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We construct and classify minimal surfaces foliated by horizontal curves
of constant curvature in H2×R, R2×R and S2×R. The main tool is the
existence of a Shiffman Jacobi field; such fields characterize the property of
being foliated by circles in these product manifolds.

1. Introduction

We are interested in minimal surfaces properly embedded in the product space
M × R, where M is a complete Riemannian surface with constant curvature c0.
The main examples are M = H2, R2, S2. When c0 = 0, this is the theory of
periodic (singly, doubly, and triply) minimal surfaces in R3 and has been well
developed; see [Meeks 1990; Meeks et al. 1998; 2004; Meeks and Rosenberg
1989]. For general M , the theory was initiated by Rosenberg [2002] and developed
in [Nelli and Rosenberg 2002; Meeks and Rosenberg 2004, 2005]. These authors
have found a rich family of examples including helicoids, catenoids and unduloids
(surfaces of genus zero). By solving Plateau problems, they construct examples of
higher topological type inspired by the classical theory in R3.

Examples are so numerous that we intend to classify some of them. This paper
is devoted to annuli minimal surfaces properly embedded in product spaces and
transverse to M × {t} for every t ∈ R. We classify and construct all examples
foliated by constant curvature horizontal curves, a two parameter family in each
M × R. With the exception of catenoids in H2

× R, they are all simply periodic,
that is, properly embedded in the quotient space (M ×R)/T , where T is a vertical
translation or screw motion.

The main point is to present a unified point of view. Our computations and
parametrizations are transversal to each product space and contain the classical
theory of R3.
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Riemann constructed and classified examples of minimal surfaces foliated by
straight lines and circles in horizontal planes of R3. He construct a family of mini-
mal annuli with an infinite number of parallel flat ends distributed in a periodic way
along the vertical. We generalize this construction to the case where the ambient
space is H2

× R and S2
× R (Section 3).

In Section 2, we generalize the beautiful work of M. Shiffman [1956], finding
a Jacobi field derived from the derivative of the curvature of the horizontal curves.
Such a Jacobi field was used and explained by Y. Fang [1994] to characterize Rie-
mann’s examples in R3 as the unique properly embedded compact annuli bounded
by two circles. Fang and Wei [1998] extend this uniqueness result to the case
where the minimal annulus is bounded by two straight lines or circle with finite
total curvature less than 12π .

Shiffman’s Jacobi field is an important ingredient in the study of the uniqueness
conjecture of the Riemann example. In Theorem 2.4, in the spirit of [Fang 1994],
we prove an uniqueness result for compact annuli A having a Jacobi operator L of
index at most 1:

Main Theorem. Let A be a compact minimal annulus embedded in M × R, where
M is H2,R2 or S2, bounded by two curves of constant curvature in M × {t1} and
M × {t2}. If the corresponding Jacobi operator L has index at most 1, then A is
foliated by circles or geodesics; that is, A ∩ (M × {t}) is a curve with constant
curvature kg for all t ∈ [t1, t2].

In Section 3 we are inspired by the work of Abresch [1987] on constant mean
curvature tori in R3 to represent our examples by periodic elliptic functions. Then
we construct and classify a two-parameter family of minimal surfaces foliated by
constant curvature curves in horizontal sections. In particular we find a param-
etrization of Riemann’s classical example, which has been used to understand the
Jacobi operator in a forthcoming paper [Hauswirth and Pacard 2005]. R. Sá Earp
and E. Toubiana [2004] have constructed other minimal examples invariant under
screw motion and B. Daniel [2004] has explained the Gauss–Codazzi equations.
In this last work he found interesting formulas and geometric properties of some
examples described in this paper.

2. Minimal annuli transverse to horizontal planes

Let A ⊂ C be a domain and let M be a complete Riemannian two-manifold with
metric g and (not necessarily constant) Gaussian curvature KM . We consider
an embedded minimal surface X = (F, h) : A ⊂ R2

→ M × R, transverse to
M × {t} for every t ∈ R. Assume that M is isometrically embedded in Rk , for
k large enough. Now F : A → M ⊂ Rk has coordinates F = (F1, F2, . . . , Fk)

in Rk . By definition (see [Lawson 1980]) the mean curvature vector in Rk is



MINIMAL SURFACES IN THREE-DIMENSIONAL PRODUCT MANIFOLDS 93

EH = (4X)TX M×R
= ((4F)TF M ,4x3) = 0. Then F : A → M is a harmonic

map between A and the Riemannian surface M , while h : A → R is a proper real
harmonic function (see [Rosenberg 2002]).

The vertical coordinate h (with its harmonic conjugate h∗) parametrizes the
surface conformally. Indeed, dh never vanishes, by the transversality assumption,
so the holomorphic map i(h + ih∗) : A → C provides a conformal parameter
z = x + iy for A. In the following we will assume that X (z) = (F(z), y) is a
conformal embedding of A with the metric ds2

= λ(z)|dz|2 induced by X .
If (U, ρ(u)|du|

2) is a local parametrization of M , the harmonic map equation
in the complex coordinate u = u1 + iu2 of M (see [Schoen and Yau 1997, p. 8]) is

(1) Fzz̄ + (log ρ)u Fz Fz̄ = 0,

where 2Fz = Fx − i Fy . Since X = (F, y) is a conformal immersion, we have
|Fx |

2
g = |Fy|

2
g + 1 = cosh2 ω and 〈Fx , Fy〉g = 0. Then the holomorphic quadratic

Hopf differential is

QF = φ(z)(dz)2 =
1
4

(
|Fx |

2
g − |Fy|

2
g + 2i〈Fx , Fy〉g

)
=

1
4 (dz)2.

Harmonic maps fulfill the Böchner formula, as is well known [Schoen and Yau
1997, p. 9]:

(2)
1
λ
40 log

|Fz|

|Fz̄|
= −2KM J (F),

where J (F)= ρ/λ
(
|Fz|

2
− |Fz̄|

2
)

is the Jacobian of F with |Fz|
2
= Fz F z .

We now prove that if we write the metric as ds2
= λ|dz|2 = cosh2 ω |dz|2,

the Böchner formula becomes the sinh-Gordon equation for the function ω (see
Proposition 2.1). This will give us a structure equation that we will use to study
extrinsic properties of the surfaces.

Consider the projection 5 of A on M × {0} and the level curves

γh = A ∩ (M × {y = h})= F(x, h),

γv =5({x = v})= F(v, y).

We derive general formulas for the geodesic curvature in M of γh and γv (at points
where γv is not a singular curve) as a function of ω:

Proposition 2.1. Define the real functionω : A→R by ds2
=λ|dz|2 =cosh2ω |dz|2.

Then ω is a solution of the structure equation

(3) 40ω+ KM sinhω coshω = 0,
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where 40ω = ωxx +ωyy . The geodesic curvature in M of the level curves γh and
γv is given by

kg(γh)=
−ωy

coshω
and (for ω 6= 0) kg(γv)=

ωx

coshω
cothω.

