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We study an intrinsic cohomology theory of Koszul–Vinberg algebras and
their modules. Our results may be regarded as improvements of the attempt
by Albert Nijenhuis in 1969. In particular, we completely solve a fundamen-
tal problem raised by M. Gerstenhaber. A short appendix is devoted to the
relationships between our results and the pioneering work of Nijenhuis.

Introduction

According to M. Gerstenhaber [1964], “every restricted deformation theory gener-
ates its proper cohomology theory”. The deformation theory of associative algebras
and their modules involves the Hochschild cohomology theory of associative alge-
bras, and that of Lie algebras involves the Chevalley–Eilenberg cohomology theory
of Lie algebras. The first attempt to define a cohomology theory of Koszul–Vinberg
algebras goes back to Albert Nijenhuis [1968]. Recently his pioneering results
were rediscovered in [Chapoton and Livernet 2001; Dzhumadil’daev 1999]. The
role played by Koszul–Vinberg algebras in differential geometry and in algebraic-
analytic geometry is quite important [Koszul 1968; Milnor 1977; Vey 1968; Vin-
berg 1963; Vinberg and Kac 1967]. The deformation theory of these algebras
is also related to Poisson manifolds [Nguiffo Boyom 2005] and to the theory of
quantization deformation, to be discussed in a forthcoming work.

The main aim of the present work is to initiate an intrinsic cohomology theory
of Koszul–Vinberg algebras and their modules, or KV-cohomology. We focus on
relationships between this cohomology theory and some classical problems:

H 0(A, · ) ←→ A-equivariant objects,
H 1(A, · ) ←→ extensions of A-modules,
H 2(A, · ) ←→ extension classes of algebras,
H 2(A, · ) ←→ deformation theory of algebraic structures,
H 3(A, · ) ←→ formal deformations of algebraic structures.
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Contents of the paper. This work consists of three parts. Part 1 is the theoretical
part of the subject. Through Section 3 main definitions and examples are given.
Section 4 is devoted to the intrinsic cohomology theory of Koszul–Vinberg algebras
and their modules. Sections 5 and 6 are devoted to applications.

Part 2 covers the cohomology theory of Koszul–Vinberg algebras, which have
their origin in differential geometry and in analytic-algebraic geometry; see [Vin-
berg 1963; Koszul 1968; Milnor 1977; Nguiffo Boyom 1968]. To every locally
flat manifold (M, D) is attached a super-Koszul–Vinberg algebra and some KV-
complexes. These complexes admit some natural filtrations leading to spectral
sequences (which we not study deeply). The real KV-cohomology of locally flat
manifolds is defined in Section 7, while in Section 8 we use real KV-cohomology to
examine the rigidity of hyperbolic locally flat manifolds. We show that hyperbolic
affine structures in R+×R admit nontrivial deformations. This is a particular case
of a general nonrigidity theorem by Koszul [1968]. Section 9 is devoted to the
relationships between the real KV-cohomology of a locally flat manifold (M, D)
and the completeness of (M, D). We show that the volume class of a unimodular
locally flat manifold (M, D) is a KV-cohomology obstruction to the completeness
of (M, D).

Part 3 is also theoretical. It contains an introduction to the study of left-invariant
locally flat structures on groups of diffeomorphisms. Every locally flat structure
(M, D) on a compact manifold M gives rise to a Koszul–Vinberg algebra whose
commutator Lie algebra is the Lie algebra A(M) of smooth vector fields on M . The
question arises of determining whether every left-invariant locally flat structure on
Diff M comes from a locally flat structure on the manifold M ; this is discussed
in Part 3. We show that its solution involves a special type of cohomology class
(Theorem 10.6).

Part I. KV-cohomology theory

1. KV-algebras

Let F be a commutative field of characteristic zero. Let A be an algebra over F.
The product of two elements a, b ∈A is denoted by ab. Given a, b, c ∈A we will
denote by (a, b, c) the associator of these elements, defined as

(a, b, c)= (ab)c− a(bc).

Definition [Nguiffo Boyom 1990; 1993]. An algebra A is called a Koszul–Vinberg
algebra, or KV-algebra, if (a, b, c)= (b, a, c) for all a, b, c ∈A.

Examples. (i) Every associative algebra is a Koszul–Vinberg algebra.
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(ii) Consider the case when F is the field R of real numbers. The vector space
C∞(R,R) of smooth functions is a KV-algebra whose multiplication is f g=
f (dg/dx) .

(iii) (iii) Let M be a smooth manifold and let D be a torsion-free linear connection
whose curvature tensor vanishes identically. Then A = (X(M), D) is the
algebra whose multiplication is defined by ab = Dab. Here X(M) is the
vector space of smooth vector fields on M . Actually A is a KV-algebra. The
pair (M, D) is called a locally flat manifold and A is its KV-algebra.

Examples (ii) and (iii) are infinite-dimensional. Finite-dimensional KV-algebras
are related to the geometry of bounded domains [Koszul 1968; Vinberg and Kac
1967], while Example (iii) is related to affine geometry. We are going to define a
cochain complex that provides a good framework for investigating the topology of
hyperbolic affine manifolds (M, D).

KV-algebras are called left symmetric algebras in [Dzhumadil’daev 1999] and
[Nguiffo Boyom 1968], and pre-Lie algebras in [Chapoton and Livernet 2001].

Definition. The subspace J (A) of Jacobi elements of a KV-algebra A is the subset
of ξ ∈A satisfying the identity (a, b, ξ)= 0 for all a, b ∈A.

Actually J (A) is an associative subalgebra containing the center of A.

2. Koszul–Vinberg modules

Let A be a KV-algebra. We consider a vector space W with two bilinear maps

A×W →W,
(a, w) 7→ aw

and
W ×A→W,
(w, a) 7→ wa.

Given a, b ∈ A and w ∈ W one sets (a, b, w) = (ab)w − a(bw), (a, w, b) =
(aw)b− a(wb), and (w, a, b)= (wa)b−w(ab).

Definition. A vector space W with bilinear maps as above is called a two-sided
A-KV-module if

(a, b, w)= (b, a, w) and (a, w, b)= (w, a, b).

A left (right) KV-module over A is a KV-module W whose right (left) A-action is
trivial, meaning that wa = 0 (aw = 0) for all (w, a) ∈W ×A.

The following claim is easily verified. Let W be a right KV-module over A.
Then W is a trivial module over the two-sided ideal I generated by the associators
(a, b, c). So W becomes a right module over the associative algebra A/I.

Definition. The subspace J (W ) of Jacobi elements of a KV-module W consists of
w ∈W satisfying (a, b, w)= 0 for all a, b ∈A.
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Examples. (1) Consider the KV-algebra A = C∞(R,R) whose multiplication is
f g = f (dg/dx) . Then J (A) is the subspace of affine functions.

(2) Let A be the KV-algebra of a locally flat manifold (M, D). Then J (A) is the
space of infinitesimal affine transformations of (M, D). The space Je(A) consist-
ing of those ξ ∈ J (A) which are complete vector fields is a finite-dimensional
subalgebra of the Lie algebra J (A). In particular, if M is compact then J (A)
is finite-dimensional. The simply connected Lie group G whose Lie algebra is
J (A) carries a two-sided invariant locally flat structure (G,∇). Moreover (M, D)
admits G as an effective group of affine transformations [Palais 1957]. Concerning
the relationships between the G-geometry and the completeness of (M, D), see
[Tsemo 1999]. Of course the notion of KV-morphism, sub-KV-module and KV-
quotient module can be defined. In particular the image under a KV-morphism of
a KV-module is a KV-submodule.

3. KV-module of linear maps

Let V and W be two-sided KV-modules over a KV-algebra A. Let L(W, V ) be the
vector space of linear maps from W to V . We shall consider the bilinear maps

A× L(W, V )→ L(W, V ),
(a, f ) 7→ a f

and
L(W, V )×A→ L(W, V ),

( f, a) 7→ f a,

where the linear maps a f and f a are defined by

(a f )(w)= a( f (w))− f (aw) and ( f a)(w)= ( f (w))a.

One easily verifies that (a, b, f ) = (b, a, f ) and (a, f, b) = ( f, a, b) for all
alla, b ∈A and all f ∈ L(W, V ). Thus L(W, V ) is a two-sided KV-module over
the KV-algebra A. If V is a left module then L(W, V ) is also a left module.
If V and W are right modules then so is L(W, V ). Similarly, the vector space
Lq(W, V ) of V -valued q-multilinear functions on W is a two-sided KV-module
under the actions

(a f )(w1, . . . , wq)= a( f (w1, . . . , wq))−

q∑
j=1

f (w1, . . . , aw j , . . . , wq),

( f a)(w1, . . . , wq)= ( f (w1, . . . , wq))a.

4. KV-Cohomology

Let A be an associative algebra or Lie algebra, and let W be a module over A.
Hochschild cohomology and Chevalley–Eilenberg cohomology provide powerful
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tools for bringing under control many problems such as deformations and exten-
sions of algebraic structures [Piper 1967] and deformation quantization [Kontse-
vich 2003].

Suppose the algebra A to be neither an associative algebra nor a Lie algebra. In
general it is easy to define the notion of two-sided module over A. Nevertheless
it is a nontrivial problem to define cohomologies of A. Albert Nijenhuis [1968]
tried to construct a cohomology theory for KV-algebras. The task turned out to
be rather difficult, so he only initiated a theory which is closely related to the
Chevalley–Eilenberg cohomology of Lie algebras. Here is what he did. Every
KV-algebra A gives rise to a Lie algebra AL whose bracket operation is defined
by [a, b] = ab− ba. If W is a left KV-module over the KV-algebra A, then the
vector spaces A, W and L(A,W )= Hom(A,W ) are left AL -modules.

Definition [Nijenhuis 1968]. Given a KV-algebra A and a left A-KV-module
W , the q-th cohomology space Hq

N (A,W ) of A with coefficients in W is de-
fined to be the (q−1)-th cohomology space of the Chevalley–Eilenberg complex
C?(AL , L(A,W )). Namely, Hq

N (A,W )= Hq−1(AL , L(A,W )).

Remark. This definition collapses in degree zero. This fact is not without conse-
quences.

Notation. Whenever there is no risk of confusion we will write f (a1..ai ..aq) for
f (a1, . . . , ai , . . . , aq).

Intrinsic KV-cohomology theory. We shall introduce an intrinsic cohomology the-
ory for KV-algebras. We shall show that the theory is coherent. Furthermore the
cohomology spaces of degrees zero, one and two will be interpreted as expected.
We start by fixing a KV-algebra A and a two-sided KV-module over A, denoted
by W . Let q be a positive integer. Let Cq(A,W ) be the vector space of q-linear
maps from A to W . The space Cq(A,W ) is a two-sided A-KV-module under the
actions of A on Cq(A,W ) given by

(a f )(a1 . . . aq)= a( f (a1 . . . aq))−

q∑
j=1

f (a1 . . . aa j , . . . , aq),

( f a)(a1 . . . aq)= ( f (a1 . . . aq))a,

where a ∈ A and f ∈ Cq(A,W ). For each ρ = 1, . . . , q , denote by eρ(a) :
Cq(A,W )→ Cq−1(A,W ) the linear map defined by

(eρ(a) f )(a1..aq−1)= f (a1..aρ−1, a, aρ ..aq−1).

