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Let ν :r→so(p) be a representation of a complex reductive Lie algebra r on
a complex vector space p. Assume that ν is the complexified differential of
an orthogonal representation of a compact Lie group R. Then the exterior
algebra

∧
p becomes an r-module by extending ν. Let Spin ν : r→ End S be

the composition of ν with the spin representation Spin : so(p) → End S. We
completely classify the representations ν for which the corresponding Spin ν

representation is primary, give a description of the r-module structure of∧
p, and present a decomposition of the Clifford algebra over p. It turns out

that, if the Spin ν representation is primary, ν must be an isotropy represen-
tation of some symmetric pair. Our work generalizes Kostant’s well-known
results that dealt with the special case when ν is the adjoint representation
of a semisimple Lie algebra. In the proof we introduce the “restricted” root
system of a real semisimple Lie algebra, which is of independent interest.

1. Introduction

Let R be a compact Lie group. Let p be a finite-dimensional complex vector space
with a nonsingular symmetric bilinear form Bp, and C(p) be the Clifford algebra
over p with respect to Bp. Assume that ν : R → SO(p) is a Bp-orthogonal repre-
sentation of R on p. Let r be the complexified Lie algebra of R. We use ν also to
denote ν : r → so(p), the complexified differential of the representation of R on p.
In particular, r is reductive and ν is completely reducible. Let

β : r → End
∧

p

be the derivation extension of ν. Let

Spin ν : r → End S

be the composition of ν with the spin representation Spin : so(p)→ End S. When
the representation Spin ν is primary of type πλ, where πλ : r → End Vλ is the
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irreducible representation of r with highest weight λ, then, given the well-known
relation between

∧
p and S ⊗ S, we have

(1-1)
∧

p ∼= 2l Vλ ⊗ V ∗

λ

as r-modules, for some nonnegative integer l. One also has an algebra isomorphism

(1-2) C(p) ∼= (End Vλ)⊗ J,

where J =
(∧

p
)r, the space of r-invariants in

∧
p, is isomorphic to a matrix algebra

if l is even, and is isomorphic to a sum of two matrix algebras if l is odd. See
[Kostant 1997, Proposition 20].

In view of Equations (1-1) and (1-2), it is thus interesting to classify the rep-
resentation ν such that Spin ν is primary, which is the main result of this paper.
Many people are interested in the special case where ν is the adjoint representation
of a semisimple complex Lie algebra g on itself. The study of an important graded
submodule C of

∧
g can be found in [Kostant 2000; 1965]. The well-known result

that the representation Spin ν is primary of type πρ , where ρ is half the sum of the
positive roots, was first given in [Kostant 1961]. Then the g-module structure of
the exterior algebra

∧
g is given by

∧
g ∼= 2l Vρ⊗Vρ , where l is the rank of g. The

Clifford algebra C(g) over g decomposes into the Clifford product

C(g) ∼= (End Vρ)⊗ J,

where the space J =
(∧

g
)g has dimension 2l and has a Clifford algebra structure

over some subspace of itself.
In this paper we classify the representations ν such that the corresponding Spin ν

is primary, and study the r-module structure of
∧

p under the condition that Spin ν
be primary. Our work generalizes the above results of Kostant’s in the case of
adjoint representations.

Recall that a Lie subalgebra k of a Lie algebra g is called a symmetric Lie
subalgebra if there exists an involutory automorphism θ of g such that k is the
set of θ -invariants in g. In this case we call (k, g) a symmetric pair, and call the
representation of k on p ∼= g/k the isotropy representation of (k, g). It is surprising
to us that if Spin ν is primary then ν must be the isotropy representation of some
symmetric pair; see Proposition 2.4. Then, in order to classify the primary Spin ν
representations, we need only consider isotropy representations of symmetric pairs.

Let g0 be a noncompact real semisimple Lie algebra and g0 = k0 ⊕ p0 be a
Cartan decomposition. Let g= k⊕p be its complexification and θ the corresponding
involutory automorphism of g. Let h0 = t0⊕a0 be a fundamental Cartan subalgebra
of g0, where t0 is a Cartan subalgebra of k0 and a0 = p

t0
0 , the centralizer of t0 in p0.

Let h = t ⊕ a be its complexification. Let l0 = dim a and r0 =
1
2 dim p/a, which
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will be shown to be an integer. For a complex vector space V , we will always use
dim V to denote its complex dimension.

Let 1(g, h) ⊂ h∗ be the system of roots of g with respect to h, and let h∗

R be
the real span of the roots in 1(g, h). Usually “restricted roots” refers to the roots
of g0 with respect to a maximal abelian subspace of p0, but in this paper, by abuse
of language, we will call the roots of g with respect to t the restricted roots, and
denote their set by1(g, t). Let t∗R be the real span of the roots in1(g, t), which can
be naturally identified with a subspace of h∗

R. The restriction Bg|h of the Killing
form Bg of g is nonsingular and induces a symmetric nonsingular bilinear form
Bh∗ on h∗. Because Bh∗ is positive definite on h∗

R, it is also positive definite on t∗R.
We will prove in Proposition 3.1 that the set 1(g, t) of restricted roots is a (maybe
nonreduced) root system in t∗R.

In this paper we call 1(g, t) the restricted root system of g0, which is indepen-
dent of the t0 chosen. Let 1(k, t) be the system of roots of k with respect to t.
Let 1+(g, h) be a θ -stable positive root system in 1(g, h). Let 0 be the Dynkin
diagram of1+(g, h). Then the involutory automorphism θ acts on 0 naturally, and
we get a pair (0, θ). The Dynkin diagram0′ of1(g, t) is completely determined by
(0, θ). When g is simple and θ is not the identity on 0, we can get 0′ from 0 easily;
see Figure 1. These results suggest that the restricted root system 1(g, t) plays an
important role in the structure of a real semisimple Lie algebra and deserves more
attention.

