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SONG HENG CHAN AND HAMZA YESILYURT

Ramanujan, Richmond and Szekeres, Ramanathan, Andrews, Hirschhorn,
Alladi and Berndt, and Bressoud have studied certain infinite products aris-
ing from continued fractions from the point of view of the periodicity of the
signs of their Taylor series coefficients. In this paper we prove more general
theorems of the same sort.

1. Introduction

Recall the definition of the Rogers–Ramanujan continued fraction and its product
representation [Hardy and Wright 1960, p. 294],

(1) R(q) := 1 +
q
1 +

q2

1 +

q3

1 + · · ·
=
(q2

; q5)∞(q3
; q5)∞

(q; q5)∞(q4
; q5)∞

.

Here, we use the familiar notation

(a; q)∞ =

∞∏
n=0

(1 − aqn), |q|< 1.

B. Richmond and G. Szekeres [1978] examined asymptotically the power series
coefficients of a large class of infinite products including (1). In particular, if

R(q) :=

∞∑
n=0

αnqn,

they proved that, for n sufficiently large,

(2) α5n, α5n+1 > 0, and α5n+2, α5n+3, α5n+4 < 0.

A similar result was also shown for the coefficients of 1/R(q).
Ramanujan, in his lost notebook [1988], recorded formulas for

∑
∞

n=0 α5n+ j qn ,
0 ≤ j ≤ 4, which were first proved by G. E. Andrews [1981]. Andrews then used
these representations and a theorem of B. Gordon [1961], giving partition-theoretic
interpretations of these coefficients, to prove that (2) holds for all n, except that
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α2 = α4 = α9 = 0. Hirschhorn [1998] later gave a simpler proof of (2) using only
the Quintuple Product Identity.

Using the notation of [Andrews and Bressoud 1979], define for 1 ≤ r, s < m

Fm,r,s := Fm,r,s(q)=

∞∏
n=0

(1−qmn+r )(1−qmn+m−r )

(1−qmn+s)(1−qmn+m−s)
=
(qr

; qm)∞(qm−r
; qm)∞

(qs
; qm)∞(qm−s

; qm)∞
.

Throughout the paper we will assume that gcd(s,m)= 1 and s <m/2. For m = 5,
r = 2 and s = 1, we obtain the product representation of (1). A general result in
this direction was established by K. G. Ramanathan [1988], who proved:

Theorem 1.1. Suppose gcd(m, r)= 1. Let

Fm,2r,r :=

∞∑
n=0

cnqn.

If gcd(m, 6)= 1, the signs of the cn’s are periodic with period m.

In Section 5, we use Hirschhorn’s ideas [1998] in a more general setting to
provide a new proof of Theorem 1.1 without the restriction gcd(m, 6)= 1.

Define the coefficients cn and dn by

F8,3,1 =

∞∑
n=0

cnqn and F8,1,3 =

∞∑
n=0

dnqn.

Gordon’s continued fraction has the representation F8,3,1. Richmond and Szekeres
[1978] proved that c4n+3 = 0 and d4n+2 = 0 for all n ≥ 0. M. D. Hirschhorn [2001]
proved that for all n ≥ 0,

c8n, c8n+1, c8n+2 > 0, c8n+12, c8n+5, c8n+6 < 0,

d8n, d8n+3, d8n+5 > 0, d8n+1, d8n+4, d8n+7 < 0.

In Section 3, using another approach, we prove a generalization of Hirschhorn’s
theorem:

Theorem 1.2. Suppose m is divisible by 8 and gcd(m, r) = 1. Let cn and dn be
defined by

Fm,3r,r =

∞∑
n=0

cnqn and Fm,3r−m,r =

∞∑
n=0

dnqn.
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Then, for all n ≥ 0, we have

(3)

c8n, c8n+r , c8n+2r > 0, c8n+m−2r , c8n+m−3r < 0,

d8n, d8n+m−r , d8n+r > 0, d8n+4r−m, d8n+3r−m < 0,

c8n+m+4r < 0 if m > 8r, c8n+2m−4r < 0 if m < 8r,

d8n+5r−m < 0 if 3m > 8r, d8n+2m−3r < 0 if 3m < 8r,

cn = 0 if n ≡ 3r (mod 4); dn = 0 if n ≡ 2r (mod 4).

In Ramanujan’s third notebook [1957, p. 373], there is a result equivalent to

(4) 1 +
q+q2

1 +

q2
+q4

1 + · · ·
= F6,3,1.

In Section 4, we prove that the signs of the coefficients of F6,3,1 are periodic
with period 6. This arises as a special case of the following theorem:

Theorem 1.3. Suppose m is even and gcd(m, r)= 1. Let cn and dn be defined by

(5) Fm,3r,r =

∞∑
n=0

cnqn and Fm,3r−m,r =

∞∑
n=0

dnqn.

Then, for all n ≥ m3, the signs of cn and dn are periodic with period at most m.

We conclude our paper with an interesting observation on the signs of the power
series coefficients of the following continued fraction of Ramanujan:

(6) (q2
; q3)∞

(q; q3)∞
=

1
1 −

q
1+q −

q3

1+q2 −

q5

1+q3 − · · ·
,

For a recent account of (6) see [Andrews et al. 2003].