Next we define the coboundary operator δ : Cq(A,W )→ Cq+1(A,W ). For f ∈
Cq(A,W ) and (a1, . . . , aq+1)∈Aq+1, The coboundary δ f ∈Cq+1(A,W ) is given
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by

(4–1) (δ f )(a1..aq+1)

=

∑
1≤ j≤q

(−1) j((a j f )(a1..â j ..aq+1)+ eq(a j )( f aq+1) (a1..â j ..âq+1)
)
.

Lemma 4.1. δ ◦ δ = 0.

Proof. Formula (4–1) implies that δ f (a1..aq+1) is the sum of q terms.

(−1) j((a j f )(a1..â j ..aq+1)+ ( f (a1..â j ..aq , a j ))aq+1
)
.

Fix i, j, k such that 1≤ i < j < k < q+2. Since δ(δ f )(a1..aq+2) is the sum of the
q + 1 terms (−1)i

(
(aiδ f )(a1..âi ..aq+2)+ (δ f (a1..âi ..aq+1, ai ))aq+2

)
, set

τi i = ai (δ f (a1..âi ..a j ..ak ..aq+2)),

τi j = δ f (a1..âi ..ai a j ..ak ..aq+2),

τik = δ f (a1..âi ..a j ..ai ak ..aq+2),

τiq+2 = δ f (a1..âi ..a j ..ak ..ai , aq+2).

Then (aiδ f )(a1..âi ..aq+2)= τi i−
∑

ρ 6=i τiρ . To calculate the summands τi i and τi j

we adopt the same scheme. Thus we write

τi i = ai

( ∑
ρ≤i

(−1)ρ0ρ +
∑

i<ρ<q+2

(−1)ρ−10ρ

)
,

with

0ρ = aρ( f (a1..âi ..âρ ..aq+2))

−

∑
s

f (a1..âi ..âρ ..aρas ..aq+2)+ ( f (a1..âi ..âρ ..aq+1, aρ))aq+2.

We focus on indexes i < j < k, setting

0 j = a j ( f (a1..âi ..â j ..aq+2))+ ( f (a1..âi ..â j ..aq+1, a j ))aq+2

− f (a1..âi ..â j ..a j ak ..aq+2)− f (a1..âi ..â j ..a j aq+2)+ other summands.

Therefore we see that τi i may be written as

(4–2) τi i = (−1) j−1ai


a j ( f (a1..âi ..â j ..aq+2))

+ ( f (a1..âi ..â j ..aq+1, a j ))aq+2

− f (a1..âi ..â j ..a j ak ..aq+2)

− f (a1..âi ..â j ..a j aq+2)+ · · ·

+ · · · ,
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where the ellipses inside the braces stand for other terms that do not concern us
and those outside the braces stand for other 0ρ’s. Now mutatis mutandis we get

(4–3) τ j j = (−1)i a j


ai ( f (a1..âi ..â j ..aq+2))

+ ( f (a1..âi ..â j ..aq+1, a j ))aq+2

− f (a1..âi ..â j ..ai ak ..aq+2)

− f (a1..âi ..â j ..ai aq+2)+ · · ·

+ · · · .
In (δ ◦ δ f )(a1 . . . aq+2) the sign of the summand τi i is (−1)i . As we just did,

we take fixed indexes i < j < k. We get

(4–4) τi j = (−1) j−1


ai a j ( f (a1..âi ..â j ..aq+2))

+ ( f (a1..âi ..â j ..aq+1, ai a j ))aq+2

− f (a1..âi ..â j ..(ai a j )ak ..aq+2)− · · ·

+ · · · ,

(4–5) τ j i = (−1)i


(a j ai )( f (a1..âi ..â j ..aq+2))

+ ( f (a1..âi ..â j ..aq+1, a j ai ))aq+2

− f (a1..âi ..â j ..(a j ai )ak ..aq+2)− · · ·

+ · · · .
The summands τi j and τ j i in δ2 f (a1 . . . aq+2) have signs (−1)i+1 and (−1) j+1

respectively.
Now we calculate the summands τik and τ jk by the same method:

(4–6) τ jk = (−1)i


ai ( f (a1..âi ..â j ..a j ak ..aq+2))

+ ( f (a1..âi ..â j ..a j ak ..aq+1, ai ))aq+2

− f (a1..âi ..â j ..ai (a j ak)..aq+2)− · · ·

+ · · ·

(4–7) τik = (−1) j−1


a j ( f (a1..âi ..â j ..ai ak ..aq+2))

+ ( f (a1..âi ..â j ..ai ak ..aq+1, a j ))aq+2

− f (a1..âi ..â j ..a j (ai ak)..aq+2)− · · ·

+ · · · .
Actually for every l ≤ i the expression of τ jk contains the summands

(4–8) (−1)l


al( f (a1..âl ..âi ..â j ..a j ak ..aq+2))

+ ( f (a1..âl ..â j ..a j ak ..aq+1, al))aq+2

− f (a1..âl ..alai ..â j ..a j ak ..aq+2)− · · ·

 .
It is useful to calculate τρ,q+2 for ρ = i and ρ = j :

(4–9) τi,q+2= (−1) j−1


a j ( f (a1..âi ..â j ..ai aq+2))

+ ( f (a1..âi ..â j ..aq+1, a j ))ai aq+2

− f (a1..âi ..â j ..a j ak ..aq+1, ai aq+2)− · · ·

+· · · ,
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(4–10) τ j,q+2 = (−1)i


ai ( f (a1..âi ..â j ..a j aq+2))

+ ( f (a1..âi ..â j ..aq+1, ai ))a j aq+2

− f (a1..âi ..â j ..ai ak ..a j aq+2)− · · ·

+ · · · .
One applies the same ideas to express (δ f.aq+2)(..âρ ..aq+1, aρ):

(4–11) (δ f.aq+2)(a1..âi ..aq+1, ai )

= (−1) j−1


(a j ( f (a1..âi ..â j ..aq+1)))aq+2

+ (( f (a1..âi ..â j ..aq+1, a j ))ai )aq+2

− f (a1..âi ..â j ..a j ak ..aq+1, ai ))aq+2− · · ·

+ · · · ,
(4–12)

(
δ f.aq+2)(a1..âi ..aq+1, a j )

= (−1)i


(ai ( f (a1..âi ..â j ..aq+1, a j )))aq+2

+ (( f (a1..âi ..â j ..aq+1, ai ))a j )aq+2

− ( f (a1..âi ..â j ..ai ak ..aq+1, a j ))aq+2− · · ·

+ · · · .
We are now poised to prove that (δ◦δ) f = 0. Indeed, we see that the expression

of (δ ◦ δ) f (a1..a1..aq+1) is∑
1≤ρ≤q+1

(−1)ρ
(
(aρ0 f )(..âρ ..aq+2)+ (δ f (a1..âρ ..aq+1, aρ))aq+2

)
.

Keeping in mind the signs of τρ,s , we focus on indexes i< j<k. From (4–2), (4–3),
(4–4) and (4–5) we deduce that δ ◦ δ f (a1..aq+2) contains the following expression
as its summand:

(−1)i+ j−1ai (a j f (a1..âi ..â j ..aq+2))

+ (−1)i+ j a j (ai f (a1..âi ..â j ..aq+2))

+ (−1)i+ j (ai a j ) f (a1..âi ..â j ..aq+2)

+ (−1)i+ j−1(a j ai ) f (a1..âi ..â j ..aq+2).

The identity (a, b, w)= (b, a, w) for w ∈W and a, b∈A shows that this vanishes.
From (4–2), (4–9), (4–11) and (4–12) one easily sees that δ ◦ δ f (a1..aq+2) con-

tains the summand

(−1)i+ j (ai ( f (a1..âi ..â j ..aq+1, a j )))aq+2

+ (−1)i+ j−1ai (( f (a1..âi ..â j ..aq+1, a j ))aq+2)

+ (−1)i+ j ( f (a1..âi ..â j ..aq+1, a j ))ai aq+2

+ (−1)i+ j−1(( f (a1..âi ..â j ..aq+1, a j ))ai )aq+2.

This expression is simply (ai , w, aq+2)− (w, ai , aq+2), and therefore vanishes.
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Considering (4–4), (4–5), (4–6) and (4–7) we see that δ ◦ δ f (a1..aq+2) contains
the summand

(−1)i+ j−1 f (a1..âi ..â j ..(ai a j )ak ..aq+2)

+ (−1)i+ j f (a1..âi ..â j ..ai (a j ak)..aq+2)

+ (−1)i+ j f (a1..âi ..â j ..ai (a j ak)..aq+2)

+ (−1)i+ j−1 f (a1..âi ..â j..a j (ai ak)..aq+2).

This equals

(−1)i+ j−1( f (a1..âi ..â j ..(ai , a j , ak)..aq+2)− f (a1..âi ..â j ..(a j , ai , ak)..aq+2)
)
,

and so vanishes by the identity (ai , a j , ak)= (a j , ai , ak).
From (4–2) and (4–6) we see that δ ◦ δ f (a1..aq+2) contains twice the summand

ai f (a1..âi ..â j ..a j ak ..aq+2) with opposite signs; hence its contribution is reduced
to zero.

From (4–6) and (4–11) one deduces that δ ◦ δ f (a1..aq+2) contains twice the
summand (

f (a1..âi ..â j ..a j ak ..aq+1, ai )
)
aq+2

with opposite signs, so it too contributes nothing. To end the proof of Lemma 4.1
it remains to examine the summands of δ◦δ f (a1..aq+2) having the following form
f (a1..âl ..alai ..â j ..a j ak ..aq+2). These summands come from (4–11). Indeed, let
l < i < j < k. By virtue of (4–1), δ ◦ δ f (a1..aq+2) contains twice the expression

(4–13) f (a1..âl ..alai ..â j ..a j ak ..aq+2).

First this appears as a summand of −(−1) jδ f (a1..al ..ai ..â j ..a j ak ..aq+2) with the
sign (−1) j+l ; then it appears as a summand of−(−1)lδ f (a1..âl ..alai ..a j ..ak ..aq+2)

with the sign (−1) j+l−1. Therefore (δ◦δ) f (a1..aq+2) does not contain any nonzero
summand of the form (4–13).

We have just examined all the types of summands in (δ ◦ δ) f (a1..aq+2). We
conclude that δ ◦δ f (a1..aq+2)= 0 for all f ∈Cq(A,W ) and all a1, . . . , aq+2 ∈A.

�

Set C(A,W ) =
⊕

q≥1 Cq(A,W ). By Lemma 4.1 the coboundary operator δ
given by (4–1) endows C(A,W ) with the structure of a graded cochain complex

· · · - Cq(A,W )
δ- Cq+1(A,W )

δ- Cq+2(A,W ) - · · · .

