermodules

(11) 0−→ Lev(5k−α ⊗ u(λ))−→ L(u(λ))−→ Lev(u(λ))−→ 0,

where α = ε1 − ε2. Also we already know from the classification [Brundan and
Kleshchev 2003, Theorem 6.11] that indG

B u(λ) = 0 unless λ is p-strict and by
Lemma 3.1 that indG

B u(λ) ' u(λ) in case λ1 = λ2 with p |λi . The lemma follows
on combining these facts, the long exact sequence arising from (11) and the known
cohomology of equivariant line bundles on P1. �

5. Serre duality and some examples

We now give a few simple examples. To do this, we need to make use in addition
of Serre duality for the flag superschemes Xγ . We could not find any satisfactory
reference for this, but see at least the discussion in [Voronov et al. 1988, §2]. Let
us state the theorem:

Theorem 5.1. Let γ be a composition of n and N = |R+γ |. There is a natural
isomorphism

(Ri indG
Pγ

M)∗ ∼= RN−i indG
Pγ

(M∗)

for each finite-dimensional Pγ -supermodule M .

Example 5.2. For λ ∈ X+p (T ), define V (λ) := RN indG
B u(w0λ), where N =

1
2 n(n − 1). By Serre duality, V (λ) ∼= H 0(−w0λ)∗; that is, V (λ) is the univer-
sal highest weight module of [Brundan and Kleshchev 2003, (6.14), (10.14)].
In particular, V (λ) has a unique irreducible quotient isomorphic to L(λ), and
ch V (λ)= ch H 0(λ).

Example 5.3. Let us compute ch H 0(ε1−ε3) for G = Q(3). Let P1, P2 denote the
minimal parabolic subgroups of G corresponding to the simple roots ε1 − ε2 and
ε2 − ε3 respectively. Denote the irreducible Pi -supermodule of highest weight µ

by L i (µ). We proceed in steps.

(i) To start with, Serre duality gives H 3(ε1− ε3)∼= H 0(−ε1+ ε3)
∗ which is zero

since −ε1+ ε3 /∈ X+p (T ).

(ii) The Q(2)-supermodule H 0(ε1) is irreducible, so

indP1
B u(ε1− ε3)∼= L1(ε1− ε3).

Hence,
(indP1

B u(ε1− ε3))
∗ ∼= L1(−ε2+ ε3)∼= indP1

B u(−ε2+ ε3).
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Applying Serre duality, we deduce that

R1 indP1
B u(ε2− ε3)∼= indP1

B u(ε1− ε3).

Since Ri indP1
B u(ε2− ε3)= 0 for i 6= 1, we have

Ri indG
P1

(R1 indP1
B u(ε2− ε3))∼= Ri+1 indG

B u(ε2− ε3).

Similarly,

Ri indG
P1

(indP1
B u(ε1− ε3))∼= Ri indG

B u(ε1− ε3).

So we have shown that

Ri+1 indG
B u(ε2− ε3)∼= Ri indG

B u(ε1− ε3)

for each i ≥ 0. As in step (i), the left hand side is zero for i = 2, since−ε2+ε3 does
not lie in X+p (T ). Hence, H 2(ε1− ε3)= 0 and H 1(ε1− ε3)∼= R2 indG

B u(ε2− ε3).

(iii) By Lemma 4.4, the character of the Q(2)-supermodule H 0(ε1− ε2) is

2eε1−ε2 + 4+ 2eε2−ε1 .

By decomposing the adjoint representation of Q(2), the irreducible Q(2)-super-
module L(ε1− ε2) has character 2eε1−ε2 + 2+ 2eε2−ε1 . Hence, we have the short
exact sequence

0−→ L2(ε2− ε3)−→ indP2
B u(ε2− ε3)−→ C −→ 0

of P2-supermodules, where C has character 2. Dualizing and applying Serre dual-
ity gives the short exact sequence

0−→ D −→ R1 indP2
B u(−ε2+ ε3)−→ L2(ε2− ε3)−→ 0

where D has character 2. Considering the resulting long exact sequences gives
exact sequences

R2 indG
P2

L2(ε2−ε3)→ R2 indG
B u(ε2−ε3)→ R2 indG

P2
C→ R3 indG

P2
L2(ε2−ε3)=0

and

0= R3 indG
B u(−ε2+ ε3)−→ R2 indG

P2
L2(ε2− ε3)−→ R3 indG

P2
D = 0.

