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In this paper we obtain a multivariable commutator lifting inequality, which
extends to several variables a recent result of Foias,, Frazho, and Kaashoek.
This inequality yields a multivariable lifting theorem that generalizes the
noncommutative commutant lifting theorem.

This is then used to solve new operator-valued interpolation problems of
Schur–Carathéodory, Nevanlinna–Pick, and Sarason type on Fock spaces.
Some consequences to norm constrained analytic interpolation in the unit
ball of Cn are also considered.

Introduction

Foias,, Frazho, and Kaashoek [Foias, et al. 2002a] solved a problem proposed by
B. Sz.-Nagy in 1968, extending the commutant lifting theorem to the case when
the underlying operators do not intertwine. Their main result establishes minimal
norm liftings of certain commutators. Our main goal is to obtain a multivariable
version of their result.

Let T = [T1, . . . , Tn] with Ti ∈ B(H) be a row contraction, that is,

T1T ∗

1 + · · · + TnT ∗

n ≤ I,

and let V = [V1, . . . , Vn] with Vi ∈ B(K) be an isometric lifting of T on a Hilbert
space K ⊇ H, that is,

V ∗

i Vj = δi j I and PHVi = Ti PH

for any i, j = 1, . . . , n. Let Y = [Y1, . . . , Yn] with Yi ∈ B(Y) be another row
contraction and let W = [W1, . . . ,Wn] with Wi ∈ B(X) be an isometric lifting of
Y on a Hilbert space X ⊇ Y. In Section 1 we will prove the following commutator
lifting inequality:
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If A ∈ B(Y,H) is a contraction, then there is a contraction B ∈ B(X,K) such
that B∗

|H = A∗ and∥∥Vi B − BWi
∥∥ ≤

√
2

∥∥[T1 A − AY1, . . . , Tn A − AYn]
∥∥1/2

for any i = 1, . . . , n. Moreover,
√

2 is the best possible constant.
In the particular case when Ti A = AYi for every i = 1, . . . , n, the inequal-

ity implies the noncommutative commutant lifting theorem for row contractions
[Popescu 1989b, 1992] (for the classical case n = 1, see [Sz.-Nagy and Foias, 1970;
Foias, and Frazho 1990]). When n = 1, we obtain the Foias,–Frazho–Kaashoek re-
sult [2002a]. In Section 1, we obtain an improved version of the above-mentioned
inequality (Theorem 1.1), which has as consequence a generalization of the non-
commutative commutant lifting theorem (see Section 2) and of the lifting theorem
obtained by Foias,, Frazho, and Kaashoek [2002b].

In the last section of this paper, we use our new lifting theorem to solve the
operator-valued interpolation problems of Schur–Carathéodory type [Schur 1918;
Carathéodory 1907], Nevanlinna–Pick type [Nevanlinna 1919], and Sarason type
[Sarason 1967] on Fock spaces.

To give the reader a flavor of our new interpolation results, we mention (as a
particular case) the scalar Nevanlinna–Pick type interpolation problem for F2(Hn),
the full Fock space with n generators. Let k,m be nonnegative integers and let

Bn :=
{
(λ1, . . . , λn) ∈ Cn

: |λ1|
2
+ · · · + |λn|

2 < 1
}

be the open unit ball of Cn . For {zj }
m
j=1 ⊂ Bn and {wj }

m
j=1 ⊂ C, there exists an

f ∈ F2(Hn) such that

‖ f ‖Pk
≤ 1 and f (zj )= wj , j = 1, . . . ,m,

if and only if [
1

1 − 〈zj , zq〉

]m

j,q=1
≥

[
(1 − 〈zj , zq〉

k+1)wjwq

1 − 〈zj , zq〉

]m

j,q=1
.

Recall that ‖ f ‖Pk
is defined by

‖ f ‖Pk
:= sup

{
‖ f ⊗ p‖ : p ∈ Pk, ‖p‖ ≤ 1

}
,

where Pk is the set of all polynomials of degree ≤ k in the Fock space F2(Hn),
and that

(
F2(Hn), ‖ · ‖Pk

)
is a Banach space. Moreover, if f lies in F2(Hn) and

limk→∞ ‖ f ‖Pk
exists, then f lies in the noncommutative analytic Toeplitz algebra

F∞
n introduced in [Popescu 1991] (see also [1995a; 1995b]). In this case we have

‖ f ‖
∞

= lim
k→∞

‖ f ‖Pk
.
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We remark that, given f ∈ F2(Hn), the evaluation z 7→ f (z) on Bn is a holomorphic
function on the unit ball of Cn (see Section 3). Furthermore, [Arveson 1998] proved
that, when f ∈ F∞

n , the map z 7→ f (z) on Bn is a multiplier of the reproducing
kernel Hilbert space, whose reproducing kernel Kn : Bn × Bn → C is defined by

Kn(z, w) :=
1

1 − 〈z, w〉
Cn

, z, w ∈ Bn.

The above-mentioned interpolation problem is an F2(Hn)-interpolation problem
if k = 0. Setting k → ∞, it implies the Nevanlinna–Pick interpolation problem for
the noncommutative analytic Toeplitz algebra F∞

n , which was solved in [Arias and
Popescu 2000; Popescu 1998] and, independently, in [Davidson and Pitts 1998].
Recently, interpolation problems on the unit ball Bn were also considered in [Arias
and Popescu 1999; Agler and McCarthy 2000; Ball and Bolotnikov 2002; Es-
chmeier and Putinar 2002; Ball et al. 2001; Popescu 2001a; 2001b; 2002a; 2002b;
2003].

In a future paper, we will provide an explicit solution (the central interpolant)
for our multivariable lifting interpolation problem (see Theorem 2.2), show that the
maximal entropy principle [Foias, et al. 1994] is valid in this new setting, and obtain
Kaftal–Larson–Weiss suboptimization type results [Kaftal et al. 1992; Popescu
2002a] on Fock spaces. We will also find explicit solutions for the operator-valued
interpolation problems considered in the present paper.

1. Commutator lifting inequalities

Let Hn be an n-dimensional complex Hilbert space (n can be infinite) with an
orthonormal basis e1, e2, . . . , en . Consider the full Fock space of Hn , defined by

F2(Hn) :=

⊕
k≥0

H⊗k
n ,

where H⊗0
n := C1 and H⊗k

n is the (Hilbert) tensor product of k copies of Hn . For
i = 1, . . . , n, define the left creation operators Si : F2(Hn)→ F2(Hn) by

Siψ := ei ⊗ψ, ψ ∈ F2(Hn).