Proof. Since X = (F, y) is a conformal immersion, we have |Fx |
2
g = |Fy|

2
g + 1 =

cosh2 ω and 〈Fx , Fy〉g =0. Now let us consider (U, ρ(u)|du|
2) a local parametriza-

tion of M . We define the local function ψ as the argument of Fx :

Fx =
1

√
ρ

coshωeiψ and Fy =
i

√
ρ

sinhωeiψ .

From the Böchner formula (2) we have

(4)
1
λ
40 log

|Fz|

|Fz̄|
= −2KM

ρ

λ
|Fz||Fz̄|

(
|Fz|

|Fz̄|
−

|Fz̄|

|Fz|

)
.

But by a direct computation with ρ|Fx |
2
= cosh2 ω and ρ|Fy|

2
= sinh2 ω we derive

|Fz|
2
|Fz̄|

2
=

1
16

(
(|Fx |

2
− |Fy|

2)2 + 4〈Fx , Fy〉
2)

=
1

16ρ2 .

Now from (4) with 2
√
ρ|Fz| = eω and 2

√
ρ|Fz̄| = e−ω, we derive the sinh-Gordon

equation (3):
40ω = −

1
2 KM sinh2ω = −KM sinhω coshω.

We consider the curves γh and γv parametrized in (U, ρ(u)|du|
2) with tangent

vectors Fx and Fy respectively. If kg is the curvature of a curve γ in (U, ρ(u)|du|
2)

and ke is the Euclidean curvature in (U, |du|
2), we get, by a conformal change of

the metric,

kg =
ke
√
ρ

−
〈∇

√
ρ, n〉

ρ
,

where n is the Euclidean normal to the curve γ . In particular n = (− sinψ, cosψ)
for the curve γh (n is along Fy). If s denotes the arclength of γh , we have

ke(γh)= ψs =
ψx

√
ρ

coshω
and

〈∇
√
ρ, n〉

ρ
=

〈∇ log
√
ρ, n〉

√
ρ

=
1

2
√
ρ

(
cosψ(log ρ)u2 − sinψ(log ρ)u1

)
.

The tangent vector of γv is Fy which is zero at points where ω= 0. If s denote the
arclength of γv, we have

ke(γv)= ψs =
ψy

√
ρ

sinhω
,
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and with n = (− cosψ,− sinψ),

〈∇
√
ρ, n〉

ρ
=

〈∇ log
√
ρ, n〉

√
ρ

= −
1

2
√
ρ

(
cosψ(log ρ)u1 + sinψ(log ρ)u2

)
.

In summary we have

kg(γh)=
ψx

coshω
−

1
2
√
ρ

(
cosψ(log ρ)u2 − sinψ(log ρ)u1

)
,

kg(γv)=
ψy

sinhω
+

1
2
√
ρ

(
cosψ(log ρ)u1 + sinψ(log ρ)u2

)
.

Now we compute ψx as a function of ωy and ψy as a function of ωx . In the
complex coordinate z we have

Fz =
eω+iψ

2
√
ρ

and Fz̄ =
e−ω+iψ

2
√
ρ
.

Placing these expressions in the harmonic equation (1) we derive

(−ω+ iψ)z = −
√
ρ

(
1

√
ρ

)
z
− (log ρ)u Fz.

Now note that

−
√
ρ

(
1

√
ρ

)
z
=

1
2(log ρ)z =

1
2

(
(log ρ)u Fz + (log ρ)ū F̄z

)
where 2(log ρ)u = (log ρ)u1 − i(log ρ)u2 and F̄z =

1
2
√
ρ

e−ω−iψ . Collecting these
equations we obtain

(−ω+ iψ)z =
1
2(log ρ)ū F̄z −

1
2(log ρ)u Fz.

The real and imaginary parts give

(5)
ψx +ωy =

coshω
2
√
ρ

(
cosψ(log ρ)u2 − sinψ(log ρ)u1

)
,

ψy −ωx = −
sinhω
2
√
ρ

(
cosψ(log ρ)u1 + sinψ(log ρ)u2

)
.

Insert this into the expression for the curvature:

kg(γh)=
ψx

coshω
−

1
2
√
ρ

(
cosψ(log ρ)u2 − sinψ(log ρ)u1

)
=

−ωy

coshω
,

kg(γv)=
ψy

sinhω
+

1
2
√
ρ

(
cosψ(log ρ)u1 + sinψ(log ρ)u2

)
=

ωx

sinhω

=
ωx

coshω
cothω. �
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In the rest of this section we will consider only the geodesic curvature of γh that
we will denote by kg. Now we generalize a result from [Shiffman 1956], to the
effect that

√
λ(kg)x is a Jacobi field. In particular, if u is zero on A, the horizontal

curves are of constant curvature.

Theorem 2.2. Let A be a minimal surface embedded in a product space M × R

with KM = c0 a constant, and assume A transverse to every section M ×{t}. Then
the function u = −coshω (kg)x is a Jacobi field; that is, u is solution of the elliptic
equation:

Lu = 4gu + Ric(N )u + |d N |
2u = 0,

where Ric(N ) is the Ricci curvature of the two planes tangent to A, |d N | is the
norm of the second fundamental form and 4g = (1/λ)40.

Proof. Since kg(γh)= −ωy/coshω we have u = ωxy − tanhωωxωy . We establish
by a straightforward computation that

(6) 40u = uxx + u yy = −

(
c0 + 2

|∇ω|
2

cosh2 ω

)
u,

which is λLu = 0. To prove (6) we compute Ric(N ). Let (e1, e2, e3) be an oriented
orthonormal frame in M × R. Then if K (ei , e j ) denotes the sectional curvature of
the two-plane (ei , e j ) in M ×R and S = K (e1, e2)+K (e1, e3)+K (e2, e3)= KM =

c0 is the scalar curvature, we have the well-known formula

Ric(N )+ |d N |
2
= S + K (Xx , X y)− 2Kg.

Now compute the sectional curvature K (Xx , X y) of the tangent plane Tp A:

K (Xx , X y)=
〈R(Fx , Fy + e3)Fx , Fy + e3〉

|Xx |
2|X y|

2 − 〈Xx , X y〉
= c0

|Fx |
2
|Fy|

2

|Fx |
2(|Fy|

2 + 1)
= c0 −

c0

λ
.

We plug λ= cosh2 ω into the expression of the Gauss curvature:

Kg = −
1

2λ
40 log λ= −

4

cosh2 ω
(log coshω)zz̄ = c0 tanh2 ω−

(
ω2

x +ω2
y

cosh4 ω

)
.

Next we justify that (6) is λLu = 0:

Ric(N )+|d N |
2
= 2c0 −

c0

cosh2 ω
−2c0 tanh2 ω+2

|∇ω|
2

cosh4 ω
=

c0

cosh2 ω
+2

|∇ω|
2

cosh4 ω
.

