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Given a foliation F of a closed 3-manifold and a Smale flow φ transverse to
F, we associate a “simplest” branched surface with the pair (F, φ), which
is unique up to two combinatorial moves. We show that all branched sur-
faces constructed from F and φ can be obtained from the simplest model
by applying a finite sequence of these moves chosen so that each interme-
diate branched surface also carries F. This is used to partition foliations
transverse to the same flow into countably many equivalence classes.

Introduction

In this paper we study branched surfaces constructed from transversely orientable
foliations of closed orientable Riemannian 3-manifolds.

From the time of their introduction by Bob Williams [1969], branched manifolds
have been powerful tools in the study of the dynamical systems, foliations and
laminations. The one-dimensional case, branched 1-manifolds or train tracks, was
introduced earlier to study Anosov diffeomorphisms [Williams 1970] and was used
by Thurston [1988] to describe the dynamics of surface automorphisms. Branched
surfaces were constructed by Williams [1973] to study the dynamics of hyperbolic
expanding attractors for C1 diffeomorphisms of compact 3-manifolds and have
since been used to obtain many important results in the theory of foliations and
laminations of 3-manifolds. For example, Gabai [1987] used branched surfaces to
construct taut foliations, which allowed him to identify the minimal genus spanning
surface for a wide class of knots. Brittenham [1995] showed that a 3-manifold
contains an essential lamination if and only if it contains one that is carried (with
full support) by one of a finite collection of normal branched surfaces. Agol and
Li [2003] used branched surfaces to develop an algorithm for determining if a
manifold contains such a lamination. (For more on the use of branched surfaces
in the study of laminations and foliations, see also [Gabai and Kazez 1998; Gabai
and Oertel 1989; Oertel 1988].)

There are various ways in which a branched surface can be constructed from a
foliation. They are all similar in nature and involve cutting the ambient manifold
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open along a subset of the leaves and then modding out by some quotient. The
branched surfaces we consider are constructed according to a technique introduced
by Christy and Goodman [1987]. (Details are given in Section 1.) This technique
utilizes a nonsingular flow φ transverse to the foliation F , and we say that the
resulting branched surface W carries (F, φ).

A branched surface carrying (F, φ) often reflects the topology of F . For ex-
ample, topological properties such as tautness or the R-covered property can often
be detected from it [Goodman and Shields 2000; Shields 2004; 1997]. Indeed, a
primary motivation for using branched surfaces to study foliations is that a large
number of foliations can be approximated by the same branched surface. However,
there is great variation among branched surfaces carrying the same foliation, and
our ability to extract information about a foliation from a branched surface often
depends on which branched surface we use. In fact, a central issue when using
branched surfaces to study foliations is the search for the right branched surface.

For example, if we wish to show C1 stability of a topological property for some
foliation F , one approach is to show that F is carried by a standard branched
surface (defined in Section 1) that carries only foliations with that property [Shields
1991]. (Here we are using the C1 metric defined by Hirsch [1973], where a nearby
foliation is obtained by perturbing the tangent bundle to the leaves to another inte-
grable plane field.) When we are unable to find such a branched surface, it is often
unclear whether or not one exists.

We show that for any foliation F and any transverse flow φ that meets a certain
criterion, there is a natural choice for a branched surface carrying (F, φ). (The
condition we impose on the flow φ is harmless since it is satisfied by a dense set
of flows in the C0 topology.) Specifically, we define an equivalence relation on
the set of branched surfaces transverse to φ. Like Penner’s equivalence relation on
measured train tracks [Penner and Harer 1992], our relation on branched surfaces is
defined using two combinatorial moves that modify them. We associate a simplest
branched surface WF,φ with the pair (F, φ), which is unique up to equivalence, and
show that any standard branched surface carrying (F, φ) is obtained by modifying
WF,φ in a very restricted way (Theorem 3.4). (For example, each intermediate
branched surface obtained during the modification process also carries (F, φ).)
Thus, if WF,φ cannot be modified so that it carries only foliations with a certain
topological property, no standard branched surface carrying (F, φ) has this prop-
erty. We then use Theorem 3.4 to partition all foliations transverse to φ into count-
ably many equivalence classes, each corresponding to a distinct simplicial complex.

We begin with a review of the construction of a branched surface from a pair
(F, φ). In Section 2 we discuss the relationship of the branched surface to the
foliation F and the techniques for modifying it that we later use to define our
equivalence relation. The main results are proved in Section 3.
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1. Branched surfaces constructed from foliations

Throughout this paper, F will be a C1 codimension one foliation of a closed ori-
entable 3-manifold M and φ :M×R→M will be a C1 nonsingular flow on M that
is transverse to F . We shall often refer to the forward orbit of a point x = φ(x, 0)

in M under φ, meaning the set of points {φ(x, t) : t > 0}. Likewise, the backward
orbit is {φ(x, t) : t < 0}.

Formally, a curve in M is a continuous map from a connected subset of R into M .
However, we shall consider a curve to be the image of such a map, and the map as
a parametrization of the curve. If a curve has a negative boundary point, according
to the orientation induced by the parametrization, we call this the beginning of the
curve; a positive boundary point is the curve’s end. A curve contained in a leaf of
F is an integral curve of F .

1.1. Branched surface construction. The branched surfaces we associate with a
foliation F are in the class of regular branched surfaces introduced by Williams
[1973]. Since the construction we use is in an unpublished paper [Christy and
Goodman 1987] and is a variation of the one in [Gabai and Oertel 1989], we
describe it here, including all details necessary for this article.