Let F+
n be the unital free semigroup on n generators g1, . . . , gn and identity g0. The

length of α∈F+
n is defined by |α| :=k if α= gi1 gi2 · · · gik , and |α| :=0 if α= g0. We

set eα :=ei1⊗ei2⊗· · ·⊗eik and eg0 =1. It is clear that
{
eα :α∈F+

n
}

is an orthonormal
basis of F2(Hn). If T1, . . . , Tn ∈ B(H) (the algebra of all bounded linear operators
on the Hilbert space H), we define Tα := Ti1 Ti2 · · · Tik if α = gi1 gi2 · · · gik , and
Tg0 := IH.
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Let us recall from [Frazho 1982; Bunce 1984; Popescu 1989a; 1989b; 1989c] a
few results concerning the noncommutative dilation theory for sequences of oper-
ators (for the classical case n = 1, see [Sz.-Nagy and Foias, 1970]). A sequence of
operators T = [T1, . . . , Tn] with Ti ∈ B(H) is called a row contraction if

T1T ∗

1 + · · · + TnT ∗

n ≤ IH.

We say that a sequence of isometries V =[V1, . . . , Vn] with Vi ∈ B(K) is a minimal
isometric dilation of T on a Hilbert space K ⊇ H if the following properties are
satisfied:

(1) V ∗

i Vj = 0 for all i 6= j , i, j ∈ {1, . . . , n};

(2) V ∗

j |H = T ∗

j for all j = 1, . . . , n;

(3) K =
∨
α∈F+

n
VαH.

If V satisfies only the condition (1) and PHVi = Ti PH for i = 1, . . . , n, then V is
called an isometric lifting of T . The minimal isometric dilation of T is an isometric
lifting and is uniquely determined up to an isomorphism [Popescu 1989b].

Let us consider a canonical realization of such a dilation on Fock spaces. For
convenience of notation, we will sometimes identify the n-tuple T = [T1, . . . , Tn]

with the row operator T = [T1 · · · Tn]. Define the operator

DT :
⊕n

j=1 H →
⊕n

j=1 H by DT :=
(
I
⊕

n
j=1H − T ∗T

)1/2
,

and set
D := DT

(⊕n
j=1 H

)
,

where
⊕n

j=1 H denotes the direct sum of n copies of H. Let Di : H → 1 ⊗ D ⊂

F2(Hn)⊗ D be defined by

Di h := 1 ⊗ DT
(

0, . . . , 0︸ ︷︷ ︸
i−1 times

, h, 0, . . .
)
, i = 1, . . . , n.

Consider the Hilbert space K := H ⊕
(
F2(Hn)⊗ D

)
and define Vi : K → K by

(1-1) Vi (h ⊕ ξ) := Ti h ⊕
(
Di h + (Si ⊗ ID)ξ

)
for any h ∈ H and ξ ∈ F2(Hn)⊗ D. We have

(1-2) Vi =

[
Ti 0
Di Si ⊗ ID

]
with respect to the decomposition K = H⊕

(
F2(Hn)⊗D

)
. In [Popescu 1989b] we

proved that V := [V1, . . . , Vn] is the minimal isometric dilation of T .
The main result of this section is the following lifting inequality in several vari-

ables:
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Theorem 1.1. Let T = [T1, . . . , Tn] with Ti ∈ B(H) be a row contraction and let
V = [V1, . . . , Vn] with Vi ∈ B(K) be an isometric lifting of T on a Hilbert space
K ⊇ H. For i = 1, . . . , n, let Xi ⊆ X be orthogonal subspaces and Ri ∈ B(Xi ,X)

be contractions. If A ∈ B(X,H) is a contraction, then there exists a contraction
B ∈ B(X,K) such that PH B = A and

(1-3)
∥∥Vi B Ri − B|Xi

∥∥ ≤
√

2
∥∥[

T1 AR1 − A|X1 , . . . , Tn ARn − A|Xn

]∥∥1/2

for any i = 1, . . . , n. Moreover,
√

2 is the best possible constant.

Proof. For i = 1, . . . , n, define the operators X i ∈ B(Xi ,H) by X i := Ti ARi and
let X := [X1, . . . , Xn]. Since X is a row contraction, we have∥∥DX

(⊕n
i=1 hi

)∥∥2
=

∥∥DT
(⊕n

i=1 ARi hi
)∥∥2

+
∥∥⊕n

i=1 DA Ri hi
∥∥2

+
∥∥⊕n

i=1 DRi
hi

∥∥2

≥
∥∥DT

(⊕n
i=1 ARi hi

)∥∥2
+

∥∥⊕n
i=1 DA Ri hi

∥∥2

for any hi ∈ Xi , i =1, . . . , n. Since A ∈ B(X,H) is a contraction and the subspaces
Xi are orthogonal, the operator [A|X1, . . . , A|Xn ] is a contraction acting from the
Hilbert space

⊕n
i=1 Xi to H. For i = 1, . . . , n, define the operators Mi ∈ B(Xi ,H)

by Mi := X i − A|Xi and write M := [M1, . . . ,Mn]. Since

(1-4) M = X − [A|X1, . . . , A|Xn ],

it is clear that ‖M‖ ≤ 2. Setting γ := 2‖M‖, we have ‖M∗M‖ ≤ γ and it makes
sense to define the defect operator

DM,γ :=
(
γ I − M∗M

)1/2
∈ B

(⊕n
i=1 Xi

)
.

Note also that

(1-5)
∥∥[A|X1, . . . , A|Xn ]

∗M + M∗
[A|X1, . . . , A|Xn ]

∥∥ ≤ γ.