Now we prove (6) itself:

40u = (40ω)xy − (40 tanhω)ωxωy − tanhω (40ωxωy)

− 2(tanhω)x(ωxωy)x − 2(tanhω)y(ωxωy)y .
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Using the equality 40ω+ c0 sinhω coshω = 0, we have

(40ω)xy =

(
−c0

2
sinh 2ω

)
xy

= −c0ωxy cosh 2ω− 2c0ωxωy sinh 2ω,

40 ωxωy = −c0ωxy sinh 2ω− 2c0ωxωy cosh 2ω,

40 tanhω =

(
−c0 − 2

|∇ω|
2

cosh2 ω

)
tanhω,

and

2(tanhω)x(ωxωy)x + 2(tanhω)y(ωxωy)y =
2ωxy|∇ω|

2
− 2c0ωxωy sinhω coshω

cosh2 ω
.

Then

40u = −c0(cosh 2ω− tanhω sinh 2ω)ωxy

− 2
|∇ω|

2

cosh2 ω
ωxy − 2c0ωxωy(sinh 2ω− tanhω cosh 2ω)

− 2c0 tanhωωxωy +

(
c0 + 2

|∇ω|
2

cosh2 ω

)
tanhωωxωy .

Since cosh 2ω− tanhω sinh 2ω = 1 and tanhω cosh 2ω− sinh 2ω = −tanhω, we
have proved (6). �

Now with these Jacobi fields we derive a global result on annuli embedded in
M × R. First we generalize a theorem of Shiffman [1956]:

Theorem 2.3. Let A be a compact minimal annulus immersed in M × R with
KM = c0 ≤ 0. If A is bounded by two curves 01 and 02 with positive geodesic
curvature in M × {t1} and M × {t2}, then A is foliated by horizontal curves of
positive curvature; that is, A ∩ (M × {t}) is a curve of curvature kg > 0.

Proof. This follows from the maximum principle and Proposition 2.1, applied to
the linearized sinh-Gordon equation:

40ωy + KMωy cosh 2ω = 0 on A,

ωy < 0 on ∂A = 01 ∪02. �

Remark. For KM = c0 > 0, there are counterexamples: consider the compact part
of an unduloid in S2

× R (page 103), which amounts to an annulus bounded by
two circles of positive curvature and yet contains geodesics and negative curvature
curves in its interior.

Now we generalize the geometric characterization of Shiffman [1956] and Fang
[1994] for the annulus with low index bounded by constant curvature curves:
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Theorem 2.4. Let A be a compact minimal annulus embedded in M × R with
KM = c0. We assume that the boundary ∂A = 01 ∪ 02 are curves with constant
geodesic curvature in M × {t1} and M × {t2}; that is, u = 0 on ∂A.

If M = H2,R2 or S2 and A satisfies Index(L)≤ 1, then u is identically zero and
A is foliated by horizontal curves of constant curvature in M .

If M is not simply connected, the result is true with the additional hypothesis
that Index(L)= 0 (A is stable).

Proof. (See [Fang 1994] for details.) By the four-vertex theorem, u has four ze-
ros on each horizontal Jordan curve of a simply connected space (see [Jackson
1945]) and then u has at least four nodal domains on the annulus A. Then u is
an eigenfunction corresponding to the third eigenvalue and so Index(L) ≥ 2, a
contradiction. In the case of a general Riemannian surface, u may have only two
zeros and then we have Index(L)≥ 1 if u is not identically zero. �

3. The Gauss–Codazzi equation of the generalized Riemann examples

In this section we construct the family of Riemann examples in M ×R, with KM =

c0 a constant. We classify all examples foliated by curves of constant curvature
in the horizontal plane. These surfaces are annuli or simply connected surfaces
transverse to each horizontal plane. We describe the space moduli of these surfaces
in terms of elliptic functions.

We parametrize these surfaces by the third coordinate; in the notation of the
previous section, the embedding X = (F, y) : Ã = {(x, y) ∈ ]α1, α2[× ]β1, β2[} →

M × R is minimal with F : Ã → M harmonic. Here Ã is the universal covering
of A and α1, α2, β1, β2 can be infinite. We describe the space of these surfaces in
terms of elliptic functions.

Let ω : Ã → R be the function defined by ds2
= cosh2 ω |dz|2. When A is

transverse to each horizontal plane, ω is finite on A and is solution of the system

(7)
40ω+ KM sinhω coshω = 0,

ωxy − tanhωωxωy = 0.

From Proposition 2.1, we see that the first equation reflects the Gauss equation
of M ; the second states that of each level curve has constant curvature. In the case
KM = 1, this system has been studied by Abresch [1987], who classified constant
mean curvature tori in R3 with planar large lines of curvature (the second equation
is the torsion of a large line of curvature of constant mean curvature surfaces).

To construct examples, we apply Abresch’s technique in Theorem 3.1 to solve
the system (7) on the whole plane R2. We will represent the space of these examples
by a two parameter family. When a solution ω is periodic in the variable x and
ω 6= ∞, we can expect an annulus by closing periods of the immersion. The
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harmonic map has to be periodic in x and the immersion X is well defined on
A = {(x, y) ∈ R/(x0R)× R} (see Section 4).

A solution can take infinite values and then it will define the domain of Ã where
the solutions are well defined. When c0 < 0, the condition ω 6= ∞ is valid only in
domains homeomorphic to a strip, a disk or the plane with a countable set of disks
removed. In particular there are helicoidal surfaces embedded in H2

× R defined
on a strip. The set where ω is infinite represents a curve in the boundary at infinity,
∂∞H2

× R.
Using these solutions ω, we use Gauss–Codazzi equation to construct a har-

monic map F : Ã → M in Theorem 3.2. It remains to study the period problem
and the geometry of the family in Section 4.

Theorem 3.1. Let ω : R2
→ R be a real-analytic solution of the system (7), with

KM = c0 a given constant. We define f, g as functions of ω by

(8) f =
−ωx

coshω
and g =

−ωy

coshω

Then the real functions x 7→ f (x) and y 7→ g(y) of one variable solve the system

−( fx)
2
= f 4

+ (c0 + a) f 2
+ c,

− fxx = 2 f 3
+ (c0 + a) f with c, d ∈ R, a =

c − d
c0

if c0 6= 0,

−(gy)
2
= g4

+ (c0 − a)g2
+ d with c = d and a ∈ R if c0 = 0,

−gyy = 2g3
+ (c0 − a)g.

Conversely, we can recover the solution ω from f and g. If c0 + f 2
+ g2 is not

identically zero we have

(9) sinhω = (c0 + f 2
+ g2)−1( fx + gy)= ( fx − gy)

−1(g2
− f 2

− a).

If c0 + f 2
+ g2

≡ 0 on R2, the functions f := α and g := β are constant and the
solutions are given by

(10) sinhω = − tan(αx +βy).

When c0 ≤ 0, the solution ω may have infinite values. Setting D = {(x, y) ∈ R2
:

ω = ∞} we have, in the case of equation (9),

D = {(x, y) ∈ R2
: f 2

+ g2
+ c0 = 0 and fx − gy = 0} for c 6= 0, d 6= 0,

D = {(x, y) ∈ R2
: f 2

+ c0 = 0} for d = 0,

D = {(x, y) ∈ R2
: g2

+ c0 = 0} for c = 0,
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and in the case where ω is given by equation (10),

(11) D =
{
(x, y) ∈ R2

: αx +βy =
1
2 kπ, k ∈ Z

}
.