2. Definitions and Preliminary Results

We first recall Ramanujan’s definitions for a general theta function and some of its
important special cases. Set

(7) f (a, b) :=

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab|< 1.

Basic properties satisfied by f (a, b) include (see [Berndt 1991, p. 34, Entry 18]):

f (a, b)= f (b, a), f (1, a)= 2 f (a, a3), f (−1, a)= 0,

and, if l is an integer,

(8) f (a, b)= al(l+1)/2bl(l−1)/2 f (a(ab)l, b(ab)−l).
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If l = 1, (8) reduces to

(9) f (a, b)= a f (a−1, a2b).

The function f (a, b) satisfies the well-known Jacobi triple product identity (see
[Berndt 1991, p. 35. Entry 19]):

(10) f (a, b)= (−a; ab)∞(−b; ab)∞(ab; ab)∞.

The three most important special cases of (7) are

(11)

ϕ(−q) := f (−q,−q) =

∞∑
n=−∞

(−1)nqn2
=

(q; q)∞
(−q; q)∞

,

ψ(q) := f (q, q3) =

∞∑
n=0

qn(n+1)/2
=
(q2

; q2)∞
(q; q2)∞

=
(−q; −q)∞
(q2

; q4)∞
,

f (−q) := f (−q,−q2)=

∞∑
n=−∞

(−1)nqn(3n−1)/2
= (q; q)∞.

The product representations in these equalities are special cases of (10). Two fur-
ther corollaries of (10) are given by

f (a, b) f (−a,−b)= f (−a2,−b2)ϕ(−ab),(12)

f (a, b)ψ(ab)= f (a, ab2) f (b, ba2);(13)

see [Berndt 1991, p. 46, Entry 30].
The well known quintuple product identity, in the notation of (7), takes the form

(14) f (−a2,−a−2q)
f (−a,−a−1q)

=
1

f (−q)
(

f (−a3q,−a−3q2)+ a f (−a−3q,−a3q2)
)
;

see [Berndt 1991, p. 80, Entry 28(iv)].
We will need an expansion formula for f (a, b). For each positive integer l, set

(15) Ul := al(l+1)/2bl(l−1)/2 and Vl := al(l−1)/2bl(l+1)/2.

Then, as in [Berndt 1991, p. 48, Entry 31], we have

(16) f (U1, V1)=

l−1∑
r=0

Ur f
(

Ul+r

Ur
,

Vl−r

Ur

)
.

The special case of this for l = 2 is

(17) f (a, b)= f (a3b, ab3)+ a f
(b

a
,

a
b

a4b4
)
.



PERIODICITY OF COEFFICIENT SIGNS OF INFINITE PRODUCTS 17

Lastly, we record two elementary results [Berndt 1991, p. 45, Entry 29]. If
ab = cd , then

f (a, b) f (c, d)+ f (−a,−b) f (−c,−d)= 2 f (ac, bd) f (ad, bc),(18)

f (a, b) f (c, d)− f (−a,−b) f (−c,−d)= 2a f
(b

c
,

c
b

abcd
)

(19)

× f
(b

d
,

d
b

abcd
)
.

By adding (18) and (19), we conclude if ab = cd then

(20) f (a, b) f (c, d)= f (ac, bd) f (ad, bc)+ a f
(b

c
,

c
b

abcd
)

f
(b

d
,

d
b

abcd
)
.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 follows easily from the following lemma.

Lemma 3.1. For any z 6= 0 and |q|< 1,

(21)
f (−z3,−z−3q)
f (−z,−z−1q)

= w1(q) f (z8q3,z−8q5)+ z2w1(q) f (z−8q3,z8q5)

− qz−2w2(q) f (z8q, z−8q7)− qz4w2(q) f (z−8q, z8q7)

+ zw3(q) f (z−8q4, z8q4) − qz−3w3(q) f (z8, z−8q8),

where

(22) w1(q)=
f (q3, q5)

f (−q) f (−q2)
, w2(q)=

f (q, q7)

f (−q) f (−q2)
, w3(q)=

1
ϕ(−q)

.

Proof. Let

L(z, q)=
f (−z3,−z−3q)
f (−z,−z−1q)

.

By (18) and (12), as a function of z, the even part of L(z, q) is

(23) Le(z, q) :=
1
2

(
f (−z3,−z−3q)
f (−z,−z−1q)

+
f (z3, z−3q)
f (z, z−1q)

)
=

1
2

f (−z3,−z−3q) f (z, z−1q)+ f (z3, z−3q) f (−z,−z−1q)
f (−z,−z−1q) f (z, z−1q)

=
f (−z4,−z−4q2) f (−z2q,−z−2q)

f (−z2,−z−2q2)ϕ(−q)

.
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By (13) and (12),

f (−z4,−z−4q2)ψ(q2)= f (−z4,−z−4q4) f (−z4q2,−z−4q2)

=
f (−z2,−z−2q2) f (z2, z−2q2) f (−z4q2,−z−4q2)

ϕ(−q2)
.

Employing (13) again, this time with a = z2 and b = −z−2q , we also obtain

f (z2,−z−2q)ψ(−q)= f (z2, z−2q2) f (−z−2q,−z2q).