Taking into account the relations (1-4) and (1-5), we obtain∥∥DX
(⊕n

i=1 hi
)∥∥2

≤
〈(

I − [A|X1, . . . , A|Xn ]
∗
[A|X1, . . . , A|Xn ]

)(⊕n
i=1hi

)
,

⊕n
i=1 hi

〉
+

〈(
γ I − M∗M

)(⊕n
i=1hi

)
,

⊕n
i=1 hi

〉
=

∥∥⊕n
i=1 hi

∥∥2
−

∥∥∑n
i=1 Ahi

∥∥2
+

∥∥DM,γ
(⊕n

i=1 hi
)∥∥2

=
∥∥DA

(∑n
i=1hi

)∥∥2
+

∥∥DM,γ
(⊕n

i=1 hi
)∥∥2

for any hi ∈Xi , i =1, . . . , n. The latter equality is due to the fact that the subspaces
Xi are orthogonal and A is a contraction. Now, putting together the two inequalities
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for DX , we obtain∥∥∥∥[
[DA|X1, . . . , DA|Xn ]

DM,γ

] (⊕n
i=1 hi

)∥∥∥∥ ≥

∥∥∥∥[
DT

(⊕n
i=1 ARi

)⊕n
i=1 DA Ri

] (⊕n
i=1 hi

)∥∥∥∥
for any hi ∈ Xi , i = 1, . . . , n. Hence, by using Douglas’ factorization theorem,
we infer that there is a contraction[

C E
Z F

]
: DA ⊕

(⊕n
i=1 Xi

)
→ DT ⊕

(⊕n
i=1 DA

)
such that [

C E
Z F

] [
[DA|X1, . . . , DA|Xn ]

DM,γ

]
=

[
DT

(⊕n
i=1 ARi

)⊕n
i=1 DA Ri

]
.

The operator C ∈ B(DA,DT ) satisfies the equation

(1-6) C
[
DA|X1, . . . , DA|Xn

]
+ E DM,γ = DT

(⊕n
i=1 ARi

)
,

while the operator Z ∈ B
(
DA,

⊕n
i=1 DA

)
satisfies

(1-7) Z
[
DA|X1, . . . , DA|Xn

]
+ F DM,γ =

⊕n
i=1 DA Ri .

The equality (1-6) implies

(1-8) C DAhi + E DM,γ,i hi = Di ARi hi , hi ∈ Xi ,

where DM,γ,i : Xi →
⊕n

i=1 Xi is the i-th column of the operator matrix of DM,γ .
Setting Z = [Z1 · · · Zn]

tr
: DA →

⊕n
i=1 DA, Equation (1-7) implies

Z j DAhi + Pj F DM,γ,i hi = δi j DA Ri hi , hi ∈ Xi ,

for any i, j = 1, . . . , n, where Pj denotes the orthogonal projection of
⊕n

i=1 DA
onto the j-th component. In particular, if i = j , we get

(1-9) Zi DAhi + Pj F DM,γ,i hi = DA Ri hi , hi ∈ Xi .

Since [C Z1 · · · Zn]
tr

: DA → DT ⊕
(⊕n

i=1 DA

)
is a contraction, one can prove

that the operator 3 : DA → F2(Hn)⊗ DT defined by

3h :=

∞∑
k=0

∑
|α|=k

eα⊗ C Z α̃h, h ∈ DA,

is also a contraction, where α̃ stands for the reverse of α = gi1 gi2 · · · gik ∈ F+
n , that

is, α̃ = gik · · · gi2 gi1 . Indeed, since

(1-10) ‖Ch‖
2

+

n∑
i=1

‖Zi h‖
2

≤ ‖h‖
2, h ∈ DA,
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we can replace h with Z j h in (1-10) and, summing up over j = 1, . . . , n, we get

n∑
j=1

‖C Z j h‖
2

≤

n∑
j=1

‖Z j h‖
2

−

n∑
i=1

n∑
j=1

‖Zi Z j h‖
2.

Similarly, we obtain

(1-11)
∑
|α|=k

‖C Zαh‖
2

≤

∑
|α|=k

‖Zαh‖
2

−

∑
|β|=k+1

‖Zβh‖
2.

Summing up the inequalities (1-11) for k = 0, 1, . . . ,m, we obtain

m∑
k=0

∑
|α|=k

‖C Zαh‖
2

≤ ‖h‖
2

−

∑
|β|=m+1

‖Zβh‖
2

≤ ‖h‖
2,

which proves that 3 is a contraction. Now, we define the operator

B : H → H ⊕
(
F2(Hn)⊗ DT

)
by B :=

[
A

3DA

]
.

We will prove that the contraction B has the required properties. Assume now that
[V1, . . . , Vn] is the minimal isometric dilation of [T1, . . . , Tn]. Since

(1-12) Bh = Ah ⊕
(∑

α∈F+
n

eα ⊗ C Z α̃DAh
)
, h ∈ X,

by taking into account the Fock space realization of the minimal isometric dilation
of T , we obtain

Vi B Ri hi = Vi
(

ARi hi ⊕
∑

α∈F+
n

eα ⊗ C Z α̃DA Ri hi
)

= Ti ARi hi ⊕
(
1 ⊗ Di ARi hi +

∑
α∈F+

n
egiα ⊗ C Z α̃DA Ri hi

)
for any hi ∈ Xi , i = 1, . . . , n. Hence, by using relation (1-12) again, we get

Vi B Ri hi − Bhi =

(Ti ARi−A)hi⊕

(
1 ⊗ (Di ARi−C DA)hi +

∑
α∈F+

n

egiα ⊗ (C Z α̃DA Ri−C Z α̃gi DA)hi

)
.

Using relations (1-4), (1-8), and (1-9), we obtain

Vi B Ri hi − Bhi = Mi hi ⊕
(
1 ⊗ E DM,γ,i hi +

∑
α∈F+

n
egiα ⊗ C Z α̃Pi F DM,γ,i hi

)
for any hi ∈ Xi , i = 1, . . . , n. We deduce

‖Vi B Ri hi − Bhi‖
2

= ‖Mi hi‖
2

+ ‖E DM,γ,i hi‖
2

+
∑

α∈F+
n

‖C Z α̃Pi F DM,γ,i hi‖
2
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for any hi ∈ Xi , i = 1, . . . , n. Since 3 and
[ E

F

]
are contractions, we obtain

‖Vi B Ri hi − Bhi‖
2

≤ ‖Mi hi‖
2

+ ‖E DM,γ,i hi‖
2

+ ‖Pi F DM,γ,i hi‖
2

≤ ‖Mi hi‖
2

+ ‖E DM,γ,i hi‖
2

+ ‖F DM,γ,i hi‖
2

≤ ‖Mi hi‖
2

+ ‖DM,γ,i hi‖
2

= ‖[M1, . . . ,Mn]k‖
2

+ ‖DM,γ k‖
2

= γ ‖hi‖
2

for any hi ∈ Xi . Here, k :=
⊕n

j=1 kj with ki := hi and kj := 0 if j 6= i . Therefore,

‖Vi B Ri − B|Xi ‖ ≤
√
γ

for any i = 1, . . . , n, which proves inequality (1-3).
Now, assume that [V1, . . . , Vn] is an arbitrary isometric lifting of [T1, . . . , Tn].