When c0 vanishes, D is a countable set of isolated points (x, y), namely those
where f (x)= g(y)= 0.

When c0 > 0, there is a solution of the system if and only if c ≤ 0 and d ≤ 0 and
ω is periodic and defined on the whole plane R2.

Proof. We apply Abresch’s technique with KM = c0 a given constant. Let ω be a
solution of (7). We work at the point where c0 + f 2

+g2
6= 0. The second equation

of (7) leads to separation of the variables:

coshω fy = tanhω ωxωy −ωxy = coshω gx = 0.

Then ω solves (7) if and only if f and g depend on one variable and satisfy the
equation

(12) fx + gy =
−40ω

coshω
+ tanhω

ω2
x +ω2

y

coshω
= (c0 + f 2

+ g2) sinhω

Now we integrate f, g. Differentiating and substituting, we get

(13)
fxx

c0 + f 2 + g2 − f
f 2
x − g2

y

(c0 + f 2 + g2)2
= − f

and
gyy

c0 + f 2 + g2 − g
g2

y − f 2
x

(c0 + f 2 + g2)2
= −g.

Multiplying (13) by 2 fx and integrating with respect to x , we obtain, for a constant
k(y),

(14)
f 2
x − g2

y

c0 + f 2 + g2 = − f 2
+ k(y).

Multiplying (13) and (14) by (c0 + f 2
+ g2) and f respectively, and adding them

together, we get
fxx = −2 f 3

− (c0 + g2(y)− k(y)) f.

Since f does not depend on y, we can pick any of the values of c0 + g2
+ k(t) for

c̄ and get

(15) − fxx = 2 f 3
+ c̄ f.

A similar computation holds for g, yielding

(16) −gyy = 2g3
+ d̄g
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These equations have first integrals

(17) −( fx)
2
= f 4

+ c̄ f 2
+ c, −(gy)

2
= g4

+ d̄g2
+ d.

If we take real functions f, g satisfying equations (15)–(17), we get a function
ω by (9). Now ω is defined and solves the system (7) if and only if f and g can
be expressed as in (8). By taking the derivative in (9), one can prove that (8) is
equivalent to (13). We plug (15)–(17) into (13) to conclude that ω is a solution of
(12) if and only if

f (c2
0 − c̄c0 + c − d)+ f g2(2c0 − c̄ − d̄)= 0,(18)

g(c2
0 − d̄c0 + d − c)+ f 2g(2c0 − d̄ − c̄)= 0.(19)

Then for c0 6= 0, if f 6= 0 and g 6= 0, we deduce from (18) that

c̄ = c0 +
c − d

c0
= c0 + a and d̄ = 2c0 − c̄ = c0 − a.

If f ≡ 0 and g 6= 0, we have c = 0 and from (19) we derive d̄ = c0 +
d
c0

= c0 −a,
while if g ≡ 0 and f 6= 0, d = 0 and

c̄ = c0 +
c
c0

= c0 + a.

When c0 = 0, if f 6= 0, g 6= 0 we have c = d and c̄ = −d̄; if f = 0 or g = 0
then c = d = 0.

All our computations are valid at points where c0 + f 2
+g2

6= 0, but f and g are
real functions defined on R. At a point where c0 + f 2

+ g2
= 0, one can consider

the value of ω by passing to the limit in (9). It depends on fx + gy . We note that

f 2
x − g2

y = (c0 + g2
+ f 2)(g2

− f 2
− a)

and that ω is well defined if fx + gy = 0 and fx − gy 6= 0 (that is, fx = −gy 6= 0).
Then we can define ω by continuity at this point.

If fx + gy 6= 0 and fx − gy = 0, then ω has a pole.
In the case where fx = gy = 0 and c0 + f 2

+ g2 vanishes at a point, we have
fxx = gyy = 0 if and only if g2

− f 2
−a = 0 by differentiation of (12), and then f

and g are constant by the unique continuation theorem. Otherwise, if fx = gy = 0,
c0 + f 2

+ g2
= 0, and g2

− f 2
− a 6= 0, again ω has a pole. Thus D = {(x, y) ∈

R2
: c0 + f 2

+ g2
= 0 and fx − gy = 0} when f and g are not identically constant.

In the case where c0+ f 2
+g2

≡0 and fx = gy ≡0 we have f 2
=

1
2(1 + c − d)=:

α2 and g2
=

1
2(1 + d − c)=:β2, with the additional condition (1+d −c)2 = 4d . In

this case, one can integrate directly the solutions and then sinhω=−tan(αx+βy).
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In the case where d = 0, we have g ≡ 0 and −( fx)
2

= ( f 2
− c)( f 2

+ c0). If
c = 1, we have f ≡ 1. Otherwise

sinhω =
fx

f 2 + c0
=

f 2
− c

− fx
→ ∞ as f 2

→ −c0 (and then fx → 0),

which proves that ω= ∞ on D = {(x, y) ∈ R2
: f 2

+c0 = 0}. The same is true for
c = 0.

When c0 ≥ 0, the functions f and g are defined if and only if c ≤ 0 and d ≤ 0.
To see this, notice that the values of f 2 and g2 lie between distinct zeroes of
X2

+ (c0 + a)X + c and Y 2
+ (c0 − a)Y + d respectively. Assume c > 0; then

0 ≤ (c0 + a)2 − 4c < (c0 + a)2. In the case (c0 + a) > 0 we find

−(c0 + a)−
√
(c0 + a)2 − 4c ≤ 2 f 2

≤ −(c0 + a)+
√
(c0 + a)2 − 4c < 0,

and if (c0 + a) < 0, we have c0 − a > 2c0 > 0 and 0< c < d , hence

−(c0 − a)−
√
(c0 − a)2 − 4c ≤ 2g2

≤ −(c0 − a)+
√
(c0 − a)2 − 4c < 0.

This contradicts the fact that g is a real valued function. We conclude that c ≤ 0
and similarly d ≤ 0. �

We now use the Gauss–Codazzi equations to integrate solutions of (7).

Theorem 3.2. Let ω be a solution of the system (7) on a simply connected domain
�, then there exists a minimal isometric embedding of (�, ds2

= cosh2 ω |dz|2) in
M(c0)× R foliated by constant curvature curves at each horizontal level.

Proof. Let ω be a solution of (7). When c0 > 0, ω is defined on the whole plane.
For c0 = 1, it is a well-known fact that the first equation is the Gauss condition
of local existence of a constant mean curvature surface H = 1/2 in R3 (it is a
sinh-Gordon equation; see [Abresch 1987]). Since � is simply connected, there is
a constant mean curvature immersion H :�→ R3, and its Gauss map F :�→ S2

is the harmonic map associated with ω [Abresch 1987].
In the case c0 = −1, one can use the same construction explained in [Wan 1992]

or [Akutagawa and Nishikawa 1990]. The system (7) gives us a Gauss equation to
construct a space-like surface of constant mean curvature in the Minkowski space
M2,1 with Hopf map Q =

1
4(dz)2. The unit normal vector to this surface in M2,1

is a harmonic map F :�→ H2 associated with the solution ω.
For c0 6= 0, we use a dilatation. Consider

ω̃ = ω

(
x

√
|c0|

,
y

√
|c0|

)
,

which is a solution of 40ω̃ = (c0/|c0|) sinh ω̃ cosh ω̃. Then we find a harmonic
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map F̃ :�(
√

|c0|)→ M(±1) with

�(
√

|c0|)=

{
(x, y) ∈ R2

:

(
x

√
|c0|

,
y

√
|c0|

)
∈�

}
.