We now return to the evaluation of the even part of L(z, q). Using the last two
displayed equations, we find that (23) is equivalent to

(24) Le(z, q)=
f (−z4q2,−z−4q2) f (z2,−z−2q)ψ(−q)

ϕ(−q)ϕ(−q2)ψ(q2)
.

But, by equations (11),

ϕ(−q)ϕ(−q2)ψ(q2)

ψ(−q)
=

(q; q)∞
(−q; q)∞

(q2
; q2)∞

(−q2
; q2)∞

(q4
; q4)∞

(q2
; q4)∞

(q; q)∞
(q2

; q4)∞

= (q; q)∞(q2
; q2)∞ = f (−q) f (−q2).

Putting this together with (17) and (20), we find that (24) is transformed into

(25) Le(z,q)

=
f (−z4q2,−z−4q2) f (z2,−z−2q)

f (−q) f (−q2)

=
f (−z4q2,−z−4q2)

(
f (−z−4q,−z4q3)+ z2 f (−z−4q,−z4q3)

)
f (−q) f (−q2)

=
1

f (−q) f (−q2)

(
f (−z4q,−z−4q3) f (−z4q2,−z−4q2)

+ z2 f (−z−4q,−z4q3) f (−z4q2,−z−4q2)
)

=
1

f (−q) f (−q2)

(
f (z−8q5,z8q3) f (q3,q5)− z4q f (z−8q,z8q7) f (q,q7)

+ z2( f (z−8q3,z8q5) f (q3,q5)− z−4q f (z8q,z−8q7)) f (q,q7)
)
.



PERIODICITY OF COEFFICIENT SIGNS OF INFINITE PRODUCTS 19

As for the odd part of L(z, q) as a function of z, we have, by (19), (12), and
(17),

(26) Lo(z, q) :=
1
2

(
f (−z3,−z−3q)
f (−z,−z−1q)

−
f (z3, z−3q)
f (z, z−1q)

)
=

1
2

f (z, z−1q) f (−z3,−z−3q)− f (−z,−z−1q) f (z3, z−3q)
f (−z,−z−1q) f (z, z−1q)

=z
f (−z−4q,−z4q) f (−z2,−z−2q2)

f (−z2,−z−2q2)ϕ(−q)

=z
f (−z−4q,−z4q)

ϕ(−q)
= z

f (z−8q4, z8q4)− qz−4 f (z8, z−8q8)

ϕ(−q)
.

By adding (25) and (26), we complete the proof of Lemma 3.1. �

We are now ready to prove Theorem 1.2. Observe that, by (10),

Fm,r,s =
f (−qr ,−qm−r )

f (−qs,−qm−s)
.

Now assume that 3r < m. In (21), replace q by qm and z by qr , respectively, to
find that

(27) Fm,3r,r

=
f (−q3r ,−qm−3r )

f (−qr ,−qm−r )

= w1(qm) f (q3m+8r , q5m−8r )+ q2rw1(qm) f (q3m−8r , q5m+8r )

− qm−2rw2(qm) f (qm+8r , q7m−8r )− qm+4rw2(qm) f (qm−8r , q7m+8r )

+ qrw3(qm) f (q4m−8r , q4m+8r )− qm−3rw3(qm) f (q8r , q8m−8r ),

where w1(q), w2(q), w3(q), defined in (22), are clearly power series in q with
positive coefficients. Since 3r < m, all the exponents in (27) are positive, except
possibly those of f (qm−8r , q7m+8r ). But by (9), we have

f (qm−8r , q7m+8r )= qm−8r f (q8r−m, q9m−8r ).

Thus the first part of (3) has been established.

Now suppose that m/3< r < m/2. We have, by (9),

(28) f (−q3r ,−qm−3r )

f (−qr ,−qm−r )
= −qm−3r f (−q2m−3r ,−q3r−m)

f (−qr ,−qm−r )
.
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Thus, by (27) and by (9),

Fm,3r−m,r =−q3r−mw1(qm) f (q3m+8r , q5m−8r )−q5r−mw1(qm) f (q3m−8r , q5m+8r )

+ qrw2(qm) f (qm+8r , q7m−8r )+ q7rw2(qm) f (qm−8r , q7m+8r )

− q4r−mw3(qm) f (q4m−8r , q4m+8r )+w3(qm) f (q8r , q8m−8r )

=−q3r−mw1(qm) f (q3m+8r , q5m−8r )−q5r−mw1(qm) f (q3m−8r , q5m+8r )

+ qrw2(qm) f (qm+8r , q7m−8r )+ qm−rw2(qm) f (q8r−m, q9m−8r )

− q4r−mw3(qm) f (q4m−8r , q4m+8r )+w3(qm) f (q8r , q8m−8r ).

Since m/3 < r < m/2, all the exponents in this expression are positive, except
possibly those of f (q3m−8r , q5m+8r ). But by (9), we have

f (q3m−8r , q5m+8r )= q3m−8r f (q8r−3m, q11m−8r ).

Hence the proof of Theorem 1.2 is complete.

4. Proof of Theorem 1.3

To prove Theorem 1.3, we need the following reformulation of Lemma 3.1.