The q-th cohomology Hq(A,W ) of this complex is well defined for q > 1.
Before proceeding we set Cq(A,W )= 0 for q < 0. To complete the picture we

must define C0(A,W ) and δ : C0(A,W )→ C1(A,W ) such that δ ◦ δ(C0(A,W ))

vanishes. Once δ : C0(A,W )→ C1(A,W ) is defined we shall be able to define
H 0(A,W ) and H 1(A,W ).
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Definition. Set C0(A,W )= J (W ) and δw(a)=−aw+wa for all a ∈A and all
w ∈ J (W ).

Now let w ∈W . It is easy to see that δ(δw)= 0 if and only if w ∈ J (W ). Thus
we get the total complex

Cτ (A,W )= J (W )⊕C(A,W ).

Remark. If W is a right KV-module over A then C0(A,W ) = W . In connection
with a question raised by Gerstenhaber [1964], Lemma 4.1 allows us to point out
two conclusions. First, the category of KV-algebras admits its proper cohomol-
ogy theory. Secondly, the category of associative algebras admits an alternative
cohomology theory different from the Hochschild cohomology theory. For in-
stance, let h be the associative algebra of upper triangular 3×3 nilpotent matrices.
Its KV-cohomology vector space H 2(h, h) is four-dimensional while its second
Hochschild cohomology space is three-dimensional.

Examples. (1) If A is the KV-algebra of a locally flat manifold (M, D), then
H 1(A,A) = 0. Indeed, let ψ be a cocycle of degree one. Then Da1ψ(a2) +

Dψ(a1)a2 = ψ(Da1a2) for all a1, a2 ∈A. Thus ψ is a derivation of the Lie algebra
A(M) of smooth vector fields on M . By virtue of a classical theorem by Takens
every derivation of A(M) is an inner derivation. Thus there exists a smooth vector
field ξ such that ψ(a)= [ξ, a] = −aξ + ξa. The claim δψ = 0 yields ξ ∈ J (A).

(2) Let W be the vector space of real valued smooth functions on a locally flat
smooth manifold (M, D). It is a left KV-module over A under the Lie derivation.
Let ψ :A 7→W be a 1-cocycle, so that aψ(b)−ψ(ab)= 0 for a, b ∈A. Therefore
ψ is a D-parallel linear map. This implies w(aψ(b)) = (wa)ψ(b) = ψ((wa)b)
for all w ∈W . Every vector field may be locally written as Dab. Then we see that
ψ(wa)=wψ(a) for all w ∈W and all a ∈ X(M). Hence ψ is a usual differential
1-form on the manifold M. Since Dψ = 0, ψ is a de Rham cocycle. On the other
hand J (W ) consists of affine functions. The subspace of 1-cocycles of C1(A,W )

consists of locally linear closed 1-forms, and δC0(A,W )= δ J (W ) consists of the
differentials of affine functions. Therefore

H 1(A,W )=
[locally linear closed 1-forms]

d [affine functions]
,

where d : C∞(M,R)→ �1(M,R) is the de Rham differential operator. So there
is a canonical injective linear map H 1(A,W )→ H 1

de Rham(M,R).

(3) Our third example is a combination of the first two. Consider A and W as in
(2). We equip A⊕W ∼=A×W with the multiplication defined by (a, w)(a′, w′)=
(aa′, aw′+ww′), where ww′ is the usual product of two real-valued functions. If
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(a′′, w′′) ∈ J (A⊕W ) then w′′ = 0 and a′′ ∈ J (A). Thus J (A⊕W )' J (A). Let
(a′′, 0) ∈ J (A⊕W )= C0(A⊕W,A⊕W ) then

(δ(a′′, 0))(a, w)= (−aa′′+ a′′a, a′′w).

Thereby δ(a′′, 0)= 0 if and only if a′′ = 0. Hence the boundary map δ : J (A)→
C1(A⊕W,A⊕W ) is an injective map. Let θ :A×W→A×W be an 1-cocycle.
For (a, w)∈A⊕w, set θ(a, w)= (φ(a, w), ψ(a, w)). Then for (a, w) and (a′, w′)
in A×W one has

−δθ((a, w), (a′, w′))= (a, w)(φ(a′, w′), ψ(a′, w′))

− (φ(aa′, aw′+ww′), ψ(aa′, aw′+ww′))+ (φ(a, w), ψ(a, w))(a′, w′).

The equation δθ = 0 gives rise to the system

aφ(a′, w′)−φ(aa′, aw′+ww′)+φ(a, w).a′ = 0,

aψ(a′w′)+wψ(a′w′)−ψ(aa′, aw′+ww′)+φ(a, w).w′+ψ(a, w)w′ = 0.

We may write θ(a, w)= θ(a, 0)+ θ(0, w). Then the identity satisfied by φ shows
that φ(a, w) does not depend on w. Thus by setting φ(a, 0) = φ(a) we see that
aφ(a′) + φ(a)a′ = φ(aa′). Thus there exists ξ ∈ A such that φ(a) = [ξ, a] =
−aξ + ξa. Since θ is an 1-cocycle we have ξ ∈ J (A). Now we examine the W -
component of θ , namelyψ(a, w). Setψ(a, w)=ψ(a, 0)+ψ(0, w)=λ(a)+µ(w).
We know that φ(a, w)= [ξ, a], with ξ ∈ J (A). Hence δθ = 0 yields

a(λ(a′)+µ(w′))+w(λ(a′)+µ(w′))− λ(aa′)−µ(aw′+ww′)

+ [ξ, a].w′+ (λ(a)+µ(w))w′ = 0.

Thus one sees that wµ(w′)+µ(w)w′ −µ(ww′) = 0. Consequently there is a
smooth vector field ζ ∈ X(M) such that µ(w) = 〈dw, ζ 〉. We also have aλ(a′)−
λ(aa′) = 0. We have already shown that such λ is a D-parallel closed 1-form on
the locally flat manifold (M, D). The condition δθ(0, w), (a′, 0) = 0 yields the
identitywλ(a′)= 0, w∈W and a′ ∈X(M). Hence λ= 0. So the 1-cocycle θ(a, w)
has the form θ(a, w) = ([ξ, a], 〈dw, ζ 〉) for some fixed (ξ, ζ ) ∈ J (A)×A. It is
easy to verify that if a 1-chain θ has the form

(a, w)→
(
[ξ, a], 〈dw, ζ 〉

)
with ξ ∈ J (A) then it is a 1-cocycle of C1(A⊕W,A⊕W ). What we have just
done is the computation of H 0(A⊕W,A⊕W ) and H 1(A⊕W,A⊕W ):

H 0(A⊕W,A⊕W )= {0}, H 1(A⊕W ;A⊕W )'A/J (A).

If the manifold M is compact, the vector space H 1(A⊕W, A⊕W ) is infinite-
dimensional. The same conclusion holds if (M, D) is geodesically complete.
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KV-Cohomology with values in L(W, V ). Let W and V be two-sided KV-modules
over a KV-algebra A. The vector space W is endowed with the trivial algebra
structure. We equip A⊕ W with the multiplication defined by (a, w)(a′, w′) =
(aa′, aw′ + wa′). Then A⊕ W is a KV-algebra yielding the exact sequence of
KV-algebras

0→W ↪→A⊕W →A 7→ 0.

Furthermore the vector space V is a two-sided KV-module over the KV-algebra
A⊕W under the actions defined by (a, w).v = av, v.(a, w)= va.

Consider the KV-cochain complex Cτ (A ⊕ W, V ). It is easy to check that
JA⊕W (V ) = JA(V ). The space Cτ (A⊕W, V ) is bigraded as C p,q(A⊕W, V ) =
L(Aq

⊗ W p, V ). So an element θ ∈ C p,q(A ⊕ W, V ) is a V -valued (p+q)-
multilinear function on A⊕W which is homogeneous of degree p with respect to
elements of W and homogeneous of degree q with respect to elements of A. By
setting k = p+ q the vector space of V -valued k-cochains of A⊕W is bigraded
by the subspaces C p,q(A⊕W, V ).

Lemma 4.2. The coboundary operator δ : Ck(A⊕ W, V )→ Ck+1(A⊕ W, V )
sends C p,q(A⊕W, V ) to C p,q+1(A⊕W, V ).

Proof. For all θ ∈ C p,q(A⊕W, V ) we have θ(ξ1, . . . , ξp+q) = 0 if more than p
arguments belong to W , or if more than q arguments belong to A. �

The lemma implies that Cτ (A⊕W, V ) can be equipped with two filtrations:

(4–14)

F P(A⊕W, V )=
⊕

q,s≥p

Cs,q(A⊕W, V ),

FP(A⊕W, V )=
⊕

q,s≤p

Cs,q(A⊕W, V ).

One has F p+1(A⊕W, V )⊂ F P(A⊕W, V ) and FP(A⊕W, V )⊂ Fp+1(A⊕

W, V ). Moreover, δF P(A ⊕ W, V ) ⊂ F P(A ⊕ W, V ) and δFP(A ⊕ W, V ) ⊂
FP(A⊕ W, V ). Both filtrations will give rise to spectral sequences. The study
of these spectral sequences is not the purpose of the present work. We shall
mainly be interested in the subcomplex

⊕
q C1,q(A⊕ W, V ). The vector space

C1,q(A⊕W, V ) is regarded as the space of L(W, V )-valued q-linear functions on
A. Actually L(W, V ) is a two-sided KV-module over A under the actions

(4–15)
(aθ)(w)= aV (θ(w))− θ(aWw),

(θa)(w)= (θ(w))aV .
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By identifying L(W, V ) with C1,0(A⊕W, V ), we define δ : C1,0(A⊕W, V )→
C1,1(A⊕W, V ) by putting

δθ(a, w)=−aθ(w)+ θ(aw),

δθ(w, a)= θ(wa)− (θ(w))a.

It is easy to verify that (δ◦δ)θ = 0 for all θ ∈C1,0(A⊕W, V ). At the same time,
each C1,q(A⊕W, V ) is a two-sided KV-module over A⊕W . Hence, extending
the formula (4–1), we have to

⊕
q≥0 C1,q(A⊕W, V ) yields the complex

· · ·
C

1, q
- (A⊕W, V )

δ- C1,q+1(A⊕W, V )
δ-

Definition. We denote by E1,q
1 (A⊕W, V ) the cohomology space of the complex

above at the level C1,q(A⊕W, V ).

Remark. There is a canonical linear map E1,q
1, (A⊕W, V )→ Hq(A, L(W, V )).

By virtue of (4–15) the total space of L(W, V )-valued cochains of A⊕W is

J (L(W, V ))⊕
∑
q>0

Cq(A⊕W, L(W, V )).

The cohomology space of the complex
⊕

q>0 C1,q(A ⊕ W, V ) is related to the
spectral sequence which is associated to the filtration of Cτ (A ⊕ W, V ) by the
subspaces F P(A⊕W, V ).

