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We study the geometry of the nullcone N = NV⊕k for several copies of a
representation V of a reductive group G and its behavior for different k.
We show that for large k there is a certain “stability” with respect to the
irreducible components. In the case of the so-called θ -representations, this
can be made more precise by using the combinatorics of the weight system
as a subset of the root system. All this finally allows us to calculate explicitly
and in detail a number of important examples, such as the cases of 3- and
4-qubits, which play a fundamental rôle in quantum computing.

Introduction

Let V be a finite dimensional complex representation of a complex reductive group
G and denote by NV ⊂ V the nullcone, i.e., the zero set of the homogeneous
nonconstant invariant functions on V . This cone was introduced and studied by
Hilbert in his famous paper “Über die vollen Invariantensysteme” [1893], where
he gives a “constructive” proof of the finiteness theorem for the invariants.

The nullcone NV plays a fundamental rôle in the geometry of the representation,
in particular, in problems concerning the structure of orbits and their closure and
in the study of the algebraic quotient πV : V → V//G given by the invariants.
For example, if f1, f2, . . . , fr are algebraically independent homogeneous func-
tions defining the nullcone NV , the invariants C[V ]

G form a free module over
the polynomial ring C[ f1, f2, . . . , fr ]. Knowing the degrees of the fi ’s one can
immediately give an upper bound for the degrees of a generating system for the
invariants. Moreover, there are efficient tools to calculate the Hilbert series of
the invariants. We refer the reader to [Derksen and Kraft 1995] and to the book
[Derksen and Kemper 2002] for more details.

In trying to understand the geometry of the n-qubits, i.e., the representation
Qn := C2

⊗C2
⊗· · ·⊗C2 (n factors) of SL2 × SL2 × · · ·×SL2 (also n factors, with
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obvious action on Qn) we became interested in the structure of the nullcone NV ⊕k

for k copies of a given representation V and in particular in its behavior for large
k. It turned out that there is a “stability” property saying that the general structure
does not change anymore once k is greater than a certain number m(V ) < dim V
calculated from the weight system of V (see Theorem 1.4 for a precise statement).
For instance, for the 3-qubits Q3 we find that the nullcones NQ3 and NQ⊕2

3
are

both irreducible, of dimension 7 and 11, respectively. The nullcone of k ≥ 3 copies
has 4 components, one of dimension 3 + 4k which is stable under S3 and three of
dimension 1 + 4k which are permuted by S3 (see Example 2.4).

On the other hand, the nullcone of any number of copies of the adjoint repre-
sentation of a semisimple group G on its Lie algebra g is irreducible and has a nice
resolution of singularities, namely

G ×B n⊕k
→ Ngk ,

where B ⊂ G is a Borel subgroup and n := Lie Bu is the Lie algebra of the unipo-
tent radical of B. A similar behavior can be found for all representations of SL2

where the nullcone for any number of copies is irreducible. But this behavior is
rather exceptional for groups of rank ≥ 2 and seems to occur only for “small”
representations, such as the standard representation of SLn (and its dual) and the
7-dimensional representation of G2. We do not know a classification of these
representations.

The next type of examples we study are the θ -representations introduced by
Vinberg [1976], motivated by and generalizing the situation of symmetric spaces
studied by Kostant and Rallis [1971] (see Section 3). One of our reasons for
this study is that the representation we called 4-qubits Q4 is an example of a θ -
representation (see Section 4). In these cases we are able to prove more precise
results (see Proposition 3.11 and Corollary 3.13), which enable us to determine
the nullcone for many important examples. For instance, in the case of 4-qubits
we find that NQ4 is irreducible, whereas for k ≥ 2 the nullcone NQ⊕k

4
has 12

irreducible components, decomposing into 3 orbits of 4 elements under S4. The
dimensions are 8k + 4, 8k + 3 and 8k + 1 (Proposition 4.1). As already said, a
key point of this paper consists in the examples worked out in detail, which show
a very interesting behavior of the nullcone, mostly irregular and sometimes quite
surprising. Although we do not have a complete picture or a final answer — maybe
there is none — we believe that the general results explain some of the phenomena
and that the examples will help to get a deeper insight into the situation.

Note. After finishing this paper we were informed about a paper of V. L. Popov
[2003], where he gives a general algorithm to determine the irreducible components
of maximal dimension of the nullcone, using the weights of the representation and
their multiplicities.
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1. Irreducible components of the nullcone

Our base field is the field C of complex numbers. Let G be a connected reductive
group and ρ : G → GL(V ) a finite dimensional (rational) representation. The
nullcone NV of the representations V is defined by

NV := {v ∈ V | Gv 3 0} = π−1
V (πV (0)),

where πV : V → V//G is the quotient morphism (see [Kraft 1984, Kap. II] or
[Mumford et al. 1994]). The nullcone plays a fundamental rôle in the study of the
geometry of the representation V and of the quotient morphism.

In this section we will describe the irreducible components of NV ⊕k for the
representation of G on V ⊕k

= V ⊕ V ⊕ · · · ⊕ V (k copies of V ) and show how
NV ⊕k behaves for k → ∞.

By the Hilbert–Mumford criterion we know that a vector v ∈ V belongs to the
nullcone NV if and only if there is a one-parameter subgroup (abbreviated: 1-PSG)
λ :C∗

→G such that limt→0 λ(t)v=0 ([Kraft 1984, Kap. III.2]). For a given 1-PSG
λ : C∗

→ G we define

V (λ) := {v ∈ V | lim
t→0

λ(t)v = 0}.

Let T ⊂ G be a maximal torus and denote by X (T ) the character group of T . Then
we have the following weight decomposition

V =

⊕
γ∈X (T )

Vγ , Vγ := {v ∈ V | ρ(t)v = γ (t) · v for t ∈ T }.

Vγ is called the weight space of weight γ . If λ : C∗
→ T ⊂ G a 1-PSG of T , then

V (λ) =

⊕
〈λ,γ 〉>0

Vγ

where 〈λ, γ 〉 denotes the usual pairing between X (T ) and the group Y (T ) of 1-
PSG’s of T : 〈λ, γ 〉 = n if γ (λ(t)) = tn for t ∈ C∗.

Varying λ ∈ Y (T ) we find finitely many different subspaces V (λ) of V . Using
the Hilbert–Mumford criterion mentioned above and the fact that every 1-PSG of
G is conjugate to a 1-PSG of T , we obtain the following description of the nullcone
of V ⊕k for any k ≥ 1:

NV ⊕k =

⋃
λ∈Y (T )

G V (λ)⊕k .

Moreover, V (λ) is normalized by a parabolic subgroup P(λ) containing T which
depends on λ and on V . In fact,

P(λ) ⊇ {g ∈ G | lim
t→0

λ(t)gλ(t)−1 exists},
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and the right-hand side is a parabolic subgroup with Levi subgroup Gλ [Kempf
1978, p. 305]. Clearly, we have equality for a suitably chosen λ. It follows that
G V (λ) is closed and that there is a proper surjective morphism

G ×P(λ) V (λ)⊕k
→ G V (λ)⊕k

where G×P(λ) V (λ)⊕k denotes the associated vector bundle to the principal bundle
G → G/P , i.e., G ×P(λ) V (λ)⊕k

:= (G × V (λ)⊕k)/P(λ) with the diagonal action
of P(λ) given by p(g, v) := (gp−1, pv).