Lemma 4.1.

f (−z3,−z−3q)
f (−z,−z−1q)

=
1
2

(
f (z2, z−2√q)
ψ(

√
q)

+
f (z2,−z−2√q)
ψ(−

√
q)

)
+z f (−z4q,−z−4q)

ϕ(−q)
.

Proof. Recall that Ee(z, q) is defined by (23). By (26) and (25), it suffices to prove
that

(29) Le(z, q)=
1
2

(
f (z2, z−2√q)
ψ(

√
q)

+
f (z2,−z−2√q)
ψ(−

√
q)

)
.

To verify (29), we first recall that ψ(q) is defined in (11). By (17),

ψ(q)= f (q6, q10)+ q f (q2, q14),

f (z, z−1q)= f (z2q, z−2q3)+ z f (z−2q, z2q3).
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Thus,

(30) ψ(−q) f (z, z−1q)+ψ(q) f (z,−z−1q)

=
(

f (q6, q10)−q f (q2, q14)
)(

f (z2q, z−2q3)+ z f (z−2q, z2q3)
)

+
(

f (q6, q10)+q f (q2, q14)
)(

f (−z2q,−z−2q3)+ z f (−z−2q,−z2q3)
)

= f (q6, q10)
(

f (z2q, z−2q3)+ f (−z2q,−z−2q3)
)

+ z f (q6, q10)
(

f (z−2q, z2q3)+ f (−z−2q,−z2q3)
)

−qz f (q2, q14)
(

f (z−2q, z2q3)− f (−z−2q,−z2q3)
)

−q f (q2, q14)
(

f (z2q, z−2q3)− f (−z2q,−z−2q3)
)
.

From (17), we have

f (a, b)+ f (−a,−b)= 2 f (a3b, ab3)

f (a, b)− f (−a,−b)= 2a f
(b

a
,

a
b

a4b4
)
.

Employing this in (30), we find that

(31) ψ(−q) f (z, z−1q)+ψ(q) f (z,−z−1q)

= 2 f (q6, q10) f (z4q6, z−4q10)+ 2z f (q6, q10) f (z−4q6, z4q10)

− 2z−1q f (q2, q14) f (z4q2, z−4q14)− 2z2q2 f (q2, q14) f (z−4q2, z4q14).

By the second line in (11),

(32) ψ(−q)ψ(q)=
(q2

; q2)∞

(q; q2)∞

(q; q)∞
(q2; q4)∞

=
(q2

; q4)∞(q4
; q4)∞

(q; q2)∞

(q; q2)∞(q2
; q2)∞

(q2; q4)∞

= f (−q2) f (−q4).

In (31), we divide both sides by 2ψ(−q)ψ(q), then replace q2 by q and z by z2.
By using (32) in the resulting equation and after comparing it to (25), we complete
the proof of (29). �

We are now ready to prove Theorem 1.3. We assume that m is not divisible by
8 since this case is covered by Theorem 1.2. Suppose first that m = 2k, k is odd,
1 ≤ r < 2k/3 and gcd(r, 2k)= 1. In Lemma 4.1, replace q by q2k and z by qr . We
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deduce that

(33) F2k,3r,r =
f (−q3r,−q2k−3r )

f (−qr,−q2k−r )

=
1
2

(
f (q2r,qk−2r )

ψ(qk)
+

f (q2r,−qk−2r )

ψ(−qk)

)
+ qr f (−q2k+4r,−q2k−4r )

ϕ(−q2k)
.

Let

E(q)=

∞∑
n=0

enqn and D(q)=

∞∑
n=0

dnqn

denote the even and the odd parts of F2k,3r,r . Clearly, by (33), since r is odd, we
have

D(q)= qr f (−q2k+4r ,−q2k−4r )

ϕ(−q2k)

and

(34) E(q)=
1
2

(
f (q2r , qk−2r )

ψ(qk)
+

f (q2r ,−qk−2r )

ψ(−qk)

)
.

We will show that the signs of the coefficients en and dn are periodic with period k.
Define

(35) T (r) :=

{
(k − 1)/2 if 2r < k,

(k + 1)/2 if 2r > k.

Employing (16) with l = k, we find that

D(q)=
qr

ϕ(−q2k)

k−1∑
n=0

(−1)nq2kn2
+4nr f (−q2k2(k+2n)+4rk,−q2k2(k−2n)−4rk)

=

k−1∑
n=0

(−1)nq2kn2
+(4n+1)r f (−q2k2(k+2n)+4rk,−q2k2(k−2n)−4rk)

ϕ(−q2k)

=

T (r)∑
n=0

(−1)nq2kn2
+(4n+1)r f (−q2k2(k+2n)+4rk,−q2k2(k−2n)−4rk)

ϕ(−q2k)

+

k−1∑
n=T (r)+1

(−1)nq2kn2
+(4n+1)r f (−q2k2(k+2n)+4rk,−q2k2(k−2n)−4rk)

ϕ(−q2k)
,

from which, after an application of (9), we get
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(36) D(q)=

T (r)∑
n=0

(−1)nq2kn2
+(4n+1)r f (−q2k2(k+2n)+4rk,−q2k2(k−2n)−4rk)

ϕ(−q2k)