The subspace K0 :=
∨
α∈F+

n
VαH is reducing under each isometry V1, . . . , Vn , and

[V1|K0, . . . , Vn|K0] coincides with the minimal isometric dilation of [T1, . . . , Tn].
Applying the first part of the proof, we find a contraction B0 ∈ B(X,K0) such that
PH B0 = A and

(1-13)
∥∥(Vi |K0)B0 Ri − B0|Xi

∥∥ ≤
√
γ

for any i = 1, . . . , n. Define B ∈ B(X,K) by setting Bh := B0h for h ∈ X. Observe
that

Vi B Ri − B|Xi = (Vi |K0)B0 Ri − B0|Xi , i = 1, . . . , n,

and use inequality (1-13). To complete the proof, notice that the constant
√

2 is
the best possible in (1-3), since we get equality for some simple examples. �

We can now prove the commutator lifting inequality announced in the introduc-
tion.

Theorem 1.2. Let T = [T1, . . . , Tn] with Ti ∈ B(H) be a row contraction and let
V = [V1, . . . , Vn] with Vi ∈ B(K) be an isometric lifting of T on a Hilbert space
K ⊇ H. Let Y = [Y1, . . . , Yn] with Yi ∈ B(Y) be another row contraction and let
W = [W1, . . . ,Wn] with Wi ∈ B(X) be an isometric lifting of Y on a Hilbert space
X ⊇ Y. If A ∈ B(Y,H) is a contraction, then there is a contraction B ∈ B(X,K)

such that B∗
|H = A∗ and

(1-14) ‖Vi B − BWi‖ ≤
√

2
∥∥[T1 A − AY1, . . . , Tn A − AYn]

∥∥1/2

for any i = 1, . . . , n. Moreover,
√

2 is the best possible constant.

Proof. Define the contraction Ã : X → H by setting

Ã|Y = A and Ã|X	Y = 0.
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For each i = 1, . . . , n, set Xi := Wi X and define the operator Ri : Xi → X by
Ri := W ∗

i |Xi . Since W1, . . . ,Wn are isometries with orthogonal subspaces, it is
clear that the subspaces Xi are pairwise orthogonal and that Ri are contractions.
Applying Theorem 1.1 to the contraction Ã, we find a contraction B : X → K such
that PH B = Ã and

‖Vi B − BWi‖ = ‖Vi B Ri Wi − BWi‖ ≤ ‖Vi B Ri − B|Hi ‖

≤
√

2
∥∥[T1 ÃR1 − Ã|X1, . . . , Tn ÃRn − Ã|Xn ]

∥∥1/2

=
√

2
∥∥[T1 Ã − ÃW1, . . . , Tn Ã − ÃWn]

∥∥1/2

for any i = 1, . . . , n. The latter equality is due to the fact that [W1, . . . ,Wn] is a
row isometry. Therefore, we have

(1-15) ‖Vi B − BWi‖ ≤
√

2
∥∥[T1 Ã − ÃW1, . . . , Tn Ã − ÃWn]

∥∥1/2

for any i = 1, . . . , n. Notice that B∗
|H = A∗. Moreover, since [W1, . . . ,Wn] is an

isometric lifting of [Y1, . . . , Yn] and Ã|X	Y = 0, we have

(Ti Ã − ÃWi )y = Ti Ay − Ã(PY + PX	Y)Wi y = Ti Ay − ÃPYWi y

= (Ti A − ÃYi )y

for any y ∈ Y and i = 1, . . . , n. On the other hand, we have (Ti Ã − ÃWi )x = 0
for any x ∈ X 	 Y. Therefore

Ti Ã − ÃWi = [Ti A − AYi , 0], i = 1, . . . , n,

with respect to the orthogonal decomposition X = Y ⊕ (X 	 Y). Using (1-15), we
deduce the inequality (1-14). The proof is complete. �

We remark that if one does not require the operator A to be a contraction in
Theorem 1.2, then we can find an operator B with the properties that ‖B‖ = ‖A‖,
that B∗

|H = A∗, and that

‖Vi B − BWi‖ ≤
√

2 ‖A‖
1/2 ∥∥[T1 A − AY1, . . . , Tn A − AYn]

∥∥1/2

for any i = 1, . . . , n.

2. New lifting theorems in several variables

For i = 1, . . . , n, let Yi ∈ B(Y) and Ti ∈ B(H) be operators such that Y :=

[Y1, . . . , Yn] and T := [T1, . . . , Tn] are row contractions. Let W = [W1, . . . ,Wn]

be an isometric lifting of Y on a Hilbert space X ⊇ Y, and V = [V1, . . . , Vn] be an
isometric lifting of T on a Hilbert space K ⊇ H. Let A ∈ B(Y,H) be an operator
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satisfying AYi = Ti A for i = 1, . . . , n. An intertwining lifting of A is an operator
B ∈ B(X,K) satisfying PH B = APY and BWi = Vi B for i = 1, . . . , n.

The noncommutative commutant lifting theorem for row contractions [Popescu
1989b; 1992] (for the classical case n = 1, see [Sz.-Nagy and Foias, 1968; Foias,
and Frazho 1990]) states that, if A ∈ B(Y,H) is an operator satisfying

AYi = Ti A, i = 1, . . . , n,

then there exists an operator B ∈ B(X,K) with the following properties:

(1) BWi = Vi B for any i = 1, . . . , n;

(2) B∗
|H = A∗;

(3) ‖B‖ = ‖A‖.

The noncommutative commutant lifting theorem for row contractions is a conse-
quence of the commutator lifting inequality obtained in Theorem 1.2.

We present a new multivariable lifting theorem, which is a simple consequence
of Theorem 1.1.