Let us denote by XV ⊂ X (T ) the set of weights of V . Given any subset X ⊂ XV

we put VX := ⊕γ∈X Vγ .

Definition 1.1. A subset X ⊂ XV is called unstable if there is a λ ∈ Y (T ) such
that 〈λ, α〉 > 0 for all α ∈ X , and maximal unstable if X is maximal under this
condition. We denote by 4V the set of maximal unstable subsets of XV .

Clearly, we have

(∗) NV ⊕k =

⋃
X∈4V

G V ⊕k
X .

The Weyl group W = NG(T )/T acts on X (T ) and leaves XV invariant. If X ⊂ XV

is maximal unstable then so is wX , and GVX = GVwX . Thus it suffices in (∗) to
choose a representative for any W -orbit of maximal unstable subsets of XV . This
representative can be chosen in such a way that VX is stable under a fixed Borel
subgroup B of G.

Definition 1.2. A subspace U ⊂ V is called unstable if U is annihilated by a 1-
PSG λ (meaning that U ⊂ V (λ)), and maximal unstable if it is maximal under this
condition. We denote by UV the set of maximal unstable subspaces of V .

If X ⊂ XV is a maximal unstable subset then VX is a maximal unstable subspace.
Conversely, if U ⊂ V is a maximal unstable subspace, then U = gVX for a suitable
g ∈ G and a maximal unstable subset X ⊂ XV . Moreover, if U is T -stable, then
U = VX for some X ∈ 4V .

We will consider UV as a G-stable subset of the Grassmannian:

UV ⊂ Gr(V ) :=

⋃
1≤m≤dim V

Grm(V ).

In fact, UV consists of finitely many closed orbits since each maximal unstable
subset U is normalized by a parabolic subgroup.

In order to determine which spaces V ⊕k
X contribute to irreducible components

of NV ⊕k in the decomposition (∗) we have to check whether or not V ⊕k
X ′ ⊂ GV ⊕k

X .
The next lemma is a first step in this direction.



ON THE NULLCONE OF REPRESENTATIONS OF REDUCTIVE GROUPS 123

Lemma 1.3. Let U ⊂ V be a B-stable subspace where B ⊂ G is a Borel subgroup
containing T . Assume that there is a g ∈ G and a subset X ′

⊂ X (T ) such that
gU ⊂

⊕
γ∈X ′ Vγ . Then wXU ⊂ X ′ for a suitable w ∈ W .

Proof. The Bruhat Lemma implies that we can write g in the form g = unwb
where b ∈ B, nw ∈ NG(T ) is a representative of some w ∈ W , and u ∈ Bu , the
unipotent radical of B. Then bU = U and so U1 := nwbU is T -stable with weights
XU1 = wXU . It follows that the subspace gU = uU1 has the property that its
projection onto every weight space Vγ , γ ∈ wXU , is nonzero. On the other hand,
we have uU1 = gU ⊂

⊕
γ∈X ′ Vγ , by assumption. This implies that wXU ⊂ X ′. �

For any representation V of G we define

m(V ) := max{dim U | U ⊂ V maximal unstable subspace}.

We always have m(V ) < dim V . If V is self-dual, meaning that XV = −XV , then

m(V ) =
dim V − dim V0

2
.

In fact, if X is a maximal unstable subset of XV and γ is a nonzero weight of V ,
then exactly one of γ, −γ is contained in X .

Theorem 1.4. Let V be a representation of G and let {X1, X2, . . . , Xs} be a set
of representatives of the W -orbits of maximal unstable subsets of XV . If every
irreducible subrepresentation U of V occurs at least m(U ) times, the closed sub-
sets Ci := G VX i are the distinct irreducible components of the nullcone NV . If
Pi denotes the normalizer of VX i , the canonical morphism G ×Pi VX i → Ci is a
resolution of singularities, i.e., it is proper and birational.

Proof. Assume that VX i ⊂ G VX j for some i 6= j . Fix a decomposition of V into
irreducible factors:

φ : V
∼
→→

⊕
γ

W ⊕mγ

γ

where the Wγ are pairwise nonisomorphic simple G-modules. Then φ induces
isomorphisms φi : VX i

∼
→→

⊕
γ mγ Wγ X i

for all i . Since mγ ≥ dim Wγ X i
we

can find a vector v ∈ VX i such that the components of φ(v) in the mγ copies of
Wγ span the subspace Wγ X i

⊂ Wγ for every γ . By assumption, there is a g ∈ G
such that gv ∈ VX j . It follows that gWγ X i

⊂ Wγ X j
for all γ , and so gVX i ⊂ VX j .

Now we can apply Lemma 1.3 above to find a w ∈ W such that wX i ⊂ X j . This
contradiction proves the first part of the theorem.

For the second part we have already remarked that Pi ⊂ G is a parabolic sub-
group, that Ci ⊂ NV is closed and that the canonical morphism

ηi : G ×Pi VX i → Ci , [g, v] 7→ gv
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is proper and surjective. Now we use the same decomposition φ : V
∼
→→

⊕
γ W mγ

γ

as above. It is easy to see that the vectors v ∈ VX i with the property that the
components of φ(v) in the mγ copies of Wγ span the subspace Wγ X i

for all γ

form a dense open subset Zi ⊂ VX i . For any v ∈ Zi we therefore have

StabG v = StabG VX i ⊂ NormG VX i = Pi .

Thus, ηi is injective on the dense subset G×Pi Zi of G×Pi VX i , hence birational. �

Remark 1.5. Let 1 ⊂ X (T ) be the root system, B ⊃ T a Borel subgroup of
G and 1+

⊂ 1 the corresponding positive roots. In order to determine the W -
representatives {X1, X2, . . . , Xs} of the maximal unstable subsets it suffices to
consider those subsets X ⊂ X (T ) where the corresponding subspace VX is invariant
under B. This means that X satisfies the condition

(X + 1+) ∩ XV ⊂ X.

We will call these subsets 1+-invariant or B-invariant.

Remark 1.6. If p : V → V ′ is a surjective G-homomorphism then the induced
morphism p : NV → NV ′ is surjective. In particular, NV ′ =

⋃
i p(Ci ) and the images

p(Ci ) are all closed, but there might be some inclusions among the different p(Ci ).

The next result is an immediate consequence of the proof of Theorem 1.4. There
is an obvious generalization to arbitrary representations V whose formulation is left
to the reader.

Theorem 1.7. Let V be an irreducible representation of G and let {X1, . . . , Xs} be
representatives of the W -orbits of maximal unstable subsets of XV . For a given k ≥

1 the corresponding component G V ⊕k
X i

⊂ NV ⊕k is not visible (that is, it is contained
in another component G V ⊕k

X j
) if and only if the following condition holds:

(Ck) For every k-dimensional subspace U ⊂ VX i there exist
an element g ∈ G and an index j 6= i such that gU ⊂ VX j .

2. Examples

In this section we give a number of important examples that motivated the study
of the nullcone of multiple copies of a given representation.

Example 2.1 (Adjoint representations). Let g := Lie G be the Lie algebra of G.
Then Ng is the set of nilpotent elements in g. Fixing a Borel subgroup B of G
we see that there is a unique maximal B-invariant unstable subspace in g, namely
the nilradical n of Lie B. The corresponding Xn is the set of positive roots. This
implies:
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For any k ≥ 1 the nullcone Ng⊕k is irreducible and

G ×B n⊕k
→ Ng⊕k

is a resolution of singularities. Moreover, dim Ng⊕k =
1
2(k + 1)(dim G − rk G).