+

k−1∑
n=T (r)+1

(−1)nq2kn2
+(4n+1)r+2k2(k−2n)−4rk

×
f (−q6k3

−4k2n−4rk,−q2k2(2n−k)+4rk)

ϕ(−q2k)
,

All the exponents in (36) are positive, and a typical term has the form

(−1)nq2bk+(4n+1)r f (−q2αk,−q4k3
−2αk)

ϕ(−q2k)
,

where b is a nonnegative integer and α is a positive integer with gcd(α, 2k)= 1. It
is easily seen that 2bk + (4n + 1)r is bounded by k3/2. Also, by (10),

(37)
f (−qα,−q2k2

−α)

ϕ(−q)
=
(qα; q2k2

)∞(q2k2
−α

; q2k2
)∞(q2k2

; q2k2
)∞

(q, q2)2
∞
(q2; q2)∞

=
(qα; q2k2

)∞(q2k2
−α

; q2k2
)∞(q2k2

; q2k2
)∞

(q; q2)∞(q; q)∞

= (q; q2)−1
∞

∏
1≤t≤2k2

t 6=α, 2k2
−α, 2k2

(q t
; q2k2

)−1
∞

is clearly a power series in q with strictly positive coefficients. Since the numbers
2bk + (4n + 1)r , for 0 ≤ n ≤ k − 1, are all distinct modulo k, we have established
that the signs of the coefficients dn of D(q) are periodic with period (at most) k for
all n> k3/2. Recall that in the statement of Theorem 1.3 we gave the larger bound
m3 for the index of nonzero coefficients. We will not be precise for the right order
because our proofs are constructive for all the cases that we consider throughout
the paper.

Next we examine E(q), defined by (34). It suffices to look at f (q2r , qk−2r )

ψ(qk)
.

By (16), with l = k, we have

(38)
f (q2r , qk−2r )

ψ(qk)

=

k−1∑
n=0

qkn2/2+(4r−k)n/2 f (qk2(k+2n)/2+(4r−k)k/2, qk2(k−2n)/2−(4r−k)k/2)

ψ(qk)
.

One can easily check that the values of kn2/2 + (4r − k)n/2, for 0 ≤ n ≤ k − 1,
are all distinct modulo k. By arguing as in (36), we can assume that each of the
quotients in the series above has the form f (qαk, qk3

−αk)/ψ(qk), where α is an
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odd positive integer with gcd(α, k)= 1. We claim that when expanded as a power
series, the even part of this expression has positive coefficients while the odd part
has negative coefficients. To verify this, it suffices to show that

f (−qα, qk2
−α)

ψ(−q)

is a power series with positive terms. By (10), we have

(39)
f (−qα, qk2

−α)

ψ(−q )

=
(qα; −qk2

)∞(−qk2
−α

; qk2
)∞(−qk2

; −qk2
)∞

(q ; q4)∞(q3; q4)∞(q4; q4)∞

=

(qα; q2k2
)∞(−qk2

+α
; q2k2

)∞(−qk2
−α

; q2k2
)∞

× (q2k2
−α

; q2k2
)∞(−qk2

; q2k2
)∞(q2k2

; q2k2
)∞

(q ; q2)∞(q4; q4)∞

=
f (qα+k2

, qk2
−α)(−qk2

; q2k2
)∞

(q4; q4)∞

(q2k2
−α

; q2k2
)∞(qα; q2k2

)∞

(q ; q2)∞

=
f (qα+k2

, qk2
−α)(−qk2

; q2k2
)∞

(q4; q4)∞

∏
1≤t≤2k2, t odd

t 6=α, 2k2
−α

(q t
; q2k2

)−1
∞

=:

∞∑
n=0

jnqn.

Observe that jn > 0 for all n unless α = 1. If α = 1, then jn > 0 for all n ≥ 3.
From (38), we easily see that the coefficients en of E(q) are nonzero for n > m3

and (34) together with (38) implies that their signs are also periodic with period k.
We conclude that if k is odd and

F2k,3r,r =

∞∑
n=0

cnqn,

then cn 6= 0 for all n > m3 and the signs of cn’s are periodic with period m.
Next, we sketch a proof for the case m = 4k, k is odd, 1 ≤ r < 4k/3 and

gcd(r, 4k)= 1. In Lemma 4.1, replace q by q4k and z by qr . We deduce that

F4k,3r,r =
f (−q3r ,−q4k−3r )

f (−qr ,−q4k−r )

=
1
2

(
f (q2r , q2k−2r )

ψ(q2k)
+

f (q2r ,−q2k−2r )

ψ(−q2k)

)
+ qr f (−q4k+4r ,−q4k−4r )

ϕ(−q4k)
.
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Let E1(q) and D1(q) denote the even and the odd parts of F4k,3r,r . By (33), and
since r is odd,

D1(q)= qr f (−q4k+4r ,−q4k−4r )

ϕ(−q4k)
,

E1(q)=
1
2

(
f (q2r , q2k−2r )

ψ(q2k)
+

f (q2r ,−q2k−2r )

ψ(−q2k)

)
.(40)

We expand D1(q) by employing (16) with l = k, and by arguing as in (36)–(37),
we find that the coefficients of D1(q) as a power series in q are nonzero and their
signs are periodic with period k, hence with period 2k for n > m3.