Theorem 2.1. Let T = [T1, . . . , Tn] with Ti ∈ B(H) be a row contraction and let
V = [V1, . . . , Vn] with Vi ∈ B(K) be an isometric lifting of T on a Hilbert space
K⊇H. Let Xi ⊆X with i =1, . . . , n be orthogonal subspaces and let Ri ∈ B(Xi ,X)

be contractions. If A ∈ B(X,H) is such that

Ti ARi = A|Xi

for i = 1, . . . , n, then there exists an operator B ∈ B(X,K) such that PH B = A,
‖B‖ = ‖A‖, and

Vi B Ri = B|Xi

for any i = 1, . . . , n.

A very useful equivalent form of Theorem 2.1 is

Theorem 2.2. Let T = [T1, . . . , Tn] with Ti ∈ B(H) be a row contraction and
let V = [V1, . . . , Vn] with Vi ∈ B(K) be an isometric lifting of T on a Hilbert
space K ⊇ H. Let Qi ∈ B(Gi ,X) be operators with orthogonal ranges and let
Ci ∈ B(Gi ,X) be such that C∗

i Ci ≤ Q∗

i Qi for i = 1, . . . , n. If A ∈ B(X,H) is such
that, for any i = 1, . . . , n,

(2-1) Ti ACi = AQi

then there is an operator B ∈ B(X,K) such that PH B = A, ‖B‖ = ‖A‖, and

(2-2) Vi BCi = B Qi

for any i = 1, . . . , n.
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Proof. Since C∗

i Ci ≤ Q∗

i Qi for any i = 1, . . . , n, there exist some contractions
Ri : Qi Gi → X such that Ci = Ri Qi , i = 1, . . . , n. Set Xi := Qi Gi and notice that
Xi ⊥ Xj if i 6= j . Relation (2-1) is equivalent to Ti ARi = A|Xi for any i = 1, . . . , n,
while relation (2-2) is equivalent to Vi B Ri = B|Xi for any i = 1, . . . , n. Using
Theorem 2.1, we can complete the proof. �

Let us show that Theorem 2.2 implies Theorem 2.1. Indeed, write Gi := Xi ,
Ri := Ci , and Qi := IX|Xi , i = 1, . . . , n. Applying Theorem 2.2, the implication
follows.

As in the classical case, the general setting of the noncommutative commutant
lifting theorem can be reduced to the case when Y = [Y1, . . . , Yn] is a row isom-
etry (see [Popescu 2003]). Notice that Theorem 2.2 implies the noncommutative
commutant lifting theorem. Indeed, it is enough to consider Gi := X, Ci := IX, and
Qi := Yi ∈ B(X) for each i = 1, . . . , n, where Y = [Y1, . . . , Yn] is a row isometry.

Applications of Theorem 2.2 to interpolation on Fock spaces and the unit ball
of Cn will be considered in the next section.

3. Norm constrained interpolation problems on Fock spaces

We say that a bounded linear operator M ∈ B
(
F2(Hn)⊗ K, F2(Hn)⊗ K′

)
is mul-

tianalytic if

(3-1) M(Si ⊗ IK)= (Si ⊗ IK′)M for any i = 1, . . . , n.

Note that M is uniquely determined by the operator θ :K→ F2(Hn)⊗K′ defined by
θh := M(1⊗h) for h ∈ K. The operator θ is called the symbol of M . We denote M
by Mθ . Moreover, Mθ is uniquely determined by the “coefficients” θ(α) ∈ B(K,K′)

given by

(3-2) 〈θ(α̃)h, h′
〉 := 〈θh, eα ⊗ h′

〉 = 〈Mθ (1 ⊗ h), eα ⊗ h′
〉,

where h ∈ K, h′
∈ K′, α ∈ F+

n , and α̃ is the reverse of α. Note that∑
α∈F+

n

θ∗

(α)θ(α) ≤ ‖Mθ‖
2 IK.

We can associate to Mθ a unique formal Fourier expansion

(3-3) Mθ ∼

∑
α∈F+

n

Rα ⊗ θ(α),

where Ri , for i = 1, . . . , n, are the right creation operators on the full Fock space
F2(Hn). For simplicity, since Mθ acts like its Fourier representation on “polyno-
mials”, we will identify the two. The set of all multianalytic operators acting from
F2(Hn) ⊗ K to F2(Hn) ⊗ K′ coincides with R∞

n ⊗ B(K,K′), where R∞
n is the
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weakly closed algebra generated by the identity and the right creation operators
on the full Fock space. A multianalytic operator Mθ (respectively, its symbol θ )
is called inner if Mθ is an isometry. More about multianalytic operators on Fock
spaces can be found in [Popescu 1989a; 1989d; 1991; 1995a; 1995b].

We remark that, in general, if θ : K → F2(Hn)⊗K′ is a bounded operator (which
is equivalent to the weak convergence of the series

∑
α∈F+

n
θ∗

(α)θ(α)), then the linear
map Mθ uniquely determined by relations (3-2) and (3-1) is not a bounded operator.
However, for each k = 0, 1, . . ., the restriction of Mθ to Pk ⊗ K, that is, to the set
of all polynomials of degree ≤ k, is a bounded operator acting from Pk ⊗ K to
F2(Hn)⊗ K′. We define the Pk-norm of Mθ by

‖Mθ‖Pk
:= sup

{
‖Mθ q‖ : q ∈ Pk ⊗ K and ‖q‖ ≤ 1

}
.

It is easy to see that ‖Mθ‖Pk
≤ ‖Mθ‖Pk+1

. Observe that Mθ is a multianalytic
operator if and only if θ ∈ B

(
K, F2(Hn)⊗ K′

)
and the sequence

{
‖Mθ‖Pk

}∞

k=0
converges as k → ∞. In this case, we have

‖Mθ‖ = lim
k→∞

‖Mθ‖Pk
.

For i = 1, . . . , n, define the operators Ci and Qi from Pk−1 ⊗ K to Pk ⊗ K by

(3-4) Ci := IPk⊗K|Pk−1⊗K, and Qi := PPk⊗K(Si ⊗ IK)|Pk−1⊗K,

where PPk⊗K is the orthogonal projection from F2(Hn)⊗ K onto Pk ⊗ K.
We recall that the invariant subspaces under the operators S1 ⊗ IK′, . . . , Sn ⊗ IK′

(K′ is a Hilbert space) were characterized in [Popescu 1989a]. The next lifting
theorem will play an important role in our investigation.