Example 2.2 (Orthogonal representations). Let G :=SOn be the special orthogonal
group and V := Cn the standard representation. We claim that for odd n there is
a unique maximal B-invariant unstable subset whereas for even n there are two.
More precisely:

Let V be the standard representation of the orthogonal group SOn .

(1) If n = 2m + 1 ≥ 3 is odd then NV ⊕k is irreducible for any number k of copies
of V .

(2) If n = 2m ≥ 2 is even then NV ⊕k is irreducible for k < m and has two irre-
ducible components for k ≥ m, permuted by On .

In both cases dim NV = n − 1 and dim NV ⊕k ≤
(m

2

)
+ km with equality for k ≥ m.

Proof. (1) For n = 2m + 1 the weights of V are {±ε1, ±ε2, . . . ,±εm, 0}. Since
the positive roots 1+ contain the elements {εi − ε j | i < j} and {εk | 1 ≤ k ≤ m}

it easily follows that there is exactly one maximal 1+-invariant unstable subset,
namely {ε1, ε2, . . . , εm}.

(2) For n = 2m the weights are {±ε1, ±ε2, . . . ,±εm} and the positive roots 1+

contain the elements {εi ± ε j | i < j}. It follows that there are two maximal 1+-
invariant unstable subsets, {ε1, ε2, . . . , εm} and {ε1, ε2, . . . , εm−1, −εm}, which are
not equivalent under the Weyl group. The corresponding subspaces U and U ′ are
both totally isotropic and are equivalent under On , but not under SOn . On the other
hand, GL(U ) can be identified with a Levi subgroup of SOn and so every linear
automorphism of U (or U ′) is induced by an element of SOn . Hence, for every
linear subspaces W of U ′ of dimension < m there is an element g ∈ SOn such that
gW ⊂ U ∩ U ′

⊂ U . This proves the claim by Theorem 1.7.

The statement about dimensions follows from the fact that the normalizer of U is
the maximal parabolic subgroup P with Levi factor GLm whose codimension in
SOn is

(m
2

)
. �

Example 2.3 (Quadratic forms). (This example was worked out by Matthias
Bürgin [2005].) Let G = SL3 with positive roots 1+

= {ε1 − ε2, ε1 − ε3, ε2 − ε3},
acting linearly on V := S2(C3)∗, the quadratic forms in 3 variables.

There are two maximal 1+-invariant unstable subsets, and the corresponding two
components of the nullcone are already seen in 2 copies V ⊕ V . The nullcone NV

is an irreducible hypersurface of dimension 5, and, for k ≥ 2, NV ⊕k is equidimen-
sional with two components of dimension 2 + 3k.
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Proof. The weights of V are {εi + ε j | 1 ≤ i ≤ j ≤ 3} and one easily finds the
following two maximal 1+-invariant unstable subsets: X1 := {2ε1, 2ε2, ε1 + ε2}

and X2 := {2ε1, ε1 + ε2, ε1 + ε3}. Note that X2 is W -equivalent to the comple-
ment XV \ X1. The corresponding subspaces of V are V1 := 〈x2

1 , x1x2, x2
2〉 and

V2 := x1 · 〈x1, x2, x3〉. It follows that the 2-dimensional subspace 〈x2
1 , x2

2〉 ⊂ V1 is
not equivalent to a subspace of V2, because it contains two linearly independent
squares. Similarly, one sees that the subspace 〈x1x2, x1x3〉⊂ V2 is not equivalent to
a subspace of V1. Thus both components are already seen in two copies (Theorem
1.7). The normalizers of V1 and V2 are the two parabolic subgroups P1 and P2 of
codimension 2. Since the nullcone of one copy has codimension 1, hence dimen-
sion 5 = 2 + 3 this implies that for all k ≥ 1 the morphisms G ×

Pi V ⊕k
i → G V ⊕k

i
are of finite degree and so dim NV ⊕k = 2 + 3k. �

Example 2.4 (The case of 3-qubits). Take

G := SL2 × SL2 × SL2 and V := C2
⊗ C2

⊗ C2,

with the usual linear action of G. The positive roots are given by 1+
= {α =

2ε1, α
′
= 2ε′

1, α
′′
= 2ε′′

}.

There are four maximal 1+-invariant unstable subsets, three of them are permuted
by the obvious action of S3 on V and hence on XV . The nullcones NV and NV ⊕2

are both irreducible, of dimension 7 and 11, respectively. The nullcone of k ≥ 3
copies has 4 components, one of dimension 3 + 4k which is stable under S3 and
three of dimension 1 + 4k which are permuted by S3.

Proof. Setting C2
= Ce0⊕Ce1 we get the basis (ei jk := ei ⊗e j ⊗ek | i, j, k ∈ {0, 1})

of V . Since ε1 = −ε0 for the weights on C2 the corresponding weights εi jk of V
are given by the vertices of a cube. It is easy to see that the maximal 1+-invariant
unstable subsets of XV = {εi jk} are

X0 := {ε000, ε001, ε010, ε100},

X1 := {ε000, ε001, ε010, ε011},

X2 := {ε000, ε001, ε100, ε101},

X3 := {ε000, ε010, ε100, ε110}.

X0 consists of the vertices of all edges containing ε000 and X1, X2, X3 correspond
to the 3 faces with vertex ε000. The latter are permuted by the action of S3 on the
weights εi jk given by permuting the indices, and X0 is invariant under S3.

The normalizer of VX0 is the Borel subgroup B× B× B, and VX1 = e0⊗C2
⊗C2

is normalized by B×SL2 × SL2; similarly for VX2 and VX3 . The claim now follows
from the next lemma together with Theorem 1.7. The statements about dimensions
follow in a similar way as in Example 2.3. �
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Lemma 2.5. (1) Every 2-dimensional subspace U of VX1 can be mapped into
VX1 ∩ VX0 with an element of B × SL2 × SL2.

(2) A generic 3-dimensional subspace of VX1 cannot be mapped into VX0 with an
element of SL2 × SL2 × SL2.

Proof. (1) Recall that the representation of SL2 × SL2 on VX1 ' C2
⊗ C2 corre-

sponds to the standard representation of SO4 on C4 where the invariant form on
C2

⊗ C2 is given by

(ei j , ei ′ j ′) =

{
1 if i + i ′

= j + j ′
= 1,

0 otherwise.

Thus every 2-dimensional subspace of VX1 is perpendicular to an isotropic vec-
tor. Since SO4 acts transitively on the isotropic vectors, this implies that every 2-
dimensional subspace of VX1 can be mapped into the subspace perpendicular to the
highest weight vector corresponding to ε000 which is VX1∩VX0 =e0⊗〈e00, e01, e10〉.

(2) Let U ⊂ VX1 be any 3-dimensional subspace which is orthogonal to a non-
isotropic vector. Then hU 6= VX1∩VX0 for any h ∈SO4 and so hU always contains a
vector whose coordinate in the weight space of Ce011 is nonzero. But this implies
that for any g ∈ G the image gU contains a vector whose projection into the
subspace V{ε011,ε111} ⊂ V is nonzero. Thus gU 6⊆ VX0 for all g ∈ G. �

3. Nullcones for θ -representations

Let V be a representation of a reductive group G, and let K ⊂ G be a reduc-
tive subgroup and W ⊂ V a K -stable subspace. We have an induced morphism
W//K → V//G. This morphism is finite if and only if we have the following
relation between the nullcone NW of W with respect to K and the nullcone NV of
V with respect to G:

NW = NV ∩ W.