There is an important result on the structure of the representation Spin ν, where
ν is the isotropy representation of a symmetric pair; see [Wallach 1988, Lemma
9.3.2]. We restate this result in terms of 1(k, t) and the restricted root system
1(g, t) in Lemma 4.3, which reduces the problem of classification a lot. Then we
first deal with the case when g is simple. It is interesting that, for each connected
Dynkin diagram with a nontrivial involutory automorphism, there is exactly one
symmetric pair such that Spin ν is primary; see Proposition 4.7. Next we deal with
the general case when g is semisimple, and finish the classification completely in
Theorem 4.13.

Let1+(k, t) be a positive root system of1(k, t). Choose1+(g, t) to be a positive
root system of 1(g, t) that contains 1+(k, t). Define ρn to be half the sum of roots
in 1+(g, t) \1+(k, t). Combining Proposition 2.4 and Theorem 4.13, we get our
main result, Theorem 4.14:

Theorem. Assume that ν : r → so(p) is the complexified differential of a faithful
Bp-orthogonal representation of a compact Lie group and that pr

= 0, where pr

are the r-invariants in p. Assume that Spin ν is primary. Then g = r ⊕ p has a
semisimple Lie algebra structure such that r is a Lie subalgebra of g, that (r, g) is
a reduced symmetric pair, and that ν is the isotropy representation of (r, g).

The symmetric pair (r, g) must be one of the following:
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(1)
(
so(2n + 1,C), sl(2n + 1,C)

)
, n ≥ 1;(

sp(n,C), sl(2n,C)
)
, n ≥ 2;(

so(2n + 1,C), so(2n + 2,C)
)
, n ≥ 3;

(F4, E6);

(2) g = g1 ⊕ g1 and r =
{
(X, X) | X ∈ g1

}
, where g1 is a complex simple Lie

algebra;

(3) direct sums of (r, g) in (1) and (2).

Furthermore, when (r, g) is in this list, Spin ν is primary of type πρn .

Dmitri I. Panyushev [2001, Theorem 3.7] classified the primary Spin ν repre-
sentations under the condition that r is semisimple. Our assumption that ν is the
complexified differential of an orthogonal representation of a compact Lie group
is more general than his, although we did not get any new representation ν in the
classification. Our approach is completely different from his and in our argument,
based on results of Kostant, it is more direct to see that only isotropy representations
of symmetric pairs may have primary Spin ν representations. It was also found in
[Panyushev 2001] that when Spin ν is primary the space

(∧
p
)r of r-invariants in∧

p is still an exterior algebra.
Finally, as a corollary of [Kostant 1997, Proposition 20] — see Equations (1-1)

and (1-2) — and recalling the definition of l0 and r0, we get a result on the r-module
structure of

∧
p and a decomposition of the Clifford algebra C(p), when Spin ν is

primary:

Corollary 1.1. Let (r, g) be a symmetric pair in the list of the theorem above. The
corresponding Spin ν representation is primary of type πρn . Let J =

(∧
p
)r. Then

dim Vρn = 2r0 and dim J = 2l0 . As a subalgebra of C(p), J is isomorphic to a
matrix algebra if l0 is even, and is isomorphic to a sum of two matrix algebras if l0

is odd. Furthermore,
C(p) ∼= (End Vρn )⊗ J

as algebras. Finally, as r-modules,∧
p ∼= 2l0 Vρn ⊗ Vρn .

2. Preliminaries. A necessary condition for the representation
Spin ν to be primary

Let r be a complex reductive Lie algebra and Br a nonsingular r-invariant symmet-
ric bilinear form on r. Let p be a finite-dimensional complex vector space with a
nonsingular symmetric bilinear form Bp on p. We always assume that

(2-1) ν : r → so(p)
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is a Bp-invariant representation of r on p.
Next we recall some important relations arising from Chevalley’s identification

of the underlying vector spaces of the exterior algebra
∧

p and the Clifford algebra
C(p) over p with respect to Bp. We think of

∧
p as having two multiplicative

structures: uw ∈
∧

p denotes the Clifford product of u and w, while u ∧w ∈
∧

p

denotes their exterior product. The natural extension of Bp to
∧

p is also denoted
by Bp. For more details see [Kostant 1997, §2].

For any u ∈
∧2 p, let ad u ∈ End

∧
p be the operator defined by

ad u(w)= uw−wu

for everyw∈
∧

p. Then ad u is not only a derivation of the Clifford algebra structure
of

∧
p, but also a derivation of degree zero of the exterior algebra structure of

∧
p.

In particular,
∧2 p is a Lie algebra under the Clifford product, and

ad :
∧2 p → End

∧
p, u 7→ ad u

is a Lie algebra representation. Furthermore,

(2-2) τ :
∧2 p → so(p)

is a Lie algebra isomorphism, where

τ(u)(x)= ad u(x)

for any u ∈
∧2 p and x ∈p. For proofs see [Kostant 1997, Proposition 7, Theorem 8].

It follows from (2-2) that there exists a unique Lie algebra homomorphism
ν∗ : r →

∧2 p such that

(2-3) τ ◦ ν∗ = ν.

Let
ξ : End p → End

∧
p

be defined so that ξ(z), for any z ∈ End p, is the unique derivation in End
∧

p that
extends the action of z to

∧
p. We also use ξ to denote the above map restricted

to so(p). One knows that if u ∈
∧2 p then ad u = ξ

(
τ(u)

)
(see [Kostant 1997,

Theorem 8]), that is,

(2-4) ad = ξ ◦ τ.

Let

(2-5) β : r → End
∧

p

be the composition of ν : r → so(p) with ξ : so(p) → End
∧

p. We will always
refer to

∧
p as an r-module via β. The extended bilinear form Bp is invariant under
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β(x), for any x ∈ r. By Equations (2-3) and (2-4),

β = ad ◦ν∗.

