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Modular Galois representations ρ̄ : Gal(Q̄/Q) → GL2(F p) with cyclotomic
determinant arise from elliptic curves for small p. We show that ρ̄ does
not necessarily arise from an elliptic curve whose conductor is as small as
possible outside p. For p = 3 this disproves a conjecture of Lario and Rio.

1. Introduction

Let E/Q be an elliptic curve. For any prime number p, the p-torsion E[p] is a
Galois module that gives rise to a continuous Galois representation:

ρ̄ : Gal(Q/Q) → GL2(Fp).

Standard properties of elliptic curves (see [Silverman 1986]) imply that ρ̄ is unram-
ified outside p and primes dividing the conductor NE of E , and that the composi-
tion of ρ̄ with the determinant map to F×

p is the mod p reduction of the cyclotomic
character. Conversely, one expects (by [Serre 1987], at least if ρ̄ is irreducible) that
such a ρ̄ arises in the usual way from a modular form f of level N (ρ̄) and weight
k(ρ̄), for certain prescribed N and k (referred to as the Serre level and weight,
respectively). But ρ̄ need not arise from an elliptic curve unless p is small.

Theorem 1.1. Let p ∈ {2, 3, 5}. If ρ̄ : Gal(Q/Q) → GL2(Fp) is a modular rep-
resentation with cyclotomic determinant, then ρ̄ arises from the p-torsion of an
elliptic curve.

A succinct proof of this result is provided in [Rubin 1997]. The result follows
(not entirely formally) from the fact that X (p) has genus zero for such p. In this
paper, we address the question of whether the elliptic curve E whose existence
is guaranteed by Theorem 1.1 can be chosen to have “minimal” conductor (for a
more precise statement, see Theorem 2.1). A conjecture along these lines for p = 3
is made in [Lario and Rio 1996], and one of the main motivations for this paper is
to find a counterexample to this conjecture. As an afterthought, we discuss some
issues related to representations ρ̄ with p ≥ 7.
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2. Small p

Let p ∈ {2, 3, 5}, and let ρ̄ : GQ → GL2(Fp) be an absolutely irreducible Galois
representation arising from an elliptic curve E . If N (ρ̄) denotes the Serre level
of E , then a priori one knows that N (ρ̄) divides NE , the conductor of E . By
definition, however, the Serre level is coprime to p. Thus if ρ̄ is not finite flat at p
(and so E has bad reduction at p) we cannot hope to have an equality N (ρ̄) = NE .
Allowing for this possibility, we may ask (given ρ̄) whether there exists an elliptic
curve E giving rise to ρ̄ such that NE = pn N (ρ̄) for some n. Our main result is:

Theorem 2.1. Let p ∈ {2, 3, 5}. There exists a surjective modular representation:

ρ̄ : Gal(Q/Q) → GL2(Fp)

with determinant equal to the cyclotomic character such that ρ̄ does not arise from
any elliptic curve of conductor pn N (ρ̄) for some n, where N (ρ̄) is the Serre level
of ρ̄.

When p = 3, the example we construct provides a counterexample to the fol-
lowing conjecture:

Conjecture 1 [Lario and Rio 1996]. Let Pρ̄ : Gal(Q/Q) → PGL2(F3) be an ir-
reducible representation. Assume that Pρ̄ has a linear lifting ρ̄ to GL2(F3) with
cyclotomic determinant. Then there is a linear lifting ρE,3 where E/Q is an elliptic
curve having conductor a power of 3 times N (Pρ̄), where N (Pρ̄) is the minimal
Serre level of all such liftings.

Let ρ̄ be the representation constructed for p = 3 in the proof of Theorem 2.1.
Then N (ρ̄) = 353 is prime, and thus N (Pρ̄) = 353. Different linear liftings of Pρ̄

with cyclotomic determinant differ by a character χ with χ2
=1, or equivalently by

a quadratic character. The conjecture guarantees the existence of an elliptic curve
E/Q with ρE,3 = ρ̄ ⊗ χ , and conductor a power of 3 times 353. In particular, the
character χ can only be ramified at three (if it was ramified at 353, the Serre level
of ρ̄ would be divisible by 3532). If we let E ′ denote the quadratic twist of E by
χ then E ′ will also therefore have conductor 353 times a power of 3. On the other
hand, by construction, ρE ′,3 = ρ̄, contradicting the fact that ρ̄ does not arise from
an elliptic curve of such a conductor. Thus the conjecture is false.