Equivalently, the restrictions of the G-invariants on V define a subalgebra A of
O(W )K such that O(W )K is a finitely generated A-module. There are well-known
examples where this holds.

Examples 3.1. (1) Let G be semisimple, g = Lie G the adjoint representation,
K := NormG T the normalizer of a maximal torus T in G and h := Lie T ;
then, by Chevalley’s restriction theorem, h//K

∼
→→g//G, so O(g)G

=O(h)K .

(2) Let Gv = Gv ⊂ V be a closed orbit and denote by Gv the stabilizer of v.
Define K := NormG Gv and set W := V Gv . Then the induced morphism
W//K → V//G is a closed immersion. In particular, O(V )G

|W = O(W )K ,
that is, O(W )K is generated by the restrictions of the G-invariants of V to W .
This generalization of (1) is due to Luna and Richardson [1979].
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(3) Let G be a semisimple group and θ an automorphism of finite order of G.
Define Gθ

:= {g ∈ G | θ(g) = g}. The automorphism θ defines an automor-
phism of g := Lie G, also denoted by θ . Let W ⊂ g be an eigenspace of θ

and consider W as a representation of Gθ . Then Ng ∩ W = NW , see [Vinberg
1975; 1976].

Question 3.2. If such a “restriction property” holds for the pair (G, V ) ⊃ (K , W ),
does it also hold for two or more copies of V and W ? That is, do we have

(∗∗) NV ⊕m ∩ W ⊕m
= NW ⊕m for m ≥ 2?

Among the examples above, this holds for (1). It is even true that O(gn)G
|hn

coincides with O(hn)K , but this is a difficult theorem of Joseph [1997] (compare
[Wallach 1993]). This stronger result does not carry over to the generalization (2),
but it might still be true that (∗∗) holds. Concerning the last example we will now
show that (∗∗) holds in a more general situation.

Theorem 3.3. Let ρ : G → GL(V ) be a representation of a reductive group G
and let θ be a semisimple automorphism of V which normalizes ρ(G). Consider
the subgroup K := {h ∈ G | ρ(h)θ = θρ(h)}, and let W ⊂ V be an eigenspace of
θ . Then K is reductive and NV ∩ W = NW . In particular, the induced morphism
W//K → V//G is finite.

Proof. It is well-known that K is reductive. A short argument can be found in
[Kraft et al. 1999, Corollary 2] where we show that a closed subgroup K ⊂ G
of a reductive group G is reductive if and only if Lie H has an Ad(H)-stable
complement in Lie G.

Since NW ⊂ NV , it remains to show that NV ∩ W ⊆ NW . Multiplying θ with
a suitable scalar we can assume that W = V θ . Define S := 〈θ〉 ⊂ GL(V ), the
closure of the subgroup generated by θ . This group S is commutative and reductive,
normalizes ρ(G) and acts trivially on W . Therefore, G̃ := S · ρ(G) ⊂ GL(V ) is
again reductive. Since K̃ := CentG̃(S) has the same image in GL(W ) as K and
since the nullcone of V with respect to G̃ contains NV , it suffices to prove the
claim with G replaced by G̃ and K replaced by K̃ . But now we are in the situation
of [Kempf 1978, Corollary 4.5], which implies that for every point in x ∈ NV ∩ W
there is a 1-PSG λ of K̃ such that limt→0 λ(t)x = 0. �

From now on we will consider the following special case which was studied in
detail in [Vinberg 1976]. Let G be a connected reductive group, g := Lie G its Lie
algebra, θ a semisimple automorphism of G and K := Gθ the fixed point group.
We know that K is reductive, but not necessarily connected. The automorphism θ

induces an automorphism of the Lie algebra g, also denoted by θ , and gθ
= k :=

Lie K . Moreover, every eigenspace V ⊂ g of θ is a representation of K . We fix a
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θ -stable Cartan subalgebra t ⊂ g such that t0 := t ∩ k is a Cartan subalgebra of k

and denote the corresponding maximal tori by T ⊂ G and T0 ⊂ K .
If b ⊂ g is a θ -stable Borel subalgebra, then the intersection of the nilradical nb

of b with an eigenspace V of θ is an unstable subspace of V . We will see that all
maximal unstable subspaces are obtained in this way.

Fix a Borel subalgebra b0 ⊂ k containing t0 and define the following set of
unstable subspaces:

BV := {Vb := nb ∩ V | b a θ -stable Borel subalgebra of g containing b0 and t}.

Proposition 3.4. Let V ⊂ g be an eigenspace of θ . Then the maximal elements of
BV , Bmax

V , form a set of representatives of the K 0-equivalence classes of maximal
unstable subspaces of V . In particular, for any number n of copies of V we have

NV ⊕n =

⋃
U∈Bmax

V

K 0 U⊕n.

Proof. If U ⊂ V is an unstable subspace annihilated by the 1-PSG λ of T0 we can
assume that λ is regular as a 1-PSG of T . This follows easily from the fact that
treg

∩ t0 is open and dense in t0 (see [Borel and Mostow 1955]). Then n := {x ∈

g | limt→0 λ(t)x = 0} is the nilpotent radical of a θ -stable Borel subalgebra b, and
n∩ V is unstable and contains U , by construction. By conjugation with a suitable
element of K 0 we can assume that b contains b0. Thus every maximal unstable
subspace is conjugate to a maximal element from BV .

Let B0 ⊂ K be the Borel subgroup with Lie algebra b0. If two maximal subspaces
U1, U2 ∈ BV are equivalent under K 0 then there is an element n ∈ NormK 0(T0)

which sends U1 onto U2. This implies that U2 is stable under B0 and nB0n−1.
Hence the normalizer of U2 contains the subgroup H generated by B0 and nB0n−1.
Since H contains n we get U1 = U2. �

Question 3.5. Which maximal unstable subspaces from BV contribute to irre-
ducible components of NV , and how many components do we have?

One knows that NV is a complete intersection and contains only finitely many
K -orbits. More precisely, the invariant ring of V is generated by algebraically
independent elements, the quotient morphism π : V → V//K is flat and each fiber
of π contains only finitely many orbits (see [Vinberg 1976]).

Since θ normalizes t we have an action of θ on the Weyl group W := W (G, T ).
Denote by W θ

⊂ W the subgroup of elements fixed by θ . It is easy to see that
W θ acts simply transitively on the set of θ -stable Borel subalgebra containing t.
Therefore, the number of θ -stable Borel subalgebra containing t and b0 is given by
the index [W θ

: WK ] where WK := W (K 0, T0). (Recall that the restriction of W θ

to t0 is injective and the image contains WK .)
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Proposition 3.6. We use the notation introduced above.

(1) We have
#Bmax

V ≤ #BV ≤ [W θ
: WK ].

(2) Assume that θ has order 2 and let V ⊂ g be the (−1)-eigenspace, so that
g = k ⊕ V . Then

#Bmax
V = #BV = [W θ

: WK ].