Up to equivalence, the Clifford algebra C(p) has a unique faithful multiplicity-
free module S. Let

(2-6) ε : C(p)→ End S

be the corresponding homomorphism, and S is referred to as the spin module for
C(p). Let

(2-7) Spin : so(p)→ End S

be the composition of τ−1
: so(p)→

∧2 p with ε. The composition of ν∗ : r →
∧2 p

with ε, or equivalently, the composition of ν : r → so(p) with Spin, defines a
representation

(2-8) Spin ν : r → End S,

called the spin of ν. The maps above are organized into the commutative diagram

r
ν - so(p)

ξ- End
∧

p

∧2 p

τ

6

ε
-

ad
-

ν
∗

-

End S

The underlying vector spaces of
∧

p and C(p) are identified by Chevalley’s map.
When dim p is even,

C(p) ∼= End S

as algebras, where S is the spin module of C(p), which splits into two half-spin
representations of

∧2 p (∼= so(p)) and is self-dual as a
∧2 p-module. Under the

adjoint representation ad, we have End S ∼= S ⊗ S∗ as
∧2 p-modules. Then, as∧2 p-modules, and hence as r-modules,

(2-9)
∧

p ∼= S ⊗ S.

When dim p is odd, the spin module S of C(p) splits into two equivalent
∧2 p-

modules, S1 and S2. The space S1 (or S2) is called the spin representation of
∧2 p

and is also self-dual. One has

(2-10) C(p) ∼= End S1 ⊕ End S2
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as algebras. See, for example, §3 of [Kostant 1997] for details. Under the adjoint
action ad, we have End S ∼= S1 ⊗ S∗

1 ⊕ S2 ⊗ S∗

2
∼= 2 S1 ⊗ S1 as

∧2 p-modules.
Then, as

∧2 p-modules, and hence as r-modules,
∧

p ∼= 2 S1 ⊗ S1, or

(2-11) S ⊗ S ∼= 2
∧

p.

Recall that a completely reducible representation π : r → End V is primary if
there exists a representation πλ : r → End Vλ, the irreducible representation of r

with highest weight λ, such that every irreducible component of π is equivalent to
πλ. More specifically, in such a case we say that π is primary of type πλ.

The relations (2-9) and (2-11) imply that, if S is primary of type πλ, then∧
p ∼= 2l Vλ ⊗ Vλ

as r-modules, for some nonnegative integer l.
Let ν∗ : U (r)→ C0(p) be the algebra homomorphism extending ν∗ : r →

∧2 p,
where U (r) is the universal enveloping algebra of r. Let E be the image of U (r)
and let J =

(∧
p
)r. Then J equals the centralizer of E in C(p). If S is primary of

type πλ, one has
C(p) ∼= E ⊗ J

as algebras, and E ∼= End Vλ. See [Kostant 1997, Proposition 20].

Let g be a complex Lie algebra and let θ be an involutory automorphism of g.
Then (g, θ) is called an involutory complex Lie algebra, and θ is referred to as the
corresponding Cartan involution. Let g = k ⊕ p be the Cartan decomposition of g

into (+1)- and (−1)-eigenspaces of θ . A Lie subalgebra k is called a symmetric
Lie subalgebra of g if there exists an involutory automorphism θ of g such that k

is the set of θ -invariants in g. In this case (k, g) is called a symmetric pair.
Two involutory Lie algebra (g1, θ1) and (g2, θ2) are isomorphic if there exists

an isomorphism ψ : g1 → g2 satisfying ψ θ1 = θ2ψ . In fact, since k and θ uniquely
determine each other, we will often refer to either as corresponding to the other. We
say that two symmetric pairs are isomorphic if their corresponding involutory Lie
algebras are isomorphic. Let adg denote the adjoint representation of g on itself.
Since [k, p] ⊆ p, we can define

k → End p, x 7→ (adg x)|p

for any x ∈ k; we call it the isotropy representation of the symmetric pair (k, g). It
is easy to see that, for isomorphic symmetric pairs, the corresponding symmetric
Lie subalgebras k are isomorphic and the corresponding isotropy representations
are equivalent. The involutory complex Lie algebra (g, θ) and the symmetric pair
(k, g) are said to be reduced if k contains no nonzero ideal of g.
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Recall that ν : r → so(p) is a Bp-invariant representation of r on p, where r

is a complex reductive Lie algebra with a nonsingular ad r-invariant symmetric
bilinear form Br and p is a complex vector space with a nonsingular symmetric
bilinear form Bp.

Let g= r⊕p and let Bg be the nonsingular symmetric bilinear form on g defined
so that Bg|r = Br, Bg|p = Bp, and p is Bg-orthogonal to r. As in [Kostant 1999,
§1.1], we say that the representation (ν, Bg) is of Lie type if there exists a Lie
algebra structure [ , ] on g such that r is a Lie subalgebra of g and [x, y] = ν(x)y
for x ∈ r, y ∈ p, and if moreover Bg is g-invariant. Let Casr denote the Casimir
element of r with respect to Br.

Kostant proved an important relation between the representations Spin ν and ν:

Theorem 2.1 [Kostant 1999]. The following conditions are equivalent:

(1) (Spin ν)(Casr) is a scalar multiple of the identity operator on S;

(2) (ν, Bg) is of Lie type and (r, g) is a symmetric pair, where p is the (−1)-
eigenspace for a corresponding Cartan involution.

Remark 2.2. There are four equivalent conditions listed in [Kostant 1999, Theorem
1.59], but for our purpose we only list two of them here. When any of the conditions
of the theorem are satisfied, the Lie algebra structure of g = r⊕p is determined in
§1 of [Kostant 1999].

Theorem 2.3 [Kostant 1999, Theorem 1.61]. Assume that ν is the complexified
differential of a faithful Bp-orthogonal representation of a compact Lie group and
that pr

= 0. Assume that any of the conditions of Theorem 2.1 is satisfied. Then
g is semisimple, and p is the orthogonal complement of r in g with respect to the
Killing form.