Now with a dilatation, we have the harmonic map

F = |c0| F̃
(√

|c0|x,
√

|c0|y
)
:�→ M(c0),

which corresponds to our system (7).
Immersions are given by X = (F, y) on �. The second equation in (7) states

that these examples are foliated by constant curvature curves at each horizontal
level (see Proposition 2.1).

For minimal surfaces in R3, we construct a surface by considering the Weier-
strass data g = −ieω+iψ and η = −i dz, where ω+ iψ is holomorphic.

2X (z)= Re
∫

z

(
(g−1

− g)η, i(g−1
+ g)η, 2η

)
. �

Now we describe some geometric properties of these families of surfaces. Let ω
be a solution of (7) on Ã described in Theorem 3.2, then X = (F, y) is a minimal
surface foliated by horizontal curves of constant curvature. By Proposition 2.1,
g(y) is the curvature of A ∩ M ×{y} and − f (x0) cothω is the geodesic curvature
of the projection of X (x0, y) on M × {0}. We will consider c0 = +1, 0,−1 as
generic cases; other cases come from dilatation. We describe the geometry of
examples in these space forms.

4. The geometry of generalized Riemann examples

4.1. Minimal surfaces in S2
× R.

Theorem 4.1. The space of minimal surfaces of genus zero embedded in S2
× R

and foliated by horizontal curves of constant curvature is a two-parameter family
parametrized by M = {(c, d) ∈ R2

: c ≤ 0, d ≤ 0}. All examples are annuli periodic
in the vertical direction.

(i) c = 0, d ∈ R− is a family unduloids (surfaces of revolution described in [Pe-
drosa and Ritoré 1999] and [Rosenberg 2002]). The curvature of the horizon-
tal curves oscillates between values of opposite sign.

(ii) d = 0, c ∈ R− is a family of helicoids. The curves of horizontal constant
curvature are geodesics passing through two antipodal points (the axis).

(iii) (c, d) ∈ (R∗
−
)2 is a two-parameter family of Riemann type surfaces. These

annuli are foliated by circles whose radius oscillates between two opposite
values and whose center are located on a given geodesic.

(iv) (c, d)= (0, 0) is a vertical flat annulus foliated by a great circle.
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Proof. In the case where KM = c0 > 0 (i.e., M = S2 up to a homothety in R4),
the functions f, g are described as in [Abresch 1987], where it is shows that they
are both periodic, oscillating around zero. The zeros of X2

+ (c0 + a)X + c and
Y 2

+(c0−a)Y +d have opposite signs and then f 2
∈[0, X+], g2

∈[0, Y+]. Assume
that f (0)=0 and g(0)=0, fx(0)=α≥0, gy(0)=β≥0 with c=−α2 and d =−β2.
By Proposition 2.1, g is the curvature of horizontal curves (it does not depend on
x) while − f (v) cothω corresponds to the curvature of the curve γv obtained by
projection of X (v, y) onto S2

× {0}. The tangent vector of this curve is Fy and
〈Fy, Fx 〉 vanishes; thus if (v, y) is chosen such that f (v)= 0 and ω(v, y) 6= 0, the
curve γv is a geodesic orthogonal to each horizontal level curve. When f (v) = 0
and ω(v, y) = 0, the tangent vector Fy vanishes and the corresponding curve is a
vertical straight line.

Since curves of constant curvature are periodic on S2, the immersion of Ã is the
covering of a minimal annulus embedded in S2

× R. From these facts we deduce
the following.

When d = 0 and c ≤ 0, the horizontal curves are geodesics (great circles in S2)
and fx has two zeroes, x0 and x1. Then sinhω(x0, y) = sinhω(x1, y) = 0, which
corresponds to two vertical axes at antipodal points Fy(x0, y) = Fy(x1, y) = 0.
This is the helicoidal family described in [Rosenberg 2002].

When c = 0 and d ≤ 0, the horizontal curves have constant geodesic curvature
oscillating between d and −d . The function f = 0 and ω 6= 0 if g 6= 0. Then
the center of each horizontal circle is at the same point. It is a rotational invariant
surface. It is the unduloid family of Pedrosa and Ritoré [1999], also described in
[Rosenberg 2002].

The other surfaces (c< 0 and d < 0) are of Riemann type in the following sense.
The horizontal curves are circles whose radius oscillates periodically between two
values of opposite sign. In particular there are horizontal geodesics in the surface,
at periodic intervals. The center of each circle is located on a fixed geodesic by
taking the geodesic described by γv above with f (v)= 0. �

4.2. Minimal surfaces in H2
× R.

Theorem 4.2. The space of minimal surfaces of genus zero embedded in H2
× R

and foliated by horizontal constant curvature curves is a two parameter family
parametrized by (see Figure 1)

M = {(c, d) ∈ R2
: (1 + c − d)2 ≥ 4c and c − 1 ≤ d ≤ c + 1} ∪ {c ≤ 0} ∪ {d ≤ 0}.

We first describe some special one-parameter families of M:

(1) The curve 0 = {(c, d) ∈ R2
: (1 + c − d)2 = 4c and c − 1 ≤ d ≤ c + 1}

parametrizes surfaces of helicoidal type where the horizontal curves have
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c

d

d = c + 1

d = c − 1

A1

A2

A3

(1, 0)

(0, 1)

Figure 1. Parameter space of Theorem 4.2. M is the complement
of A1 ∪ A2 ∪ A3 (below and to the left of the thick lines).

constant curvature k = g =
1
2

√
1 + d − c. When (c, d)= (1, 0) the surface is

a helicoid. When (c, d)= (0, 1) it is an annulus foliated by horocycles.

(2) d = 0. The surfaces are foliated by horizontal geodesics.

(a) Values c > 0 parametrize the helicoidal family.
(b) For c < 0 the surfaces are global graphs on H2 and can be likened to

oblique planes.
(c) When (c, d)= (0, 0), the surface is a vertical geodesic plane γ × R.

(3) c = 0. The surfaces are bounded in the third component. They are catenoids
and graphs.

(a) d > 1. The surfaces are rotational annuli related to catenoidal examples.
(They are described in [Nelli and Rosenberg 2002].)

(b) 0 < d ≤ 1. The examples are catenoids foliated by equidistant curves
in H2 (curves with curvature 0 < k < 1, equidistant to a geodesic). In
a euclidean sense, the surface is homeomorphic to a part of a catenoid
described in (3a), intersecting a solid cylinder with axis translated by a
horizontal translation, in such a way that every horizontal circle intersects
the boundary of the cylinder.

