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THE CORRESPONDENCE BETWEEN AUGMENTATIONS AND
RULINGS FOR LEGENDRIAN KNOTS

LENHARD L. NG AND JOSHUA M. SABLOFF

We strengthen the link between holomorphic and generating-function in-
variants of Legendrian knots by establishing a formula relating the number
of augmentations of a knot’s contact homology to the complete ruling in-
variant of Chekanov and Pushkar.

1. Introduction

The theory of Legendrian knots in the standard contact R3 up to Legendrian isotopy
is a subject of much recent interest. Beginning in the late 1990’s, two nonclassical
invariants of such Legendrian knots emerged. The first is based on the contact
homology theory of Eliashberg and Hofer [Eliashberg 1998], and was couched in
combinatorial form by Chekanov [2002a]. This invariant is a differential graded
algebra that counts certain holomorphic disks in the symplectization of R3. The
second is the ruling invariant of Chekanov and Pushkar [2005], which is derived
from the theory of generating functions but has a simple combinatorial definition.
See [Chekanov 2002b] for a brief introduction to both invariants.

It seems likely that the information contained in the Chekanov–Pushkar rul-
ing invariant is in some way the same as that contained in the linear level of the
contact homology DGA. The first link between the two theories was provided by
Fuchs [2003], who introduced the concept of a ruling independently of Chekanov–
Pushkar and demonstrated that the existence of a ruling implies the existence of
a so-called augmentation of the contact homology DGA. Fuchs and Ishkhanov
[2004] and, independently, the second author [Sabloff 2005] proved the converse.
In fact, a more general sort of correspondence seems to hold between generating-
function invariants and linearized contact homology; see [Ng and Traynor 2004]
for evidence in J 1(S1).

Here we deepen the link between contact homology and rulings by showing that
there is a many-to-one correspondence between augmentations and rulings for a
plat-position front of a Legendrian knot. (This is in fact true for any Legendrian
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front, but we restrict to plat position for ease of exposition.) An algorithm was
given in [Sabloff 2005] for obtaining a ruling of a plat-position front from an
augmentation of its DGA. We show that the number of augmentations that yield a
particular ruling via the algorithm is determined by the combinatorics of the ruling
(Theorem 2). In particular, the total number of augmentations of the DGA of any
Legendrian knot can be calculated from its ruling invariant (Corollary 3).

2. Main results

We begin by introducing the terminology necessary to state our main results. See,
for example, [Sabloff 2005] for the precise definitions and conventions which
we will use: contact homology DGA, stable tame isomorphism, and algebraic
stabilization. As some geometric conventions and the augmentation and ruling
constructions are central to this paper, we will review them in more detail.

Let K be a Legendrian knot. A front diagram of K in the standard contact space
(R3, dz − y dx) is simply the image of the projection of K to the xz plane. A front
diagram is in plat position if all of the left cusps have the same x coordinate, all
of the right cusps have the same x coordinate, and no two crossings have the same
x coordinate. For example, the front diagram of the Legendrian trefoil in Figure 1
is in plat position.

Next, we describe some algebraic constructs related to the contact homology
DGA. Let K be a Legendrian knot in the standard contact R3. Its contact homol-
ogy is the homology of a semifree unital differential graded algebra (A, ∂) with
coefficients in Z/2 and grading over Z/2r(K ). Here r(K ) is the rotation number
of K and A is generated by the crossings and right cusps of a front diagram D of
K . Of particular interest for this paper are the gradings of the crossings: define a
locally constant function m from the complement of the cusps in K to Z/2r(K )

such that at each cusp, m increases by 1 from the lower to the upper strand. Near
a crossing q , let α and β be the strands of D with, respectively, more negative and
more positive slope. Assign the grading |q| ≡ m(α) − m(β) (mod 2r(K )). For
instance, all three crossings in the trefoil of Figure 1 have degree 0. (The other
generators of A, the right cusps, are all assigned grading 1.) The central result of
[Chekanov 2002a] states that (A, ∂) is invariant under Legendrian isotopy, up to
stable tame isomorphism.

Henceforth we assume that we have an integer ρ dividing 2r(K ). In this case,
it makes sense to discuss whether a crossing of D (a generator of A) has degree
divisible by ρ.