Our desired result follows as a corollary:

Proposition 2.4. Assume that ν : r → so(p) is the complexified differential of a
faithful Bp-orthogonal representation of a compact Lie group and that pr

= 0. If
Spin ν is primary, then (ν, Bg) is of Lie type, (r, g) is a reduced symmetric pair
with g semisimple, and ν is the isotropy representation of (r, g).

Proof. If the representation Spin ν is primary, say, of type πλ, then (Spin ν)(Casr)

is a scalar multiple of the identity operator on S, because Casr is in the center of
U (r). Then, by Theorem 2.1, (ν, Bg) is of Lie type and (r, g) is a symmetric pair
where p is the (−1)-eigenspace for a corresponding Cartan involution. So ν is the
isotropy representation of (r, g). The symmetric pair (r, g) is reduced because ν is
faithful. Since all the assumptions of Theorem 2.3 are satisfied, g is semisimple. �

Hence, in order to classify all the primary Spin ν representations, we need only
consider the isotropy representations of symmetric pairs (k, g) with g semisimple.
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3. Restricted root system of a real semisimple Lie algebra

Let (g, θ) be an involutory complex semisimple Lie algebra. Let g = k ⊕ p be
the corresponding Cartan decomposition. Let Bg be an g-invariant nonsingular
symmetric bilinear form on g. Assume that the isotropy representation ν : k →

so(p) is faithful, which is equivalent to (k, g) being reduced. The k-module p is
completely reducible and there is no nonzero trivial submodule of p; hence the
space pk of k invariants in p is always 0. Now our objective is to classify all the
reduced symmetric pairs (k, g) such that the corresponding Spin ν representation
is primary. Considering that ν is completely reducible, it is not hard to see that the
k-module structure of S does not depend on the nonsingular g-invariant symmetric
bilinear form Bg. So from now on we will just assume Bg to be the Killing form
on g.

For a noncompact real semisimple Lie algebra g0, let g0 = k0 ⊕ p0 be a Cartan
decomposition of g0. Let g = k⊕p be its complexification and θ the corresponding
involution of g. Then (g, θ) is an involutory complex semisimple Lie algebra.
Conversely, for a complex semisimple involutory Lie algebra (g, θ), there exists a
real form g0 of g such that θ |g0 is a Cartan involution of g0. Up to isomorphism, g0

and (g, θ) uniquely determine each other. Let h0 = t0⊕a0 be a maximally compact
Cartan subalgebra of g0, that is, t0 is a Cartan subalgebra of k0 and a0 = p

t0
0 . Let

h = t ⊕ a be its complexification, which is also a Cartan subalgebra of g. We call
such an h a maximally compact Cartan subalgebra of (g, θ). Let l0 = dim a. Let

hR = it0 ⊕ a0,

which is a real form of h.
Let 1(g, h)⊂ h∗ be the set of roots of g with respect to h. Obviously, we have

θ
(
1(g, h)

)
=1(g, h). Let h∗

R be the real span of the roots in 1(g, h), so that h∗

R is
a real form of h∗ and can be taken as the real dual space to hR, because the roots
in 1(g, h) take real values on hR. Let θ act on h∗ by (θσ )(H) = σ(θH), where
σ ∈ h∗, H ∈ h. Clearly h∗

R is θ -stable. Let

(3-1) h∗

R = t∗R ⊕ a∗

R

be the decomposition of h∗

R into (+1)- and (−1)-eigenspaces of θ . Let

p : h∗

R → t∗R

be the projection of h∗

R onto t∗R.
Set 1(g, t) =

{
p(α) | α ∈ 1(g, h)

}
. Then t∗R is the real span of the roots in

1(g, t). The restriction Bg|h is nonsingular and induces a symmetric nonsingular
bilinear form Bh∗ on h∗. One knows that Bh∗ is positive definite on h∗

R; hence
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also on t∗R. Then (3-1) is clearly an orthogonal direct-sum decomposition, and
p(α)=

(
α+ θ(α)

)
/2 for α ∈ h∗

R. Let (γ, δ) denote the value of Bh∗ on γ, δ ∈ h∗

R.
For any α, γ ∈1(g, h) or α, γ ∈1(g, t), define

〈α, γ 〉 =
2(α, γ )
(γ, γ )

.

It is well-known that 1(g, h) is a root system in h∗

R. Moreover:

Proposition 3.1. The set 1(g, t) is a root system (maybe nonreduced) in t∗R.

Proof. For any α ∈ 1(g, h), we use α′ to denote p(α) ∈ 1(g, t). Then (α′, γ ′) =

(α, γ ′) as (α′
−α, γ ′)=0. For any α, γ ∈1(g, h) (respectively, any α, γ ∈1(g, t)),

define sγ α=α−〈α, γ 〉γ , the reflection of α along γ . Then we need only show that,
for any α′, γ ′

∈1(g, t), we have 〈α′, γ ′
〉 ∈ Z and sγ ′ α′

∈1(g, t). We distinguish
two cases.
θγ = γ : Then γ ′

= γ , and

〈α′, γ ′
〉 =

2(α′, γ )

(γ, γ )
=

2(α, γ )
(γ, γ )

= 〈α, γ 〉 ∈ Z.

Thus, sγ ′ α′
= α′

− 〈α′, γ ′
〉γ ′

= α′
− 〈α, γ 〉γ ′

= (sγα)′.
θγ 6= γ : Since h is a maximally compact Cartan subalgebra of (g, θ), there is no

real root (that is, vanishing on t) in 1(g, h). So (γ, θγ )≤ 0, as otherwise γ − θγ

will be a real root.
If (γ, θγ ) < 0, then γ +θγ = 2γ ′ is a root in 1(g, h) and also in 1(g, t). Then

sγ ′ α′
= sγ+θγ α

′
= (sγ+θγ α)

′
∈ 1(g, t). But (sγ+θγ α)

′
= α′

− 2〈α, γ + θγ 〉γ ′,
and so 〈α′, γ ′

〉 = 2〈α, γ + θγ 〉 ∈ Z.
If (γ, θγ )= 0, then (γ ′, γ ′)= (γ, γ )/2. By computation,

sγ ′α′
= α′

−
2(α, γ + θγ )

(γ, γ )
γ ′

= (sγ sθγα)′.