The case p = 2. Given a Galois representation ρ̄ with image GL2(F2) ' S3, there
is an obvious way to construct an associated elliptic curve: the associated S3 field
L/Q is the splitting field of an irreducible cubic polynomial g(x), and the elliptic
curve y2

= g(x) gives rise to ρ̄. Let K be a cubic field inside L , and let F be the
unique quadratic subfield of L . The Serre weight and level can easily be computed
from the arithmetic of K (of course, L is determined from K ). In particular, an odd
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prime p divides N (ρ̄) if and only if it divides the field discriminant 1K . Let V be
the Galois module corresponding to the representation ρ̄. Let α ∈ OK \ Q, and let
f (x) be the minimal polynomial of α. Then y2

= f (x) is an elliptic curve whose
Galois module E[2] is isomorphic to V . Any such elliptic curve arises from such an
α. Moreover, if α is not equal to c+d2β for some c, d ∈ Z and β ∈ OK the equation
y2

= f (x) provides a minimal model for E over Z[
1
2 ]. In particular, the ramification

of E at odd primes ` can be determined directly from properties of f (x). When
does an α give rise to an elliptic curve with Serre level 2m

· N (ρ̄)? The polynomial
discriminant of f (x) is equal to 1K times the square of the index of Z[α] inside
OK . Moreover the minimal discriminant of the elliptic curve y2

= f (x) is equal (up
to a power of two) to the polynomial discriminant of f (x). If the prime to 2 part
of NE is equal to N (ρ̄), then E has good reduction at every odd prime not dividing
N (ρ̄). Thus necessarily the polynomial discriminant of f (x) is not divisible by
any primes other than those already dividing 21K . This is not sufficient, however,
since (for example) the cubic x3

− 26 has discriminant −22
· 33

· 132, and yet the
elliptic curve y2

= x3
− 26 has conductor 26

· 32
· 132

= 26
· 3 · N (ρ̄). If the index

of Z[α] inside OK is an exact power of two, however, then the odd part of the
conductor of E is equal to N (ρ̄). We prove:

Theorem 2.2. Let K/Q be the cubic field determined by the polynomial u3
−u2

−

2u + 27 = 0. Then 1K = −2063. Let L be the Galois closure of K , and ρ̄ the
GL2(F2) representation that factors through Gal(L/Q). Then ρ̄ does not arise from
an elliptic curve of conductor 2m

· 2063. Moreover, K is the smallest cubic field
(with respect to discriminant) with this property.

Let N = N (ρ̄). To show that ρ̄ does not arise from an elliptic curve, it suffices
to prove that there does not exist an element α ∈ OK such that

[Z[α] : OK ] ∈ Z[1/2N ]
×.

First, however, we eliminate all cubic fields with smaller discriminant. As we have
noted, for such fields it suffices to construct an element α ∈ OK whose index is a
power of two. From the Bordeaux Tables [Cohen et al. n.d.], one can determine all
cubic fields K/Q with |1K | ≤ 2063. The only such fields listed whose generating
element does not already have index 1 or 2 correspond to the discriminants : 1K =

−1356, −1599, −1691, −1751, −1967, −2028 (all from complex cubic fields).
These fields do in fact have elements of index 2, 1, 2, 8, 1 and 2 respectively. Note
that for 1K = −1751, there is an element of index 17 which also corresponds to
an elliptic curve with conductor 2m

· 1751. The table on the next page gives these
examples, where as usual, [a1, a2, a3, a4, a6] denotes the elliptic curve

y2
+ a1 yx + a3 y = x3

+ a2x2
+ a4x + a6.
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1K E [Z[α] : OK ] N (ρ̄) NE

−1356 [0, 1, 0, −9, −21] 2 3 · 113 23 N (ρ̄)

−1599 [0, 1, 0, −14, −27] 1 3 · 13 · 41 22 N (ρ̄)

−1691 [0, 0, 0, −13, −24] 2 19 · 89 25 N (ρ̄)

−1751 [0, −6, 0, −136, −408] 8 17 · 103 26 N (ρ̄)

[0, 0, 0, 29, −123] 17 17 · 103 25 N (ρ̄)

−1967 [0, −3, 0, −16, 51] 1 1967 24 N (ρ̄)

−2028 [0, −1, 0, −17, −27] 2 3 · 132 23 N (ρ̄)

Thus it suffices to consider the cubic field of (prime) discriminant 1K =−2063.
Let K =Q(u), where u satisfies the polynomial u3

−u2
−2u+27=0. A calculation

with Pari shows that

OK = Z ⊕ (Z · u) ⊕

(
Z ·

u2
+ u
3

)
.