Next, we examine E1(q). Expanding each term of (40) by (16) with l = k, and
arguing as in (38), we deduce that

E1(q)=
1
2

k−1∑
n=0

qbn

(
f (q2kαn , q2k3

−2kαn )

ψ(q2k)
+ δn

f (q2kαn ,−q2k3
−2kαn )

ψ(−q2k)

)
,

where the bn , 0 ≤ n < k, are all distinct modulo k, each δn is 1 or −1, each αn is
odd, and gcd(αn, k)= 1. We drop the index n, replace q2k by q and examine

B(q) :=
f (qα, qk2

−α)

ψ(q )
∓

f (qα,−qk2
−α)

ψ(−q )
.

It suffices to show that the coefficients of the even and the odd part of B(q) have
constant signs. Let

f (qα, qk2
−α)

ψ(q )
=:

∞∑
n=0

(−1)nsnqn and
f (qα,−qk2

−α)

ψ(−q )
=:

∞∑
n=0

znqn.

It follows from (39) that sn > 0 for all n ≥ 3 and by similar reasoning as in (39),
one can show that zn > 0 for all n ≥ 3. Therefore, it remains to show that the
coefficients of

∞∑
n=0

(sn − zn)qn
=

f (−qα, qk2
−α)

ψ(−q )
−

f (qα,−qk2
−α)

ψ(−q )

have constant signs. But by (17), we have

1
ψ(−q)

(
f (−qα, qk2

−α)− f (qα,−qk2
−α)

)
=

1
ψ(−q)

(
f (−qk2

+2α,−q3k2
−2α)− qα f (−qk2

−2α,−q3k2
+2α)

− f (−qk2
+2α,−q3k2

−2α)− qα f (−qk2
−2α,−q3k2

+2α)
)

= −2qα
f (−qk2

−2α,−q3k2
+2α)

ψ(−q )
.
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Assuming without loss of generality that k2
− 2α > 0, we have, by (10),

f (−qk2
−2α,−q3k2

+2α)

ψ(−q )
=
(qk2

−2α
; q4k2

)∞(q3k2
+2α

; q4k2
)∞(q4k2

; q4k2
)∞

(q; q4)∞(q3; q4)∞(q4; q4)∞

=
(qk2

−2α
; q4k2

)∞(q3k2
+2α

; q4k2
)∞(q4k2

; q4k2
)∞

(q4; q4)∞(q; q2)∞

=

∏
1≤t<k2

(q4t
; q4k2

)−1
∞

∏
1≤t≤4k2, t odd

t 6=k2
−2α, 3k2

+2α

(q t
; q4k2

)−1
∞
.

Denoting by
∑

∞

n=0 unqn the corresponding power series, we see that un > 0 for all
n ≥ 3. Thus, we have shown that the coefficients E1(q) as a power series in q are
nonzero and their signs are periodic with period 2k for n > m3.

Arguing as in (28), one can also establish periodicity modulo m for the signs of
the coefficients of Fm,3r−m,r .

As a special case, we consider Ramanujan’s cubic continued fraction, defined
by (4).

Corollary 4.2. Let

f (−q3,−q3)

f (−q,−q5)
=

∞∑
n=0

cnqn.

Then

c6n+1 > 0, c6n+3< 0, c6n+11 < 0 for all n ≥ 0,(41)

c6n > 0, c6n+4< 0, c6n+14 > 0 for all n ≥ 0.(42)

Proof. By Lemma 4.1,

f (−q3,−q3)

f (−q,−q5)
=

1
2

(
f (q, q2)

ψ(q3)
+

f (−q, q2)

ψ(−q3)

)
+q

f (−q2,−q10)

ϕ(−q6)
.

By (10), and some elementary product manipulations one can actually show that

f (−q3,−q3)

f (−q,−q5)
=

f (q, q2)

ψ(q3)
.

Employing (16) with l = 3, a replaced by −q2 and b replaced by −q10, we obtain

q
f (−q2,−q10)

ϕ(−q6)

=
q

ϕ(−q6)

(
f (−q42,−q66)− q2 f (−q30,−q78)− q10 f (−q6,−q102)

)
,
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from which we deduce (41). Similarly, using (16) with l = 3, we find that

f (q, q2)

ψ(q3)
=

1
ψ(q3)

(
f (q12, q15)+ q f (q6, q21)+ q2 f (q3, q24)

)
,

which yields (42). �

5. A generalization of Ramanathan’s result

In this section, we establish an expansion of Fm,2r,r modulo m. Ramanathan deter-
mined the signs of the Taylor series coefficients of Fm,2r,r , under the assumption
that gcd(6,m) = 1. His proof is similar to that of Andrews and uses Gordon’s
theorem [1961].

Theorem 5.1. If m ≡ 1 (mod 3), then

(43)
f (−z2,−z−2q)
f (−z,−z−1q)

=
f (−qm2

)

f (−q)

×

m−1∑
n=0

(−1)nz3nqn(3n−1)/2 f (−z2mqm(m+6n−1)/3,−z−2mqm(2m−6n+1)/3)

f ((−z)mqm(m+6n−1)/6, (−z)−mqm(5m−6n+1)/6)
.