We begin with a foliation F , a nonsingular flow φ transverse to F , and a finite
generating set for (F, φ), 1 = {Di }i=1,...,n , consisting of pairwise disjoint em-
bedded compact surfaces with boundary satisfying the following general position
requirements:

(i) Each Di is contained in a leaf of F (hence is transverse to φ) and has finitely
many boundary components.

(ii) The forward and backward orbit of every point, under φ, meets int 1 =⋃ n
i=1 int Di .

(iii) The set of points in ∂1=
⋃ n

i=1 ∂ Di whose orbit, forward or backward, meets
∂1 before meeting int 1 is finite.

(iv) The forward orbit of any point in ∂1 meets ∂1 at most once before meeting
int 1.

We can always find a generating set consisting of embedded disks. In particular,
cover M with foliation boxes for F that are also flow boxes for φ, and select a slice
from each box. Then, modify each slice slightly so that the resulting collection of
disks satisfies the general position requirements above. If a generating set 1 for
(F, φ) consists of embedded disks, we say that it is standard.

After choosing a generating set 1, we cut M open along the interior of each
element of 1 to obtain a closed submanifold M∗ which is embedded in M so that
its boundary contains ∂1. This can be thought of as blowing air into the leaves
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of F to create an air pocket at each element of the generating set. By requirement
(ii) above, the restriction of φ to M∗ is a flow φ∗ with the property that each orbit
is homeomorphic to the unit interval [0, 1]. We then form a quotient space by
identifying points that lie on the same orbit of φ∗. That is, we take the quotient
M∗/∼, where x ∼ y if x and y lie on the same interval orbit of φ∗. This quotient
space can be embedded in M so that it is transverse to φ. Specifically, we can view
the quotient map as enlarging the components of M−M∗ until each interval orbit
of φ∗ is contracted to a point in M . We refer to the embedded copy of the quotient
space as the branched surface W carrying F and φ (or carrying (F, φ)). (Although
the embedding of the quotient M∗/∼ is not unique, any two embedded copies are
diffeomorphic in M ; that is, there is a diffeomorphism of M that maps one onto
the other. Consequently, we only distinguish between branched surfaces up to
diffeomorphism of M . We emphasize that this notion of equivalence for branched
surfaces differs from the usual equivalence up to diffeomorphism isotopic to the
identity.) If 1 is standard, then we say that W is a standard. The complement of
any standard W in M is the union of finitely many open 3-balls.

A branched surface W can have many generating sets. For example, if we flow
a disk in 1 forward or backward slightly to another sufficiently close disk, the
quotient space described above does not change.

The general position requirements for a generating set imply that the branched
surface W is a compact connected two-dimensional complex with a set of charts
defining local orientation preserving diffeomorphisms onto one of these models:
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and further satisfying the condition the transition maps are smooth and preserve
the transverse orientation indicated by the arrows. (Each local model projects hor-
izontally onto a vertical model of R2, so has a smooth structure induced by TR2

when we pull back the local projection.) In particular, W is a connected 2-manifold
except on a dimension one subset µ called the branch set. The set µ is a 1-manifold
except at finitely many isolated points, called crossings, where it intersects itself
transversely. The components of W −µ are the sectors of W .

We can thicken the branched surface W in the transverse direction to recover M∗

which, for this reason, we shall henceforth call N1(W ), the neighborhood of W . In
particular, N1(W) is obtained when we replace each point x in W with the interval
orbit of φ∗ whose quotient is x . (For simplicity, we shall use N (W ) to represent
this submanifold when the generating set is not relevant to the discussion.)

Throughout, πW : N (W )→W will denote the quotient map that identifies points
in the same orbit of φ∗. We say the image x of a point under this map is the
projection of that point. Accordingly, we say points in the preimage of x lie over
x . In particular, the interval orbit of φ∗ that projects onto x will be called the fiber
of N (W ) over x , as illustrated:

x

W

x
fiber over x

N (W )

1.2. Foliations carried by a branched surface. The foliation F clearly gives rise
to a foliation of N1(W ) whose leaves (some of which are branched) are transverse
to the fibers. The branched leaves are precisely those that contain a boundary
component of N1(W ). Specifically, the branched leaves in this foliation are the
(cut-open) leaves of F containing the elements of 1. (They can be thought of as
leaves of F with air blown into them.) The figure
shows a local picture of this foliation of N1(W ).

There are, of course, many foliations that are
transverse to the fibers of N1(W ) with the prop-
erty that each boundary component of N1(W ) is
contained in a leaf. When we collapse the compo-
nents of M − N1(W ) (i.e., the air pockets), each
of these foliations of N1(W ) yields a foliation of
M that is also transverse to φ, and each element
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of 1 is contained in a leaf of this foliation. In other words, each such foliation of
N1(W ) corresponds to a foliation of M that is carried by W .

2. Modifications of W

In this section, we describe techniques for changing a branched surface by mod-
ifying its generating set. We will use these techniques in Section 3 to define an
equivalence relation on the set of branched surfaces transverse to a flow φ.