One way to extract information from (A, ∂) is via augmentations. A ρ-graded
augmentation of (A, ∂) is an algebra map ε : A → Z/2 such that ε◦∂ = 0, ε(1)= 1,
and ε(a) = 0 if ρ - |a|. (This last condition states that ε respects the grading of
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A over Z/ρ, where the base ring Z/2 is considered to lie in degree 0.) Two cases
are of special interest. If ρ = 1, then a 1-graded augmentation is also known as
an ungraded augmentation, on which any generator can be augmented (i.e., sent
to 1 by ε) regardless of grading. If ρ = 0, and hence r(K ) = 0, then a 0-graded
augmentation is also known as a Z-graded augmentation, on which only generators
of degree 0 ∈ Z can be augmented.

Note that, since A is finitely generated as an algebra, any DGA has only finitely
many ρ-graded augmentations. The number of ρ-graded augmentations of (A, ∂)

is invariant under tame isomorphism, and changes by a power of 2 under algebraic
stabilization. More precisely, an algebraic stabilization of degree i adds generators
α, β of degree i − 1, i respectively, with ∂(β) = α and ∂(α) = 0. It follows that
this stabilization leaves the number of ρ-graded augmentations unchanged if ρ - i ,
and doubles this number if ρ | i .

If ρ is odd or ρ = 0, a normalized count of the number of ρ-graded augmen-
tations gives us an invariant of (A, ∂) under stable tame isomorphism. Let ak be
the number of generators of A of degree k (mod ρ); the set {ak}k∈Z/ρ is called
the degree distribution of the DGA. Set χ∗

ρ (A) to be the following “shifted Euler
characteristic” of A:

χ∗

0 (A) =

∑
k≥0

(−1)kak +

∑
k<0

(−1)k+1ak

and

χ∗

ρ (A) =

ρ−1∑
k=0

(−1)kak

if ρ is odd. We can now define the following invariant of Legendrian isotopy:

Definition 1. Let K be a Legendrian knot and ρ a divisor of 2r(K ) with ρ = 0 or
ρ odd. The normalized ρ-graded augmentation number of K , written Augρ(K ),
is the product of 2−χ∗

ρ (A)/2 and the number of ρ-graded augmentations of (A, ∂),
where (A, ∂) is the contact homology DGA of K .

We remark that Aug0 distinguishes between Chekanov’s well-known examples
of Legendrian 52 knots. Note that, when ρ is even and nonzero, it is not possible to
define similar normalized augmentation numbers to give an invariant under stable
tame isomorphism. The issue in this case is that one can add an algebraic stabiliza-
tion in each of degrees 0, 2, . . . , ρ − 2, or in each of degrees 1, 3, . . . , ρ − 1, and
the degree distribution changes the same way in both cases; however, the number
of augmentations doubles in the former case but remains the same in the latter.

We next turn to rulings. A ruling1 of a front is a decomposition of the front into
pairs of paths beginning at a left cusp and ending at a right cusp that cobound disks.

1In [Chekanov 2002b] this is called an admissible decomposition and in [Pushkar and Chekanov
2005] it is called a positive proper decomposition.



144 LENHARD L. NG AND JOSHUA M. SABLOFF

Each ruling path is smooth except at cusps and certain crossings called switches.
Near a switch, the ruling disks must look like a diagram from the first row of Figure
2. If ρ divides 2r(K ), the ruling is ρ-graded if all switches have degree divisible
by ρ.

To each ruling R of a front D of a Legendrian knot K , we can associate an
integer θ(R) = c(D) − s(R), where c(D) is the number of right cusps of D (i.e.,
the number of closed curves in R), and s(R) is the number of switches of R. A
main result of [Pushkar and Chekanov 2005] is that the multiset

2ρ(K ) = {θ(R) | R is a ρ-graded ruling of D},

which we call the complete ruling invariant of K , is invariant under Legendrian
isotopy.

The complete ruling invariant is effective: Chekanov [2002b] used the complete
ruling invariant to distinguish his original 52 examples of Legendrian knots that
have the same classical invariants. We conjecture in passing that when ρ = 1
(i.e., the ungraded case), it seems possible that 21(K ) always depends only on the
topological type and Thurston–Bennequin number of K . If this were true, then 21

would provide a topological knot invariant by considering any Legendrian K in the
knot type with maximal Thurston–Bennequin number. This is related to, but inde-
pendent of, the conjecture in [Ng 2003] that the ungraded abelianized characteristic
algebra is a topological invariant, and the result of Rutherford [Rutherford 2005]
that 21(K ) = ∅ if and only if the Kauffman polynomial bound on the Thurston–
Bennequin number of K is not sharp.