If θ = xu + y(u2
+ u)/3, then the index [Z[θ ] : OK ] is given by the absolute value

of the index form, which in this case is equal to

f (x, y) = 3x3
+ 5x2 y + 2xy2

+ 3y3.

It now suffices to prove that the equation f (x, y) = ± 2m2063n has no integral
solutions. Without loss of generality we may assume that x and y are coprime.
Suppose that m > 0. Then f (x, y) is even. A simple congruence check implies
that f (x, y) is odd whenever at least one of x or y is odd. Thus x and y are both
even, which is impossible if they are coprime, and hence m = 0. Further, for all
x and y, f (x, y) ≡ 0, 3, 4, 5, 6 mod 9 whereas ±2063n

≡ 1, 2, 7, 8 mod 9 for
3 - n. Thus 3 divides n. We are therefore reduced to finding elements of OK of
index exactly 20633n . Given such an element α its minimal polynomial will have
discriminant exactly −2063(2063)6n . After subtracting perhaps some multiple of
1/3 from α (which does not affect the discriminant) the minimal polynomial of α

is x3
−27c4x −54c6, where c4, c6 ∈ Z[

1
6 ]. Evaluating the discriminant we find that

2239(c3
4 − c2

6) = −2063 · (2063)6n.

Thus [324c4/20632n, 5832c6/20633n
] is a Z[1/(2 · 3 · 2063)] integral point on the

elliptic curve
Y 2

= X3
+ 24

· 33
· 2063 = X3

+ 891216.

Using Cremona’s program mwrank [n.d.], we compute that this curve has no ratio-
nal points other than ∞, and thus we are done.

Note that ρ̄ does of course arise from the 2-torsion of some elliptic curve. The
examples E = [0, 0, 0, −43, −117], F = [0, −1, 0, −2, 27] of conductors 23

· 5 ·
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2063 and 24
· 3 · 2063 show that there are no primes other than 2 and 2063 that

necessarily divide the conductor of E . Note also that we needed to go to a cubic
field of rather large discriminant before we found an S3-representation that did not
come from an elliptic curve of minimal level. We feel this is explained by the “law
of small numbers”. In particular, cubic fields of small discriminant tend to be quite
special, and tend to have integral elements of very small index. This is not a pattern
that persists, however, and one would expect the example constructed above is the
norm rather than the exception. It is also why we suspected the conjecture in [Lario
and Rio 1996] was false, and set about finding a counterexample.

The case p = 3. This is the case that requires the most computational power, and
I am indebted to John Cremona for reinstalling and reconfiguring his programs
on a 64-bit machine provided to Harvard by Sun Microsystems. For reasons
analogous to the situation for p = 2, we may expect that mod 3 representations of
small Serre level do arise from elliptic curves of small conductor. Unfortunately,
one does not have fine control over the set of elliptic curves with fixed mod 3
representation in quite the same way as one does for mod 2 representations. Thus
in order to find a candidate mod 3 representation that does not come from an elliptic
curve, we use the following algorithm:

(1) Using William Stein’s tables [n.d.], find all modular representations of weight
2 and level N and 3N . By Serre’s conjecture, any irreducible mod 3 repre-
sentation with cyclotomic determinant and Serre level N should arise at these
levels.

(2) Using Cremona’s tables [1997; 2005], determine if these representations come
from an elliptic curve of conductor 3k N , for 3k N no greater than 20000 (the
current limit of these tables). If 35 N < 20000 and there are no such elliptic
curves then one is done, since 35 is the largest possible power of 3 dividing
the conductor of an elliptic curve.

(3) If the candidate N is larger than 20000/35
' 82.3 and there are no elliptic

curves of conductor 3k N < 20000 giving rise to ρ̄, try and construct elliptic
curves of conductor 3k N with large k by computing Z[1/6N ]-integral points
on the curves y2

= x3
− 3k ∏

`|N `ki . This method sometimes enables one
to eliminate ρ̄ without having to compute all the elliptic curves of conductor
3k N .

(4) Once a representation ρ̄ is found that is not eliminated by any of the previous
steps, run Cremona’s modular symbols algorithm [1997] for all 3k N for k ≤5,
and determine whether or not those elliptic curves give rise to ρ̄.