Given a branched surface W carrying (F, φ) with generating set 1, we can mod-
ify W by enlarging an element D of 1 to include some compact integral surface D′

of F such that ∂ D′∩∂ D 6=∅, int D′∩int D=∅, ∂(D′∪D) 6=∅ and ∂(D′∪D) has
finitely many components. This, in turn, enlarges the component B of M− N (W )

corresponding to D. We refer to this modification of D as an F-extension. If the
new 1 is, in fact, another generating set for (F, φ), then the extension corresponds
to a splitting of W along the projection πW (D′) of D′:

N (W )

D′

B

B

W

Clearly, we can extend D ∈ 1 to include any compact surface D′ embedded
transverse to the fibers of N1(W ) such that ∂ D′∩∂ D 6=∅ and int D′∩ int D =∅.
If ∂(D′ ∪ D) is nonempty and has finitely many components, and if (1− {D})∪
{D′∪D} satisfies conditions (ii)–(iv) for a generating set, then this set can be used
to construct another branched surface W ′ transverse to φ. In this case the extension
of D to include D′ corresponds to a splitting of W along the projection πW (D′)
of D′ to yield W ′. However, if D′ is not an integral surface of F , then there is no
guarantee that F is carried by W ′. We illustrate with a lower-dimensional example.

The branched 1-manifold W at the top of the next page carries a foliation F of
T 2 with 2 Reeb components and 2 compact leaves. Yet, when we modify W by a
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γ

W embedded in a planar model of T 2 W ′ obtained by splitting W along γ

splitting along the curve γ (indicated by the dashed line) we obtain the branched
1-manifold W ′ which does not carry F .

Henceforth, a splitting of a branched surface carrying F that corresponds to an
F-extension in its generating set shall be called an F-splitting.

We can also modify an element D of 1 by replacing it with a proper subset of
itself. If this subset is connected and has finitely many boundary components, and
if the new 1 also satisfies condition (ii) for a generating set, then we refer to this
modification of D as a contraction. The connectedness condition ensures that a
contraction does not change the cardinality of the generating set. This is also true
for F-extensions provided that the elements of 1 are contained in distinct leaves
of F . In such cases, each F-extension can be reversed by a contraction.

If a contraction of some D ∈1 yields another generating set, then it corresponds
to a pinching of W . Specifically, suppose that the contraction deletes some open
subset S of D, and let B be the component of M −W corresponding to D. There
exist two subsets S+ and S− of ∂ B corresponding to S such that int S− flows
injectively onto int S+. We may identify each point of S− with the point it flows
to in S+, to partially collapse B. In other words, we can pinch these pieces of W
together to obtain the branched surface that is generating by 1 after the contraction.

We can also modify 1 by adding another compact integral surface of F , chosen
so that the requirements for a generating set are still satisfied. This, in turn, adds
another component to M −W by a move that we call an F-cutting of W .

At times, we shall want to move an element of the generating set 1. This will
involve flowing that element, either forward or backward along orbits of φ, onto
some other compact integral surface of F . We describe this in detail below.

Definition 1. Given surfaces C and D embedded transverse to the flow (for in-
stance, embedded in leaves of F), we say that C φ-covers D if there exists a
continuous mapping of D along forward orbits of φ into C .

We realize this terminology can be slightly misleading since we are not claiming
C is a covering space for D in the usual sense. For example, certain points in C
might not flow backwards into D and points in the boundary of D might not contain
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regularly covered neighborhoods:

C

D
C φ-covers D

Suppose D lies in 1 and C is a compact integral surface of F with boundary.
According to the following proposition, if C φ-covers D, then replacing D with
C in 1 yields another set satisfying condition (ii) for a generating set.

Proposition 2.1. Given a foliation F and a nonsingular flow φ transverse to F , let
X = {C j }1≤ j≤m be a set of disjoint compact surfaces with boundary that are em-
bedded in leaves of F . If there exists a generating set 1={Di }1≤i≤n for a branched
surface carrying (F, φ) such that the forward orbit of each point in

⋃n
i=1 Di meets⋃m

j=1 int C j , then X satisfies condition (ii) for a generating set.

Proof. Without loss of generality, assume the orbits of φ are parametrized by arc
length. We verify that, under the hypotheses, the orbit φ(x, t)t∈R of any x ∈ M
meets the interior of some element of X in both positive and negative time.

Since 1 satisfies condition (ii), for every x ∈ M there exist t > 0 and i ≤ n
such that φ(x, t) ∈ Di . It follows that there exists a t0 > t and j ≤ m such that
φ(x, t0) ∈ int C j . That is, the forward orbit of any x ∈ M meets the interior of an
element of X .

Since
⋃ n

i=1 Di is compact, there exists a time T > 0 with the property that
every point in

⋃ n
i=1 Di flows into

⋃m
j=1 int C j within time T . That is, for every

x ∈
⋃ n

i=1 Di , there exists a time t , 0 ≤ t ≤ T , and an integer j ≤ m such that
φ(x, t) ∈ int C j . Since 1 is a generating set, the backward orbit of any x ∈ M
meets

⋃ n
i=1 Di infinitely many times. In particular, there exists a monotonically

decreasing sequence {tk} → −∞ such that for every k, φ(x, tk) ∈
⋃ n

i=1 Di . So
for all k such that tk < −T , the forward orbit of φ from φ(x, tk) to φ(x, 0) meets⋃m

j=1 int C j . That is, φ(x, t) ∈
⋃m

j=1 int C j for some t such that tk + T ≥ t ≥ tk .
So the backward orbit of any x ∈ M meets the interior of some element of X . �

Now suppose C is a compact integral surface of F with boundary that φ-covers
some D ∈1. In particular, the interior of D flows continuously into the interior of
C . Since 1 is a generating set, each point in 1 flows into int 1. It follows that each
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point in 1 flows into int C ∪ int(1− {D}). So by Proposition 2.1, if we replace
D with C in 1, we still have a set satisfying condition (ii) for a generating set. In
the case that D flows continuously and injectively onto another integral surface C
of F such that (1− {D}) ∩ {C} = ∅, the set (1− {D}) ∪ {C} also satisfies the
remaining conditions for a generating set. In this case, we say that C is a vertical
translate of F and refer to this type of modification of 1 as a vertical translation
of D.