(c) d<0. The surface is a global graph on H2, foliated by equidistant curves.
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x ( f 2, g2)

f = 0 f = 0

B ∩ {(x, y) ∈ R2
; fx + gy = 0}

D = {(x, y) ∈ R2
;ω = ±∞} = B ∩ {(x, y) ∈ R2

; fx − gy = 0}

B− B−

B−B−B−

B−

f = −
√

X+ f =
√

X+

X− X+

Y−

B+

B−

f = 0

g =
√

Y−

g = 1

g =
√

Y+

g = 1

g =
√

Y−

Y+

B+

H2

kg = 1

kg = 1

Figure 2. The annulus family:
surface parametrization (top) and
schematic view in H2

×R (right).

Now we describe the regions of M bounded by curves described in (1)–(3).

(4) Second quadrant (c < 0 and d > 0). The surfaces are annuli with two non-
horizontal boundary curves at infinity. These annuli contain two horocycles
in some horizontal section. They are parametrized in a region homeomorphic
to a strip. (See Figure 2.)

(5) Fourth quadrant (c > 0 and d < 0). The surfaces are “undulated helicoids”.
They are parametrized by a vertical strip and are periodic in the third compo-
nent (see Figure 3). In a period there are two horizontal geodesics in the
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( f 2, g2)

B ∩ {(x, y) ∈ R2
; fx + gy = 0}

D = {(x, y) ∈ R2
;ω = ±∞} = B ∩ {(x, y) ∈ R2

; fx − gy = 0}

Y−

Y+

X+g = 0

g = 0

g = 0

g =
√

Y+

g = −
√

Y+

p0p′′
0 p′

0

p′
1p1p′′

1

p′′
2 p2 p′

2

B+

f = 1 f = 1

B−

B−

B− B−

B−

B−

f =
√

X−f =
√

X+f =
√

X−

Figure 3. The helicoidal family of the fourth quadrant.

surface. Between these two horizontal sections, the surface is foliated by
equidistant curves (k < 1). The surface is undulated in the sense that the
curvature changes sign after crossing a geodesic.

(6) First quadrant (c>0 and d>0). The surfaces are “blown-up helicoids”. They
are parametrized by a strip (see Figure 4) but the curvature of the horizontal
curves is never zero.

(7) Third quadrant (c < 0 and d < 0). The surfaces are Riemann type examples.
They are parametrized conformally by a cylinder minus a countable set of disk
(see Figure 5). They have a vertical plane of symmetry and the boundary set
of curves at infinity is a disjoint set of circles in the cylinder (see Figure 6).

Remark. Daniel [2004] gives explicit formulas for the surfaces in (1)–(3).

Proof. In the case where KM = −1 (we can consider H2 as the universal covering
of M), the family is quite important. The existence of solutions f and g depends on
P(X)= X2

−(1−a)X +c = X2
−(1+c−d)X +c and Q(y)= Y 2

−(1+a)Y +d =

Y 2
− (1 + d − c)Y + d. Note that P, Q have same the discriminant,

1= (1 + c − d)2 − 4c = (1 + d − c)2 − 4d.

The roots of P(X)= 0 are

X+ =
1
2(1 + c − d +

√
1) and X− =

1
2(1 + c − d −

√
1)
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√
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√
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√
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√
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√
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√
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√
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Figure 4. The helicoidal family of the first quadrant.
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B− B−B−g = 0

g = 0
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f = −1 f = 1 f = 1 f = −1f = −1 f = 1f = 0
f = 0

B−
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B ∩ {(x, y) ∈ R2
; fx + gy = 0}

D = {(x, y) ∈ R2
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; fx − gy = 0}

Figure 5. The Riemann family.

and those of Q(Y )= 0 are

Y+ =
1
2(1 + d − c +

√
1) and Y− =

1
2(1 + d − c −

√
1).
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H2

kg = 1

kg = 1

H2

kg = 1

kg = 1

Figure 6. Two examples of Riemann type in H2
× R.

Since P( f 2) = −( fx)
2 and Q(g2) = −(gy)

2, the functions f and g exist if and
only if 1 ≥ 0 and X+ ≥ 0, Y+ ≥ 0. We parametrize our family of surfaces in the
plane (c, d) in Figure 1.

When 1 = 0, the functions f 2 and g2 are constant; then fx and gy vanish and
ω is given by (10). We can see that 1< 0 if and only if (c + d) > 1

2(c − d)2 +
1
2 ,

that is, in the convex region A1 bounded by the parabola in Figure 1.
Moreover one can see that when d > c + 1, c > 0 and 1 > 0 (region A2), we

have 1 + c − d ≤ −
√
1 < 0 and then X+ < 0. In the case c > d + 1, d > 0 and

1> 0 (region A3), we have Y+ < 0. Then

M = {(c, d) ∈ R2
:1≥ 0, X+ ≥ 0, Y+ ≥ 0} = R2

− (A1 ∪ A2 ∪ A3).

The important phenomenon here is that f 2
+g2

−1 can be zero. To help us in
the following we define

B = {(x, y) ∈ R2
: f 2

+ g2
= 1},

B−
= {(x, y) ∈ R2

: f 2
+ g2 < 1},

B+
= {(x, y) ∈ R2

: f 2
+ g2 > 1}.
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Now the set D = B ∩ {(x, y) ∈ R2
: fx − gy = 0} separates R2 in connected

components where our surfaces are defined.
In the second quadrant (c < 0 and d > 0) we have an annulus bounded in the

third component. In the fourth (c > 0 and d < 0) and first (c > 0 and d > 0)
quadrants the surfaces are homeomorphic to simply connected strips embedded in
the cylinder. In the third quadrant (c < 0 and d < 0) we have minimal surfaces of
Riemann type; R2

− D is the plane with a countable set of disks removed.
First we classify the examples depending only on one parameter, x or y.

(1) Recall that 0 is defined as the set of points (c, d) such that (1 + c − d)2 = 4c
(that is, 1 = 0) and c − 1 ≤ d ≤ c + 1. On 0 we have and X+ = X−, Y+ = Y−,
so fx = gy = 0 and f 2

+ g2
= 1. We are in the case where ω is given by formula

(10). The surface is foliated by curves of constant geodesic curvature k = g =
√
(1+d−c)/2 =: α ≤ 1. By (10), ω 6= ∞ if and only if −π/2 < αx + βy < π/2.

Then ω is defined on a strip and the straight line αx + βy = 0 defines an axis,
since ω = 0. After an isometry, we can assume that the axis projects to the origin
of the Poincaré disk model. The horizontal vector Fx has argument ψ , which in
view of (5) and the equality ω(−(β/α) y, y) = 0 has derivative ψy = 1/α (use
ρ(0)= 1 and ρu1(0)= ρu2(0)= 0 in (5)). The horizontal curves turn with constant
speed. The case c = 0 is parametrized on a horizontal strip. The third component
is bounded and the horizontal curves are all horocycles (kg = 1). The horizontal
section {y = 0} is a plane of symmetry of this annulus.