If m ≡ −1 (mod 3), then

(44)
f (−z2,−z−2q)
f (−z,−z−1q)

=
f (−qm2

)

f (−q)

×

m−1∑
n=0

(−1)nz3nqn(3n−1)/2 f (−z−2mqm(m−6n+1)/3,−z2mqm(2m+6n−1)/3)

f ((−z)−mqm(m−6n+1)/6, (−z)mqm(5m+6n−1)/6)
.

If m ≡ 0 (mod 3), then

(45)
f (−z2,−z−2q)
f (−z,−z−1q)

=
1

f (−q)

×

( m/3−1∑
n=0

(−1)nz3nqn(3n−1)/2 f ((−z)mqm(m+6n−1)/6,(−z)−mqm(m−6n+1)/6)

+

m/3−1∑
t=0

(−1)t z1−3tq t (3t−1)/2 f ((−z)−mqm(m+6t−1)/6,(−z)mqm(m−6t+1)/6)

)
.
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Proof. We give proofs of (43) and (45). We will not prove (44) since its proof is
very similar to that of (43). Let us assume first that m is odd. By (14) and (16),

(46)
f (−z2,−z−2q)
f (−z,−z−1q)

=
1

f (−q)

(
f (−z3q ,−z−3q2)+ z f (−z−3q ,−z3q2)

)
=

1
f (−q)

( m−1∑
n=0

(−1)nz3nqn(3n−1)/2 f (−z3mqm(3m+6n−1)/2,−z−3mqm(3m−6n+1)/2)

+

m−1∑
t=0

(−1)nz−3t+1q t (3t−1)/2 f (−z−3mqm(3m+6t−1)/2,−z3mqm(3m−6t+1)/2)

)
.

Employing (8) with l = k, we find that

f (−z−3mqm(3m+6t−1)/2,−z3mqm(3m−6t+1)/2)= (−1)kz−3mkqmk(3mk+6t−1)/2

× f (−z−3mqm(3m+6mk+6t−1)/2,−z3mqm(3m−6mk−6t+1)/2).

Assume now that m ≡ 1 (mod 3) and fix n and t so that 3n ≡ −3t + 1 (mod m).
Thus, 3n + 3t − 1 = (3v − 1)m for some integer v. By taking k = −v in the
preceding displayed equality and using the resulting equation in (46) we conclude
after some elementary algebraic manipulation that

f (−z2,−z−2q)
f (−z,−z−1q)

=
1

f (−q)

m−1∑
n=0

(−1)nz3nqn(3n−1)/2
(

f (−z3mqm(3m+6n−1)/2,−z−3mqm(3m−6n+1)/2)

+ zmqm(m+6r−1)/6 f (−z−3mqm(m−6n+1)/2,−z3mqm(5m+6n−1)/2)
)
.

Employing (14) again, this time with a = zmqm(m+6r−1)/6 and q replaced by qm2
,

we find that

f (−z−2mqm(m−6n+1)/3,−z2mqm(2m+6n−1)/3)

f (−z−mqm(m−6n+1)/6,−zmqm(5m+6n−1)/6)

=
1

f (−qm2
)

(
f (−z3mqm(3m+6n−1)/2,−z−3mqm(3m−6n+1)/2)

+ zmqm(m+6r−1)/6 f (−z−3mqm(m−6n+1)/2,−z3mqm(5m+6n−1)/2)
)
.

Substituting this equation in the preceding one, we see that the proof of (43) for
the case of odd m is complete.
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Now assume that m is even. By (14) and (16),

(47)
f (−z2,−z−2q)
f (−z,−z−1q)

=
1

f (−q)

(
f (−z3q ,−z−3q2)+ z f (−z−3q ,−z3q2)

)
=

1
f (−q)

( m−1∑
n=0

(−1)nz3nqn(3n−1)/2 f (z3mqm(3m+6n−1)/2, z−3mqm(3m−6n+1)/2)

+

m−1∑
t=0

(−1)t z−3t+1q t (3t−1)/2 f (z−3mqm(3m+6t−1)/2, z3mqm(3m−6t+1)/2)

)
.

Employing (8) again with l = k, we find that

f (z−3mqm(3m+6t−1)/2, z3mqm(3m−6t+1)/2)

= z−3mkqmk(3mk+6t−1)/2 f (z−3mqm(3m+6mk+6t−1)/2, z3mqm(3m−6mk−6t+1)/2).

Fix n and t so that 3n ≡ −3t +1 (mod m). Thus, 3n +3t −1 = (3v−1)m for some
integer v. Since m is even, we know that n and t have opposite parity. By taking
k = −v in the last displayed equality and then using the resulting equation in (47),
we conclude this time that

f (−z2,−z−2q)
f (−z,−z−1q)

=
1

f (−q)

m−1∑
n=0

(−1)nz3nqn(3n−1)/2
(

f (z3mqm(3m+6n−1)/2, z−3mqm(3m−6n+1)/2)

−zmqm(m+6r−1)/6 f (z−3mqm(m−6n+1)/2, z3mqm(5m+6n−1)/2)
)
.