Proof. (1) follows from what was said above. For (2) we remark that under the
given assumptions we have b = (t + b0) ⊕ Vb and so b is determined by Vb, and
all Vb have the same dimension, hence are maximal. �

Example 3.7. [Quiver representations of type Ã1] Let U, W be two finite di-
mensional vector spaces and set G := GL(U ⊕ W ) and θ := Int(idU , − idW ),
so θ is the conjugation with

[ idU
− idW

]
. Then K = GL(U ) × GL(W ) and V =

Hom(U, W ) ⊕ Hom(W, U ) with the obvious linear action of K . By Proposition
3.6(2) we get #BV =

(dim U+dim W
dim U

)
and all unstable spaces in BV are maximal and

nonequivalent. It is known that NV is irreducible for m 6= n and has 2 irreducible
components for m = n. A detailed analysis of the geometry of this representation
can be found in [Kempken 1982].

Remark 3.8. Let a ⊂ V be a Cartan subspace, i.e., a maximal subspace consisting
of semisimple elements. Then Ka is dense in V and the inclusion induces an
isomorphism a//WV

∼
→→ V//K 0 where WV := NormK 0(a)/ CentK 0(a) is a finite

group generated by reflections; see [Vinberg 1976]. If dim a = dim t = rk G, then
NormK 0(a) is finite since normk(a) = normg(a)∩ k = a∩ k = {0}, and so dim V =

dim K + dim a. It follows that in this case the generic orbits in V have finite
stabilizer.

We add here a useful criterion to decide if an element v = (v1, v2, . . . , vk)∈ V ⊕k

belongs to the nullcone. A special case of this result played a fundamental rôle in
the determination of the Hilbert series for the invariants of pairs of 4-qubits (see
[Wallach 2005] and Section 4 below).

First of all, it is well-known and easy to see that a k-tuple v = (v1, v2, . . . , vk)

belongs to the nullcone of V ⊕k if and only if the subalgebra s ⊂ g generated
by v1, v2, . . . , vk consists of nilpotent elements. (One simply uses the fact that
v = (v1, v2, . . . , vk) is annihilated by a 1-PSG λ if and only if the subalgebra s is
annihilated by λ.)

Proposition 3.9. For a given k ≥ 1 let v = (v1, v2, . . . , vk) ∈ V ⊕k and denote by
s ⊂ g the Lie algebra generated by v1, v2, . . . , vk . Then v belongs to the nullcone
NV ⊕k if and only if the following conditions hold:

(1) v1, v2, . . . , vk ∈ g are nilpotent elements.

(2) The Lie algebra s∩k is nilpotent.
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Proof. One direction of the claim follows from the observation above. Now assume
that the elements vi ∈ g are nilpotent and that s∩k is a nilpotent Lie algebra. By
construction, s is θ -invariant and s∩k=sθ . Let r be the radical of s. Then θ induces
a semisimple automorphism of s /r. The main result of [Borel and Mostow 1955],
implies that if s /r 6= 0 then the induced automorphism fixes a regular semisimple
element. This implies that s = r so it is solvable. But then it consists of nilpotent
elements since it is generated by nilpotent elements. �

From now on let us assume that θ has order 2 and let V be the (−1)-eigenspace,
so that g = k ⊕ V . This is the situation studied in [Kostant and Rallis 1971].

Remark 3.10. If we choose G to be the adjoint group (and θ of order 2) it is
shown in [Kostant and Rallis 1971] that K has a dense orbit in the nullcone NV .
As a consequence, the number of irreducible components of NV is less or equal
to the order of the component group K/K 0. As an example let us look at the
quiver representations of type Ã1 from Example 3.7. If U = W and if we replace
G := GL(U ⊕ U ) by its image G in Aut(End(U ⊕ U )) then K := G

θ
contains

the image of the element
[

id
id

]
which permutes the two copies of End(U ) in the

representation of K on V := End(U )⊕End(U ). In particular, K has a dense orbit
in the (reducible) nullcone NV , and K/K

0
has order 2.

Proposition 3.11. Assume that V contains a Cartan subalgebra of g. Let Vb ∈

BV be a maximal unstable subspace. Then K 0Vb is an irreducible component of
NV if and only if Vb contains a regular nilpotent element of g. Any two different
subspaces of BV of this form define different irreducible components.

Proof. We first show that V contains a regular nilpotent element n. Let a ⊂ V
be a Cartan subalgebra of g and choose a Borel subalgebra b ⊃ a. Denote by
(α1, . . . , α`) the corresponding simple roots and fix nonzero elements ei ∈ gαi .
Since θ |a = − ida we see that θ(gα) = g−α for any root α. Choose h ∈ a such
that [h, ei ] = 2ei for all i . If e :=

∑
i ai ei and f := θ(e) =

∑
i ai fi , where

fi = θ(ei ) ∈ g−αi , then we have [h, f ] = −2 f . Moreover, we can solve the
equation [e, f ] = h because [e, f ] =

∑
i a2

i [ei , fi ] and the elements hi := [ei , fi ]

form a basis of a. It follows that (e, f, h) is an θ -stable sl2-triple. In particular, the
element n := h + e − f belongs to V and is nilpotent, hence conjugate to e.

As a consequence, we see that the regular nilpotent elements in NV form a
nonempty open set. Since K has a dense orbit OK in NV (see Remark 3.10) it
follows that OK consists of regular nilpotent elements. Hence every irreducible
component contains a dense set of regular nilpotent elements. Thus K 0 Vb is an
irreducible component of NV if and only if Vb contains a regular nilpotent element.

It remains to see that different subsets Vb containing regular nilpotent elements
define different irreducible components of NV . So assume that K 0Vb = K 0Vb′
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and let x ∈ Vb be a regular nilpotent element. Then there is a k ∈ K 0 such that
x ′

:= kx ∈ Vb′ . It follows that the regular nilpotent element x ′ belongs to b′ and also
to kbk−1. Thus b′

= kbk−1 since a regular nilpotent element belongs to a unique
Borel subalgebra. It follows that kb0k−1

= b0, hence k ∈ B0 and so b = b′. �

In fact, all elements from OK have finite stabilizer as we have mentioned above.
In order to see that Kx is finite for a regular nilpotent x ∈ Vb ⊂ V we first remark
that (Gx)

0
⊂ Bx and so (Kx)

0
⊂ (B0)x . Moreover, Bx is dense in nb, hence

nb = [b, x] = [b0, x] + [V, x] which implies that [b0, x] = nb ∩ V = Vb, in other
words B0x is dense in Vb. But dim Vb = dim n−dim n0 = dim K −dim n0 = dim B0

and so the stabilizer of x in B0 is finite.

Remark 3.12. It is easy to see that the regular nilpotent elements in V form a
single K -orbit.

In addition to the assumptions of Proposition 3.11, assume that rk G = rk K .
Then t = t0 and so V is a sum of weight spaces. This implies a combinatorial
description of the irreducible components of NV :

Corollary 3.13. Assume that V contains a Cartan subalgebra of g and that G, K
have equal rank. Then K 0Vb is an irreducible component of NV if and only if Vb

contains all simple root spaces with respect to b.

Example 3.14 (Symmetric matrices). Consider the automorphism θ : A 7→ (At)−1

of G := SLn . Then K := Gθ
= On and V := (sln)−1 is the space of “traceless”

symmetric n × n-matrices which can be identified with S2(Cn)/C. Clearly, V
contains a Cartan subalgebra of sln , given by the diagonal matrices. Hence, we
can apply Corollary 3.13 and obtain:

Proposition 3.15. Consider the representation of SOn on the space Symn of sym-
metric matrices. If n is even then the nullcone NSym⊕k

n
has two irreducible compo-

nents for all k ≥ 1. They are permuted by the elements of On \ SOn . If n is odd,
then NSym⊕k

n
is irreducible for all k ≥ 1.