Theorem 3.1. Let H ⊂ F2(Hn)⊗K′ be an invariant subspace under each operator
S∗

i ⊗ IK′ , for i = 1, . . . , n, and let A : Pk ⊗ K → H be a bounded operator. Let

(3-5) Ti := PH(Si ⊗ IK′)|H, i = 1, . . . , n,

and let Ci , Qi be the operators defined by relation (3-4). There exists an operator
θ ∈ B

(
K, F2(Hn)⊗ K′

)
such that

(3-6) PH Mθ |Pk⊗K = A and ‖Mθ‖Pk
≤ 1

if and only if ‖A‖ ≤ 1 and Ti ACi = AQi for any i = 1, . . . , n.

Proof. Note first that relation (3-5) implies that

(3-7) PH(Si ⊗ IK′)= Ti PH, i = 1, . . . , n,

This shows that [S1 ⊗ IK′, . . . , Sn ⊗ IK′] is an isometric lifting of [T1, . . . , Tn].
Assume that relation (3-6) holds. Because of the definitions of the operators Mθ ,Ci
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and Qi , we have

(3-8) (Si ⊗ IK′)(Mθ |Pk⊗K)Ci = (Mθ |Pk⊗K)Qi , i = 1, . . . , n.

Using relations (3-7) and (3-8), we obtain

Ti ACi = Ti (PH Mθ |Pk⊗K)Ci = PH(Si ⊗ IK′)(Mθ |Pk⊗K)Ci

= PH(Mθ |Pk⊗K)Qi = AQi

for any i = 1, . . . , n. It is clear that ‖A‖ ≤ 1.
Conversely, assume that A : Pk ⊗ K → H is a contraction such that Ti ACi =

AQi for any i = 1, . . . , n. According to Theorem 2.2, there exists an operator
B : Pk ⊗ K → F2(Hn)⊗ K′ such that ‖B‖ = ‖A‖, PH B = A, and

(3-9) (Si ⊗ IK′)BCi = B Qi , i = 1, . . . , n.

If B : Pk ⊗ K → F2(Hn)⊗ K′ is a bounded operator, then there is an operator
θ ∈ B

(
K, F2(Hn)⊗ K′

)
such that we have B = Mθ |Pk⊗K if and only if relation

(3-9) holds. This completes the proof. �

The next result is a Sarason-type interpolation theorem [Sarason 1967] on Fock
spaces, which generalizes the corresponding result for the noncommutative ana-
lytic Toeplitz algebra F∞

n that was obtained by Arias and the author in [Arias and
Popescu 2000; Popescu 1998], as well as in [Davidson and Pitts 1998].

Theorem 3.2. Let ϕ ∈ B
(
K, F2(Hn)⊗ K′

)
and let Mθ ∈ R∞

n ⊗ B(E,K′) be an
inner multianalytic operator. There exists ψ ∈ B

(
K, F2(Hn)⊗ E

)
such that

‖Mϕ − MθMψ‖Pk
≤ 1

if and only if the operator A := PH Mϕ|Pk⊗K is a contraction, where H is the sub-
space

H :=
(
F2(Hn)⊗ K′

)
	 Mθ

(
F2(Hn)⊗ E

)
.

Proof. First, note that if f = ϕ − Mθψ for some ψ ∈ B
(
K, F2(Hn)⊗ E

)
, then

Mϕ p − Mf p = MθMψ p for any polynomial p ∈ Pk ⊗ K. Hence,

A = PH Mϕ|Pk⊗K = PH M f |Pk⊗K

and
‖A‖ ≤ ‖Mf ‖Pk

= ‖Mϕ − MθMψ‖Pk
.

Therefore, we have

(3-10) ‖A‖ ≤ inf
{
‖Mϕ − MθMψ‖Pk

: ψ ∈ B
(
K, F2(Hn)⊗ E

)}
.

Let us prove that we have equality in (3-10). According to [Popescu 1989a], the
subspace H is invariant under each operator S∗

i ⊗ IK′ , for i = 1, . . . , n. For i =
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1, . . . , n, let Ti := PH(Si ⊗ IK′)|H and note that [S1 ⊗ IK′, . . . , Sn ⊗ IK′] is an
isometric lifting of [T1, . . . , Tn]. A straightforward calculation shows that

Ti ACi = Ti PH MϕCi = PH(Si ⊗ IK′)MϕCi

= PH Mϕ(Si ⊗ IK′)Ci = A(Si ⊗ IK′)Ci

= AQi

for any i = 1, . . . , n. Now, using Theorem 3.1, we find f ∈ B
(
K, F2(Hn)⊗ K′

)
such that A = PH Mf |Pk⊗K and ‖Mf ‖Pk

= ‖A‖. Since PH(Mϕ − Mf )|Pk⊗K = 0,
there exists ψ ∈ B

(
K, F2(Hn)⊗ E

)
such that ϕ− f = Mθψ . Hence,

‖A‖ = ‖Mf ‖Pk
= ‖Mϕ − Mθψ‖Pk

,

which proves that equality holds in (3-10). This completes the proof. �

Corollary 3.3. Under the hypotheses of Theorem 3.2, we have

min
{
‖Mϕ − MθMψ‖Pk

: ψ ∈ B
(
K, F2(Hn)⊗ E

)}
= ‖A‖,

where A := PH Mϕ|Pk⊗K.

We can now extend the Schur–Carathéodory interpolation result [Carathéodory
1907; Schur 1918; Popescu 1995b] to Fock spaces.

Theorem 3.4. Let k,m be nonnegative integers and let2 :=
∑

|α|≤m Rα⊗θ(α) with
θ(α) ∈ B(K,K′). There exists an operator φ ∈ B

(
K, F2(Hn)⊗ K′

)
such that

(3-11) ‖Mφ‖Pk
≤ 1 and θ(α) = φ(α) whenever |α| ≤ m

if and only if {
‖PPm⊗K′2|Pk⊗K‖ ≤ 1 if k ≤ m,

‖PPm⊗K′2|Pm⊗K‖ ≤ 1 if k > m.

Proof. Let H := Pk ⊗K′. The subspace H is invariant under each operator S∗

i ⊗ IK′

for i = 1, . . . , n. Let

Ti := PH(Si ⊗ IK′)|H, i = 1, . . . , n.