We are now in a position to state our main results.

Theorem 2. Given a Legendrian knot K with a diagram D in plat position, and an
integer ρ with ρ | 2r(K ) and either ρ = 0 or ρ odd, there is a many-to-one corre-
spondence between ρ-graded augmentations of the contact homology DGA (A, ∂)

of D and ρ-graded rulings of D, with 2(θ(R)+χ∗
ρ (A))/2 augmentations corresponding

to a ruling R.

An example of the correspondence appears in Figure 1.
Theorem 2 has the following immediate consequence.

Corollary 3. Suppose ρ | 2r(K ) and ρ is zero or odd. The normalized ρ-graded
augmentation number of a Legendrian knot K can be deduced from the complete
ruling invariant:

Augρ(K ) =

∑
θ∈2ρ(K )

2θ/2.

As stated earlier, it is possible that the complete ruling invariant is actually con-
tained somehow in the contact homology DGA. One could hope to associate to each
augmentation a fractional power of 2, so that if a ruling gives 2k augmentations



AUGMENTATIONS AND RULINGS FOR LEGENDRIAN KNOTS 145

Figure 1. Many-to-one correspondence between Z-graded aug-
mentations and rulings on a Legendrian trefoil knot. Large dots
represent augmented crossings. The trefoil shown has r(K ) = 0
and χ∗

0 (A) = 1; the leftmost ruling has θ = −1, the others θ = 1.

then each of those augmentations is given the fraction 2−k . This would allow us to
recover the complete ruling invariant from the augmentations of the DGA.

3. Proofs

The proof of Theorem 2 rests on an algorithm described in [Sabloff 2005] that
produces a ruling from an augmentation. After setting notation, we will describe
this algorithm, use it to define the many-to-one correspondence in the theorem, and
finally count the number of augmentations that correspond to each ruling in terms
of the degree distribution of the contact homology DGA.

Let K be a Legendrian knot with plat diagram D and a ρ-graded ruling R. Near
a crossing, call the two ruling paths that are incident to the crossing crossing paths
and call the ruling paths that are paired with the crossing paths companion paths.
At a crossing of D whose grading is not divisible by ρ, the ruling simply passes
through the crossing with no switch. We can use the ruling R to partition the
crossings of D with grading divisible by ρ into three types:

Switches: The ruling disks are nested or disjoint on both sides of the crossing.
See the first line of Figure 2.

Departures: Moving left-to-right, the ruling disks pass from nested or disjoint
to interlaced. See the second line of Figure 2.

Returns: Moving left-to-right, the ruling disks pass from interlaced to nested or
disjoint. See the third line of Figure 2.

Henceforth the terms “switches”, “departures”, and “returns” will refer to crossings
of grading divisible by ρ with the above properties.

The correspondence in Theorem 2 is derived from the procedure implicitly de-
scribed in [Sabloff 2005, §3.3, especially the remark at the end of the section]
for producing a ruling on a plat diagram from an augmentation ε. We recall the
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Figure 2. Switches (top), departures (middle), and returns (bottom).

procedure here. Label the crossings from left to right by q1, . . . , qn . The con-
struction begins at the left cusps, where any ruling must pair paths incident to
the same cusp. The next step is to extend the ruling over the crossings from left to
right, one crossing at a time. The extension procedure uses a succession of “virtual
augmentations”, ρ-graded algebra maps ε j : A → Z/2, where ε1 = ε and ε j+1 is
defined after the ruling has been extended over q j .

The extension of the ruling over q j depends on the configuration of the ruling
disks to the left of q j and on ε j (q j ). If |q j | is not divisible by ρ, then the ruling ex-
tends without switching. Otherwise, the ruling extends according to the following
instructions:

– If the ruling disks are nested or disjoint to the left of q j and ε j (q j )= 1, extend
the ruling over the crossing as a switch.

– If the ruling disks are nested or disjoint to the left of q j and ε j (q j )= 0, extend
the ruling over the crossing as a departure.

– Otherwise — i.e., if the ruling disks are interlaced to the left of q j — extend
the ruling over the crossing as a return.