Proof. For n = 2`, the positive roots of so2` are given by

1+

K := {εi ± ε j | 1 ≤ i < j ≤ `}

and the weights of V by

XV = {±(εi + ε j ) | 1 ≤ i ≤ j ≤ `} ∪ {±(εi − ε j ) | 1 ≤ i < j ≤ `} ∪ {0},

where the zero weight space has dimension `−1. The dimension of V is
(n

2

)
−1 =

2`2
+ (`− 1). Since the representation is self-dual every maximal unstable subset

X ⊂ XV has `2 elements. It is not difficult to see that an unstable 1+-invariant
subset X is a subset of

{εi ± ε j ) | 1 ≤ i < j ≤ `} ∪ {2ε1, 2ε2, . . . , 2ε`, −2ε`}.
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It follows that there are exactly two nonequivalent maximal unstable 1+-invariant
subsets,

X1 := {εi ± ε j | 1 ≤ i < j ≤ `} ∪ {2ε1, 2ε2, . . . , 2ε`−1, 2ε`} and

X2 := {εi ± ε j | 1 ≤ i < j ≤ `} ∪ {2ε1, 2ε2, . . . , 2ε`−1, −2ε`}.

It is well known that there is an element g ∈ O2`, stabilizing the given torus T0, such
that for the action on the roots we have gεi = εi for i < ` and gε` = −ε`. Hence,
gX1 = X2 and so NV ⊕k = SOn V ⊕k

X1
∪SOn V ⊕k

X2
has two irreducible components for

any number k of copies of V .

For n = 2` + 1 the positive roots of so2`+1 are given by

1+

K := {εi ± ε j | 1 ≤ i < j ≤ `} ∪ {εi | 1 ≤ i ≤ `}

and the weights XV of V by

{±(εi +ε j ) | 1 ≤ i ≤ j ≤ `}∪{±(εi −ε j ) | 1 ≤ i < j ≤ `}∪{±εi | 1 ≤ i ≤ `}∪{0},

where the zero weight space has dimension `. There is exactly one maximal un-
stable 1+-invariant subset of XV , namely

X := {εi + ε j | 1 ≤ i ≤ j ≤ `} ∪ {εi − ε j | 1 ≤ i < j ≤ `} ∪ {εi | 1 ≤ i ≤ `}.

Hence, the nullcone NV ⊕k is irreducible for all k ≥ 1. �

Example 3.16 (Pairs of quadratic forms (the case Cm)). Let U be a vector space
of dimension m and consider W := U ⊕ U∗ with the nondegenerate skew form
β((u, ζ ), (u′, ζ ′)) := ζ ′(u) − ζ(u′). Then GL(U ) is naturally embedded into the
corresponding symplectic group G := Sp(W, β) by φ 7→ (φ, (φ∗)−1). Setting
θ := Int(idU , − idU∗), we find that K := Gθ

= GL(U ) and V := (sp(W, β)−1 =

S2(U )⊕S2(U∗). Thus rk G = rk K , and V contains a Cartan subalgebra a, namely

a :=

{(∑
i ai u2

i ,
∑

i ai (u∗

i )
2
) ∣∣∣ (a1, a2, . . . , am) ∈ Cm

}
,

where (u1, . . . , um) is a basis of U and (u∗

1, . . . , u∗
m) the dual basis of U∗. It follows

that there are 2m
=[WSp(2m) : WGL(m)] maximal unstable subsets containing a given

Borel subalgebra b0 of gl(U ).
In order to describe BV we use a basis of U and its dual to obtain the usual

identification sp(W, β) = sp(2m) ⊂ gl(2m). Then the upper triangular matrices in
sp(2m) form a Borel algebra b. The corresponding positive roots are

1+
= {εi − ε j | 1 ≤ i < j ≤ m} ∪ {2εk | 1 ≤ k ≤ m}

and contain the positive roots 1+

K = {εi − ε j | 1 ≤ i < j ≤ m} corresponding to
the Borel subalgebra b0 := b ∩ gl(U ). We have to describe all systems of positive
roots P ⊂ 1 := 1+

∪ −1+ which contain 1+

K . Clearly, it suffices to describe
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the corresponding ρP :=
∑

α∈P α, since P = {α ∈ 1 | (ρP , α) > 0}. We have
ρ1+ =

∑
(m − i + 1)εi and ρP = wρ1+ for some w ∈ W . Hence, ρP has the form∑

aiεi where {|ai |} = {1, 2, , . . . , m}.
We call such a P (or the corresponding ρP ) admissible if it contains 1+

K . We
have the following inductive description, starting with sp(2) = sl(2) and P = {ε1}

or P = {−ε1}.

Proposition 3.17. (1) The admissible ρP ’s are of the form

ρP = mε1 + ρQ′ or ρP = ρQ′′ − mεm

where Q′
⊂ 1′

:= {±(εi − ε j ) | 2 ≤ i < j ≤ m} ∪ {±2εk | 2 ≤ k ≤ m} and
Q′′

⊂ 1′′
:= {±(εi − ε j ) | 1 ≤ i < j ≤ m − 1} ∪ {±2εk | 1 ≤ k ≤ m − 1} are

both admissible.

(2) There are exactly two admissible P’s such that all simple roots are in P ∩ XV .
For m = 2` these are given by

ρP = mε1 + (m − 2)ε2 + · · · + 2ε`−1 − ε` − 3ε`+1 − · · · − (m − 1)εm or

ρP = (m − 1)ε1 + (m − 3)ε2 + · · · + ε`−1 − 2ε` − 4ε`+1 − · · · − mεm,

and for m = 2` − 1 by

ρP = mε1 + (m − 2)ε2 + · · · + ε`−1 − 2ε` − 4ε`+1 − · · · − (m − 1)εm or

ρP = (m − 1)ε1 + (m − 3)ε2 + · · · + 2ε`−1 − 1ε` − 3ε`+1 − · · · − mεm .

In particular, the nullcone NV has two irreducible components.

Proof. (1) It is easy to see that the given elements are indeed of the form ρP for
some set P of positive roots, and, by induction, we also see that they are admissible.
Since their number is 2m we found them all.

(2) We have to describe those admissible P’s where no simple root of P is
contained in 1+

K . Since ρP =
∑

i aiεi where {|ai |} = {1, 2, . . . , m} the claim
easily follows. �

Again one shows that the group K = G
θ

has two connected components, in
accordance with the fact that K has a dense orbit in NV (see Remark 3.12).

Example 3.18 (Pairs of skew forms (the case Dm)). Proceeding in the same way
as in the previous example, this time using the nondegenerate quadratic form
q(u, ζ ) := ζ(u) on W := U ⊕ U∗ we obtain G := SO(W, q), K := Gθ

= GL(U )

and V :=
∧2U ⊕

∧2U∗. Again, rk G = rk K , but here V does not contain a Cartan
subalgebra of so(W, q). The number of admissible sets P of positive roots equals
2m−1, but it is not clear which of them contribute to an irreducible component of
the nullcone NV .
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4. The example of the 4-qubits

The group G := SO8 has an involution θ such that K := Gθ
= SO4 × SO4 and V =

M4 with the obvious action of K . This representation can be identified with the 4-
qubits, i.e., the representation of SL2 × SL2 × SL2 × SL2 on C2

⊗C2
⊗C2

⊗C2. The
positive roots of k = so4 ⊕ so4 are given by 1+

K = {ε1 −ε2, ε1 +ε2, ε3 −ε4, ε3 +ε4}

and the weights of V by

XV = {±(ε1 ± ε3), ±(ε1 ± ε4), ±(ε2 ± ε3), ±(ε2 ± ε4)}.