In this case

〈α′, γ ′
〉 =

2(α, γ + θγ )

(γ, γ )
=

2(α+ θα, γ )

(γ, γ )
= 〈α, γ 〉 + 〈θα, γ 〉

is also an integer. �

Remark 3.2. In this paper we call1(g, t) the restricted root system of g0, which is
clearly independent of the Cartan subalgebra t0 of k0 chosen. For a θ -stable positive
root system 1+(g, h) of 1(g, h), it is obvious that p

(
1+(g, h)

)
is also a positive

root system in 1(g, t). Furthermore, for the set of simple roots 5 of 1+(g, h),
p(5) is also the set of simple roots in p

(
1+(g, h)

)
. Conversely, if 1+(g, t) is

a positive root system in 1(g, t), then p−1
(
1+(g, t)

)
is a θ -stable positive root

system of 1(g, h). Consequently, the θ -stable positive root systems of 1(g, h)



PRIMARY REPRESENTATIONS ASSOCIATED WITH ROOT SYSTEMS 43

and the positive root systems of 1(g, t) are in one-to-one correspondence under
p. Let W

(
1(g, h)

)
be the Weyl group of 1(g, h). The Weyl group of 1(g, t) is

in fact isomorphic to the subgroup of W
(
1(g, h)

)
consisting of those elements of

W
(
1(g, h)

)
commuting with θ .

Let gα be the one-dimensional root space corresponding to α. Let

11 =
{
α ∈1(g, h) | gα ⊂ k

}
,

12 =
{
α ∈1(g, h) | gα ⊂ p

}
,

13 =1(g, h) \ (11 ∪12).

The roots in 11 and 12 are called imaginary. We call an imaginary root compact
if α ∈ 11 and noncompact if α ∈ 12. The roots in 13 are called complex. Then
1(g, h) = 11 t12 t13. We choose a positive root system 1+(g, h) such that
θ
(
1+(g, h)

)
= 1+(g, h). Let 5 be the set of simple roots in 1+(g, h). Then

θ permutes the simple roots in 5 and induces an involutory automorphism of the
Dynkin diagram 0 of5. For the complex semisimple involutory Lie algebra (g, θ),
by abuse of language, we call (0, θ) its Dynkin diagram. We also call (0, θ) the
Dynkin diagram of the corresponding g0. Obviously, θ fixes the imaginary simple
roots in 0 and permutes in 2-cycles the complex simple roots in 0.

Lemma 3.3. The Dynkin diagram (0, θ) of (g, θ) is independent of the θ -stable
positive root system chosen.

Proof. Assume that 1+

1 and 1+

2 are two θ -stable positive root systems of 1(g, h).
For i = 1 or 2, let 5i be the set of simple roots in 1+

i and 0i the Dynkin dia-
gram of 5i . Then there exists φ ∈ W

(
1(g, h)

)
, the Weyl group of 1(g, h), such

that φ(1+

1 ) = 1+

2 . One also has φ(51) = 52. Then φ θ(1+

1 ) = θ φ(1+

1 ), so
φ−1θ−1φ θ (1+

1 ) =1+

1 . Since W
(
1(g, h)

)
is a normal subgroup of the automor-

phism group of 1(g, h), one has φ−1θ−1φ θ ∈ W
(
1(g, h)

)
. Because W

(
1(g, h)

)
acts simply transitively on the set of positive root systems, φ−1θ−1φ θ = 1. So
φ θ=θ φ. Hence, under φ the actions of θ on1+

1 and1+

2 are equivalent. Therefore
(01, θ) and (02, θ) are the same. �

Note that (0, θ) gives less information for g0 than the Vogan diagram of g0, and
nonisomorphic g0’s may have the same (0, θ).

For any α ∈1(g, t), also let

gα =
{

X ∈ g | [H, X ] = α(H)X for all H ∈ t
}

be the root space corresponding to α. The multiplicity of α ∈1(g, t) is defined to
be the dimension of gα. Let 1(k, t) ⊂ t∗ be the set of roots of k with respect to t.
Define

1(p, t)=
{
α ∈1(g, t) | gα ∩ p 6= 0

}
.
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Then 1(g, t)=1(k, t)∪1(p, t). For any α ∈1(p, t), let pα = gα ∩ p. Then

p = a ⊕

∑
α∈1(p,t)

pα.

1(p, t) is just the set of nonzero weights of p with respect to the Cartan subalgebra
t of k, because p is the space of the isotropy representation of k.

Lemma 3.4. pα is one-dimensional, for any α ∈1(p, t).

Proof. If α ∈ 12, then pα = gα is one-dimensional. Otherwise, assume that α =

p(γ ) for some γ ∈ 13. Because there are no real roots in 1(g, h), we see that
p(γ ) 6= p(α), for any α, γ ∈1(g, h) such that γ 6= α and γ 6= θα. Then

gα =

∑
β∈1(g,h)

p(β)=α

gβ = gγ ⊕ gθγ .

Let Xγ be a root vector of γ . Then θXγ is a root vector of θγ . So both kα =

gα ∩ k = C(Xγ + θXγ ) and pα = C(Xγ − θXγ ) are one-dimensional. �

The proof of the lemma also implies that

1(k, t)=11 t p(13),

1(p, t)=12 t p(13),

1(k, t)∩1(p, t)= p(13).

The multiplicity of α ∈1(g, t) (that is, the dimension of gα) is 1 if α ∈11 t12,
and is 2 if α ∈ p(13).