Hence R2 indG
B u(ε2 − ε3) ∼= R2 indG

P2
C . Serre duality implies that the latter has

character 2, so we have shown that ch H 1(ε1− ε3)= 2.

(iv) Hence, by the definition (10), ch H 0(ε1− ε3)= Eε1−ε3 + 2.
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Example 5.4. Continue with G=Q(3) and let λ=4ε1+3ε2+2ε3. In characteristic
0, H 0(λ) is irreducible by the linkage principle [Brundan and Kleshchev 2003,
Theorem 8.10], so its character is known by [Sergeev 1984]: ch H 0(λ)= Eλ. But
in characteristic 3, the Frobenius twist of determinant gives us a one dimensional
G-supermodule detp of character x3(ε1+ε2+ε3). So by the tensor identity [Brundan
and Kleshchev 2003, (6.3)] and the previous example, we have

ch H 0(λ)= ch H 0(ε1− ε3)x3(ε1+ε2+ε3) = Eλ+ 2x3(ε1+ε2+ε3).

This example shows that the characters of the induced modules H 0(λ) are not
stable under reduction modulo p, even for strict λ.

6. Linkage principle for Euler characteristics

In [Brundan and Kleshchev 2003, §8], we introduced the notion of the residue
content cont(λ) of λ ∈ X (T ). This is a tuple (c0, c1, . . . , c`) of integers, where
` = (p− 1)/2 or∞ in case p = 0. Rather than recall the definition here, we just
give one example: let n = 6, λ = (9, 7, 4, 0,−5,−8) and p = 5. We represent λ

pictorially as

2 1 0 0 1 2 1 0
0 1 2 1 0

0
0
0

1
1
1

2
2
2

1
1
1

0
0

0
0

1
1 2 1

− +

Note in this example that `= 2. The content of λ is (2, 4, 1), 2 counting the total
number of entries in the diagram equal to 0 (there being 7 in the positive half of
the diagram and 5 in the negative half), 4 counting the total number entries equal
to 1 and 1 counting the total number of entries equal to 2.

In Theorem 8.10 of the same reference, we showed that the composition mul-
tiplicity [H 0(λ) : L(µ)] is zero unless cont(µ) = cont(λ). We wish now to show
moreover that the decomposition number dλ,µ is zero unless cont(µ) = cont(λ).
For the proof, we will work in a rather larger category. Recall the definition of
the superalgebra of distributions Dist(G) from [Brundan and Kleshchev 2003, §4].
It was constructed there by reduction modulo p from the Kostant Z-form for the
enveloping superalgebra of the Lie superalgebra q(n, C), proving that it has a PBW
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basis given by all monomials∏
1≤i 6= j≤n

e(ai, j )

i, j

(
e′i, j

)di, j ∏
1≤i≤n

(
hi

ai,i

) (
h′i
)di,i

,

for all ai, j ∈ Z≥0 and di, j ∈ {0, 1} (the product being taken in some arbitrary but
fixed order). For a Dist(G)-supermodule M and λ=

∑n
i=1 λiεi , we let

Mλ =

{
m ∈ M

∣∣∣∣ (hi

r

)
m =

(
λi

r

)
m for all i = 1, . . . , n, r ≥ 0

}
.

Also let Dist(B+) be the subalgebra of Dist(G) generated by Dist(H) and all
e(r)

i, j , e′i, j for 1≤ i < j≤n, r≥1. Let On be the category of all Dist(G)-supermodules
M satisfying the properties

(1) M is locally finite when viewed as a Dist(B+)-supermodule;

(2) M =
⊕

λ∈X (T ) Mλ.