Employing (14) again this time with a = −zmqm(m+6r−1)/6 and q replaced by
qm2

, we find that

f (−z−2mqm(m−6n+1)/3,−z2mqm(2m+6n−1)/3)

f (z−mqm(m−6n+1)/6, zmqm(5m+6n−1)/6)

=
1

f (−qm2
)

(
f (z3mqm(3m+6n−1)/2, z−3mqm(3m−6n+1)/2)

− zmqm(m+6r−1)/6 f (z−3mqm(m−6n+1)/2, z3mqm(5m+6n−1)/2)
)
.

This proves (43) for m even.
Observe that (45) is just (46) or (47) with m replaced by m/3. �

As a corollary of Theorem 5.1, we obtain a generalization of Theorem 1.1.
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Corollary 5.2. Suppose that gcd(r,m)= 1. Set

Fm,2r,r :=

∞∑
n=0

cnqn.

If m 6≡ 0 (mod 3), then cn 6= 0 for n > 3m3 and the signs of the cn’s are periodic
with period m.
If m ≡ 0 (mod 3), then cn 6= 0 for n > 3m3 and the signs of the cn’s are periodic
with period m unless n ≡ −r (mod 3), in which case cn ≡ 0.

Proof. We will sketch a proof for the case m ≡ 4 (mod 6). By (43) with q replaced
by qm and z replaced by qr , we find that

Fm,2r,r =
f (−q2r ,−qm−2r )

f (−qr ,−qm−r )

=
f (−qm3

)

f (−qm)

m−1∑
n=0

(
(−1)nqmn(3n−1)/2+3rn

f (−qm2(m+6n−1)/3+2mr ,−qm2(2m−6n+1)/3−2mr )

f (qm2(m+6n−1)/6+mr , qm2(5m−6n+1)/6−mr )

)
.

We break up the summation into three parts and apply (9) if there are any negative
exponents. We deduce that

(48) Fm,2r,r =
f (−qm3

)

f (−qm)

×

(
(m−1)/3∑

n=0

(−1)nq A(n) f (−qm2(m+6n−1)/3+2mr ,−qm2(2m−6n+1)/3−2mr )

f (qm2(m+6n−1)/6+mr , qm2(5m−6n+1)/6−mr )

+

(5m−2)/6∑
n=(m+2)/3

(
(−1)n+1q B(n)

×
f (−qm2(5m−6n+1)/3−2mr ,−qm2(6n−2m−1)/3+2mr )

f (qm2(m+6n−1)/6+mr , qm2(5m−6n+1)/6−mr )

)

+

m−1∑
n=(5m+4)/6

(
(−1)nqC(n)

×
f (−qm2(6n−5m−1)/3+2mr ,−qm2(8m−6n+1)/3−2mr )

f (qm2(11m−6n+1)/6−mr , qm2(6n−5m−1)/6+mr )

))
,

where
A(n)= mn(3n − 1)/2 + 3rn,

B(n)= A(n)+ m2(2m − 6n + 1)/3 − 2mr,

C(n)= B(n)+ m2(5m − 6n + 1)/6 − mr.
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Clearly A(n)≡ B(n)≡ C(n) (mod m) and the A(n), for 0 ≤ n <m, are all distinct
modulo m. Each quotient of (48) upon replacing qm by q has the form

f (−q2α,−qm2
−2α) f (−qm2

)

f (qα, qm2−α) f (−q)
,

where gcd(α,m) = 1. By employing (10) and some elementary product manipu-
lations, we see that

f (−q2α,−qm2
−2α) f (−qm2

)

f (qα,−qm2−α) f (−q)

=
1

(q2α; q2m2
)∞(q2m2−2α; q2m2

)∞

∏
1≤t≤m2

t 6=2α,m2
−2α, α,m2

−α,m2

(q t
; qm2

)−1
∞

is a power series in q with strictly positive coefficients except possibly that of q.
Since A(n), B(n) and C(n) are bounded by 2m3, we conclude that the coefficients
cn of Fm,2r,r are nonzero and their signs are periodic modulo m for n > 3m3. �

6. The coefficients of a certain “non-theta" product

Let βn be defined by
∞∑

n=0

βnqn
:=
(q2

; q3)∞
(q; q3)∞

=
1
1 −

q
1+q −

q3

1+q2 −

q5

1+q3 − · · ·
.(49)

This continued fraction of Ramanujan differs from the other continued fractions
considered in this paper because it is not a ratio of two theta functions. Using
Maple, we computed βn for 0 ≤ n ≤ 1000. In this range βn is nonzero except for
n = 2, 3, 5, 10, 13, 32, and 80. As for the sign of βn , beginning at 63, the signs
have period 3 in intervals of increasing lengths. Thus, beginning at 63, the signs
are −,+,−. At 82, a new sequence +,+,− starts . Then at 103, the sequence −,+,−
begins, etc. Based on numerical evidence, we conjecture that the lengths of the
intervals are strictly increasing therefore the signs of βn are not periodic. We are
led to examine the series

∑
∞

n=0 β3n+ j qn for 0 ≤ j < 2. Here the signs are evidently
constant in intervals of increasing lengths. For example, for j =0, starting at n =2,
the lengths of the first six intervals are 5, 14, 21, 28, 36, and 43. We are unable to
use the methods of this paper to examine the product in (49). Evidently, entirely
new ideas will need to be devised to establish the observed phenomena.
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