Once the ruling has been extended over q j , we define the virtual augmentation
ε j+1. If ε j (q j ) = 0, or if the ruling is extended over q j as in configuration (R1),
then set ε j+1 = ε j . For the other configurations, set ε j+1(qk) = ε j (qk) for k ≤ j ;
we now inductively define ε j+1(qk) for k ≥ j + 1.

Suppose that ε j+1(ql) has been defined for l < k. The value of ε j+1(qk) de-
pends on a count of a special set of embeddings of the 2-disk into the diagram,
up to smooth reparametrization. If the number of these disks is odd, ε j+1(qk)
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Figure 3. The embedding of the disk used to determine the new
virtual augmentation ε j+1 on qk . The vertical segment lies to the
right of q j and joins either the crossing strands or the companion
strands; in the latter case, some other strands may cross the vertical
segment. The corners on the top and bottom lie at crossings where
ε j+1 = 1.

equals ε j (qk)+1; the two virtual augmentations agree on qk otherwise. The image
of the boundary of the disks leaves qk on the upper left strand, travels leftwards
(possibly with convex corners at vertices with ε j+1 = 1) to the top of a vertical line
segment that joins two strands of the diagram and lies just to the right of q j . The
boundary then traverses this segment and travels rightwards (again with possible
convex corners where ε j+1 = 1) back to qk . See Figure 3. In the case where
the ruling has been extended over q j in configurations (R2) or (R3), the vertical
segment above must join the companion strands. In the case of configuration (S1),
the vertical segment joins the crossing strands. In the case of configuration (S2),
first perform the entire inductive procedure using disks with vertical segments that
join the companion strands, to obtain a virtual augmentation ε′

j+1 from ε j ; then
repeat the procedure with vertical segments that join the crossing strands, to obtain
the virtual augmentation ε j+1 from ε′

j+1. For configuration (S3), do the same thing
in the opposite order. It was proven in [Sabloff 2005] that this procedure determines
a genuine ruling.

With the algorithm now in hand, we may begin the proof of the correspondence
between augmentations and rulings. The algorithm sends an augmentation to a
ruling; the question is which augmentations get sent to the same ruling. The answer
is given by the following:

Lemma 4. If a ρ-graded ruling of a plat diagram D has r returns, then the number
of ρ-graded augmentations corresponding to it is 2r if ρ 6= 1, and 2r+c(D) if ρ = 1.

Proof. The algorithm given above for obtaining a ruling R from an augmentation
ε also gives a “final” virtual augmentation εn . Different augmentations result in
different final virtual augmentations; simply consider the leftmost crossing qk at
which the augmentations differ. It is also clear from the algorithm that εn augments
the switches of R, some subset of the returns of R, and no other crossings.
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We claim that any virtual augmentation which augments only the switches and
some subset of the returns of R, for some ruling R, is the final virtual augmentation
for some augmentation of the diagram. Indeed, the argument in [Sabloff 2005]
leading to the algorithm shows that such a virtual augmentation ε′ corresponds to
an honest augmentation on the DGA (A′, ∂ ′) for a different (“dipped”) diagram
for the knot. The algorithm determines a stable tame isomorphism between the
DGA (A, ∂) for D and (A′, ∂ ′). Thus, the augmentation on (A′, ∂ ′) yields an
augmentation ε on a stabilization of (A, ∂) and hence, by restriction, on (A, ∂)

itself. Then ε′ is the final virtual augmentation for ε, proving the claim.
Now given a ρ-graded ruling R, the number of virtual augmentations augment-

ing only its switches and some of its returns is clearly 2r when ρ 6= 1, and 2r+c(D)

when ρ = 1, since in the latter case any subset of the right cusps, which have
degree 1, can be augmented. By the preceding argument, this is also the number
of augmentations corresponding to R. �

Theorem 2 now follows from Lemma 4 and the following combinatorial result.

Lemma 5. The number of returns of a ρ-graded ruling R is 1
2(θ(R) + χ∗

ρ (A)) if
ρ = 0 or ρ ≥ 3 is odd, and 1

2(θ(R) + χ∗

1 (A)) − c(D) if ρ = 1.

Proof. As before, let r be the number of returns of a ρ-graded ruling R; also, let
s and d denote the number of switches and departures, respectively (by definition,
this only counts crossings of degree divisible by ρ).