As noted in Section 1, there are vertical translations that do not change W . (If
a generating set X is obtained after such a vertical translation in 1, then there
is a diffeomorphism of M mapping N1(W ) onto NX (W ) that preserves fibers.
However, it might not be possible to choose this diffeomorphism so that it preserves
leaves of the foliations of N1(W ) and NX (W ), respectively, that are induced by
F .) Since these types of translations usually involve moving a generating surface
to a nearby leaf, any vertical translation of a generating surface D that does not
change W is called a bumping of D.

3. Standard minimal branched surfaces carrying (F, φ)

In this section, we consider only those branched surfaces carrying a pair (F, φ) for
which some generating set is standard minimal for (F, φ); that is, there is a gener-
ating set consisting of disks embedded in leaves of F and no other branched surface
can be constructed from F and φ using a generating set consisting of fewer disks
(although it is possible that some branched surface could be constructed from F
and φ using a generating set that contains fewer embedded surfaces, some of which
are not simply connected). A branched surface is standard minimal for (F, φ) if
it has a generating set with this property. (Clearly, if some generating set for W
is standard minimal for (F, φ), then all generating sets for (F, φ) that generate W
have this property.) We let �F,φ denote the set of all branched surfaces that are
standard minimal for (F, φ). Since we can always find a generating set consisting
of embedded disks (see Section 1), this set is nonempty for every (F, φ). It is
worth noting that all elements in a standard minimal generating set for (F, φ) are
contained in distinct leaves of F (since otherwise, we could extend some element
1 in its leaf so that it merges with another to form one large generating disk.)

Using the density of Smale flows in the C0 topology of nonsingular flows [Oli-
veira 1976], a frequent hypothesis in this section will be that φ is Smale. (Recall
that a nonsingular flow φ on a manifold is a Smale flow provided that the chain
recurrent set R of φ has hyperbolic structure and topological dimension one, and
that for any two points x and y in R, the stable manifold of x and the unstable
manifold of y intersect transversely. For a general discussion of Smale flows, see
[Franks 1982]. Sullivan [2000] also gives a clear and detailed description of the
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dynamics of these flows.) However, the only property of Smale flows that we shall
use is the following: there exists a closed invariant one-dimensional subset R of
M such that each orbit of φ contains, in its limit set, some orbit in R. (When φ

is Smale, we can choose R to be the chain recurrent set.) Our main result will
be to show that for flows with this property, any branched surface W ∈ �F,φ can
be modified, by F-extensions, contractions and bumpings in its generating set, to
yield any other V ∈�F,φ (Theorem 3.4). First, we shall need the following:

Lemma 3.1. Let F be a foliation of M and φ be a Smale flow that is transverse
to F . Any generating set 1 for (F, φ) can be modified by F-extensions and con-
tractions to obtain a standard generating set with the same number of elements. In
particular, if 1 is standard minimal for (F, φ), then no generating set for (F, φ)

has fewer elements than does 1.

Proof. Given a generating set 1={Di }i=1,...,n for (F, φ), suppose that for some i ≤
n, Di is not an embedded disk. Since the chain recurrent set R for φ has topological
dimension one, we can take an arbitrarily small extension of Di within its leaf so
that its boundary misses R; R being closed implies that after the extension there
exists an open collar neighborhood of ∂ Di missing R. General position arguments
then allow us to modify Di within this neighborhood so that the conditions for
a generating set are still satisfied by 1. We can then choose a subset K of Di

consisting of finitely many compact connected 1-manifolds, each missing R, with
the property that Di−K is connected and simply connected. In fact, there exists an
open collar neighborhood U (K ) of K in its leaf whose closure misses R (again,
since R is closed). For every point x ∈ U (K ), the forward orbit φt>0(x, t) of
x meets int 1 − {cl U (K ) ∩ int 1} since it limits on some orbit in R with this
property. So by Proposition 2.1, we can remove U (K ) from Di and still have a set
that satisfies condition (ii) for a generating set. Since there exists an open collar
neighborhood of ∂U (K ) in Di that misses R, general position arguments allows us
to perturb Di−U (K ) to a generating disk. It follows that there exists a generating
set for (F, φ) consisting of embedded disks that has the same cardinality as does 1.

�

Lemma 3.2. Given a foliation F and a nonsingular flow φ transverse to F , let
X = {C j }1≤ j≤m and 1 = {Di }1≤i≤n be generating sets for (F, φ) such that the
elements of X are contained in distinct leaves of F and 1 is standard. There exists
a function C : {1, . . . , n} → X with the property that for every i ≤ n, C(i) can be
extended to an integral surface that φ-covers Di . In addition, every forward orbit
from Di will meet the extended C(i) before meeting an element of X −{C(i)}.

Proof. For each i ≤ n, the forward orbit of each point in Di meets
⋃m

j=1 C j . So
we can define a mapping φi : Di →

⋃m
j=1 C j such that for every x ∈ Di , φi (x) is

the first point in
⋃m

j=1 C j met by the forward orbit of x .
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Given i ≤ n, we choose an element C(i) in X that is closest to Di along forward
orbits of φ in the following sense: If Di ∩ C j 6= ∅ for j ≤ m, then C(i) = C j ;
otherwise, we require that there exists an x ∈ Di with the properties that φi (x) ∈

C(i) and for every y∈Di there is no integral curve beginning at φi (y) and ending in
the interior of the orbit from x to φi (x) that projects continuously, along segments
of orbits of φ−1, onto a curve in Di from y to x . In other words, in the latter case
the following situation must not occur:

C j

C(i)

y
x

φi (y)

φi (x)

(The vertical arrows indicate orbits of φ, the dotted curve an integral curve of F .)
In the former case, C j and Di are contained in the same leaf of F , so C j can be
extended to contain Di and C(i) is unique (since the elements of X are in distinct
leaves of F). In the latter case, we verify that there is also only one choice for C(i)
and that it extends to φ-cover Di .