4. Classification of primary Spin ν representations and some consequence

We continue using the previous notation and complete the classification of sym-
metric pairs with primary Spin ν representations. Let (g, θ) be a reduced involutory
complex semisimple Lie algebra, and g = k ⊕ p be the corresponding Cartan de-
composition. Let Bg be the Killing form on g. Let h = t ⊕ a be a maximally
compact Cartan subalgebra of (g, θ). Let

(4-1) Spin ν : k → End S

be the representation defined as the composition of the isotropy representation
ν : k → so(p) with the spin representation Spin : so(p)→ End S, as in (2-7). Let

β : k → End
∧

p

be the derivation extension of ν : k → so(p), as in Equation (2-5).
From now on, we fix a system Pk of positive roots of 1(k, t). Let C(Pk) be

the set of θ -stable positive root systems P of 1(g, h) such that p(P) ⊇ Pk. For a
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subset Q ⊆ 1(g, h) or Q ⊆ 1(g, t), we set ρ(Q) =
1
2

∑
α∈Q α. For P ∈ C(Pk),

let ρn(P)= ρ(P)−ρ(Pk). Because P is θ -stable, ρ(P) and ρn(P) are both in t∗.
Recall that l0 = dim a.

Lemma 4.1 [Wallach 1988, Lemma 9.3.2]. Let Spin ν : k → End S be the repre-
sentation defined as in (4-1). Then

Spin ν =

∑
P∈C(Pk)

2[(l0+1)/2] πρn(P),

where πρn(P) denotes the irreducible representation of k with highest weight ρn(P).

Remark 4.2. For Wallach, the definition of the Spin ν representation is slightly
different from ours. When dim p is even, the two definitions agree. When dim p

is odd, his S is the spin representation S1 of so(p) in our Equation (2-10). This
results in the difference of the scalar in Lemma 4.1; the scalar in Lemma 9.3.2 of
[Wallach 1988] is 2[l0/2].

In terms of the restricted root system 1(g, t), we get an equivalent statement
which is convenient to use. Let

D(Pk)=
{

p(P) | P ∈ C(Pk)
}

be the set of the positive root systems of 1(g, t) containing Pk. Remark 3.2 im-
plies that the projection p sets up a one-to-one correspondence between C(Pk) and
D(Pk). For P ′

= p(P) ∈ D(Pk), define ρn
(

p(P)
)
= ρn(P).

Lemma 4.3. Let Spin ν : k → End S be the representation defined as in (4-1). Then

Spin ν =

∑
P∈D(Pk)

2[(l0+1)/2] πρn(P).

By this lemma, Spin ν is primary if and only if card D(Pk)= 1, that is, if there
exists only one positive root system of1(g, t) containing Pk. Note that1(k, t) and
1(g, t) are both root systems in t∗R, and 1(k, t) is a root subsystem of 1(g, t). Let
Wg and Wk be the Weyl groups of 1(g, t) and 1(k, t). Then Wk is a subgroup of
Wg. Let C be the Weyl chamber relative to Pk. It is clear that card D(Pk) equals the
number of Weyl chambers of 1(g, t) contained in C, which also equals the index
of Wk in Wg.

For a nonreduced root system1, we call a subset10 ⊂1 a reduced root system
of 1 if 10 is a reduced root system and contains a multiple of α for any α ∈ 1.
(Such a multiple must be α/2, α or 2α.) For example, Bn and Cn are reduced root
systems of (BC)n . Obviously, for a reduced root system10 of1, the Weyl groups
of 10 and 1 are the same. Therefore, if 1(g, t) is reduced, card D(Pk)= 1 if and
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only if 1(k, t) = 1(g, t). If 1(g, t) is nonreduced, card D(Pk) = 1 if and only if
1(k, t) is a reduced root system of 1(g, t).

Assume that Spin ν is primary. There exists only one positive root system P of
1(g, t) containing Pk. We define ρn = ρn(P). Then Spin ν is primary of type πρn .
Let Pp = P∩1(p, t). Then1(p, t)= Ppt−Pp and ρn =ρn(P)=ρ(P\Pk)=ρ(Pp).
Summarizing:

Lemma 4.4. The representation Spin ν is primary if and only if 1(k, t) equals
1(g, t) or is a reduced root system of 1(g, t). In this case, Spin ν is primary of
type πρn .

Remark 4.5. Let r0 = card Pp. Considering Lemma 3.4, one has

dim p = l0 + 2r0.

Hence, when Spin ν is primary, by applying Equations (2-9) and (2-11) one has∧
p ∼= 2l0 Vρn ⊗ Vρn ,

as k-modules. Comparing the dimensions of
∧

p and 2l0 Vρn ⊗ Vρn , we get that

dim Vρn = 2r0 .

Lemma 4.6. Let g = k ⊕ p be the Cartan decomposition corresponding to θ . If
Spin ν is primary, then rank g> rank k and the action of θ on 0 is nontrivial, where
(0, θ) is the Dynkin Diagram of (g, θ).

Proof. If rank g = rank k, the Cartan subalgebra t of k is also that of g. So 1(g, t)
and1(k, t) are both irreducible and reduced root systems. Since1(g, t))1(k, t),
Spin ν cannot be primary by Lemma 4.4. Let (0, θ) be the Dynkin diagram of
(g, θ). If rank g > rank k, then a is nonzero and the action of θ on a θ -stable
positive root system of 1(g, h) is nontrivial, so the action of θ on 0 is nontrivial.
Conversely, if the action of θ on 0 is nontrivial, rank g> rank k. �

Next we classify the symmetric pairs (k, g) with primary Spin ν representations
under the condition that g be simple.