For a Borel subalgebra b of so8 the half sums of positive roots ρb has the form∑
i aiεi where {|a1|, |a2|, |a3|, |a4|} = {0, 1, 2, 3}. Moreover, b contains the Borel

subalgebra b0 ⊂ k corresponding to 1+

K if and only if a1 ≥ ±a2 and a3 ≥ ±a4.
This gives the following 12 (= [W : WK ]) weight vectors ρP corresponding to the
maximal unstable subspaces Vb ∈ BV :

3ε1 + 2ε2 + ε3, 3ε1 + ε2 + 2ε3, 3ε1 + 2ε3 + ε4,

3ε1 − 2ε2 + ε3, 3ε1 − ε2 + 2ε3, 3ε1 + 2ε3 − ε4,

ε1 + 3ε3 + 2ε4, 2ε1 + 3ε3 + ε4, 2ε1 + ε2 + 3ε3,

ε1 + 3ε3 − 2ε4, 2ε1 + 3ε3 − ε4, 2ε1 − ε2 + 3ε3.

Given a ρb from the list we know that K 0Vb is an irreducible component of NV if
and only if Vb contains the simple roots, i.e., if and only if b0 does not contain a
simple root with respect to b. If ρ is of the form

∑
i aiεi this means that a1±a2 ≥ 2

and a3 ± a4 ≥ 2 which has the following four solutions:

O0 := {3ε1 + ε2 + 2ε3, 3ε1 − ε2 + 2ε3, 2ε1 + 3ε3 + ε4, 2ε1 + 3ε3 − ε4}.

The group S4 acts on the 4-qubits permuting the 4 factors in C2
⊗ C2

⊗ C2
⊗ C2.

The corresponding action on (SL2)
4 permutes the positive (simple) roots 1+

K . It
follows that O0 is a single orbit under S4 which implies that S4 permutes the four
irreducible components of NV transitively. The remaining ρ’s from the list above
decompose into 2 further orbits, namely

O1 := {3ε1 + 2ε3 + ε4, 3ε1 + 2ε3 − ε4, 2ε1 + ε2 + 3ε3, 2ε1 − ε2 + 3ε3} and

O2 := {3ε1 + 2ε2 + ε3, 3ε1 − 2ε2 + ε3, ε1 + 3ε3 + 2ε4, ε1 + 3ε3 − 2ε4}.

The stabilizer of any one of the ρ’s is S3 ⊂ S4. Since S3 is not contained in a
proper subgroup of S4 it follows that the orbits Oi generate either none or one or
four irreducible components of NV k for a given k > 1. In fact, we have:

Proposition 4.1. For k ≥ 2 the nullcone NQ⊕k
4

has 12 irreducible components,
decomposing into 3 orbits of 4 elements under S4. The dimensions are 8k + 4,
8k + 3 and 8k + 1.
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The proof needs a little preparation. We first have to translate the setting above
into the standard coordinates of Q4 = C2

⊗C2
⊗C2

⊗C2. We write C2
= Ce0⊕Ce1.

Then the elements ei jk` := ei ⊗ e j ⊗ ek ⊗ e` (i, j, k, ` ∈ {0, 1}) form a basis of Q4.
The corresponding weights in K = (SL2)

4 will be denoted by εi jk`. Note that
−εi jk` = εi ′ j ′k′`′ where i + i ′

= j + j ′
= k + k ′

= ` + `′
= 1. The nondegenerate

invariant form is induced by the standard symplectic form on C2, hence given by

(ei jk`, ei ′ j ′k′`′) := (i, i ′) · ( j, j ′) · (k, k ′) · (`, `′)

where (0, 0) = (1, 1) = 0 and (0, 1) = −(1, 0) = 1. Such forms exist on every Qk

and are symmetric for even k and skew-symmetric for odd k. The group S4 acts on
Q4 by permuting the indices, hence normalizing the action of K and leaving the
form ( , ) invariant.

The positive roots of k = sl2 ⊕ sl2 ⊕ sl2 ⊕ sl2 are given by

1+

K = {α1 := ε1 + ε2, α2 := ε1 − ε2, α3 := ε3 + ε4, α4 := ε3 − ε4},

and we get

εi jk` =
1
2

(
(−1)iα1 + (−1) jα2 + (−1)kα3 + (−1)`α4

)
.

For ρ0 := 3ε1 + ε2 + 2ε3 = 2α1 + α2 + α3 + α4 ∈ O0 the corresponding weight
space V0 ⊂ Q4 is given by

V0 = 〈e0000, e0011, e0100, e0001, e0010, e0101, e0110, e1000〉 = (e0 ⊗ U ) ⊕ Ce1000,

where
U := 〈e000, e011, e100, e001, e010, e101, e110〉 = (Ce000)

⊥.

Similarly, we find for ρ1 := 3ε1 + 2ε3 + ε4 ∈ O1 and ρ2 := 3ε1 + 2ε2 + ε3 the
following weight spaces:

V1 := 〈e0000, e0011, e0100, e0001, e0010, e0101, e1000, e1001〉

= 〈e000, e001, e010, e100〉 ⊗ C2,

V2 := 〈e0000, e0001, e0010, e0100, e0011, e0101, e0110, e0111〉

= e0 ⊗ Q3.

The normalizers of these spaces are P0 := B × B × B × B, P1 := B × B × B ×SL2

and P2 := B × SL2 × SL2 × SL2.

Lemma 4.2. The morphisms

K ×P0 V0 → Q4, K ×P1 V1 → Q4, K ×P2 V2 → Q4

have finite degree. In particular,

dim K V ⊕k
0 = 8k + 4, dim K V ⊕k

1 = 8k + 3, dim K V ⊕k
2 = 8k + 1.
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Proof. Let U− :=
{[

1
u 1

]
| u ∈ C

}
⊂ SL2. It suffices to check that the morphisms

(U−×U−×U−×U−)×V0 → Q4, (U−×U−×U−)×V1 → Q4, U−×V2 → Q4

have rank 12 = 8 + 4, 11 = 8 + 3 and 9 = 8 + 1, respectively, in a generic point of
e ∈ V0, V1 and V2; equivalently, that

dim(u− ⊕ u− ⊕ u− ⊕ u−) · e + V0 = 12,

dim(u− ⊕ u− ⊕ u−) · e + V1 = 11,

dim u− · e + V2 = 9.

This is easy and left to the reader. �

Lemma 4.3. Let W ( Q3 a B × B × B-stable subspace. Then a generic 2-
dimensional subspace of Q3 is not conjugate to a subspace of W .

Proof.
∧2W is stable under B × B × B and dim

∧2W ≤
(7

2

)
= 21. Therefore

dim(SL2 × SL2 × SL2)
∧2W ≤ 21 + 3 <

(8
2

)
= dim

∧2 Q3. �

Proof of Proposition 4.1. According to Theorem 1.7 (and using Lemma 4.3) we
have to show the following:

(a) There is a 2-dimensional subspace of V2 which has no conjugate in either of
the spaces σ V0 or σ V1 for σ ∈ S4.

(b) There is a 2-dimensional subspace of V1 which has no conjugate in either of
the spaces σ V0 for σ ∈ S4.