Suppose Di ∩ C j = ∅ for every j ≤ m and that x ∈ Di has the properties
above. Let x ′ be any other point in Di . It suffices to show that C(i) can be F-
extended, over a curve in Di , to meet the orbit of φ from x ′ to φi (x ′). For this,
choose any curve α(s)0≤s≤1 from x to x ′ whose interior is contained in int Di .
Given any s ∈ [0, 1], we can find an open integral disk Us containing α(s) that
flows continuously and injectively onto another open integral disk Vs containing
φi (α(s)). In particular, we can embed a cylinder D2

× [0, 1] in M so that the
image of D2

× {0} is cl Us , the image of D2
× {1} is cl Vs , the image of each

copy of [0, 1] is contained in an orbit of φ and the image of each copy of D2 is
contained in a leaf of F . By choosing Us sufficiently small, we can ensure that for
every z ∈ cl Us , the orbit from z to φi (z) meets cl Vs . Now choose a finite subcover
{U0, Us1, . . . , USN } of α and, without loss of generality, assume that U0∩Us1 6=∅
and Usk ∩Usk+1 6= ∅ for all k < N . Since the disk C(i) contains φi (α(0)), it can
be F-extended to contain cl V0. In particular, C(i) can be extended, over cl U0 to
meet the orbit from α(s) to φi (α(s)), for all s such that α(s) ∈ cl U0.

Next, consider the embedded cylinder with base cl Us1, as described above, and
choose s0∈[0, 1] such that α(s0)∈cl(Us1)∩U0. If C(i) does not meet the boundary
of this cylinder after we extend it to meet the orbit of φ from α(s0) to φi (α(s0)),
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then the extended C(i) meets this orbit after its intersection with cl Vs1. But this
means there is an integral curve over α(s)0≤s≤s1 that begins in the interior of the
orbit from x to φi (x) and ends at φi (α(s1)), contradicting the way we chose x and
C(i). So C(i) can be extended further, over cl Us1, to contain the image of D2

×{t}
in our cylinder for some t ∈ [0, 1]:

x

x ′

α(s0)

α(s1)

φi (x)
C(i)

extension
of C(i)

φi (α(s0))y

←−−−
φi (α(s1))

Vs1 H⇒

In this case, it meets the orbit of φ from α(s) to φi (α(s)) for all s such that α(s) ∈
cl Us1. In this manner, we can argue inductively that C(i) can be F-extended, over
α, to meet the orbit of φ from x ′ to φi (x ′). Since the elements of X are contained
in unique leaves of F , C(i) defined as above is unique for each i .

So we have a function C : {1, . . . , n} → X such that for every i ≤ n, C(i) is
the closest element in X to Di along forward orbits of φ, and we can extend C(i)
in its leaf so that every positive orbit from Di will meet the extended C(i) before
meeting any other element of X . Since Di is a disk, we can choose this extension
so that it φ-covers Di . (If Di were not a disk, then it would not, in general, be
possible to extend C(i) so that Di flows continuously into it.) �

For the following lemma, the map C : {1, . . . n} → X is as defined above.

Lemma 3.3. Given a foliation F and a Smale flow φ transverse to F , let X =
{C j }1≤ j≤m and 1= {Di }1≤i≤n be generating sets for (F, φ) such that the elements
of X and 1, respectively, are contained in distinct leaves of F and 1 is standard.
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If C j = C(i) for some j ≤ m and i ≤ n, we can modify Di by contractions and
F-extensions so some vertical translate of Di is contained in the same leaf as C j .

The proof of this lemma is quite long. So before we begin, we give a brief
description of the argument, together with an illustrating example

By Lemma 3.2, each generating disk Di in 1 maps continuously, along orbits
of φ, onto some integral surface Di

′ intersecting C(i) ∈ X . Our approach will be
to consider subsets of Di that map onto the same subset of Di

′, which we shall
refer to as “layers of a stack” in Di . (A precise definition is given in the proof
below.) We modify each disk Di in stages to eliminate all but the top layer of
each stack (the layer closest to Di

′). When deleting the lower layers of a particular
stack, we must ensure that Di stays connected; otherwise this deletion is not a
contraction. So, at each stage, it is usually necessary to delete more of Di than
just the lower layers of a stack. This can be done by contractions provided that we
first extend Di from the top layer to catch all orbits from the portion we intend to
delete. (By Proposition 2.1, this ensures that condition (ii) for a generating set is
satisfied after our deletions). Our ability to do this relies on our assumption that
Di is simply connected. So before moving on to the next stack, we cut (i.e., take a
small contraction of) the new generating surface so that it is also simply connected.
We then repeat the modification process described above and eventually get Di to
have the desired property.

Since it might be helpful to follow through an example, we illustrate one stage
of the modification process.

Suppose Di is as shown in the figure and that Di
′ is its planar projection. (We

assume the transverse flow φ is perpendicular to the page and oriented toward the
reader.) The shaded region indicates a stack in Di consisting of 3 layers.