Consistency. Let W and V be two-sided KV-modules over a KV-algebra A. Let
φ :W → V be a morphism of KV-modules, so that

φ(aw)= aφ(w) and φ(wa)= φ(w)a

for all w ∈ W and all a ∈ A. Take f ∈ Cq(A,W ); then φ∗( f ) ∈ Cq(A, V ) is
defined by φ∗( f )= φ ◦ f . It is easy to see that

[a(φ ◦ f )](b)= [φ(a f )](b),

[(φ ◦ f )a](b)= [φ( f a)](b).

These identities show that δ[φ ◦ f ] = φ ◦ (δ f ) for all f ∈ Cq(A,W ). Thus φ
canonically induces the linear map φ̃ : Hq(A,W )→ Hq(A, V ).

To prove the consistency of the KV-cohomology theory derived from (4–1), we
turn to the relevant long cohomology exact sequences.

Let W, V, T be two-sided A-modules. Suppose we have a short exact sequence
of KV-modules

(4–16) 0→ V → T →W → 0.
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Regarded as an exact sequence of F-vector spaces, this sequence is F-splittable.
The exact sequence

0→ Cq(A, V )→ Cq(A, T )→ Cq(A,W )→ 0.

is F-splittable as well. This latter sequence yields the following F-splittable exact
sequence of cochain complexes:

0 - Cτ (A, V )
i- Cτ (A, T )

µ- Cτ (A,W ) - 0.

Therefore the exact sequence (4–16) gives rise to the long exact sequence

· · ·
δ- Hq(A,W )

i- Hq(A, T )
µ- Hq(A,W )

δ- Hq+1(A, V )
i- · · · .

Now suppose the diagram below is a morphism exact sequences of two-sided KV-
modules:

0 - V
i - T

P- W - 0

0 - V ′

φ
? i ′- T ′

φ
? P ′- W ′

φ̄
?

- 0

Then we deduce a morphism of cohomology exact sequences

- Hq(A, V )
i- Hq(A, T )

P- Hq(A,W )
δ- Hq+1(A, V ) -

- Hq(A, V ′)

φ
? i ′- Hq(A, T ′)

φ
? P ′- Hq(A,W ′)

φ̄
?

δ- Hq+1(A, V )

φ̃
?

-

The properties just pointed out prove the consistency of the KV-cohomology
theory derived from formula (4–1).

5. Interpretation of some KV-cohomology spaces

We now turn to the interpretation of some KV-cohomology spaces. We show that
these spaces play an essential role in some important questions.

Extensions of KV-algebras. Recall that cohomology classifies extensions

(5–1) 0→B→ G→A→ 0

of associative algebras if B is a two-sided null-ideal of the associative algebra G,
and that it classifies extensions (5–1) of Lie algebras if B is an abelian ideal of the

The diagrams in this article were produced with Paul Taylor’s diagrams.sty package.
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Lie algebra G. We consider a short exact sequence of two-sided KV-modules over
the KV-algebra A:

0 - W
i - T

µ- A - 0.

Regarding the sequence (5–1) as a sequence of vector spaces we use a section
σ of µ to identify the vector space T with W ⊕A. From now on we make the
assumption that (5–1) is an exact sequence of KV-algebras. We suppose W to be
a two-sided null-ideal of T . Therefore the multiplication map of T is given by

(a+w)(a′+w′)= aa′+ aw′+wa′+ωσ (a, a′),

where ω :A×A→W is a bilinear map. Let a+w, a′+w′ and a′′+w′′ be elements
of A⊕W . From the identity (a+w, a′+w′, a′′+w′′) = (a′+w′, a+w, a′′+w′′)
one deduces that

δωσ (a, a′, a′′)= 0

for all a, a′, a′′ ∈ A. If one identifies T with W ⊕A using another section σ ′ :
A→ T , then the induced 2-cocycle ωσ ′ will be related to the preceding one by

ωσ ′ = ωσ + δψ,

where ψ ∈ C1(A,W ). Thus the cohomology class [ωσ ] ∈ H 2(A,W ) does not
depend on the choice of the section σ :A→ T .

Remark. Consider an exact sequence of KV-algebras

0→W → T →A→ 0.

If the restriction to W of the multiplication map is nonzero, this sequence will
not be an exact sequence of A-KV-modules, and therefore not related to any 2-
KV-cohomology class of A. A similar failure is well known for extensions of Lie
algebras with nonabelian kernel [Bourbaki 1971].

Digression. Many important examples of KV-algebras and KV-modules coming
from differential geometry are infinite-dimensional topological vector spaces. In
this case a closed vector subspace is not necessarily a direct summand, that is,
it may not admit a complementary closed subspace. This observation should be
kept in mind whenever one deals with continuous KV-cohomology of locally flat
manifolds. For instance, the KV-algebra A of a locally flat manifold (M, D) is a
topological KV-algebra and the space W of real-valued smooth functions on M is a
topological left module over A when both A and W are endowed with the Whitney
topology. A section of a short exact sequence of topological two-sided modules
0→ V → T →W → 0 always means a continuous section.
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F-projective KV-modules. From now on the base field F is either the field R of
real numbers or the field C of complex numbers. The notion of F-projectivity to
be introduced below is motivated by the digression just above. Let W be a two-
sided KV-module over a KV-algebra A. Then W is F-projective if every short exact
sequence of vector spaces 0→V→T→W→0 is F-splittable. Of course if we are
dealing with abstract algebras and abstract modules, viz vector spaces are endowed
with the discrete topology, then every vector space is F-projective. Henceforth we
simultaneously deal with the both topological case and abstract case.

Suppose that A is a F-projective KV-algebra. Then for every KV-module W
equipped with the trivial multiplication map w.w′ = 0, every short exact sequence
of two-sided KV-modules 0→ W → T → A→ 0 is also an exact sequence of
KV-algebras when W ×A is given the multiplication defined by (w, a).(w′, a′)=
(wa′ + aw′, aa′). Mutatis mutandis the same property holds in the case of asso-
ciative algebras and their two-sided modules.

Let V and W be two-sided KV-modules over a KV-algebra A. The analogue
to the bijective map: H 1(G, L(W, V )) → {equivalence classes of extensions of
W by V} fails. Our aim is to bring under control the classification problem for
extensions of two-sided KV-modules. Consider a short exact sequence of two-
sided KV-modules over A, namely 0→ V → T → W → 0. We shall prove that
the classification problem for these extensions involves the term E1 of the spectral
sequence defined by the second filtration in (4–14).

Let W be a two-sided KV-module over a KV-algebra A. Assume that W is F-
projective. We shall consider W as a trivial KV-algebra. Thus we get the semidirect
product of KV-algebras A×W whose multiplication is defined by

(a, w)(a′, w′)= (aa′, aw′+wa′)

for (a, w) and (a′, w′) in A×W . Of course in the topological setting this semidirect
product is a toplogical KV-algebra as well.

Now suppose given an exact sequence of two-sided KV-modules,

0→ V → T →W → 0.

We may identify the vector space T with the direct sum V ⊕W . In the topological
case both V and W are closed subspaces of the topological vector space T . We
equip V with the structure of a two-sided KV-module over the semidirect product
A×W by putting (a, w).v= av and v.(a, w)= va. Consider the cochain complex
Cτ , namely Cτ (A×W, V )=

∑
q≥0 C1,q(A×W, V ). Thus one has the sequence

· · · - C1,q−1(A×W, V )
δ- C1,q(A×W, V )

δ- C1,q+1(A×W, V ) - · · ·



THE COHOMOLOGY OF KOSZUL–VINBERG ALGEBRAS 135

We can now state the classification theorem for the extensions of KV-algebras
and the classification theorem for the extensions of two-sided KV-modules.

To begin with, consider a short exact sequence of two-sided A-modules

0→W → T →A→ 0

and suppose A to be F-projective. Let σ :A 7→ T be a section of the exact sequence
of vector spaces

0→W → T →A→ 0.

Let ω be the 2-cochain of C2(A,W ) defined by ω(a, a′) = σ(a)σ (a′)− σ(aa′).
Actually ω is a 2-cocycle. Define a multiplication on A×W by

(a, w)(a′, w′)=
(
aa′, aw′+wa′+ω(a, a′)

)
.

The cohomology class [ω] ∈ H 2(A,W ) does not depend on the choice of σ .
Furthermore two equivalent extensions yield the same cohomology class. Our
discussion yields:

Theorem 5.1. Let W be a trivial KV-algebra that is also a two-sided KV-module
over the KV-algebra A. Then there is a one to one map from H 2(A,W ) onto the
set of equivalence classes of splittable extensions of the KV-algebra A by the trivial
algebra W .

Corollary 5.2. Under the assumptions of Theorem 5.1, if the KV-algebra A is
F-projective there is a bijective correspendence between H 2(A,W ) and the set
Ext(A,W ) of equivalent classes of extenstion of the KV-algebra A by the trivial
algebra W .

Extensions of KV-modules. Let G be an abstract Lie algebra and let V and W be
abstract G-modules. Then every exact sequence of G-modules

0→ V → T →W → 0

gives rise to a Chevalley–Eilenberg cohomology class in H 1(G, L(W, V )) that de-
termines the equivalence class of this extension. This also holds for Hochschild
cohomology of associative algebras with coefficients in their two-sided modules.
The same feature is far from being true in the category of two-sided KV-modules
and KV-cohomology.

Let V , W be two-sided modules over a KV-algebra A. We shall show that the
cohomology space responsible for equivalence classes of extensions of W by V
is not H 1(A, L(W, V )) but rather the cohomology space E1,1

1 (A×W, V ) at the
level C1,1(A×W, V ).

We fix some notation. Henceforth A ⊕ W is endowed with the KV-algebra
structure defined by (a, w)(a′, w′)= (aa′, aw′+wa′). Take f ∈C1,1(A×W, V ).
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Then δ f belongs to C1,2(A⊕W, V ). For every (a, w) ∈A×W we set

(5–2) θ(a, w)= f (a, w), ψ(a, w)= f (w, a).

Given a, b ∈A and w ∈W , one has

δ f (a,b,w)= δθ(a,b,w)

=−aθ(b,w)+θ(ab,w)+θ(b,aw)+bθ(a,w)−θ(ba,w)−θ(a,bw)

and

δ f (a, w, b)=−a f (w, b)+ f (aw, b)+ f (w, ab)− f (w, a)b

+w f (a, b)− f (wa, b)− f (a, wb)+ f (a, w)b.

So in view of (5–2) we see that θ and ψ are related by

δ f (a, w, b)=−aψ(b, w)+ψ(b, aw)+ψ(ab, w)− (ψ(a, w))b
−ψ(b, wa)− θ(a, wb)+ (θ(a, w))b,

δ f (a, b, w)= δθ(a, b, w).

If f is a cocycle we get δθ(a, b, w)= 0 and

aψ(b,w)+ψ(b,aw)+ψ(ab,w)−(ψ(a,w))b−ψ(b,wa)= θ(a,wb)−(θ(a,w))b.