Proof of (a). Some conjugate of a 2-dimensional subspace of V0 has the form e⊗U ,
where e is an element of C2 and U is an arbitrary 2-dimensional subspace of Q3.
It is easy to see that a subspace of σ V0 or σ V1 of this form is contained in e ⊗ W,
where W is strictly contained in Q3. Now the claim follows from Lemma 4.3.

Proof of (b). Let U := w⊗C2
⊂ V1, where w is a generic element in the subspace

〈e000, e001, e010, e100〉. Since V0 has the form

V0 = 〈e000, e001, e010〉 ⊗ C2
⊕ (Ce0110 ⊕ Ce1000)

it follows that a conjugate of U is contained in V0 only if w ∈ K ′
〈e000, e001, e010〉

where K ′
:= (SL2)

3. But K ′
〈e000, e001, e010〉 ( 〈e000, e001, e010,e100〉 since we have

dim K ′
〈e000, e001, e010〉≤ 6, because 〈e000, e001, e010〉 is stable under a Borel of K ′,

and K ′
〈e000, e001, e010, e100〉 is an irreducible component of the nullcone NQ3 of

dimension 7 (see Example 2.4).
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The four images σ V0 (σ ∈ S4) have the following form (we use the transpositions
σ = (12), (13), (14)):

V ′

0 = 〈e000, e001, e100〉 ⊗ C2
⊕ (Ce1010 ⊕ Ce0100),

V ′′

0 = 〈e000, e100, e010〉 ⊗ C2
⊕ (Ce1100 ⊕ Ce0010),

V ′′′

0 = 〈e000〉 ⊗ C2
⊕ 〈e101, e010, e100, e001, e110, e011〉 ⊗ e0,

and a similar argument applies. �
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137, Universität Bonn, Mathematisches Institut, Bonn, 1982. MR 84a:14022 Zbl 0498.14021

[Kostant and Rallis 1971] B. Kostant and S. Rallis, “Orbits and representations associated with
symmetric spaces”, Amer. J. Math. 93 (1971), 753–809. MR 47 #399 Zbl 0224.22013

[Kraft 1984] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics
D1, Vieweg, Braunschweig, 1984. MR 86j:14006 Zbl 0669.14003

[Kraft et al. 1999] H. Kraft, L. W. Small, and N. R. Wallach, “Hereditary properties of direct sum-
mands of algebras”, Math. Res. Lett. 6:3-4 (1999), 371–375. MR 2000g:16006 Zbl 0952.16005

[Luna and Richardson 1979] D. Luna and R. W. Richardson, “A generalization of the Chevalley
restriction theorem”, Duke Math. J. 46:3 (1979), 487–496. MR 80k:14049 Zbl 0444.14010

[Mumford et al. 1994] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed.,
Ergebnisse der Mathematik (2) 34, Springer, Berlin, 1994. MR 95m:14012 Zbl 0797.14004

[Popov 2003] V. L. Popov, “The cone of Hilbert null forms”, pp. 177–194 in Number theory, algebra,
and algebraic geometry: papers dedicated to the 80th birthday of Igor Rostislavovich Shafare-
vich, Proceedings Steklov Inst. Math. 241, Amer. Math. Soc., Providence, 2003. MR 2005e:14071
Zbl 02174379

[Vinberg 1975] È. B. Vinberg, “On the linear groups associated to periodic automorphisms of semi-
simple algebraic groups”, Dokl. Akad. Nauk SSR 221 (1975), 767–770. In Russian; translated in
Sov. Math. Dokl. 16 (1975), 406-409. MR 58 #5954 Zbl 0334.20020

http://links.jstor.org/sici?sici=0003-486X(195505)2:61:3%3C389:OSAOLA%3E2.0.CO%3B2-Q
http://links.jstor.org/sici?sici=0003-486X(195505)2:61:3%3C389:OSAOLA%3E2.0.CO%3B2-Q
http://www.ams.org/mathscinet-getitem?mr=16,897d
http://www.emis.de/cgi-bin/MATH-item?0066.02401
http://www.ams.org/mathscinet-getitem?mr=2003g:13004
http://www.emis.de/cgi-bin/MATH-item?1011.13003
http://www.emis.de/cgi-bin/MATH-item?0883.13003
http://dx.doi.org/10.1007/BF01444162
http://www.ams.org/mathscinet-getitem?mr=1510781
http://www.emis.de/cgi-bin/JFM-item?25.0173.01
http://dx.doi.org/10.1016/S0764-4442(97)86940-6
http://www.ams.org/mathscinet-getitem?mr=98d:17017
http://www.emis.de/cgi-bin/MATH-item?1002.17007
http://links.jstor.org/sici?sici=0003-486X(197809)2:108:2%3C299:IIIT%3E2.0.CO%3B2-R
http://www.ams.org/mathscinet-getitem?mr=80c:20057
http://www.emis.de/cgi-bin/MATH-item?0406.14031
http://www.ams.org/mathscinet-getitem?mr=84a:14022
http://www.emis.de/cgi-bin/MATH-item?0498.14021
http://links.jstor.org/sici?sici=0002-9327(197107)93:3%3C753:OARAWS%3E2.0.CO%3B2-6
http://links.jstor.org/sici?sici=0002-9327(197107)93:3%3C753:OARAWS%3E2.0.CO%3B2-6
http://www.ams.org/mathscinet-getitem?mr=47:399
http://www.emis.de/cgi-bin/MATH-item?0224.22013
http://www.ams.org/mathscinet-getitem?mr=86j:14006
http://www.emis.de/cgi-bin/MATH-item?0669.14003
http://www.ams.org/mathscinet-getitem?mr=2000g:16006
http://www.emis.de/cgi-bin/MATH-item?0952.16005
http://projecteuclid.org/getRecord?id=euclid.dmj/1077313569
http://projecteuclid.org/getRecord?id=euclid.dmj/1077313569
http://www.ams.org/mathscinet-getitem?mr=80k:14049
http://www.emis.de/cgi-bin/MATH-item?0444.14010
http://www.ams.org/mathscinet-getitem?mr=95m:14012
http://www.emis.de/cgi-bin/MATH-item?0797.14004
http://www.ams.org/mathscinet-getitem?mr=2005e:14071
http://www.emis.de/cgi-bin/MATH-item?02174379
http://www.ams.org/mathscinet-getitem?mr=58:5954
http://www.emis.de/cgi-bin/MATH-item?0334.20020


ON THE NULLCONE OF REPRESENTATIONS OF REDUCTIVE GROUPS 139

[Vinberg 1976] È. B. Vinberg, “The Weyl group of a graded Lie algebra”, Izv. Akad. Nauk SSSR Ser.
Mat. 40:3 (1976), 488–526, 709. In Russian; translated in Math. USSR Izv. 10 (1976), 463–495.
MR 55 #3175 Zbl 0371.20041

[Wallach 1993] N. R. Wallach, “Invariant differential operators on a reductive Lie algebra and Weyl
group representations”, J. Amer. Math. Soc. 6:4 (1993), 779–816. MR 94a:17014 Zbl 0804.22004

[Wallach 2005] N. R. Wallach, “The Hilbert series of measures of entanglement for 4 qubits”, Acta
Appl. Math. 86:1-2 (2005), 203–220. MR 2134319

Received February 21, 2005.

HANSPETER KRAFT

MATHEMATISCHES INSTITUT DER UNIVERSITÄT BASEL
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