We wish to delete the two lower layers of this stack. However, when we delete
the lowest layer, we disconnect Di into two components. So since we want our
deletion to be a contraction, we must also delete one of these components. In
particular, we delete the component that does not contain the uppermost layer of
our stack. The following extension ensures that when we do so, condition (ii) for



190 SANDRA SHIELDS

a generating set is still satisfied.

After the contraction, we have this surface:

hole

It is not simply connected since the deletion of the middle layer of our stack creates
a hole.

So we contract Di further (as in the proof of Lemma 3.1) so that it is simply
connected. The process is then repeated using the new Di shown here.

Proof of Lemma 3.3. Let X ={C j }1≤ j≤m and 1={Di }1≤i≤n be generating sets for
branched surfaces carrying (F, φ) such that the elements of X and 1, respectively,
are contained in distinct leaves of F and 1 is standard.

For the map C : {1, . . . , n} → X defined in the proof of Lemma 3.2, suppose
that C j =C(i) for some j ≤m and i ≤ n. Since C j can be extended to φ-cover Di ,
the disk Di flows continuously, along orbits of φ, onto some integral surface Di

′
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that intersects C j . Our concern will be those parts of Di that flow onto the same
subset of Di

′.
Let 8 be the collection of orbit segments of φ that define this continuous map-

ping of Di onto Di
′. (In particular, the terminal point of each orbit of 8 is the

image, in Di
′, of its initial point.) Without loss of generality, we can assume

that ∂ Di ∩ R = ∅ and that there are only finitely many orbits of 8 containing
more than one point in ∂ Di . Specifically, we can take an arbitrarily small F-
extension of Di , as in the proof of Lemma 3.1, so that its boundary misses R.
After this modification, there exists an open collar neighborhood of ∂ Di in its leaf
that misses R. General position arguments allow us to further modify Di within
this neighborhood to get a generating disk with the property that when we flow
it continuously forward along orbits of φ onto an integral surface Di

′ intersecting
C(i), at most finitely many of the orbit segments from Di to Di

′ meet ∂ Di more
than once. This ensures that the image ∂∗ of ∂ Di in Di

′ is a closed and connected
subset of C(i) which is a one-manifold except at finitely many points where it
self intersects. (It also ensures that Di

′ has finitely many boundary components.)
Consequently, ∂∗ divides Di

′ into finitely many connected regions whose interiors
are disjoint. It follows that the preimage of ∂∗ in Di (namely, the set of points in
Di that map onto ∂∗ when we flow Di continuously forward, along orbits in the
set 8, onto Di

′) divides Di into finitely many connected regions whose interiors
are pairwise disjoint. Let 0 be an open subset of

∫∫
Di such that each component

of 0 is the interior of one of these regions. If the components of 0 all have the
same image when we flow Di onto Di

′, and if 0 is not contained in any larger
open subset of int Di with these properties (i.e., one with more components), then
we say 0 is a stack of Di . We will refer to each component of a stack as a layer
of that stack. (A stack may have only one layer.) Clearly, there are only finitely
many stacks of Di and they are pairwise disjoint.

For example, if Di is as shown below, there are four stacks, only one of which
has more than one layer. (The other three stacks are each connected.) The image
in Di

′ of the two-layer stack is labeled 0′.

Di

0′
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Let 0 be a stack of Di that is not connected and let 01, 02, . . . , 0p be the layers
of 0 indexed so that for every k ≤ p, 0k flows injectively onto 0k+1. We wish
to delete cl(01 ∪ 02 ∪ · · · ∪ 0p−1) from Di . However, we need each orbit of
φ to meet int 1 after this deletion. (This is necessary for our deletion to be a
contraction.) This is ensured by our assumptions on φ and Di . Specifically, for any
x ∈ cl(01∪02∪· · ·∪0p−1), the closure of φt>0(x, t) contains an orbit in the closed
one-dimensional chain recurrent set R. Furthermore, this orbit in R∩cl(φt>0(x, t))
meets int 1−

(
cl(01 ∪02 ∪ · · · ∪0p−1)∩ int 1

)
. (By assumption, it cannot meet

∂ Di , hence, it cannot meet ∂(01∪02∪· · ·∪0p−1). If it meets 01∪02∪· · ·∪0p−1,
then it also meets 0p.) It follows that φt>0(x, t) also meets int 1−

(
cl(01 ∪02 ∪

· · ·∪0p−1)∩int 1
)
. So by Proposition 2.1, the closure of this set satisfies condition

ii) for a generating set. That is, its interior is met by the forward and backward
orbit of each point in M . So since 1−cl(01∪02 · · ·∪0p−1) has the same interior,
condition ii is still satisfied by 1 after we delete cl(01∪02∪· · ·∪0p−1) from Di .

However, if Di −cl(01∪02∪· · ·∪0p−1) is not connected, then this deletion is
still not a contraction. In this case, we delete a larger portion of Di . In particular,
we also delete the union R1 of those components of Di − cl(01∪02∪ · · ·∪0p−1)

that do not contain 0p. (Each point in ∂ R1 that is not contained in ∂ Di is contained
in ∂(01∪02∪· · ·∪0p−1).) However, we must again make certain that requirement
ii) for a generating set is still satisfied after the deletion. This can be ensured by
first extending Di .