By [Brundan and Kleshchev 2003, Corollary 5.7], we can identify the category of
all G-supermodules with the full subcategory Cn of On consisting of all M ∈ On

that are locally finite as Dist(G)-supermodules.
The basic objects in category On are the Verma supermodules

M(λ) := Dist(G)⊗Dist(B+) u(λ)

for each λ∈ X (T ). By standard arguments, M(λ) has a unique irreducible quotient
denoted L(λ), and the supermodules {L(λ) |λ∈ X (T )} form a complete set of pair-
wise nonisomorphic irreducibles in category On . Note L(λ) is finite-dimensional
if and only if λ ∈ X+p (T ), when it agrees with the G-supermodule denoted L(λ)

earlier. The character of M(λ) is given by

(12) ch M(λ)= xλ
∏

1≤i< j≤n

1+ x−1
i x j

1− x−1
i x j

∈ Z[x±1
1 ][[x

−1
i x j | 1≤ i < j ≤ n]].

Lemma 6.1. For λ, µ ∈ X (T ), [M(λ) : L(µ)] is zero unless cont(λ)= cont(µ).

Proof. This follows immediately from [Brundan and Kleshchev 2003, Lemmas
8.4, 8.9]. �

Lemma 6.2. The series∏
1≤i< j≤n

1− x−1
i x j

1+ x−1
i x j

∈ Z[[x−1
i x j | 1≤ i < j ≤ n]]

is an infinite linear combination of xµ’s for µ≤ 0 with cont(µ)= (0, . . . , 0).
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Proof. Working in Z[x±1
1 ][[x

−1
i x j | 1≤ i < j ≤ n]], we can write the character 1 of

the trivial module as a linear combination of characters of Verma supermodules.
In view of (12) and Lemma 6.1, this expression only involves Verma characters of
the form ch M(µ) for µ≤ 0 with cont(µ)= (0, . . . , 0). Hence,

1=
∑
µ≤0

wt(µ)=0

(
aµxµ

∏
1≤i< j≤n

1+ x−1
i x j

1− x−1
i x j

)

for some coefficients aµ ∈ Z. The lemma follows. �

Now we can prove the main result of the section.

Theorem 6.3. For λ, µ ∈ X+p (T ), dλ,µ is zero unless cont(λ)= cont(µ).

Proof. Let λ =
∑n

i=1 λiεi ∈ X+p (T ). Working in Z[x±1
1 ][[x

−1
i x j | 1 ≤ i < j ≤ n]],

we will show that Eλ can be written as a (possibly infinite) linear combination of
ch M(µ)’s for µ ∈ X (T ) with cont(µ) = cont(λ). The theorem follows from this
and Lemma 6.1. By Theorem 4.3 and (9), we have

Eλ = 2b(h(λ)+1)/2c
∑

w∈W γ (λ)

w

(
xλ

∏
1≤i< j≤n

λi=λ j

1− x−1
i x j

1+ x−1
i x j

∏
1≤i< j≤n

1+ x−1
i x j

1− x−1
i x j

)

= 2b(h(λ)+1)/2c
∑

w∈W γ (λ)

(−1)`(w) xwλ
∏

1≤i< j≤n
λi=λ j

1− x−1
wi xw j

1+ x−1
wi xw j︸ ︷︷ ︸

∏
1≤i< j≤n

1+ x−1
i x j

1− x−1
i x j

.

By Lemma 6.2, the term marked by braces is a (possibly infinite) linear combi-
nation of xµ’s for µ ≤ wλ with cont(µ) = cont(wλ) = cont(λ). Hence recalling
(12), Eλ is a (possibly infinite) linear combination of ch M(µ)’s for µ∈ X (T ) with
cont(µ)= cont(λ). �

Supplement: Some decomposition matrices for polynomial representations in
characteristic p = 3, for n large.

d=3 (21) (3)

(21) 1 0
(3) 1 1

d=4 (31) (4)

(31) 1 0
(4) 1 1

d=5 (32) (41) (5)

(32) 1 0 0
(41) 0 1 0
(5) 1 0 1
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d=6 (321) (32) (42) (51) (6)