(2) The helicoid and planar family d = 0. First, we classify the family of surfaces
foliated by geodesics at each horizontal level (g = 0 identically and d = 0). In this
case we have −( fx)

2
= f 4

− (1 + c) f 2
+ c = ( f 2

− c)( f 2
− 1). The case c = 0

and d = 0 represents a geodesic vertical plane γ ×R (a geodesic product of R and
ω = 0). For c 6= 0 we have

sinhω =
f 2
x

fx( f 2 − 1)
=

−( f 2
− c)

fx
→ ±∞ as f 2

→ 1.

Then the surface is defined on the vertical strip D bounded by the set D ={(x, y)∈
R2

: x = a0 and x = a1} (with f 2(a0) = f 2(a1) = 1). Each component of the
complement R2

− { f 2
= 1} gives rise to the same surface.

We further distinguish two subcases:

(2a) c>0. The case c = 1 is given in (1). If c>1, we have B−
=∅ and the surface

is parametrized on B+
= {(x, y) ∈ R2

: a0 < x < a1}. If 0 < c < 1, the set B+ is
empty and the surface is parametrized on B−

= {(x, y) ∈ R2
: a0 < x < a1}. When

f 2(x0)= c the derivative fx vanishes and the locus sinhω= 0 describes a vertical
axis. We can assume that X (x0, y) projects to the origin in the Poincaré model of
H2. For the other values of f , the projection consists of circles of curvature greater
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than 1 in the horizontal plane. These curves describe helicoidal movement in the
cylinder model of H2

× R. Note that horizontal geodesics (radii of the disc) turn
with constant speed. The horizontal vector Fx has argument ψ , which by the first
equation (5) and the equality ω(x0, y)= 0 has derivative ψy(x0, y)= ωx(x0, y)=
− f (x0) (a constant speed of rotation).

(2b) c < 0. We have −( fx) = ( f 2
− c)( f 2

− 1) and then f 2
∈ [0, 1]; that is,

f ∈ [−1, 1] and the surface is parametrized by B− (B+
= ∅). We have fx of

constant sign. We are looking for kg(γv) = − f (x) cothω. When f (x0) = 0, we
have sinhω = ±

√
−c 6= 0 and kg(γv) = − f (x0) cothω = 0 but |Fy| 6= 0. Then

the curve X (x0, y) projects on a geodesic of the disc which contains the center of
the disc by assumption. The horizontal curves are geodesics crossing X (x0, y) in
an orthogonal way (since 〈Fx , Fy〉g = 0). These surfaces are, so to speak, oblique
planes in H2

× R. As c approaches 0, these planes converge to a vertical plane (a
geodesic×R) and when c approaches −∞, fx takes large values and these surfaces
converge to a horizontal section.

(3) The catenoid family c = 0. Now we classify the family of rotational type.
The vertical curves X (x0, y) project to geodesics on the plane; that is, f vanishes
identically and c = 0. In this case we have −(gy)

2
= g4

− (1 + d)g2
+ d =

(g2
− d)(g2

− 1). The situation is conjugate to that of the preceding cases, the
geometric interpretation of horizontal and vertical paths being interchanged. The
surfaces are well defined on a horizontal strip bounded by the set D = {(x, y) ∈

R2
: y = b0 and y = b1} (with g2(b0)= g2(b1)= 1).

(3a) d > 1. The set D is two straight lines. A is a horizontal strip but the image is
an annulus foliated infinitely and having the third coordinate y bounded in H2

×R

(each level curve has curvature greater than one). The horizontal curves have con-
stant curvature kg(γh) = g(y0) > 1 and they are periodic in x ∈ R. The curves
γh are circles with curvature greater than one. These surfaces are the rotationally
invariant catenoids described in [Nelli and Rosenberg 2002]. They are bounded by
two parallel horizontal circles at infinity in the cylinder model of H2

× R.

(3b) 0< d ≤ 1. Here A is a strip, but the horizontal curve has constant curvature
less than one. The horizontal curves are not compact: they are equidistant curves.
The third coordinate y is bounded. When g2(y0) = c, we have ω(y0) = 0 and the
tangent plane of A is vertical along this curve of curvature: kg =

√
c < 1. We

can assume that L = H2
× {0} is a plane of symmetry. The equidistant curves

deform and disappear at infinity. But since sinhω= (1+g2)−1gy has no change of
sign above the plane of symmetry, the horizontal horocycles are contained in the
nonconvex side of (L ∩ A)×R. The surfaces converge to a geodesic vertical plane
as c → 0.
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(3c) d < 0. Here g ∈ [−1, 1]. The horizontal level curves are not compact. There
is y0 (which we can assume to be 0) such that g(y0)= 0. The corresponding level
curve is a geodesic which we can assume passes through the center of the disc in
the Poincaré model. But along this curve ω is never zero and the tangent plane
to the surface is never vertical. The surface is a global graph on H2 with third
component y bounded, and it is foliated by equidistant curves.

(4) The annulus family. Here we assume c < 0 and d > 0. The behavior of f 2

and g2 is described in Figure 2, top. The important fact is that Y− > 0, that is,
√
1 < 1 + d − c. The value of g2 oscillates between Y− and Y+. The set B is

represented by the straight line X +Y = 1 in the plane (X, Y ) of Figure 2, top. We
notice the interesting property

X− + Y+ = 1 and X+ + Y− = 1.

The function f 2 has values in [0, X+]. If d−c ≥ 1 then 2X− = 1+c−d−
√
1< 0.

When d − c ≤ 1 we have
√
1 > 1 + c − d, which is X− < 0. Then the set B+

contains the horizontal strip {(x, y) ∈ R2
: 1 < g2

}. On this strip, the horizontal
curves have curvature greater than one and they are infinite coverings of a circle.
The strip covers the annulus with the period of the function f . The horizontal
curve g2

= 1 is a horocycle having one point at infinity, parametrized by one
point of the set D. The set B− is a countable set of disks (see Figure 2, top),
each tangent to two others. Since f is an oscillating function between −

√
X+

and
√

X+, the sign of fx is alternately positive and negative, and one can see that
fx + gy = 0 or fx − gy = 0 on the half-boundary of each disk B−. Then D is a
set of disconnected curves homeomorphic to R, and disconnects R2 into connected
components homeomorphic to strips (see Figure 2).

On each period, there exist x0 and x1 with f (x0) = f (x1) = 0. The curve
X (x0, y) has the same point at infinity as one of the horocycles (g2

= 1), and inter-
sects the other horocycle orthogonally. The curve X (x0, y) projects to a geodesic
having the same points at infinity as the horocycles. We have to determine whether
the endpoints of X (x0, y) project to the same point or to the two endpoints of the
geodesic. This depends of the sign of ω, which determines the vertical component
of the Gauss map. If ω has no change of sign, the curve X (x0, y) is a graph on
the geodesic and then the projection of X (x0, y) has two points at infinity. If ω is
positive and then negative, X (x0, y) projects to a half-geodesic and there is only
point at infinity (as in a catenoid). When X (x0, y) has the same points at infinity as
one horocycle H1, the curves X (x1, y) and H1 are orthogonal at their intersection.
Then X (x0, y) and X (x1, y) project onto the same geodesic γ . The vertical plane
γ × R is a plane of symmetry.
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If ω= 0, then fx +gy = 0. Recall that f 2
x −g2

y = (g2
+ f 2

−1)(g2
− f 2

+c−d).
Since f vanishes on X (x0, y), we are looking for points where g2

=d−c>0. Since
g2 has values in [Y−, Y+] with Y+ =

1
2(1 + d − c +

√
1), we have Y+ − (d − c)=

1
2(1 + c − d +

√
1)= X+ > 0 and Y− − (d − c)= 1

2(1 + c − d −
√
1)= X− < 0.