Specifically, any x ∈ ∂(01 ∪02 ∪ · · · ∪0p−1) flows into some y ∈ ∂(0p). Fur-
thermore, since the entire disk Di flows continuously forward, along orbits in the
set 8, onto another integral surface of F containing y in such a way that x maps to
y, this is also true for any portion of Di . So since the boundary of each component
of R1 intersects ∂(01 ∪ 02 ∪ · · · ∪ 0p−1), by flowing cl R1 forward, we can find
an integral (not necessarily connected) surface R2 of F that meets all forward
orbits in the set 8 from cl R1 such that R2 ∪ cl 0p is compact, connected and has
finitely many boundary components. (It is possible that R2 ∩ Di contains points
not in ∂0p.) In fact, we can choose R2 so that cl(01 ∪02 ∪ · · · ∪0p−1)∩ R2 =∅.
Consequently, we can F-extend Di to include all of R2 (see figure) and then delete

Di

0′

R↗i

Di

0′
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cl(01 ∪02 ∪ · · · ∪0p−1)∪
(
R1− (R1 ∩ R2)

)
to obtain another connected integral

surface D̃i (which is not compact since it does not contain all its boundary points).
We have then deleted all but the top layer of the stack 0. (By assumption, the
elements of 1 are contained in distinct leaves of F . So since D̃i is contained in
the same leaf of F as Di , it does not intersect any other element of 1. Hence,
(1− {Di })∪ {D̃i } is a collection of pairwise disjoint surfaces with boundary and
compact closure.) By Proposition 2.1 and the way we chose R2, condition (ii) for
a generating set is still satisfied; that is, each orbit of φ meets the interior of some
element of (1−{Di })∪{D̃i } in forward and backward time. We now want to delete
the lower layers of some stack in D̃i in this manner, but first we must modify D̃i

so that it is simply connected.
For this, we find a finite collection K of compact arcs in D̃i such that D̃i − K

is simply connected. In particular, we choose each arc in K to be the continuous
image of some arc in ∂ Di (as we flow it partially forward or backward along the
orbits in the set 8). This ensures that K ∩R = ∅, which allows us to remove K
from D̃i and still have condition (ii) for a generating set satisfied. (For details, see
proof of Lemma 3.1).

After these deletions, D̃i flows continuously, along orbits in the set 8, onto a
surface D̃i

′ that is contained in the same leaf of F as Ci . We can think of D̃i
′ as

the first integral surface intersecting Di
′ as we flow D̃i forward along orbits of φ.

Just as we observed in the initial situation, ∂ D̃i ∩ D̃i flows continuously (along
orbits in the set 8) onto a subset of D̃i

′ which partitions it into finitely many regions
whose interiors are pairwise disjoint. So we can again define stacks for D̃i .

It is possible that D̃i has more multilayer stacks than does Di . However, if we
consider the set of points in Di (D̃i ) that are contained in orbits in the set 8 through
∂ Di (∂ D̃i respectively), we see this set divides Di (D̃i ) into finitely many regions
whose interiors are disjoint, and the closure of each stack of Di (D̃i respectively) is
the union of such regions. Furthermore, our construction of D̃i ensures that it has
fewer regions of this type than does Di . So, continuing in this manner, we would
eventually get some D̃i with only one such region, hence one (single-layer) stack.

At each stage of our modification process, D̃i is simply connected but not com-
pact. So to make it an embedded disk we technically need to delete the intersection
of D̃i with open neighborhoods U and U (K ) in Di of cl(01∪02∪· · ·∪0p−1) and K
respectively. (The neighborhoods U and U (K ) can be chosen so that the conditions
for a generating set are still satisfied since ∂(01 ∪02 ∪ · · · ∪0p−1)∩R = ∅ and
K ∩R = ∅. The argument here is again analogous to that used for Lemma 3.1.)
It is possible that when we do this, we shrink or subdivide some of the regions in
D̃i discussed above, as well as some stacks. However, we continue to modify, as
above, to decrease the number of layers in some stack of D̃i , rather than consider
stacks of the resulting generating disk. Specifically, we continue by modifying D̃i
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to delete all but the top layer of one of its stacks (as we did for Di ), keeping in mind
that at any stage D̃i could be contracted to a generating disk. We eventually obtain
D̃i with only one (single-layer) stack, and it can be contracted to a generating disk
that flows continuously and injectively onto a disk in the leaf containing C j . �

Although there are many branched surfaces carrying a foliation F , it is often
desirable to find one with certain properties. In particular, certain structural criteria
on a standard branched surface W carrying F are sufficient to guarantee that every
foliation carried by W , including F , has some topological property such as tautness
or the R-covered property; see [Goodman and Shields 2000; Shields 2004; 1997;
1996]. In such cases, we know that topological property is C1 stable for F since
all foliations sufficiently close to F are also carried by W [Shields 1991]; that is,
each foliation within some ε > 0 of F , in the C1 metric defined by Hirsch [1973],
is carried by W . (There may also be foliations carried by W that are not within
ε of F .) So a central issue in using branched surfaces to study foliations is the
search for the right branched surface. According to the following theorem, if we
cannot modify any given standard minimal branched surface W carrying (F, φ),
in a very restricted way, to obtain one with a desired property, then a standard
branched surface with that property and carrying (F, φ) does not exist.

Theorem 3.4. Let F be a foliation and φ be a nonsingular Smale flow transverse
to F . Any branched surface W ∈ �F,φ can be modified to obtain any other stan-
dard branched surface V carrying (F, φ) by F-splittings and pinchings, followed
by finitely many F-cuttings. In particular, if V ∈ �F,φ , then any generating set
for (F, φ) that generates W can be modified by F-extensions, contractions and
bumpings to get any generating set for (F, φ) that generates V .