To simplify step 3, one may choose N to be prime, which cuts down markedly
the number of elliptic curves to be considered. Note that steps 2 and 3 are ultimately
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not required for the proof, but are present to narrow down potential examples, since
step 4 is very computationally intensive. Using this method we find:

Theorem 2.3. Let E be the elliptic curve [1, 1, 0, −22, −812] of conductor 2 ·

3 · 353. Let ρ̄ : Gal(Q/Q) → GL2(F3) be the representation induced from the 3-
torsion of E . The representation ρ̄ is surjective, and the Serre level N (ρ̄) = 353.
Then ρ̄ does not arise from any elliptic curve of conductor 3k

· 353.

Since E is semistable, the mod 3 representation is either reducible or surjective,
and a quick check eliminates the first possibility. Since E is semistable at 2, we
may check that E[3] is unramified at 2 by considering the 2-adic valuation of the
minimal discriminant. The minimal discriminant is 1E = −218

· 3 · 353, and since
3 divides 18 we conclude that N (ρ̄) = 353. Specifically it arises from a modular
form of weight 2 and level 3 · 353 = 1059 (in this case coming from part of the 3
torsion on a modular abelian variety A f of dimension 17).

Proof. It suffices to find all elliptic curves of conductor 3k
·353 for k = 0, . . . 5 and

show that none of them give rise to the mod 3 representation associated to E[3].
This follows from the two tables below, which give the trace of Frobenius under
the image of ρ̄, and the first few āp = ap mod 3 for the elliptic curves. In fact,
we see it would have sufficed to consider a2. Note that there are no elliptic curves
of conductor 35

· 353. �

p 2 3 5 7 11 13 17 19 23 29 31 37
Trace(ρ̄(Frobp)) 0 1 2 1 1 0 1 0 0 1 0

N E ā2 ā3 ā5 ā7 ā11 ā13 ā17 ā19

353 [1, 1, 1, −2, 16] 2 2 1 1 2 2 0

1059 [1, 1, 1, −66, −270] 2 2 1 1 2 2 0

3177 [1, −1, 0, −594, 6691] 1 1 1 2 2 1 0
[1, −1, 0, −63, −176] 1 1 1 2 2 1 0

9531 [0, 0, 1, 3, 4] 1 1 1 2 2 1 0
[0, 0, 1, −87891, −10029164] 1 1 1 2 2 1 0
[0, 0, 1, 27, −115] 2 2 1 1 2 2 0
[0, 0, 1, −791019, 270787421] 2 2 1 1 2 2 0

28593 [1, −1, 1, −2162, −38150] 2 2 1 1 2 2 0
[1, −1, 0, −240, 1493] 1 1 1 2 2 1 0

85779
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The case p = 5.

Theorem 2.4. Let E be the elliptic curve [1, 0, 1, −80, −275] of conductor 7 · 67.
Let ρ̄ : Gal(Q/Q) → GL2(F5) be the representation induced from the 5-torsion of
E . Then ρ̄ is surjective, N (ρ̄) = 67, and ρ̄ does not arise from any elliptic curve
of conductor 5k

· 67.

Since E is semistable, the mod 5 representation is either reducible or surjective,
and a quick check eliminates the first possibility. Since E is semistable at 7, we
may check that E[5] is unramified at 7 by considering the 7-adic valuation of the
minimal discriminant. The minimal discriminant is 1E = −75

· 67, and since 5|5
we conclude that N (ρ̄) = 67. Specifically it arises from a modular form of weight
2 and level 67, (in this case coming from part of the 5 torsion on a modular abelian
variety A f of dimension two).

Proof. The proof is easier for p = 5 than for p = 3, since the largest power of 5
dividing the conductor of elliptic curve is two. Thus we simply enumerate the el-
liptic curves of conductor 67, 67·5, and 67·52, and check using mod 5 congruences
that none of the mod 5 representations give rise to ρ̄, since Trace(ρ̄(Frob2)) = 1
mod 5. �

N E a2

67 [0, 1, 1, −12, −21] 2

335 [0, 0, 1, −2, 2] 0

1675 [0, 0, 1, −50, 281] 0
[0, −1, 1, −13, 23] 0
[0, −1, 1, −308, −1982] 3
[0, 1, 1, −333, 2244] 0