Assume d − c 6= 1. We have two zeros of f 2
x − g2

y , which lie on B− or B+.
Since g is oscillating, gy changes sign at these two points while fx is constant.
At one of these points fx + gy vanishes and at the other fx − gy vanishes. There
is only one of these points where ω = 0. By analyzing the limit at infinity of
sinhω = ( fx + gy)/( f 2

+ g2
− 1) at the neighborhood of D we can see that ω

changes sign. The analysis is similar in the case d = c +1. This leads us to expect
the behavior of an annulus as in Figure 2, bottom, having two circles at infinity not
homologous to zero in the cylinder’s boundary of H2

× R.

(5) The undulated helicoidal family. Here we assume c > 0 and d < 0. The
behavior of f 2 and g2 is depicted in Figure 3. The important fact is that X− > 0,
that is,

√
1 < 1 + c − d. Then f 2 oscillates between X− and X+. The set B is

represented by the straight line X +Y = 1 in the plane (X, Y ) of Figure 3. We note
the interesting property

X− + Y+ = 1 and X+ + Y− = 1.

The function g2 takes values in [0, Y+] in this case. If c − d ≥ 1 then 2Y− =

1 + d − c −
√
1< 0. When c − d ≤ 1 we have

√
1> 1 + d − c which is Y− < 0.

Then the set B+ contains the vertical strip {(x, y) ∈ R2
: 1 ≤ f 2

≤ Y+}. Each
horizontal curve has curvature less than one (since g2

≤ Y+ < 1). The surface is
simply connected. The curves {g = 0} are geodesics having the same points at
infinity. To see that, we note that the vertical curve { f = 1} projects to curves γv
ending at p′

1 and p′

2, points at infinity in H2 of two geodesics. The curve γv has
curvature |kg(γv)| = |cothω| > 1 and crosses a geodesic orthogonally at a point
p0. By the maximum principle, γv is contained in the convex part of a horocycle
passing through p0 and orthogonal to the geodesic at that point. Then γv, the
horocycle and the geodesic passing through p0 have the same point at infinity:
p′

0 = p′

1 = p′

2. The same holds for p′′

0 = p′′

1 = p′′

2 . This proves that the surface has
a vertical period. The geodesics are lines of symmetry of the surface.

The horizontal curves between two geodesics have curvature less than one. The
boundary at infinity of the surface has two connected components, each a copy
of R. They separate the cylinder S1

× R into two connected components A and
B. Consider a Euclidean unit normal vector n on such a curve, pointing into, say,
component A. If n points up at both p′

1 and p′

0 then the curve at infinity spirals
around; that is, the projection of the curve on S1

× {0} is not homologous to zero.
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Figure 7. The undulated helicoid at infinity.

If n points in opposite directions at p′

0 and p′

1, the projection is homologous to
zero (Figure 7) and the surface is homologous to a vertical plane γ × R.

In H2, we have φy =
(
sinhω/

√
ρ
)
eiψ and |φy|

2
ρ = |sinhω|

2
→ ∞ when the

curve is going to infinity. Then the tangent plane is becoming horizontal and the
unit normal vector to the surface is pointing up or down. In fact, if (Nh, Nv) is the
unit normal vector with Nh the horizontal component in H2 and Nv = tanhω the
vertical component, the sign of ω will determine if N is pointing down or up.

By construction (the surface is embedded), we have 〈N , n〉 ≥ 0 at infinity, then
the sign of the limit in D will tell us if we are spiraling or not on the cylinder.

One can see that ω = +∞ on one component and −∞ in the other one, by
analyzing the limit of

sinhω =
fx + gy

f 2 + g2 − 1

at the neighborhood of each component of D. The curves at infinity are spiraling
and then we are describing an undulated helicoid.

(6) The case c > 0 and d > 0. We have
√
1> |1 + c − d| and

√
1> |1 + d − c|;

then X− > 0 and Y− > 0. The set B+ contains no strip in this case and we have
two connected components homeomorphic to R in D (see Figure 4). As in the
preceding case we can see that ω = +∞ on one component and ω = −∞ on the
other one. The curves are spiraling at infinity in a periodic way (ω is periodic and
so is the argument of φx ). The horizontal curves have curvature less than one at
each level section but there is no horizontal geodesic in the surface. It is a blown-up
helicoid.
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(7) The Riemann family. Here we assume c<0 and d<0. The behavior of f 2 and
g2 is depicted in Figure 5. We have X−<0 (corresponding to

√
1> |1+c−d|) and

Y−< 0 (
√
1> |1+d −c|). Then f 2

∈ [0, X+] and g2
∈ [0, Y+]. The set B is given

by X + Y = 1 and its inverse image disconnects the plane into one noncompact
component and a countable set of disks. The set B+ contains the vertical strip
{(x, y) ∈ R2

: 1 ≤ f 2
≤ Y+} and horizontal strip {(x, y) ∈ R2

: 1 ≤ g2
≤ X+}.

The sign of fx and gy gives the behavior of D (see Figure 5) on the period. The
horizontal strip {(x, y) ∈ R2

: 1 ≤ g2
≤ X+} gives us an annulus bounded by two

horocycles kg(γh)= g = ±1 as in the annulus case.
Each vertical curve { f = 0} has many connected components with end points

on D. These curves project on geodesics in the horizontal section. We will prove
that these curves project on only one geodesic γ i.e. they are contained in exactly
one vertical flat plane (γ × R) of symmetry of the surface.

First we prove that each connected component of { f = 0} projects on the whole
geodesic γ . A first indication is the sign of

sinhω =
fx + gy

f 2 + g2 − 1
,

which does not change at p0 and p′

0 (Figure 5). The normal vector points up (or
down) at the two endpoints. Recall that

f 2
x − g2

y = (g2
+ f 2

− 1)(g2
− f 2

+ c − d).

If g2
6= 1 and f = 0, we have fx + gy = 0 if and only if g2

= d − c. If g2
= 1 and

f = 0 we have

sinhω =
fx + gy

g2 − 1
=

g2
+ c − d

fx − gy
= 0

if and only if g2
= d − c. Then if d − c < 0, ω has constant sign on the vertical

connected component of { f = 0} which is a graph on the geodesic (Figure 6). If
c = d , then ω = 0 at one point q1 = { f = 0} ∩ {g = 0} but ω has a constant sign
on the curve. If d − c > 0, g2

= d − c < Y + at two points and the sign of the
vertical component of the normal changes twice (Figure 6). However ω has the
same sign in the neighborhood of its end points. It projects (noninjectively) on the
whole geodesic γ . �
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