Consider an F-splittable exact sequence

0→ V → T →W → 0.

of two-sided KV-modules over A. Fix a section σ ∈ Hom(W, T ). Then σ will
define fσ ∈ C1,1(A×W, V ) as follows:

(5–3)
fσ (a, w)= aσ(w)− σ(aw),

fσ (w, a)= σ(w)a− σ(wa).

Lemma 5.3. δ fσ = 0.

Proof. Take a, b ∈A and w ∈W . Then

δ fσ (a, b, w)=−a(bσ(w)− σ(bx))+ (ab)σ (w)− σ((ab)w)
+ bσ(aw)− σ(b(aw))− b(aσ(w))+ bσ(aw)
− (ba)σ (w)+ σ((ba)w)− aσ(bw)+ σ(a(bw))

= (b, a, σ (w))− (a, b, σ (w))+ σ((a, b, w)− (b, a, w))= 0,

δ fσ (a, w, b)=−a(σ (w)b)− aσ(wb)+ σ(aw)b− σ((aw)b)
+ σ(w)ab− σ(w(ab))− (σ (w)a)b+ σ(wa)b
− σ(wa)b+ σ((wa)b)− aσ(wb)+ σ(a(wb))
+ (aσ(w))b− (σ (aw))b

= (a, σ (w), b)− (σ (w), a, b)+ σ((a, w, b)− (w, a, b))= 0. �
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Consider the cochains θ, ψ defined by

(5–4) θ(a, w)= fσ (a, w) and ψ(a, w)= fσ (w, a).

They are related as in (5–3). By Lemma 5.3 the section σ gives rise to [ fσ ] ∈
E1,1

1 (A×W, V ). If σ ′ ∈ Hom(W, T ) is another section then fσ ′ ∈ [ fσ ]. Thus the
cohomology class [ fσ ] depends only on the equivalence class of the extension of W
by V . Conversely given a class [ f ] ∈ E1,1

1 , every f ∈ [ f ] yields the extension of W
by V which is determined by the pair (θ, ψ)which is defined by θ(a, w)= f (a, w),
ψ(a, w) = f (w, a) for all (a, w) ∈ A×W . The actions of A on T = V ⊕W is
defined by a(v,w)= (av+θ(a, w), aw) and (v,w)a= (va+ψ(a, w), wa). Now
we can state the classification theorem for extensions of two-sided KV-modules.

Theorem 5.4. Let W and V be two-sided KV-modules over a KV-algebra A. Then
there is a bijective correspondence between E1,1

1 (A×W, V ) and the set Ext(W, V )
of equivalence classes of splittable exact sequences of two-sided KV-modules

0→ V → T →W → 0.

Corollary 5.5. Under the assumptions of Theorem 5.4, assume W is F-projective.
There is a bijective correspondence between the set Ext(W, V ) of equivalence
classes of extensions of W by V and the set E1,1

1 (A×W, V ).

6. Deformations of algebraic structures

The set (V, µ) of associative algebra structures (or of Lie algebra structures) on
a vector space V is a singular algebraic variety with a natural action of the linear
group GL(V ). The study of that variety involves the Hochschild cohomology (in
the case of associative algebras) or the Chevalley–Eillenberg cohomology (in the
case of Lie algebras); see [Gerstenhaber 1964; Nijenhuis 1968; Piper 1967; Koszul
1968]. The second cohomology space may be regarded either as obstruction to
rigidity or as a tool to understand how wide is a GL(V )-orbit in the ambient variety.
(In fact it measures the transverse structure of GL(V )-orbits). Another interesting
question is whether (V, µ) admits nontrivial formal deformations. That is, does
there exist a formal series µ(t) with a given starting point? In both associative and
Lie theories obstructions exist and live in the third cohomology space. Our aim
is to investigate what happens in the KV-cohomology theory. We denote by |A|
the underlying vector space of a KV-algebra A. Let K V (|A|) be the variety of
KV-algebra structures on |A|. Let µ, ν be A-valued bilinear functions on A. We
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denote by dµν the trilinear function defined by

(6–1) dµν(a, b, c)=−µ(a, ν(b, c))+ ν(µ(a, b), c)

+ ν(b, µ(a, c))−µ(ν(b, a), c)+µ(b, ν(a, c))

− ν(µ(b, a), c)− ν(a, µ(b, c))+µ(ν(a, b), c).

Deformations of KV-algebras. Let A be a KV-algebra whose multiplication is de-
noted by aa′. One is given a one parameter power series of KV-algebra structures
on |A|, namely

µt =

∞∑
j=0

µ j t j , with µ0(a, a′)= aa′.

Henceforth (a, a′, a′′)t stands for the associator map of µt . One has

(6–2) (a, b, c)t − (b, a, c)t = 0

for all a, b, c∈ |A|. According to (6–1) we set di =dµi . Identity (6–2) is equivalent
to the system

(6–3) δµ1 = 0, δµk =
∑

i+ j=k
i>0, j>0

diµ j .

Thus we can identify the Zariski tangent space of K V (|A|) at µ0 ∈ K V (|A|) with
the space Z2(A,A) of 2-cocycles. So the family µt gives rise to the cohomology
class [µ1] ∈ H 2(A,A). We consider a one-parameter power series φt ∈ GL(|A|)
with φ0(a)= a for all a ∈A. Roughly speaking one has φt(a)= a+ tθ1(a)+· · ·+
t jθ j (a)+ · · · , where the θ j are linear endomorphisms of |A|. Now by setting

µt(a, a′)= φt(φ
−1
t (a)φ−1

t (a′))

we define a one parameter family A(t)= (|A|, µt) of KV-algebra structures all of
which are isomorphic to A. Take the MacLaurin expansion of µt(a, a′), namely
µt(a, a′) = aa′+

∑
k>0 tkµk(a, a′). Relation (6–2) yields µ1(a, a′) = δθ1(a, a′).

Thereby the space B2(A,A) of 2-coboundaries of A is the Zariski tangent space
of the orbit of A under the action of GL(|A|). Relation (6–3) also highlights how
formal deformations will involve the third cohomology space. We summarize our
discussion:

Theorem 6.1 (rigidity). (i) A necessary condition for A to be rigid is the vanish-
ing of H 2(A,A).

(ii) Conversely, if H 2(A,A) vanishes, A is formally rigid.

(iii) If H 3(A,A) vanishes, the set of nontrivial formal deformations of A is param-
etrized by the first cohomology space H 1(A,A).
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The space H 2(A,A) can be viewed as the set of nontrivial infinitesimal defor-
mations of A. In some special situations, H 2(A,A) 6= 0 will imply that A admits
nontrivial deformations; we turn to this in Part 2.

Part II. Differential geometry

Besides the conjecture of M. Gerstenhaber, there are many geometric problems
which also motivate the need of the cohomology theory of KV-algebras; see for
example [Koszul 1968; Milnor 1977; Vinberg and Kac 1967; Vey 1968]. In this
Part 2 we intend to raise some of those geometric problems. We start with some
observations.

(1) Let A be an associative algebra. Let Cass(A,A) be the Hochschild com-
plex of A. Every Hochschild cocycle ω ∈ C2

ass(A,A) is also a KV-cocycle of
the KV-algebra A. The inverse is not true. Thus one gets a canonical injective
map H 2(A,A)ass → H 2(A,A)K V . This map is not surjective. For instance, let
A be R2 with the multiplication defined by (x, y).(x ′, y′) = (xx ′, 0). The set
Z2

K V (A,A) of 2-KV-cocycles consists of pairs ( f, h) of linear maps defined by
( f (x, y), h(x, y)) = ((ax + by, bx), (ux + vy, wy)) while the set Z2

ass(A,A)

consists of pairs ( f (x, y), h(x, y)) = ((ax + by, bx), (ux, vy)). On the other
hand the space B2

K V (A,A) = B2
ass(A,A) consists of pairs ( f (x, y), h(x, y)) =

((ax + by, bx), (ux, 0)).

(2) The graded space C?
N (A,W )=Hom

(∧?−1A, L(A,A)
)

defined in [Nijenhuis
1968] is actually a subcomplex of the KV-complex C?(A,W ) but the derived co-
homology (by Nijenhuis) differs from the KV-cohomology. Nevertheless, if W is
a left KV-module then the cohomology defined by Nijenhuis coincides with the
KV-cohomology (see the Appendix). We return to differential geometry.

7. KV-Cohomology of locally flat manifolds

Let (M, D) be a locally flat manifold whose KV-algebra is denoted by A. The
space T (M) of smooth tensors on M is an infinite-dimensional bigraded vector
space. Thus T (M)=

∑
p,q T p,q(M) where T p,q(M) is the vector space of smooth

sections of the vector bundle

T p,q M =
(⊗

p
TM

)
⊗

(⊗
q

T ∗M
)
.

The vector space T (M) is a two-sided KV-module over the KV-algebra A. To
see this it is sufficient to write the two-sided actions of A on T 1,0(M) and on
T 0,1(M) respectively. Take a ∈ A, X ∈ T 1,0(M) and θ ∈ T 0,1(M), and set aX =
Da X, Xa = DX a, aθ = Daθ, θa = 0. The differential 1-form Daθ is defined by
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〈(Daθ), X〉 = 〈d(θ(X)), a〉 − 〈θ, aX〉. Of course T p,0(M) is defined for p > 0
while T 0,q is defined for nonnegative integers under the convention that

T 0,0(M)=W = C∞(M,R).

Denote the T (M)-valued complex of A by C(A, T (M))=
⊕

ρ Cρ(A, T (M)). Its
coboundary operator δ : Cρ(A, T (M))→ Cρ+1(A, T (M)) is defined by formula
(4–1). More explicitly, for f ∈ Cρ(A, T (M)) we have

δ f (a1..aρ+1)=
∑
i≤ρ

(−1)i {(ai f )(..âi ..aρ+1)+ (eρ(ai ).( f aρ+1)(..âi ..aρ)}.

The cohomology space at the level Cρ(A, T (M) is written Hρ(A, T (M)). Note
that not all of the cochains of Cρ(A, T (M)) are tensorial. Actually C(A, T (M))
admits a triple grading C(A, T (M)) =

∑
C p,q
ρ (A, T (M)). The action of A on

T (M) = ⊕p,q T p,q(M) is of zero degree. Thereby every subspace T p,q(M) is a
two-sided KV-module over A. Let one set C p,q

ρ (A, T (M)) = Cρ(A, T p,q(M)).
The subspace ⊕ρC p,q

ρ (A, T (M) is a subcomplex of C(A, T (M)). The subcom-
plex C0,0(A, T (M)) is precisely the complex C?(A,W ). The subspace τ(M,R) of
tensorial cochains is a KV-subcomplex of C(A,W ). It is graded by the subspaces
τ ρ(M,R)= τ(M,R)∩Cρ(A, T (M)).

Definition. The KV-complex τ(M,R) is called the scalar KV-complex of the lo-
cally flat manifold (M, D).