3. Large p

We conclude with a few remarks about p ≥ 7. Let ρ̄ : Gal(Q/Q) → GL2(Fp) be
a modular Galois representation of level 00(N ) and weight 2. Elliptic curves with
Galois representations corresponding to ρ̄ are classified by noncuspidal rational
points on the twisted modular curves X (p)(ρ̄, ∧), where ∧ denotes a choice of
symplectic structure on the Galois module associated to ρ̄; it is determined by ρ̄

up to an element of F×
p /F×2

p . If p ≥ 7, then X (p) has genus > 1, and thus there are
only finitely many elliptic curves E which give rise to ρ̄, and typically one would
not necessarily expect there to be any. If f is an eigenform of weight 2 and level
00(N ) with coefficients not in Q, then one would expect the mod ` reductions for
p ≥ 7 also to typically not arise from an elliptic curve.
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Theorem 3.1. Let f ∈ S2(00(N ))new, let the coefficients of f generate the ring
O f , and assume that O f 6= Z. Then for all but finitely many primes p of O f , the
representation

ρ̄p : Gal(Q/Q) → GL2(O/p) ↪→ GL2(Fp).

does not come from an elliptic curve.

Proof. Let f ∈ S2(00(N ))new, and let O f be the ring generated by coefficients of
f .

Lemma 3.2. If O f 6= Z, then there exists a prime ` with (`, N ) = 1 and such that
a`( f ) /∈ Q.

Proof. Let p be a prime in OK of residue characteristic p such that OK /p 6= Fp.
Suppose moreover that (p, 2N ) = 1. Then the associated Galois representation

ρp : Gal(Q/Q) → GL2(OK /p)

has image that does not land within Fp. This is because the Hecke eigenvalues aq

for q|N are automatically 0 or 1 since f is a newform, and the eigenvalue ap for
p > k = 2 is determined from the mod p representation [Edixhoven 1992]. Now
the fact that the trace of a` mod p is the trace of Frobenius for (`, N p) = 1 and
the fact that Frobenius elements are dense guarantees an infinite number of such
primes `. �

Note the lemma and theorem are not true for oldforms. Take N = 33. Then the
old form of level 11 has coefficients in Q(x)/(x2

+ x +3), yet a` ∈ Z for all ` 6= 3.
Moreover, the mod p representation coming from these old forms is exactly the
mod p representation coming from the elliptic curve X0(11).

Fix such an ` as in the lemma above. Now suppose that the mod p representation
attached to f comes from an elliptic curve E . Assume that p ≥ 5. If E has additive
reduction at ` then since p ≥ 5, the field Q(E[p]) is ramified at ` with ramification
index divisible by 2 or 3. This forces the Serre level of ρ̄ to be divisible by `2

which forces a` to be zero, contradicting our assumption that ` 6∈ Q. If E has
good reduction, then a` is determined by the mod ` representation, and satisfies
the Hasse bound −2

√
` < a`(E) < 2

√
`. Moreover a` ≡ a`(E) mod p. If E

has multiplicative reduction at `, then either `|N in which case a` = ±1 (which
is impossible if a` 6∈ Q), or one can “raise the level” in the sense of Ribet [1990].
This is possible only if a2

` ≡ (1 + `)2 mod p. In particular, if

A(`) = (a2
` − (1 + `)2)

∏
|i |<2

√
`

(a` − i),

then A(`) ≡ 0 mod p. Yet A(`) is independent of p, and since a` is not in Q, A(`)

is nonzero, and thus there are only finitely many such p. Note in any example we
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may explicitly rule out all but finitely many primes p. This concludes the proof of
Theorem 3.1. �

Theorem 3.3. Let p ≥ 11. Then there exists a modular semistable Galois represen-
tation ρ̄ : Gal(Q/Q) → GL2(Fp) of weight 2 and level 00(N ) that does not arise
from any elliptic curve.