Proof. Let 1= {Di }1≤i≤n be a generating set that is standard minimal for (F, φ).
Take another standard generating set X={Ci }1≤i≤m for (F, φ), with m≥n; without
loss of generality, we can assume that the elements of X are contained in distinct
leaves of F , since we can bump elements in any standard generating set to nearby
leaves.

Consider the function C : {1, . . . , n}→ X as defined in the proof of Lemma 3.2.
Using Lemma 3.3, we modify 1 by contractions and F-extensions so that for all
i ≤ n, some vertical translate Di

′ of Di is contained in the same leaf of F as C(i).
Suppose that for some i ≤m, there exist distinct j, k ≤ n such that Ci =C( j)=

C(k). That is, Ci is the closest element of X to both D j and Dk along orbits of
φ. We can extend D j

′ and Dk
′ in their leaf so that they both intersect Ci . Then,

by Proposition 2.1, a slight modification of D j
′
∪ Dk

′
∪Ci can be used to replace

both D j and Dk in 1. Although the resulting generating set might not be standard,
by Lemma 3.1 we have a contradiction to our assumption that our original 1 was
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standard minimal for (F, φ). It follows that the function C : {1, . . . , n} → X is
injective. So without loss of generality, assume C(i)= Ci for all i ≤ n.

If x is a point along an orbit of φ from Di to Di
′ for some i ≤ n, then Di flows

continuously, along orbits of φ, onto an integral surface Sx of F through x . Since
1 is minimal, Sx cannot intersect 1− {Di } (As argued above, this follows from
Proposition 2.1 and Lemma 3.1). So no orbit from Di to Di

′ meets 1−{Di }. That
is, the vertical translation from Di onto Di

′ is a bumping, for all i ≤ n.
For each i ≤ n, we can use F-extensions and contractions of Di

′ to obtain Ci .
It follows that 1 = {Di }1≤i≤n can be modified by F-extensions, contractions and
bumpings to obtain {Ci }1≤i≤n; this corresponds to modifying the branched surface
W generated by 1 using F-splittings and pinchings. If n < m, we can then add
{Ci }n+1≤i≤m to obtain X . By definition, these additions correspond to finitely many
cuttings of W . �

Given a nonsingular flow φ on some manifold M , we can use our modification
techniques to define an equivalence relation on the set of branched surfaces that
carry foliations transverse to φ. Specifically, given two branched surfaces W and
V transverse to φ, we say W is equivalent to V if W can be modified to obtain V
(up to some diffeomorphism of M) by splittings and pinchings, each of which
does not change the number of complementary components in M . We use [W ] to
represent the equivalence class of W under this relation.

If φ is Smale and F is transverse to φ, then by Theorem 3.4 any two branched
surfaces in �F,φ are equivalent. So given a foliation F and a transverse flow φ that
is Smale, we can associate a simplest branched surface WF,φ ∈ �F,φ with (F, φ),
which is unique up to equivalence.

Theorem 3.5. Let φ be a nonsingular Smale flow on M . The set of foliations
transverse to φ can be partitioned into countably many equivalence classes so that
there exists an injective function from the set of all such classes into a countable
collection of simplicial complexes. Specifically, each equivalence class can be as-
sociated with a distinct branched surface K and each standard minimal branched
surface for a foliation in that class can be obtained by modifying K .

Proof. We can define an equivalence relation on the set of foliations transverse to
φ by letting F be equivalent to G precisely when some WF,φ ∈�F,φ is equivalent
to some WG,φ. ∈ �G,φ (By Theorem 3.4, equivalence of two foliations F and G
is independent of our choices for WF,φ and WG,φ .) We can therefore associate
the equivalence class for F with any standard branched surface in [WF,φ.] that
carries a foliation. So it suffices to show that the set of branched surfaces that can
be constructed from foliations of M and generated by disks is countable (up to
diffeomorphism of M).
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For any branched surface W carrying a foliation of M , the intersection Wε of W
with a small regular neighborhood of the branch set in the ambient manifold M is
obtained by piecing together local neighborhoods of the crossings, each of which
is modeled on either of the two lower diagrams on page 180. (We glue these local
models together along the Y -shaped components of their boundaries in a manner
dictated by the branch set.) The branched surface W can then be constructed (up
to diffeomorphism) by gluing the boundaries of surfaces homeomorphic to the
sectors of W to ∂Wε. Since the branched surfaces we consider have finitely many
crossings (that is, the branch set for each is a finite graph) and no boundary, there
are only countably many possibilities for W , up to diffeomorphism.

By definition, our branched surfaces are embedded in the ambient manifold in a
particular manner determined by the construction; moreover, we only distinguish
between them up to diffeomorphism of M . When we restrict to branched surfaces
generated by disks, the complement of each is simply connected. In particular, if
W and V are diffeomorphic branched surfaces constructed from foliations of M
and generated by disks, then the complement of each in M must be a disjoint union
of open 3-balls. Hence, the diffeomorphism from W onto V extends to a diffeo-
morphism of M . It follows that the collection of all standard branched surfaces
constructed from foliations of M is countable up to diffeomorphism of M . �

The branched surface K that we associate with the foliation F might not carry F .
However, it is equivalent to many that do. So although the topological behaviors
of leaves in two equivalent foliations F and G can differ substantially, there is
often a branched surface W ∈ [K ] carrying both F and G. In this case, if the
intersection of the set {γ : γ = πW (γF ) for some integral curve γF of F} with the
set {γ : γ = πW (γG) for some integral curve γG of G} is sufficiently large, then F
and G will share many important topological properties. See [Shields 2004; 1991;
1997; 1996].
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