Remark. Given a locally flat manifold (M, D), the connection D yields an exterior
differential operator dD on T ?M-valued differential forms �(M, T ?M). The aim
of [Koszul 1974] was the study of the D-complex (�(M, T ?M), dD). However
this D-complex studied by Koszul is the Nijenhuis complex CN (A,W ) of the KV-
algebra A [Nijenhuis 1968]. On the other hand the graded space �(M, T ?M) =
6p�

p(M, T ?M) is a subcomplex of the KV-complex C(A,W ). Since W is a left
KV-module over A the Koszul–Nijenhuis cohomology of the D-complex

�((M, T ?M), dD)

coincides with the KV-cohomology of the KV-complex (�(M, T ?M), δ) (see the
Appendix). This is a relevant aspect of the KV-cohomology of A. We have pointed
out the KV-complex inclusions τ(M,R) ⊂ C(A,W ) ⊂ C(A, T (M)). The KV-
cohomology spaces of these complexes are affine invariants, and indeed geometric
invariants of the Lie group of D-preserving diffeomorphisms of the smooth mani-
fold M .
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8. Rigidity problem for hyperbolic locally flat manifolds

A relevant question is to give geometrical meaning to some cohomology classes of
the KV-complexes τ(M,R), C(A,W ),C(A, T (M)). The next subsections are de-
voted to this question. Domains in euclidean space are endowed with the canonical
euclidean connection D0.

Hyperbolic affine manifolds. A locally flat manifold (M, D) is called hyperbolic
if its universal covering (M̃, D̃) is isomorphic to a convex domain not containing
any straight line. This definition is the affine analogue to hyperbolic holomorphic
manifolds following W. Kaup (see [Vey 1968; Koszul 1968]). Let M be a compact
manifold admitting hyperbolic locally flat structures. Let F(M) be the set of locally
flat linear connections on M . The subset Fc(M) consists of D ∈F(M) satisfying
the following condition: the universal covering of (M, D) is isomorphic to a convex
cone not containing any straight line.

Theorem 8.1 [Koszul 1968, Theorem 3]. If M is a compact manifold, Fc(M) is
an open subset of F(M).

Koszul’s proof involves locally Hessian Riemannian metrics. As a remarkable
consequence of this theorem we have the nonrigidity of hyperbolic affine manifold
structures defined by elements D ∈ Fc(M). Koszul proved that every locally flat
structure (M, D) defined by D ∈ Fc(M) always admits nontrivial deformations.
Roughly speaking, every neighborhood of D contains a D′ ∈Fc(M) which is not
isomorphic to D. The rigidity problem for (M, D) is related to the KV-cohomology
space H 2(A,A). From this viewpoint the compactness of M may be unnecessary.

Example. Consider R2
={λδ/δx+µδ/δy :λ∈R, µ∈R}. By endowing this space

with the bracket [δ/δx , δ/δy] = δ/δy, we obtain the Lie algebra of infinitesimal
affine transformations of R. We define a left-invariant locally flat structure on the
Lie group Aff R by setting

(8–1) Dλ,µλ
′, µ′ = (λµ′)

δ

δy
= (0, λµ′).

Let A= (X(Aff R, D)) be the corresponding KV-algebra. To (α, β)∈R2 we assign
Sα,β ∈ T 1,2(Aff R) defined by

Sα,β((λ, µ), (λ′, µ′))= (αλλ′, βλλ′+α(λµ′+ λ′µ)),

with λ, λ′, µ, µ′ ∈ C∞(Aff R,R). Keeping in mind relation (6–1), we get:

Lemma 8.2. For every pair (α, β) ∈ R? × R of real numbers the cochain Sαβ ∈
C2(A,A) is a nonexact KV-cocycle satisfying dSαβ Sαβ = 0.

Corollary 8.3. The locally flat manifold (Aff R, D) defined by (8–1) admits non-
trivial deformations.
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Proof. Define the one-parameter family Dt ∈ F(Aff R) of linear connections by
Dt = D + t Sαβ . By virtue of Lemma 8.2, Dt is locally flat. The correspond-
ing KV-algebra is denoted by A(t). Since Sαβ is nonexact the family A(t) is
a nontrivial deformation of A. To be convinced, fix (λ0, µ0) ∈ R2. Then one
considers the family ψt of linear maps defined by ψt(λ, µ)→ D(λ,µ)(λ0, µ0)+

t Sα,beta((λ, µ), (λ0, µ0))+ (λ, µ). Then ψ0 is injective. Thereby (Aff R, D0) is
complete. We have assumed that α 6= 0. If t 6= 0 then (Aff R, Dt) is not complete.
Consequently none of the Dt is isomorphic to D0. �

A locally flat manifold (M, D) is complete if and only if D is geodesically
complete. Let one examine what do geodesics of D1= D+Sαβ look like. Consider
a geodesic of D1, namely c(t)= (x(t), y(t)). We have D(ẋ,ẏ)(ẋ, ẏ)= (0, 0), where
(ẋ, ẏ)= (dx/dt) (δ/δx) + (dy/dt) (δ/δy) . The geodesics of D1 are the solutions
of the system of differential equations

2
d2x
dt2 +α

(dx
dt

)2
= 0, 2

d2 y
dt2 +β

(dx
dt

)2
+ (1+ 2α)

dx
dt

dy
dt
= 0.

The first of these equations admits the solutions

x(t)= 2
α

log
∣∣∣α2 t + u

∣∣∣+ v,
where u and v are arbitrary constants. It becomes easy to integrate the second
equation. Its solutions are

y(t)= β

α(1−2α)
log

∣∣∣α2 t + u
∣∣∣− c

1+α
exp

(
−

1+α
α

log
∣∣∣α2 t + u

∣∣∣)+ d,

where c and d are arbitrary constants. Thus the geodesics of D1 are defined only
on the half-lines ]γ,∞[ or ]−∞, γ [, where γ is an arbitrary real number. So
D1 does not admit any complete geodesic. Of course the existence of solutions
(x(t), y(t)) depends on other extra conditions such as 1 + α 6= 0. Our purpose
is to show that (Aff R, D1) is isomorphic to a convex cone not containing any
straight line. We just saw that (Aff R, D1) has no complete geodesic. We show
that it is isomorphic to a convex cone. Since [δ/δx, δ/δy] = δ/δy, the element
δ/δx commutes with e−xδ/δy. These two elements are affine vector fields on
the locally flat Lie group (Aff R, D1). If α(1+ α) 6= 0, the functions g(x, y) =
exp((1+α)x + y) and h(x, y)= exp((1+α)x + 2y+ y3) are affine. We identify
the connected component of the identity of Aff R with {(x, y) ∈R2

: x > 0}. Then
the map φ(x, y) = (g(x, y), h(x, y)) is an affine isomorphism from Aff R0 onto
the open convex cone {(u, v) ∈ R2

: u > 0, v > 0}. This cone contains no straight
lines.
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Proposition 8.4. Let A be the KV-algebra of a compact locally flat manifold
(M, D). If H 2(A,A) = 0, every smooth one-parameter family of deformations
of (M, D) is trivial.

Proof. Let (M, Dt) be a smooth deformation of (M, D), with D0 = D. One sets
S = (d/dt) Dt/t=0. Then S ∈ C2(A,A) is a 2-cocycle. Since H 2(A,A) vanishes,
there exists a 1-chain φ ∈ C1(A,A) such that S(a, b) = δφ(a, b). The symmetry
property of S implies that φ is a derivation of the Lie algebra of smooth vector
fields on M. So there is a ξ ∈ A(M) such that φ(a) = [ξ, a] for all a ∈ A. The
2-coboundary S = δφ takes the form S(a, b) = (a, b, ξ). Let φt be the local flow
of ξ . Then D and Dt are related by Dt = φ(t)D. �

9. Complex of superorder forms

The reference for this section is [Koszul 1968].

Differential forms of order ≤ k. Let A(M) be the Lie algebra of smooth vector
fields on a manifold M . Let T (M) =

⊕
p,q T p,q(M) be the space of smooth

tensors. We are concerned with the vector space
⊕q Hom(T q,0(M), T (M)) of

T (M)-valued R-multilinear functions on A(M).

Definition [Koszul 1974]. Let k be a nonnegative integer. The function

θ ∈ Hom(A(M), T (M))

is of order ≤ k if at every point x ∈ M the value (θ(X1, . . . Xq))(x) ∈ T r,s
x (M)

depends on the k-jets j k
x (X1), . . . , j k

x (Xq).

Let E → M be a tensor vector bundle and let E be the vector space of smooth
sections of E . Then A(M) acts on E by Lie derivation. Let C(A(M),E) be the
Chevalley–Eilenberg complex of A(M). Koszul observed that in many situations
the cohomology of C(A(M),E) contains some canonical nonvanishing cohomol-
ogy classes.

Examples. (1) Let v be a volume form on a compact manifold M . The divergence
class of (M, v) does not vanish.

(2) To every linear connection D on M one assigns the linear map θ(X)= L X D.
This is a T 1,2(M)-valued nontrivial 1-cocycle of order ≤ 1.

We now deal with KV-complexes on a locally flat manifold (M, D). Then A(M)
is the commutator Lie algebra of the KV-algebra A of (M, D). Set W =C∞(M,R).
Let τ(M,R) ⊂ C(A,W ) be the subcomplex consisting of cochains of order ≤ 0.
For instance a (pseudo)riemannian tensor is a 2-cochain of order ≤ 0 while its
Levi-Civita connection 5∈ C(A,A) is a 2-cochain of order ≤ 1. The Levi-Civita
connection 5 is defined by the symmetric 2-cochain S5(a, a′) = 5a′

a − aa′. One
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has δ5 (a, a′, a′′) = δS5(a, a′, a′′). Whenever δ5 vanishes, the curvature tensor
R5 is given by

R5(X, Y )=
[
S5(X, · ), S5(Y, · )

]
.

This formula means that R5(X, Y )(Z) = S5(X, S5(Y, Z)) − S5(Y, S5(X, Z)).
Boundaries of cochains of order ≤ k are cochains of order ≤ (k+1). For instance:

(1) Let ω be a de Rham closed differential 2-form. We regard it as a 2-chain of
order ≤ 0 of the KV-complex C(A,W ). Then we get δω(a, b, c)= (c.ω)(a, b)=
c(ω(a, b))− ω(ca, b)− ω(a, cb). So that δω = 0 if and only if ω is a parallel
2-form with respect to the linear connection D. Now assume ω to be δ-exact and
let θ ∈ C1(A,W ) such that ω(X, Y )=−Xθ(Y )+ θ(XY ). We may conclude that
−ω(X, Y )= 1

2

(
Xθ(Y )−Y θ(X)+θ([X, Y ])

)
. So a parallel closed 2-form is δ-exact

if and only if it is de Rham exact.