Since 2(Si ⊗ IK)= (Si ⊗ IK′)2 for any i = 1, . . . , n, a straightforward calculation
shows that

(3-12) Ti ACi = AQi , i = 1, . . . , n,

where the operator A : Pk ⊗ K → H is defined by

(3-13) A :=

{
PPm⊗K′2|Pk⊗K if k ≤ m

PPm⊗K′2|Pm⊗K if k > m.
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Note that (3-11) is equivalent to the existence of an operator φ∈ B
(
K, F2(Hn)⊗K′

)
such that

PH Mφ|Pk⊗K = A and
∥∥Mφ|Pk⊗K

∥∥ ≤ 1.

One can now apply Theorem 3.1 and complete the proof. �

Corollary 3.5. Let k,m be nonnegative integers and let2=
∑

|α|≤m Rα⊗θ(α) with
θ(α) ∈ B(K,K′). We have

min
{
‖Mφ‖Pk

: φ ∈ B
(
K, F2(Hn)⊗ K′

)
, θ(α) = φ(α) if |α| ≤ m

}
= ‖A‖,

where the operator A is defined by (3-13).

In what follows, we present the left tangential Nevanlinna–Pick interpolation
problem with operatorial argument for B

(
H, F2(Hn)⊗ K

)
.

As in [Popescu 1989c], the spectral radius associated with a sequence Z =

(Z1, . . . , Zn) of operators Zi ∈ B(Y) is given by

r(Z) := lim
k→∞

∥∥∑
|α|=k ZαZ∗

α

∥∥1/2k
= inf

k→∞

∥∥∑
|α|=k ZαZ∗

α

∥∥1/2k .

Note that if Z1 Z∗

1 +· · ·+ Zn Z∗
n < r IY with 0< r < 1, then r(Z) < 1. Any element

ψ ∈ B
(
H, F2(Hn)⊗ Y

)
has a unique representation ψh :=

∑
α∈F+

n
eα ⊗ A(α)h for

some operators A(α) ∈ B(H,Y). Therefore,

Mψ ∼

∑
α∈F+

n

Rα̃ ⊗ A(α)

and ‖ψ‖
2
=

∥∥∑
α∈F+

n
A∗

(α)A(α)
∥∥. If r(Z)<1, it makes sense to define the evaluation

of ψ at (Z1, . . . , Zn) by setting

(3-14) ψ(Z1, . . . , Zn) :=

∞∑
k=0

∑
|α|=k

Z α̃A(α),

where α̃ is the reverse of α. Using the fact that the spectral radius of Z is strictly
less than 1, one can prove the norm convergence of the series (3-14). Indeed, it is
enough to observe that∥∥∑

|α|=k Z α̃A(α)
∥∥ ≤

∥∥∑
|α|=k ZαZ∗

α

∥∥1/2∥∥∑
|α|=k A∗

(α)A(α)
∥∥1/2

≤ ‖ f ‖
∥∥∑

|α|=k ZαZ∗
α

∥∥1/2
.

Given C ∈ B(H,Y), we define W
{Z ,C}

: F2(Hn)⊗ H → Y, the controllability
operator associated with {Z ,C}, by setting

W
{Z ,C}

(∑
α∈F+

n
eα ⊗ hα

)
:=

∑
∞

k=0
∑

|α|=k ZαChα.
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Since r(Z) < 1, note that W
{Z ,C}

is a well-defined bounded operator. We call the
positive operator G

{Z ,C}
:= W

{Z ,C}
W ∗

{Z ,C}
the controllability grammian for {Z ,C}.

It is easy to see that

(3-15) G
{Z ,C}

=

∞∑
k=0

∑
|α|=k

ZαCC∗Z∗

α,

where the series converges in norm. As in the classical case (n = 1), we say that the
pair {Z ,C} is controllable if its grammian G

{Z ,C}
is strictly positive. We remark

that X = G
{Z ,C}

is the unique positive solution of the Lyapunov equation

(3-16) X =

n∑
i=1

Zi X Z∗

i + CC∗.

For any nonnegative integer k, we define W
{Z ,C,k}

: Pk ⊗H → Y, the k-control-
ability operator associated with {Z ,C}, by setting

W
{Z ,C,k}

( ∑
|α|≤k

eα ⊗ hα
)

:=

k∑
p=0

∑
|α|=p

ZαChα.

The corresponding Grammian is G
{Z ,C,k}

:= W
{Z ,C,k}

W ∗

{Z ,C,k}
.

Let H, K, and Yi , with i =1, . . . ,m, be Hilbert spaces and consider the operators

Bj : K → Yj , Cj : H → Yj , j = 1, . . . ,m(3-17)

Z j := [Z j,1, . . . , Z j,n] :
⊕n

i=1 Yj → Yj , j = 1, . . . ,m,(3-18)

such that r(Z j ) < 1 for any j = 1, . . . ,m. Given a nonnegative integer k, the left
tangential Nevanlinna–Pick interpolation problem with operatorial argument for
B

(
H, F2(Hn)⊗ K

)
is to find φ ∈ B

(
H, F2(Hn)⊗ K

)
such that ‖Mφ‖Pk

≤ 1 and

(3-19) [I ⊗ Bj )φ](Z j )= Cj , j = 1, . . . ,m.

Theorem 3.6. Given two nonnegative integers k,m, the left tangential Nevanlinna–
Pick interpolation problem, with operatorial argument and data Z j , Bj , and Cj ,
j = 1, . . . ,m, has a solution in B

(
H, F2(Hn)⊗ K

)
if and only if

(3-20)

[
∞∑

p=0

∑
|α|=p

Z j,αBj B∗

i Z∗

i,α

]m

i, j=1

≥

[ ∑
|α|≤k

Z j,αCj C∗

i Z∗

i,α

]m

i, j=1

.

Proof. Define the following operators

B :=

 B1
...

Bm

 : K →
⊕m

j=1 Yj , C :=

C1
...

Cm

 : H →
⊕m

j=1 Yj ,
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and Y := [Y1, . . . , Yn], where Yi is the diagonal operator defined by

Yi :=


Z1,i 0 0
0 Z2,i 0
...

...
...

0 0 Zm,i

 :
⊕m

j=1 Yj →
⊕m

j=1 Yj ,

for each i = 1, . . . , n. Since r(Y ) < 1 and Mφ ∼
∑

α∈F+
n

Rα̃ ⊗ A(α), note that

(3-21) [I ⊗ B)φ](Y )= C

if and only if
∞∑

p=0

∑
|α|=p

Z j,α̃Bj A(α) = Cj ,

for j = 1, . . . ,m. Therefore, relation (3-19) is equivalent to relation (3-21). On
the other hand, a straightforward computation on the elements of the form eβ ⊗ h,
h ∈ H and β ∈ F+

n shows that relation (3-21) holds if and only if

(3-22) W
{Y,B}

Mφ|Pk⊗H = W
{Y,C,k}

.