Proof. We apply explicitly the proof of Theorem 3.1 to three particular forms: the
form f ∈ S2(00(23)) with O f = Z[(1 +

√
5)/2], the form f ∈ S2(00(39)) with

O f = Z[
√

2] and the form f ∈ S2(00(590)) with O f = Z[
√

10]. For example, for
f ∈ S2(00(23)) we may take ` = 2, since a2 = (

√
5 − 1)/2. Then NK/Q(A(2)) is

divisible by only the primes 5 and 11. Thus the associated representations for p >5
and p 6= 11 do not come from elliptic curves. Moreover, the representation has
image inside GL2(Fp) whenever the prime p splits in O f , or equivalently whenever
(5/p) = 1. Similar calculations for the other forms show that if p > 11, we are
done whenever (2/p) = 1 or (10/p) = 1. Yet since(

2
p

) (
5
p

)
=

(
10
p

)
,

at least one of these three terms must equal one, and thus we have found a GL2(Fp)

representation that does not arise from an elliptic curve for all p > 11. For p =

11 one can use the same idea, except with a different form, for example f ∈

S2(00(62, F11)) with a3 ≡ 6 mod 11. �

This proof does not apply to p = 7, since all possibilities for Trace(ρ̄(Frob2))

mod 7 arise from elliptic curves. If a2 ≡ ±3 mod 7, then E must necessarily
be semistable at 2 but have a 7-torsion module that is unramified at 7 (and so by
Tate’s theory necessarily have a2 ≡ ±(1+2) mod 7). For example, when N = 55,
there is a form f with coefficients in Z[

√
2] and a2 = 1 +

√
2. Composing this

with the reduction map to F7 that sends a2 to 4 mod 7 we obtain a candidate ρ̄.
Raising the level, we see this representation occurs from the mod 7 reduction of a
newform of level 2·55=110. Indeed, we find that the 7 torsion on the elliptic curve
E := [1, 0, 1, −89, 316] gives rise to ρ̄. (An easy way to check this is to compute
that 1E = −27

·5 ·113, and so the associated mod 7 representation is unramified at
2 and so comes from a mod 7 representation of level 55.) Nevertheless, we prove:

Theorem 3.4. There exist irreducible representations ρ̄ : Gal(Q/Q) → GL2(F7)

with cyclotomic determinant that do not arise from elliptic curves over Q.

Proof. We construct such representations directly. Let F = Q(
√

−7), and let p be
an inert prime in OF such that p ≡ −1 mod 16 (for example, p = 31). Inside the
ray class field over F of conductor (p) there exists a Galois (over Q) extension K
of degree 8 over Q such that Gal(K/Q) is dihedral, and K/F is totally ramified at
p. Let L = Q(ζ7), and let H = K .L . Then Gal(H/F) is cyclic of degree 24, and
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Gal(F/Q) acts on Gal(H/F) ' Z/24Z as multiplication by 7 (fixing the subgroup
of order 3, and as inversion on the subgroup of order 8). Thus there is a map

ρ̄ : Gal(H/Q) ↪→ GL2(F7)

with image of index exactly two inside the normalizer of the nonsplit Cartan sub-
group (recall the normalizing element acts as conjugation on F×

49 'Z/48Z, and thus
as multiplication by 7). A suitable renormalizing of the nonsplit Cartan ensures
that ρ̄ has cyclotomic determinant. Another realization of ρ̄ is the ω2-twist of the
dihedral representation η : Gal(K/Q) → GL2(F7) (in this optic we also observe
that ρ̄ is modular), where ω is the cyclotomic character. The determinant of η

is the quadratic character of conductor 7, which is ω3 mod 7. Thus ω2
⊗ η has

determinant ω7
= ω mod 7. Let us now prove that ρ̄ does not come from an

elliptic curve. Assume that ρ̄ arises from the 7-division points of E/Q. All elliptic
curves over Q acquire semistable reduction after an extension of degree at most
6. Moreover, for an elliptic curve with semistable reduction at a prime p 6= 7, the
action of inertia at p on the 7-torsion is either trivial (in the case of good reduction,
by Néron–Ogg–Shafarevich) or factors through a cyclic 7-group (as can be seen
from Tate’s parameterization). We see that #ρ̄|Ip = 8 is incompatible with either
possibility. �

If (N , p) = 1 and p ≥ 5, the curve X0(p2 N ) acquires semistable reduction over
an extension of degree (p2

−1)/2; see [Edixhoven 1990]. Presumably many of the
F7-representations of this level have significant inertia at p, and thus do not arise
from elliptic curves for the reasons above. It would be interesting, however, to find
an example of an irreducible representation ρ̄ such that X (7)(ρ̄) has points over ev-
ery local completion of Q but no rational points. Dieulefait [2004] has also proved
Theorems 3.3 and 3.4, the former using similar arguments with a rational form of
weight 4, and the latter by finding a representation whose local representation at 2
does not come from an elliptic curve.
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