(2) There are situations where the only (de Rham) closed 2-form ω satisfying Dω=
0 and ω= δβ is ω= 0. For instance we consider the Lie group M= H3×R where
H3 is the 3-Heisenberg group. We fix a basis e1, e2, e3 of the Lie algebra h3 of H3

such that [e1, e2] = e3. Complete this basis to get a basis {e1, e2, e3, e4} of H3⊕R;
let {ε1, ε2, ε3, ε4} be its dual basis. Then ω = ε1 ∧ ε4 + ε3 ∧ ε2 is a left invariant
symplectic form on M. Now N1 and N2 are Lie subgroups whose Lie algebras
are N1 = span(e1, e3) and N2 = span(e2, e4) respectively. These subgroups define
a pair (L1,L2) of left-invariant lagrangian foliations which are transverse. Let
0 be a cocompact lattice in M. The pair (L1,L2) gives rise to the pair (l1, l2)

of lagrangian foliations in the compact symplectic manifold (0 \M, ω). Thereby
0 \M admits a unique (l1, l2)-preserving torsion-free symplectic connection D;
see [Nguiffo Boyom 1995]. Now let (x, y, z, t) be the euclidean coordinates of M

in the basis (e1, e2, e3, e4). These coordinate functions give rise to local Darboux
coordinate functions on (0 \M, ω). Then x, z are characteristic functions of l1 and
y, t are characteristic functions of l2. Therefore the curvature tensor of D vanishes,
again by [Nguiffo Boyom 1995]. One gets the locally flat manifold (0 \M, D).
Since 0 \M is a closed manifold ω is not de Rham exact. Thereby ω is not δ-exact
as well. This situation is the analogue to observations by Koszul.

Proposition 9.1. Let (M, D) be a hyperbolic locally flat manifold. If the universal
covering (M̃, D̃) of (M, D) is isomorphic to a convex cone then every D-parallel
2-cochain of C2(A,W ) is δ-exact.

Proof. By [Koszul 1968, Lemma 3], there exists H ∈ A such that aH = a for
all a ∈ A. If g is a D-parallel 2-chain we define the 1-chain θ by setting θ(a) =
g(H, a). Since Dg = 0 we see that

0= ag(H, b)− g(aH, b)− g(H, ab)=−δθ(a, b)− g(a, b) for a, b ∈A. �
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Let (M, D) be a locally flat manifold whose universal covering is (M̃, D̃). Let
0 be the fundamental group of M . The linear holonomy of (M, D) is denoted by
l(0), as in [Fried et al. 1981; Carrière 1989]. If l(0) is unimodular then M̃ carries
a D̃-parallel volume form ṽ. Actually ṽ is a cocycle of C(A(M̃),C∞(M̃,R)).

Before proceeding, we make some explicit constructions. Given a locally flat
manifold (M, D) let c : [0, 1] → M be a smooth curve. For s ∈ [0, 1] let τs :

Tc(0)M→ Tc(s)M be the D-parallel transport (along c). Set

q(c)=
∫ 1

0
τ−1

s

(dc
ds

)
ds.

Actually q(c) does not depend on the choice of c in its fixed ends homotopy
class [Koszul 1968]. Now one identifies the universal covering M̃ with the set
[[0, 1],M]x0 of homotopy classes of smooth curves c with c(0) = x0. Thus one
gets the development map q : M̃ → Tx0 M which is a local diffeomorphism. The
locally flat manifold (M, D) is called complete if its development map is a diffeo-
morphism, [Fried et al. 1981; Carrière 1989; Milnor 1977]. This is equivalent to
the geodesic completeness of D.

Proposition 9.2. If a locally flat manifold (M, D) is complete, the cohomology
class ˜[v] ∈ Hm(Ã, W̃ ) vanishes.

The proof is based on the fact that (M, D) is complete if and only if (M̃, D̃) is
isomorphic to euclidean space (Rn, D0).

Corollary 9.3. Let (M, D) be a locally flat compact manifold whose universal
covering is denoted by (M̃, D̃). Suppose the linear holonomy group of (M, D) to
be either nilpotent or lorentzian. Then every D̃-parallel volume form is δ̃-exact,
where δ̃ is the KV-coboundary operator of C(Ã, W̃ ).

Idea of proof. The existence of a D̃-parallel volume form implies that l(0) is uni-
modular. Under the hypothesis of the corollary, (M, D) is complete; see [Carrière
1989; Fried et al. 1981]. �

Regarding the conjecture of Markus [Carrière 1989; Fried et al. 1981], Propo-
sition 9.2 says the following. Given a locally flat compact manifold (M, D), if its
universal covering (M̃, D̃) carries a D̃-parallel volume form ṽ whose cohomology
class [ṽ] ∈ Hm(Ã, W̃ ) is nonzero, then (M, D) is not complete.

KV-cohomology has other interesting applications, such as the study of singu-
lar affine foliations [Nguiffo Boyom and Wolak 2002], the study local forms of
KV-algebroids [Nguiffo Boyom and Wolak 2004], and the geometry of Poisson
manifolds [Nguiffo Boyom 2001; 2005]. On the other hand the cotangent bundle
T ?M carries the canonical Liouville symplectic form. The vertical foliation is a
lagrangian foliation of the Liouville symplectic form. The KV-complex of this
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foliation gives rise to a spectral sequence Er,s
t with the following relevant features.

The term Er,0
1 vanishes for all of the positive integers r . The set of Poisson struc-

tures on M is isomorphic to a subset of E0,2
1 ; see [Nguiffo Boyom 2005]. The

last statement is the KV-analogue to the following result of Kontsevich [2003]:
There is a one-to-one correspondence between the Hochschild cohomology space
H 2(C∞(M,R),C∞(M,R)) and the set of Poisson tensors on M .

Part III. Groups of diffeomorphisms

This part is rather a sketch of a forthcoming research program. We outline the
study of left-invariant affine structures on groups of diffeomorphisms. We show
that this study involves some KV-cohomology complexes.

10. Lie groups of diffeomorphisms

Generalities. Let M be a smooth manifold. We denote by Diff M the group of
diffeomorphisms of M, and by Diff0 M the subgroup of those that are isotopic to
the identity). In some situations Diff0 M and many of its subgroups carry a structure
of infinite-dimensional Lie group; see [Banyaga 1997; Leslie 1967; Rybicki 1997].
The Lie algebra A0(M) of Diff0 M is the algebra of compactly supported smooth
vector fields.

Definition. A KV-structure X, Y → X.Y on the R-vector space A0(M) is called
a left-invariant KV-structure on the Lie group Diff0 M if its commutator bracket
[X, Y ] = X.Y − Y.X is the Lie bracket of vector fields on M .

We are interested in the relationship between KV-structures on Diff0 M and
locally flat structures on M. There is no loss of generality in dealing with KV-
structures on A(M). Given a manifold M let K Vc(A(M)) be the set of KV-algebra
structures whose commutator Lie algebra is A(M). From the KV-cohomology
viewpoint it is natural to ask:

Question 10.1. What does K Vc(A(M)) look like?

We begin by pointing out some useful tools.

Deformations of Z2-graded KV-algebras. We fix some notation. Let A be a KV-
algebra. For every KV-module W we consider the semidirect product A×W . It is
the KV-algebra whose multiplication is (a+w).(a′+w′)= aa′+ aw′+wa′. We
equip the vector space G=A⊕W with a Z2-grading by setting G0

= A, G1
=W .

Thus G is a Z2-graded KV-algebra. We are interested in the KV-complex C(G,G).
The vector space Cq(G,G) of q-chains is Z2-graded as

Cq(G,G)= Cq,0(G,G)⊕Cq,1(G,G),
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where Cq, j (G,G) is the subspace of G j -valued q-multilinear maps defined on G.
On the other hand, every Cq, j (G,G) is bigraded by the subspaces Cr,s

q, j (G,G) =

Hom
(⊗r
|A| ⊗

⊗s
,G j

)
with r + s = q.

Suppose that V is a two-sided KV-module over A. Then V is a KV-module
over G. The boundary operator δ : Cq(G, V )→ Cq+1(G, V ) sends Cr,s(G, V ) to
Cr+1,s(G, V ). Consider the case where V is the space W of real-valued smooth
functions. Then δ sends Cq,1(G,W ) to Cq+1,1(G,W ). Thus the complex

C?,1(G,G)= C?,1(G,W )

is just the KV-complex C(G,W ). Set a= (a, 0)∈A×W andw= (0, w)∈A×W . If
(a0, w0)∈ J (G) then ((a, w), (a′, w′), (a0, w0))= (0, 0) for all (a, w), (a′w′)∈G.
This is equivalent to the following conditions:

(i) a0 ∈ J (A), w0 ∈ J (W ).

(ii) (a, w, a0)= 0 for all (a, w) ∈ G.

Thus J (G) is a homogeneous subalgebra of the Z2-graded KV-algebra G. We now
focus on the subcomplex

· · · - Cr,s
q,1(G)

δ- Cr+1,s
q+1,1(G)

- · · · .

Let θ ∈ C1,1
2,1(G) = Hom(A⊗W,W ). Then δθ ∈ C2,1

3,1(G). If δθ = 0 we get from
(5–4) the following equalities:

−aθ(b, w)+ θ(ab, w)+ θ(b, aw)=−bθ(a, w)+ θ(ba, w)+ θ(a, bw),

−aθ(w, b)+ θ(aw, b)+ θ(w, ab)= (θ(w, a))b+ θ(wa, b)
+ θ(a, wb)− (θ(a, w))b,

for all a, b ∈A, w ∈W .
Suppose θ is a cocycle of ∈ C0,2

2,1(G). The identity δθ = 0 yields

−aθ(w,w′)+ θ(aw,w′)+ θ(w, aw′)− θ(wa, w′)= 0,

θ(w′, wa)− θ(w′, w)a = θ(w,w′a)− θ(w,w′)a.

for all a ∈ A and w,w′ ∈ W . Actually the subspace of G0-valued cochains is not
a sub-complex of C(G,G). Nevertheless one has to pay attention to the subspace
Syma,w consisting of θ ∈ C1,1

2,0(G) satisfying θ(a, w) = θ(w, a) for all (a, w) ∈
A×W . Actually one has δ(Syma,w)⊂ C2,1

3 (G,G)⊕C1,2
3 (G,G). Take θ ∈ Syma,w
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such that δθ = 0. The following equalities ensue:

0= δθ(a, b, w)⇒−aθ(b, w)+ θ(ab, w)+ θ(b, aw)
=−bθ(a, w)+ θ(ba, w)+ θ(a, bw),

0= δθ(a, w, b)⇒−aθ(w, b)+ θ(aw, b)+ θ(w, ab)− θ(wa, b)− θ(a, wb)= 0,

0= δθ(a, w,w′)⇒ 0=−θ(w, a)w′−wθ(a, w′)+ θ(a, w)w′.

Since θ ∈ Syma,w, the closedness hypothesis δθ = 0 implies wθ(a, w′) = 0
for all a ∈ A and all w,w′ ∈ W . This last implication has motivated our interest
in well understanding the Z2-graded KV-algebra structure G = G0

⊕ G1 whose
subspace G1 is a left G0-module. Henceforth we deal with a Z2-graded KV-algebra
G = A⊕W = G0

⊕ G1 with W.A = (0). We suppose that θ ∈ C0,2
2,1 is a cocycle;

then the identity 0= δθ(a, w,w′) implies that

(10–1) aθ(w,w′)= θ(aw,w′)+ θ(w, aw′).