Consider a vertical line which intersects the plat diagram generically (i.e., it
does not pass through a crossing or cusp). Since there are c(D) right cusps, any
such line intersects the diagram in 2c(D) points, ordered from top to bottom, and
the ruling determines a pairing of these points. In addition, each point p carries a
Maslov index m(p) given by the Maslov index of its strand (see [Chekanov 2002b]
or [Sabloff 2005] for the definition of Maslov index), and the Maslov indices of
paired points differ by 1. Say that two pairs of points are interlaced if we encounter
the pairs alternately as we move from top to bottom; that is, they appear from top
to bottom as a1b1a2b2, where ai denotes one pair of companion strands and bi

denotes the other. To any generic vertical line we associate a number called the
interlacing number. We will see that as we move the vertical line from left to right,
beginning just after the left cusps and ending just before the right cusps, then the
interlacing number begins and ends at 0, and changes by ±1 when passing through
each crossing; counting these changes yields the lemma.

We first consider the case ρ = 1, i.e., the ungraded case. Here we define the
interlacing number of a vertical line to be the number of interlaced pairs on it. As
we sweep the vertical line from left to right, the interlacing number clearly begins
and ends at 0, is unchanged at each switch, increases by 1 at each departure, and
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decreases by 1 at each return. Thus d = r ; the lemma follows from the fact that
χ∗

1 (A) = a0 = s + d + r + c(D).
Next consider the case ρ = 0, i.e., the Z-graded case. For k ∈ Z, let ãk be

the number of crossings of D of degree k, and note that, for ak defined as in
Section 1, we have ãk = ak for k 6= 1 and a1 − ã1 = c(D); also, a0 = s +d + r and
θ(R) = c(D) − s. The lemma now reduces to proving that

(∗) d − r +

∑
k>0

(−1)k ãk +

∑
k<0

(−1)k+1ãk = 0.

To two interlaced pairs a1b1a2b2 we associate a sign:

sgn(a1b1a2b2) =

{
1 if m(a2) − m(b2) ∈ { . . . , −4, −2, 0, 1, 3, 5, . . . },

−1 if m(a2) − m(b2) ∈ { . . . , −5, −3, −1, 2, 4, 6, . . . }.

Define the interlacing number of a vertical line to be the sum over all interlaced
pairs of this sign. Again, if we move the vertical line from left to right, the interlac-
ing number begins and ends at 0, and changes only when the line passes through
a nonswitch crossing.

Consider any crossing C besides a switch. We claim that the interlacing number
changes at C by ±1, and that each crossing contributes the appropriate sign to
obtain (∗). If we ignore degree, C looks like one of (D*) or (R*) from Figure
2. There is a one-to-one correspondence between interlaced pairs as for switches,
except for one extra interlaced pair on the right of C , in the case of (D*), or on the
left, in the case of (R*). Label this interlaced pair by a1b1a2b2. As we pass through
C , the interlacing number changes by sgn(a1b1a2b2) for (D*) and − sgn(a1b1a2b2)

for (R*).
Recall from Section 2 that the degree | · | of a crossing is the difference of the

Maslov indices of the crossing strands, more precisely m(a) − m(b) where a lies
above b to the left of the crossing. Note also that for the interlaced pair a1b1a2b2

as above, we have m(a1) = m(a2) + 1 and m(b1) = m(b2) + 1. It follows that the
degree of a crossing that looks like (D1) is m(a2) − m(b2) − 1; (D2) and (D3),
m(b2) − m(a2); (R1), m(b2) − m(a2) + 1; (R2) and (R3), m(a2) − m(b2). An
easy computation using the definition of sgn(a1b1a2b2) shows that the interlacing
number changes by:

• +1 if |C | ∈ {. . . , −5, −3, −1, 2, 4, 6, . . .}, or |C | = 0 and C is a departure,

• −1 if |C | ∈ {. . . , −6, −4, −2, 1, 3, 5, . . .}, or |C | = 0 and C is a return.

Since the interlacing begins on the left as 0 and ends on the right as 0, counting
each of these changes of ±1 yields (∗), as desired. This completes the proof when
ρ = 0.
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The proof of the lemma when ρ ≥ 3 is odd is identical to the proof when ρ = 0,
except that we define

sgn(a1b1a2b2) =

{
1 if m(a2) − m(b2) ∈ {0, 1, 3, 5, . . . , ρ−2},

−1 if m(a2) − m(b2) ∈ {2, 4, 6, . . . , ρ−1}. �
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