Now, another calculation reveals that

W
{Y,B}

W ∗

{Y,B}
− W

{Y,C,k}
W ∗

{Y,C,k}
=

∞∑
p=0

∑
|α|=p

YαB B∗Y ∗

α −

k∑
p=0

∑
|α|=p

YαCC∗Y ∗

α ,

where W
{Y,B}

and W
{Y,C,k}

are the controllability operators associated with {Y, B}

and {Y,C}, respectively. The inequality (3-20) holds if and only if

(3-23) W
{Y,B}

W ∗

{Y,B}
− W

{Y,C,k}
W ∗

{Y,C,k}
≥ 0.

Using the definitions of the controlability operators, we deduce that

W
{Y,B}

(Si ⊗ IK)= Yi W{Y,B}
,(3-24)

W
{Y,C,k}

(Si ⊗ IH)|Pk−1⊗H = Yi W{Y,C,k}
|Pk−1⊗H,(3-25)

for i = 1, . . . , n. It is easy to see that if relation (3-22) holds and
∥∥Mφ|Pk⊗H

∥∥ ≤ 1,
then the inequality (3-23) holds.

Conversely, assume that inequality (3-23) holds. Then there exists a contraction

3 : range W ∗

{Y,B}
→ Pk ⊗ H

such that 3W ∗

{Y,B}
= W ∗

{Y,C,k}
. Since W ∗

{Y,B}
Y ∗

i = (S∗

i ⊗ IK)W ∗

{Y,B}
for i = 1, . . . , n,

it is clear that the subspace H′
:= range W ∗

{Y,B}
is invariant under each operator
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S∗

i ⊗ IK, i = 1, . . . , n. Let

(3-26) Ti := PH′(Si ⊗ IK)|H′, i = 1, . . . , n,

and denote A :=3∗
: Pk ⊗ H → H. Note that

(3-27) W
{Y,B}

A = W
{Y,C,k}

.

We claim that

(3-28) Ti ACi = AQi , i = 1, . . . , n,

where

Ci := IPk⊗H|Pk−1⊗H and Qi := PPk⊗H(Si ⊗ IH)|Pk−1⊗H

for i = 1, . . . , n. Indeed, using relations (3-26), (3-27), (3-24), and (3-25), we
obtain

W
{Y,B}

Ti ACi = W
{Y,B}

PH′(Si ⊗ IK)ACi = W
{Y,B}

(Si ⊗ IK)ACi

= Yi W{Y,B}
ACi = Yi W{Y,C,k}

Ci

= W
{Y,C,k}

(Si ⊗ IH)|Pk−1⊗H = W
{Y,B}

AQi

for i = 1, . . . , n. Since W
{Y,B}

|H′ is one-to-one, we get relation (3-28). According
to Theorem 3.1, there exists φ ∈ B

(
H, F2(Hn)⊗ K

)
such that ‖Mφ‖Pk

≤ 1 and

(3-29) PH′ Mφ|Pk⊗H = A.

Using (3-27), it is easy to see that (3-29) implies (3-22). This completes the proof.
�

Now, assume that {Z , B} is controlable, that is, its grammian G{Z ,B} is strictly
positive. It easy to see that the operator A in the proof of Theorem 3.6 has an
explicit formula given by

(3-30) A := W ∗

{Z ,B}
G−1

{Z ,B}
G

{Z ,C,k}
.

Corollary 3.7. Under the conditions of Theorem 3.6 and assuming that {Z , B} is
controlable, we have

min
{
‖Mφ‖Pk

: φ ∈ B
(
H, F2(Hn)⊗ K

)
, [I ⊗ Bj )φ](Z j )= Cj

}
= ‖A‖,

where the operator A is defined by Equation (3-30).

As a consequence of Theorem 3.6, we can obtain the following left tangential
Nevanlinna–Pick interpolation problem in the unit ball of Cn , which extends the
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corresponding results for the noncommutative analytic Toeplitz algebra F∞
n (see

[Arias and Popescu 2000; Popescu 1998; 2003; Davidson and Pitts 1998]).

Corollary 3.8. Let zj := (zj,1, . . . , zj,n) for j = 1, . . . ,m be distinct points in Bn ,
the open unit ball of Cn , and let Bj ∈ B(K,Yj ) and Cj ∈ B(H,Yj ), j = 1, . . . ,m,
be bounded operators. Given a nonnegative integer k, there exists an operator
θ ∈ B

(
H, F2(Hn)⊗ K

)
such that

‖Mθ‖Pk ≤ 1 and Bjθ(zj )= Cj , j = 1, . . . ,m,

if and only if [ Bj B∗
q

1 − 〈zj , zq〉

]m

j,q=1
≥

[
(1 − 〈zj , zq〉

k+1)Cj C∗
q

1 − 〈zj , zq〉

]m

j,q=1
.

Proof. For any j, q = 1, . . . ,m, we have∑
α∈F+

n

z j,α z̄q,α =
1

1 − 〈zj , zq〉
.

In Theorem 3.6, consider the particular case when Z j,i := zj,i IYj for j = 1, . . . ,m
and i = 1, . . . , n. A simple computation shows that

G
{Z ,B}

=

[ ∑
α∈F+

n

z j,α z̄q,αBj B∗

q

]m

j,q=1
=

[ Bj B∗
q

1 − 〈zj , zq〉

]m

j,q=1
.

Hence, we have

G
{Z ,B}

− G
{Z ,C,k}

=

[ ∞∑
p=0

∑
|α|=p

Z j,αBj B∗

q Z∗

q,α

]m

j,q=1
−

[ ∑
|α|≤k

Z j,αCj C
∗

q Z∗

q,α

]m

j,q=1

=

[ Bj B∗
q

1 − 〈zj , zq〉

]m

j,q=1
−

[
(1 − 〈zj , zq〉

k+1)Cj C
∗
q

1 − 〈zj , zq〉

]m

j,q=1
.

Now, applying Theorem 3.6, we complete the proof. �

We remark that the evaluation z 7→θ(z) on Bn is an operator-valued holomorphic
function on the unit ball of Cn .
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