Proposition 4.7. Let (g, θ) be an involutory complex simple Lie algebra and (k, g)
be the corresponding symmetric pair. Then Spin ν is primary if and only if (k, g) is
one of the following:(

so(2n + 1,C), sl(2n + 1,C)
)
, n ≥ 1;(

sp(n,C), sl(2n,C)
)
, n ≥ 2;(

so(2n + 1,C), so(2n + 2,C)
)
, n ≥ 3;

(F4, E6).
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Proof. In view of Lemma 4.6, only those g with a Dynkin diagram admitting a
nontrivial involutory diagram automorphism may have primary Spin ν representa-
tions. In these cases, θ is an outer automorphism of g. Since g is simple, g must be
of type An with n ≥ 2, Dn with n ≥ 4, or E6; in each case θ is the obvious one. In
each case the roots have the same length. First, we compute the Dynkin diagram
of1(g, t)= p

(
1(g, h)

)
by using the fact that p maps the simple roots of1+(g, h)

to the simple roots of 1+(g, t)= p
(
1+(g, h)

)
.

For any α ∈ 1(g, h), we use α′ to denote p(α) ∈ 1(g, t). Let 5 be a θ -stable
simple root system in 1(g, h). Let α′, γ ′ be two different simple roots in p(5),
and compute 〈α′, γ ′

〉〈γ ′, α′
〉. There are three situations:

(1) If α′
= α and γ ′

= γ , then 〈α′, γ ′
〉〈γ ′, α′

〉 = 〈α, γ 〉〈γ, α〉.

(2) If α′
= α and γ ′

6= γ , then there are two subcases:

(a) If (α, γ )= 0, then (α′, γ ′)= 0 and 〈α′, γ ′
〉〈γ ′, α′

〉 = 0.
(b) If (α, γ ) 6= 0, then (γ, θγ )= 0 and

〈α′, γ ′
〉〈γ ′, α′

〉 =
2(α′, γ ′)

(γ ′, γ ′)
·

2(γ ′, α′)

(α′, α′)
=

4(2α, γ + θγ )2

(γ + θγ, γ + θγ ) (2α, 2α)
= 2 〈α, γ 〉〈γ, α〉.

(3) If α′
6= α and γ ′

6= γ , we may assume that (α, θγ )= 0, and then

〈α′, γ ′
〉〈γ ′, α′

〉 =
2(α′, γ ′)

(γ ′, γ ′)
·

2(γ ′, α′)

(α′, α′)

=
4(α+ θα, γ + θγ )2

(γ + θγ, γ + θγ ) (α+ θα, α+ θα)
.

There are again two subcases:

(a) If (α, θα)= 0 and (γ, θγ )= 0, then

〈α′, γ ′
〉〈γ ′, α′

〉 =
4(α, γ )2

(γ, γ )(α, α)
= 〈α, γ 〉〈γ, α〉.

(b) If one of (α, θα) and (γ, θγ ) is 0, then, assuming (α, θα) = 0, we have
(γ, θγ )= −

1
2(γ, γ ) and

〈α′, γ ′
〉〈γ ′, α′

〉 =
8(α, γ )2

(γ, γ )(α, α)
= 2 〈α, γ 〉〈γ, α〉.

Thus, when the Dynkin diagram of 5 is A2n , A2n−1, Dn+1 or E6, the Dynkin
diagram of p(5) is respectively Bn , Cn , Bn or F4, as shown in Figure 1.

But when 1(g, h) is A2n , the root system p
(
1(g, h)

)
is not Bn , but (BC)n .

Indeed, if α is the simple root from (a) of Figure 1, then α + p(α) = 2α′ is in
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p
(
1(g, h)

)
. When1(g, h) is Dn+1, the root system p

(
1(g, h)

)
is just Bn . Indeed,

for α from (c) of Figure 1, 2α′ is not in p
(
1(g, h)

)
. Then we get

p(A2n)= (BC)n, n ≥ 1; p(A2n−1)= Cn, n ≥ 2;

p(Dn+1)= Bn, n ≥ 3; p(E6)= F4.

One knows that such (g, θ) and noncompact noncomplex real simple Lie alge-
bras correspond to each other and all such Lie algebras have been classified by
their Vogan diagrams.

For (A2n, θ), only sl(2n+1,R)’s Dynkin diagram is (A2n, θ). Now k0 =so(2n+

1) and 1(k, t) = Bn is a reduced root system of 1(g, t) = (BC)n , so Spin ν is
primary. In this case,

(k, g)=
(
so(2n + 1,C), sl(2n + 1,C)

)
, n ≥ 1.

The Dynkin diagrams of sl(2n,R) and su∗(2n) are (A2n−1, θ). If g0 =sl(2n,R),
then k0 = so(2n), and 1(k, t) = Dn does not equal 1(g, t) = Cn , so the Spin ν
representation is not primary. If g0 = su∗(2n), then k0 = sp(n) and 1(k, t)= Cn =

1(g, t), so the Spin ν representation is primary. In this case,

(k, g)=
(
sp(n,C), sl(2n,C)

)
, n ≥ 2.

The Dynkin diagrams of so(2r +1, 2n −2r +1), with n ≥ 3 and 0 ≤ r ≤ [n/2],
are (Dn+1, θ). If g0 = so(2r+1, 2n−2r+1), then k0 = so(2r+1)⊕ so(2n−2r+1)
and1(k, t)= Br t Bn−r . Therefore1(k, t)=1(g, t)= Bn if and only if r = 0. So,
when g0 = so(1, 2n + 1), or (k, g) =

(
so(2n + 1,C), so(2n + 2,C)

)
with n ≥ 3,

the Spin ν representation is primary.
The Dynkin diagrams of e6(−26) and e6(6) are (E6, θ). If g0 = e6(−26) then

k0 = f4. Then 1(k, t) = F4 = 1(g, t) and the Spin ν representation is primary. In
this case (k, g)= (F4, E6), where we use E6 (respectively, F4) to denote the simple
complex Lie algebra of type E6 (respectively, F4). If g0 = e6(6), then k0 = sp(4).
Obviously, 1(k, t)= C4 does not equal 1(g, t), so the Spin ν representation is not
primary. �
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Remark 4.8. The isotropy representations ν of (F4, E6), of
(
sp(n,C), sl(2n,C)

)
,

and of
(
so(2n+1,C), so(2n+2,C)

)
, and are the little adjoint representations (that

is, the representation having the short dominant root of k as the highest weight).