We equip W =G1 with the multiplication defined byw.w′=θ(w,w′). We get an
algebra structure Wθ = (W, θ). The left action of G0 on G1 look like infinitesimal
automorphisms of the algebra Wθ . On the other hand suppose ψ ∈ Syma,w to be a
cocycle, then

(10–2) 0=−aψ(w, b)+ψ(aw, b)+ψ(w, ab)= 0 for all a, b ∈G0 and w ∈G1.

In regard to Question 10.1, relations (10–2) and (10–3) below provide useful
information. We recall that G1

⊂ G = G0
⊕G1 is a left G0-module. So the multi-

plication map of G is

(10–3) (a, w)(a′, w′)= (aa′, aw′).

Special deformations of (10–3). Take θ ∈ C0,2
2,1(G). We study the multiplication

map on G, defined by

(10–4) (a, w)(a′, w′)=
(
aa′, aw′+ θ(w,w′)

)
.

Definition. Let G0
⊕G1 be a Z2-graded KV-algebra such that G1 is a left module

over G0. A cochain θ ∈ C0,2
2,1(G) is called a KV-cochain if

K Vθ (w,w′, w”)= (w,w′, w′′)θ − (w′, w,w′′)θ = 0

for allw,w′, w′′ ∈G1. Here K Vθ is the Koszul–Vinberg anomaly of θ ; the notation
(w,w′, w′′)θ stands for θ(w, θ(w′, w′′))− θ(θ(w,w′), w′′).

Proposition 10.2. The following statements are equivalent.

(1) The multiplication map (10–4) defines a KV-algebra structure in G.

(2) θ ∈ C0,2
2,1(G) is a KV-cocycle.
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The proof is a straightforward consequence of (10–1).
A KV-cochain θ ∈C0,2

2,1(G) is called associative or commutative if the algebra Wθ

is associative or commutative, respectively. It is easy to verify that a commutative
KV-cochain is associative. Formulas (10–1) and (10–2) are useful to give a partial
answer to Question 10.1.

Indeed, given a Z2-graded KV-algebra in which G1 is a left module over G0,
every cocycles θ ∈ C0,2

2,1(G) satisfies (10–1). On the other hand a cocycle ψ ∈
C1,1

2,0(G) satisfies the (10–2) if and only if ψ ∈ Syma,w.
Henceforth we assume that G0 acts faithfully in G1.

Definition. A pair (θ, ψ) ∈ C0,2
2,1(G)×C1,1

2,0(G) of cocycles is called a connection-
like pair if the following properties hold:

(c1) ψ ∈ Syma,w.

(c2) θ is a commutative KV-cocycle.

(c3) ψ(θ(w,w′), a)= ψ(w,ψ(w′, a)) for all a ∈ G0 and all w,w′inG1.

Theorem 10.3. Every connection-like pair (θ, ψ) defines a new KV-algebra struc-
ture Gθ,ψ whose multiplication is defined by

(a, w)(a′w′)= (aa′+ψ(w, a′)+ψ(a, w′), aw′+ θ(w,w′))

for all (a, w), (a′, w′) ∈ G0
×G1.

Idea of proof. The vanishing of the KV-anomaly results from a direct calculation.
�

Example. Let (M, D) be a locally flat manifold whose KV-algebra is A. The
vector space W =C∞(M,R) is a left KV-module over A under the Lie derivation;
W is regarded as a KV-algebra with zero multiplication. Then G=A⊕W is a Z2-
graded KV-algebra whose multiplication map is (a, w).(a′, w′)= (Daa′, Law

′)=

(aa′, Daw
′). Consider the pair (θ, ψ) ∈ C0,2

2,1(G)×C1,1
2,0(G) defined by θ(w,w′)=

ww′ and ψ(w, a) = ψ(a, w) = wa. Both θ and ψ are cocycles of the cochain
complex C(G,G). They satisfy the conditions of the preceding definition.

In fact, a connection-like pair (θ, ψ) may be regarded as a deformation of
the algebra G whose multiplication is (a, w)(a′, w′) = (aa′, aw′). One starts
with a Z2-graded KV-algebra G = G0

⊕ G1 whose multiplication is defined by
(a, w).(a′, w′) = (aa′, aw′). Then every connection-like pair (θ, ψ) is called a
connection-like deformation of the Z2-graded KV-algebra G= G0

⊕G1.

Analysis from a formal viewpoint. Suppose (θ, ψ) is a connection-like deforma-
tion of a Z2-graded KV-algebra G= G0

+G1. Then:

(?1) G0 stands for the space of vector fields on some manifold M.
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(?2) G1 stands for the space of smooth functions on M.

(?3) The multiplication on G0 is taken to be a linear connection on M.

(?4) The left action of G0 on G1 stands for the Lie derivation by elements of the
commutator Lie algebra GL .

(?5) The cocycle ψ stands for the multiplication of vector fields by smooth func-
tions. Formula (10–1) and (10–2) are then well understood.

Theorem 10.4. Let (θ, ψ) be a connection-like deformation of the Z2-graded KV-
algebra G0

⊕G1 such that θ 6= 0. Then the one parameter family (tθ, ψ) is an one
parameter family of nontrivial connection-like deformations of G0

⊕G1.

Idea of proof. Consider the KV-cocycle tθ , t ∈R. The pair (tθ, ψ) satisfies condi-
tions (c1), (c2) and (c3) from the definition on the preceding page. The cocycle θ
is not exact. Therefore the deformation Gt is nontrivial. �

To wind up our study of Question 10.1, we observe that connection-like de-
formations of Z2-graded KV-algebras are controlled by rather special type of 2-
cocycles. Indeed, every 2-cochain θ ∈ C2(G,G) has six components, namely θr,s

2, j
with r, s ∈{0, 1, 2} and j ∈Z2. In contrast to this general picture, a connection-like
pair consists of cocycles having at most one nonnull component.

Theorem 10.5. There is a bijective correspondence between the set of connection-
like pairs of C2(G,G) and the set of connection-like deformations of the Z2-graded
KV-algebra G= G0

⊕G1.

Sketch of proof. Let c∈C2(G,G) be a connection-like cocycle of the Z2-graded KV-
algebra G=G0

⊕G1. It has two components only, namely c= (θ, ψ)∈C0,2
2,1⊕C1,1

2,0 .
Taking into account that δθ ∈C1,2

3,1(G,G) and δψ ∈C2,1
3,0(G,G)+C1,2

3,0(G), one gets
c((a, w), (a′, w′))= (ψ(a, w′)+ψ(w, a′), θ(w,w′)) for all (a, w), (a′, w′) ∈ G.

Since G1 is a left G0-KV-module, the closeness condition δc = 0 implies that

aθ(w′, w′′)− θ(aw′, w′′)− θ(w′, aw′′)= 0,

aψ(a′, w′′)−ψ(aa′, w′′)−ψ(a′, aw′′)= 0,

ψ(a, θ(w′, w′′))−ψ(ψ(a, w′), w′′)= 0.

The first two of these identities say that θ and ψ are 2-cocycles satisfying condi-
tions (10–1) and (10–2) respectively. The third identity says that θ and ψ satisfies
the defining conditions (c1)–(c3). Since c is assumed to be a KV-cocycle, we have
K Vc(w,w

′, w′′)= 0 for all w,w′, w′′ ∈ G1. Thus (θ, ψ) defines a connection-like
KV-algebra Gθ,ψ with multiplication map given by

(a, w)(a′, w′)=
(
aa′+ψ(a, w′)+ψ(w, a′), aw′+ θ(w,w′)

)
.

The converse can be easily proved by direct calculation. �
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Without extra assumptions there is no reason why the cochains θ and ψ must
be tensorial.

Theorem 10.6. Let (θ, ψ) be a connection-like pair whose commutator Lie algebra
is the Lie algebra A(M) of smooth vector fields on M . The following statements
are equivalent.

(1) θ and ψ are of order ≤ 0.

(2) The KV-algebra structure (Gθ,ψ) gives rise to a locally flat structure on the
manifold M .

11. Left invariant KV-structures on Diff0 M

Let G be a finite-dimensional Lie group whose Lie algebra is G. Let K V (|G|) be the
set of KV-algebra structures on |G|. To µ ∈ K V (|G|) is assigned the commutator
Lie algebra Gµ whose bracket is [a, a′]µ = µ(a, a′) − µ(a′, a). We denote by
K V (G) the subset consisting of µ ∈ K V (|G|) such that Gµ = G. Thus K V (G) is
the set of connection-like KV-algebra structures on |G|. Replacing G by the Lie
algebra A0(M) of compactly supported vector fields, what we have dealt with in
Section 10 is the (formal) analogue to K V (|G|). Considering Theorem 10.6, the
Lie group Diff0 M may carry left-invariant locally flat structures which are not
related to locally flat linear connections on M . This is the sense of the definition
on page 146.

We conclude with the following remark. Every locally flat structure (M, D) on
a manifold M gives rise to a left-invariant affine structure on the group Diff0 M .
On the other hand whenever M is a closed manifold Diff0 M is a simple Lie group
which may carry a left-invariant affine structure. For instance if M is the flat torus
T m then the group Diff0 T m is a simple Lie group admitting a left-invariant affine
structure. This is in contrast with the case of finite-dimensional Lie groups; see
[Nguiffo Boyom 1968].

Appendix

Here we relate KV-cohomology to the pioneering work of Albert Nijenhuis [1968].
Let W be a two-sided module over a Koszul–Vinberg algebra A. Let AL be the
commutator Lie algebra of A, then W is a left module over the Lie algebra AL .
The linear space Hom(A,W ) is a (left) AL -module. Let CN (AL ,Hom(A,W )) be
the Chevalley–Eilenberg complex of AL . We call it the Nijenhuis complex of the
Koszul–Vinberg algebra A. Its cohomology space is denoted by HN (A,W ). Ac-
cording to [Nijenhuis 1968], the W -valued k-th cohomology space of the Koszul–
Vinberg algebra A is the (k−1)-th Chevalley–Eilenberg cohomology space of
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CN (AL ,Hom(A,W )). At the same time, Ck
N (AL ,Hom(A,W )) is a subspace of

Ck+1(A,W ).

Theorem. The subspace CN (A,W ) of the KV-complex C(A,W ) graded by the
vector spaces Ck

N (AL ,Hom(A,W )) is a subcomplex of the KV-complex C(A,W ).
If W is a left module over the Koszul–Vinberg algebra A then for every positive
integer k the k-th KV-cohomology space H k

N (A,W ) of CN (A,W ) coincides with
the (k−1)-th Chevalley–Eilenberg cohomology space H k−1(AL ,Hom(A,W )) of
CN (AL ,Hom(A,W )).

This is precisely the pioneering result of Nijenhuis.
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