(321) 1 0 0 0 0
(32) 1 1 0 0 0
(42) 2 2 1 0 0
(51) 1 2 1 1 0
(6) 1 1 0 1 1

d=7 (321) (421) (43) (52) (61) (7)

(321) 1 0 0 0 0 0
(421) 2 1 0 0 0 0
(43) 1 1 1 0 0 0
(52) 0 0 0 1 0 0
(61) 1 1 1 0 1 0
(7) 1 0 0 0 1 1

d=8 (322) (431) (521) (53) (62) (71) (8)

(322) 1 0 0 0 0 0 0
(431) 0 1 0 0 0 0 0
(521) 2 0 1 0 0 0 0
(53) 1 0 1 1 0 0 0
(62) 1 0 1 1 1 0 0
(71) 0 1 0 0 0 1 0
(8) 1 0 0 0 1 0 1

d=9 (3221) (33) (432) (531) (54) (621) (63) (72) (81) (9)

(3221) 1 0 0 0 0 0 0 0 0 0
(33) 1 1 0 0 0 0 0 0 0 0
(432) 0 0 1 0 0 0 0 0 0 0
(531) 2 2 1 1 0 0 0 0 0 0
(54) 1 2 0 1 1 0 0 0 0 0
(621) 2 2 0 1 0 1 0 0 0 0
(63) 1 3 0 1 1 1 1 0 0 0
(72) 1 6 1 1 1 2 2 1 0 0
(81) 1 4 1 0 0 1 2 1 1 0
(9) 1 2 0 0 0 1 2 0 1 1

d=10 (331) (4321) (432) (532) (541) (631) (64) (721) (73) (82) (91) (10)

(331) 1 0 0 0 0 0 0 0 0 0 0 0
(4321) 0 1 0 0 0 0 0 0 0 0 0 0
(432) 1 1 1 0 0 0 0 0 0 0 0 0
(532) 0 0 0 1 0 0 0 0 0 0 0 0
(541) 2 2 2 0 1 0 0 0 0 0 0 0
(631) 2 1 1 0 1 1 0 0 0 0 0 0
(64) 1 0 1 0 1 1 1 0 0 0 0 0
(721) 2 1 2 0 1 2 0 1 0 0 0 0
(73) 1 1 3 0 1 2 1 1 1 0 0 0
(82) 0 0 0 1 0 0 0 0 0 1 0 0
(91) 1 1 2 0 0 1 0 1 1 0 1 0
(10) 1 0 0 0 0 1 0 0 0 0 1 1
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d=11 332 4321 5321 532 542 632 641 65 731 74 821 83 92 10,1 11

332 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4321 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5321 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
532 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
542 2 0 2 2 1 0 0 0 0 0 0 0 0 0 0
632 2 0 1 1 1 1 0 0 0 0 0 0 0 0 0
641 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
65 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0
731 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
74 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
821 2 0 1 2 1 2 0 0 0 0 1 0 0 0 0
83 1 0 1 3 1 2 0 1 0 0 1 1 0 0 0
92 1 0 1 2 0 1 0 0 0 0 1 1 1 0 0

10,1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
11 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1

d=12 3321 34 4322 5321 5421 543 6321 632 642 651 62 732 741 75 831 84 921 93 10,2 11,1 12

3321 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4322 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5321 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5421 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
543 1 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6321 1 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
632 2 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
642 4 8 1 2 3 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0
651 1 4 1 0 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0
62 1 4 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

732 3 6 1 1 2 1 2 2 1 0 0 1 0 0 0 0 0 0 0 0 0
741 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
75 2 6 0 0 2 2 2 2 1 2 0 1 0 1 0 0 0 0 0 0 0

831 2 6 1 1 2 2 3 2 1 1 0 1 0 0 1 0 0 0 0 0 0
84 1 4 0 1 2 3 3 2 1 2 0 1 0 1 1 1 0 0 0 0 0

921 2 2 0 1 1 1 2 0 0 0 0 0 0 0 1 0 1 0 0 0 0
93 1 3 0 1 1 2 2 1 0 1 1 0 0 0 1 1 1 1 0 0 0

10,2 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 2 0 1 0 0
11,1 1 2 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0
12 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1
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