Now we will deal with the general case when g, from a symmetric pair (k, g),
is semisimple.

Suppose g = g1 ⊕· · ·⊕gn is a decomposition of g into direct sum of ideals and
θ(gi ) = gi for all i . Let g = k ⊕ p, and gi = ki ⊕ pi be the Cartan decomposition.
Then k = k1 ⊕ · · · ⊕ kn and p = p1 ⊕ · · · ⊕ pn .

Lemma 4.9. The representation Spin ν : k→End S is primary if and only if Spin νi :

ki → End Si is primary for all i .

Proof. Let ti be a Cartan subalgebra of ki . Then t =
⊕

i ti is a Cartan subalgebra
of k. We know that 1(g, t) =

⊔
i1(gi , ti ) and 1(k, t) =

⊔
i1(ki , ti ), as well as

1(gi , ti )⊥1(g j , t j ) and1(ki , ti )⊥1(k j , t j ) for i 6= j . Fix a positive root system
Pk of 1(k, t); then Pki = P ∩1(ki , ti ) is a positive root system of 1(ki , ti ). If Pi

is a positive root system of 1(gi , ti ), then P =
⊔

i Pi is a positive root system of
1(g, t), and all the positive root systems of 1(g, t) can be obtained in this way.
Then it is clear that card D(Pk) =

∏
i card D(Pki ). Since card D(Pk) = 1 if and

only if card D(Pki ) = 1 for all i, it follows that Spin ν is primary if and only if
Spin νi are primary for all i . �

Thus, we need only find all the “minimal” reduced symmetric pairs such that
the corresponding Spin ν representations are primary. The complex semisimple Lie
algebra g can be uniquely decomposed into a direct sum of simple ideals. Since θ
is an involutory automorphism, it acts on the set of simple ideals and it must fix
some of them and permute in 2-cycles the rest of them. So one has

Lemma 4.10. The semisimple Lie algebra g can be decomposed as

g = (g1 ⊕ g1)⊕ (g2 ⊕ g2)⊕ · · · ⊕ (gs ⊕ gs)⊕ gs+1 ⊕ · · · ⊕ gs+l,

where every gi is a simple ideal of g such that: when 1 ≤ i ≤ s, we have θ(gi ⊕gi )=

gi ⊕gi and θ interchanges the two gi ; and, when s < i ≤ s + j , we have θ(gi )= gi .

Note that θ must be an isomorphism of the two gi ’s when 1 ≤ i ≤ s, but that θ
cannot be the identity on gi when s < i ≤ s + j , because (g, θ) is reduced.

Lemma 4.11. If g = g1 ⊕ g1, with g1 a simple ideal, and θ interchanges the two
ideals, then Spin ν is primary of type πρg1

.

Proof. Because θ interchanges the two ideals, θ(X, Y )=
(
ϕ−1(Y ), ϕ(X)

)
for some

isomorphism ϕ of g1. Recall the definition of an isomorphism of involutory Lie
algebras from page 39. Define an isomorphism ψ = (ϕ, I ) : g1 ⊕ g1 → g1 ⊕ g1

by (X, Y ) 7→ (ϕ(X), Y ). Then (g, θ) is isomorphic to (g, θ ′) through ψ , where
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θ ′(X, Y ) = (Y, X). With respect to θ ′, we have k =
{
(X, X) | X ∈ g1

}
∼= g1 and

p =
{
(X,−X) | X ∈ g1

}
, and the representation ν is just the adjoint representation

of g1. By Theorem 40 of [Kostant 1997], Spin ν is primary of type πρg1
. �

Remark 4.12. In this case it can be computed directly that ρn = ρg1 .

Combining the results from Proposition 4.7 to Lemma 4.11, we get:

Theorem 4.13. Let (g, θ) be a reduced involutory complex semisimple Lie algebra
and (k, g) be the corresponding symmetric pair. Then Spin ν is primary if and only
if (k, g) is one of the following:

(1)
(
so(2n + 1,C), sl(2n + 1,C)

)
, n ≥ 1;(

sp(n,C), sl(2n,C)
)
, n ≥ 2;(

so(2n + 1,C), so(2n + 2,C)
)
, n ≥ 3;

(F4, E6);

(2) g = g1 ⊕ g1 and k =
{
(X, X) | X ∈ g1

}
, where g1 is a complex simple Lie

algebra;

(3) direct sums of (k, g) in (1) and (2).

When (k, g) is as above, Spin ν is primary of type πρn .

Combining Proposition 2.4 and Theorem 4.13, we get our main result:

Theorem 4.14. Assume that ν : r → so(p) is the complexified differential of a
faithful Bp-orthogonal representation of a compact Lie group and that pr

= 0.
Assume that Spin ν is primary. Then g = r ⊕ p has a semisimple Lie algebra
structure such that r is a Lie subalgebra of g, that (r, g) is a reduced symmetric
pair, and that ν is the isotropy representation of (r, g). Furthermore, the symmetric
pair (r, g) must be one of those listed in Theorem 4.13, and Spin ν is primary of
type πρn .

Recalling Remark 4.5, we get, as a corollary of Proposition 20 of [Kostant 1997]:

Corollary 4.15. Let (k, g) be a symmetric pair in the list of Theorem 4.13. Then
the corresponding Spin ν representation is primary of type πρn . Let k act on

∧
p

via β, and let J =
(∧

p
)
k. Then dim Vρn = 2r0 and dim J = 2l0 . As a subalgebra of

C(p), J is isomorphic to a matrix algebra if l0 is even, and is isomorphic to a sum
of two matrix algebras if l0 is odd. Furthermore,

C(p) ∼= End Vρn ⊗ J

as algebras. Finally, as k-modules,∧
p ∼= 2l0 Vρn ⊗ Vρn .
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